WO2022218229A1 - 一种信号转发方法、中继设备及通信系统 - Google Patents

一种信号转发方法、中继设备及通信系统 Download PDF

Info

Publication number
WO2022218229A1
WO2022218229A1 PCT/CN2022/085862 CN2022085862W WO2022218229A1 WO 2022218229 A1 WO2022218229 A1 WO 2022218229A1 CN 2022085862 W CN2022085862 W CN 2022085862W WO 2022218229 A1 WO2022218229 A1 WO 2022218229A1
Authority
WO
WIPO (PCT)
Prior art keywords
gain
forwarding
information
configuration information
resource
Prior art date
Application number
PCT/CN2022/085862
Other languages
English (en)
French (fr)
Inventor
刘凤威
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP22787455.9A priority Critical patent/EP4311124A1/en
Publication of WO2022218229A1 publication Critical patent/WO2022218229A1/zh
Priority to US18/487,947 priority patent/US20240040467A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W40/00Communication routing or communication path finding
    • H04W40/02Communication route or path selection, e.g. power-based or shortest path routing
    • H04W40/04Communication route or path selection, e.g. power-based or shortest path routing based on wireless node resources
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/155Ground-based stations
    • H04B7/15528Control of operation parameters of a relay station to exploit the physical medium
    • H04B7/15535Control of relay amplifier gain
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/155Ground-based stations
    • H04B7/15528Control of operation parameters of a relay station to exploit the physical medium
    • H04B7/15542Selecting at relay station its transmit and receive resources
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/155Ground-based stations
    • H04B7/15528Control of operation parameters of a relay station to exploit the physical medium
    • H04B7/1555Selecting relay station antenna mode, e.g. selecting omnidirectional -, directional beams, selecting polarizations
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0215Traffic management, e.g. flow control or congestion control based on user or device properties, e.g. MTC-capable devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W40/00Communication routing or communication path finding
    • H04W40/02Communication route or path selection, e.g. power-based or shortest path routing
    • H04W40/12Communication route or path selection, e.g. power-based or shortest path routing based on transmission quality or channel quality

Definitions

  • the embodiments of the present application relate to the field of communication technologies, and in particular, to a signal forwarding method, a relay device, and a communication system.
  • the wireless communication system when a network device and a terminal device transmit data, the user's requirement for a transmission rate can be met by increasing the transmission bandwidth.
  • the wireless communication system may use spectrum resources of higher frequency bands.
  • high-frequency bands can provide abundant spectrum resources, high-frequency electromagnetic waves have disadvantages such as large propagation attenuation and weak diffraction ability. Therefore, it is difficult for the cellular communication system deployed in the high frequency band to achieve full coverage of the area.
  • a relay device is introduced to amplify and forward the transmission signal between the network device and the terminal device through the relay device, so as to solve the coverage problem of the high frequency band.
  • the relay device amplifies the interference noise while amplifying the uplink signal sent by the terminal device.
  • the power of the uplink signal received by the relay device is low.
  • the amplification gain of the relay device is large, the amplified noise power is large, which will easily affect the reception performance of the network device (to other terminal devices).
  • the amplification gain of the relay device is small, the amplification of the uplink signal is insufficient, resulting in insufficient reception of the uplink signal of the terminal device to be forwarded by the network device.
  • the present application provides a signal forwarding method, a relay device and a communication system to improve the uplink forwarding performance of the relay device.
  • the present application provides a signal forwarding method, which can be applied to a relay device, and the relay device is also called a relay node.
  • the relay device can determine the first A time domain resource; the first forwarding gain corresponding to the first resource information is determined according to the association between the forwarding gain and the resource information; the resource information includes one or more of the following: signal information, channel information, time-domain resource number, return transmit beam information and access beam information; and use the first forwarding gain to forward the received signal in the first time domain resource.
  • the first resource information may be one or more of the above resource information, and the first time domain resource may be a time slot, a symbol, a time division duplex (time division duplex, TDD) configuration period or a subframe, etc. .
  • the first resource information may include an identifier of a time domain resource or a time unit, such as a time slot number, a symbol number, etc.; the first resource information may also include signal or channel information, such as sounding reference signal (sounding reference signal, SRS) signal information, Physical random access channel (PRACH) channel information, physical uplink control channel (physical uplink control channel, PUCCH) channel information, etc.
  • sounding reference signal sounding reference signal
  • PRACH Physical random access channel
  • PUCCH physical uplink control channel
  • the relay device may determine the time domain resources corresponding to each channel and signal (that is, the first resource information) according to broadcast or unicast signaling sent by the network device or the donor base station. For example, the relay device determines the time domain resources occupied by the PRACH channel (the first resource information is equivalent to the PRACH channel information) by reading broadcast information (such as system information block (SIB) information), or the relay device reads
  • broadcast information such as system information block (SIB) information
  • SIB system information block
  • the time domain resources occupied by the SRS signal are determined by taking unicast information (for example, radio resource control (radio resource control, RRC) information).
  • RRC radio resource control
  • the association relationship between the forwarding gain and the resource information may be preconfigured by the donor base station and sent to the relay device and stored by the relay device; or may be sent to the relay device by the donor base station after receiving certain indication information.
  • the forwarding gain information pre-configured by the donor base station may not be applicable in real time.
  • Update the forwarding gain configuration information and send the updated forwarding gain configuration information to the relay device; it is also possible to update the forwarding gain configuration information in time when it is determined that the attribute information (location, signal occupied resources, etc.) of the terminal device changes, and update the The forwarding gain configuration information is sent to the relay device.
  • the configuration rules for the forwarding gain information may also include other types, which are not described here, and any combination of the above configuration rules or the above configuration rules is applicable to the present application.
  • the forwarding gain configuration information is associated with resource information (signal information, channel information, time-domain resource number, backhaul beam information, access beam information, etc.), that is, for different resource information or different
  • resource information signal information, channel information, time-domain resource number, backhaul beam information, access beam information, etc.
  • the sets of resource information may correspond to the same or different forwarding gain values.
  • the received signal may come from the donor base station or the terminal device.
  • the signal from the donor base station can be understood as a downlink signal.
  • the relay device can forward the downlink signal to the terminal device according to the forwarding gain after receiving the downlink signal.
  • the signal from the terminal device can be Understanding the uplink signal, the relay device can forward the uplink signal to the donor base station according to the forwarding gain after receiving the uplink signal.
  • the received signal may be only a noise signal, and at this time, the relay device forwards the noise signal according to the forwarding gain.
  • the relay device forwards the received signal according to the forwarding gain corresponding to different resource information configurations, which can improve the coverage enhancement capability of the relay device. For example, when the donor base station schedules near-end users, it instructs the relay device to forward the received signal with a lower forwarding gain, so as to avoid interference caused by amplified noise; when the donor base station receives a common channel (such as PRACH), instructs the relay device The device forwards the received signal with a moderate forwarding gain, thereby balancing the access success rate of directly connected and non-directly connected users.
  • a common channel such as PRACH
  • forwarding gain configuration information from a donor base station is received; the forwarding gain configuration information includes an association relationship between the forwarding gain and resource information.
  • different resource information corresponds to different forwarding gains.
  • the present application instructs the relay device to perform the forwarding operation by configuring the relationship between different resource information and the forwarding gain, so that the forwarding performance of the relay device can be improved.
  • the forwarding gain is an absolute gain, or an offset relative to a reference gain; wherein, the reference gain is one of the following information: a downlink forwarding gain, or a preset gain.
  • the forwarding gain is an absolute gain value, it can be the gain value of the amplifier circuit, and the forwarding gain can be an uplink forwarding gain or a downlink forwarding gain.
  • the gain information of uplink forwarding is 10dB, that is, the gain value of the amplifying circuit is 10dB.
  • it is a relative gain value, it can be an offset value relative to the reference gain (unit is decibel dB or a linear multiple). For example, if the gain of uplink forwarding is 5dB and the reference gain is 30dB, then the actual gain of uplink forwarding is 35dB (30+ 5dB).
  • the reference gain can be configured according to the downlink forwarding gain. For example, if the downlink forwarding gain is 20dB, the reference gain can be set to 20dB; it can also be set according to the pre-defined value of the donor base station, such as The predefined value is 30dB, then the reference gain is set to 30dB.
  • the forwarding gain configuration information may be indicated by semi-static signaling.
  • the configuration information of the forwarding gain indicated by the donor base station through semi-static signaling may be stored in the relay device.
  • the semi-static signaling may be RRC signaling, or may be other signaling, which is not specifically limited in this application.
  • the forwarding gain configuration information may be indicated by dynamic signaling.
  • dynamic signaling is more flexible, and can flexibly indicate the forwarding gain of different resource information configurations, such as: through downlink control information (DCI) or media access control element (media access control control element) , MAC CE), indicating the forwarding gain corresponding to the resource information, for example, indicating the forwarding gain of the time domain resource through DCI, etc., which is not specifically limited in this application.
  • DCI downlink control information
  • media access control element media access control control element
  • MAC CE media access control element
  • semi-static signaling may indicate the forwarding gain corresponding to the signal or channel
  • dynamic signaling may indicate the forwarding gain corresponding to resource information other than the signal or channel.
  • the forwarding gain corresponding to PRACH is indicated by RRC signaling as X
  • the forwarding gain corresponding to time domain resource 1 is indicated by DCI as Y.
  • the semi-static signaling and the dynamic signaling indicate the forwarding gain corresponding to what kind of resource information.
  • the priorities of the forwarding gains corresponding to different resource information are different, wherein the priority of the forwarding gains corresponding to the channel information is higher than the priority of the forwarding gains corresponding to the signal information.
  • the priority of the forwarding gain corresponding to the PRACH is higher than the priority of the forwarding gain corresponding to the SRS.
  • the forwarding gain configuration information includes: first gain configuration information and second gain configuration information; wherein the first gain configuration information is indicated by semi-static signaling; the second gain configuration information is indicated by dynamic signaling Indicate: the priority of the first gain configuration information is higher than the priority of the second gain configuration information.
  • the priority of the forwarding gain information indicated by the semi-static signaling to be higher than the priority of the forwarding gain information indicated by the dynamic signaling, accurate forwarding of the semi-static signal can be ensured. It should be noted that, under normal circumstances, the forwarding of semi-static signals is more important, and its quality needs to be guaranteed during uplink forwarding. Therefore, the forwarding gain information indicated by this static signaling has a higher priority than the forwarding gain information executed by dynamic signaling. priority.
  • the first forwarding gain includes a first gain value and a second gain value; the first gain value is different from the second gain value; the first gain value is determined by the first gain configuration information; the second gain The value is determined by the second gain configuration information; the relay device can forward the received signal using the first gain value in the first time domain resource.
  • the unit switches the forwarding gain; or, if the first forwarding gain is determined by the second gain configuration information, and the second forwarding gain is determined by the first gain configuration information, then the last time unit or the last time unit of the first time domain resource is switched.
  • Forwarding gain wherein, the second forwarding gain is the forwarding gain used by the relay device to forward the received signal in the second time domain resource; the first time domain resource and the second time domain resource are adjacent time domain resources, and the first time domain resource and the second time domain resource are adjacent time domain resources.
  • the second forwarding gain is different from the first forwarding gain.
  • the above-mentioned time unit is a continuous time unit, and the time unit may be a subframe, a symbol, etc.
  • the first time domain resource includes multiple time units, assuming that the time unit is a symbol, and the first time domain resource includes 14 symbols (0-13), when switching the forwarding gain, the 11th time domain resource can be used in the first time domain resource.
  • the second time domain resource includes a plurality of time units. It is assumed that the time unit is a symbol, and the second time domain resource includes 14 symbols (0-13).
  • the first to first Three symbols (the first to third symbols can be understood as the previous multiple time units) perform switching of the transfer gain.
  • the present application is merely illustrative and not specifically limited.
  • the relay device can determine the second forwarding gain according to the association between the forwarding gain and the resource information and the second resource information, so that the relay device can use the second forwarding gain to forward the received signal in the second time domain resource.
  • the relay device may report the amplified noise power information to the donor base station, so that the donor base station determines the forwarding gain configuration information according to the amplified noise power information.
  • the relay device may receive indication information from the donor base station; the indication information is used to instruct the relay device to measure amplified noise power information under specified resources; the specified resources include one or more of the following : time domain resources, frequency domain resources and access beams; under the specified resources, measure the amplified noise power information.
  • the present application provides a relay device, including a transceiver unit and a processing unit.
  • the processing unit is configured to determine the first forwarding gain corresponding to the first resource information according to the association relationship between the forwarding gain and the resource information;
  • the resource information includes one or more of the following: signal information, channel information, time domain resource number , return beam information and access beam information;
  • a transceiver unit configured to forward the received signal with a first forwarding gain in a first time domain resource, where the first time domain resource is determined by the first resource information.
  • the transceiver unit is further configured to: receive forwarding gain configuration information from the donor base station; the forwarding gain configuration information includes an association relationship between forwarding gains and resource information.
  • different resource information corresponds to different forwarding gains.
  • the forwarding gain is an absolute gain, or an offset relative to a reference gain; wherein, the reference gain is one of the following information: a downlink forwarding gain, or a preset gain.
  • the forwarding gain configuration information is indicated by semi-static signaling, or the forwarding gain configuration information is indicated by dynamic signaling.
  • the priorities of the forwarding gains corresponding to different resource information are different, wherein the priority of the forwarding gains corresponding to the channel information is higher than the priority of the forwarding gains corresponding to the signal information.
  • the forwarding gain configuration information includes: first gain configuration information and second gain configuration information; wherein the first gain configuration information is indicated by semi-static signaling; the second gain configuration information is indicated by dynamic signaling Indicate: the priority of the first gain configuration information is higher than the priority of the second gain configuration information.
  • the first forwarding gain includes a first gain value and a second gain value; the first gain value is different from the second gain value; the first gain value is determined by the first gain configuration information; the second gain The value is determined by the second gain configuration information; the transceiver unit is specifically configured to: use the first gain value to forward the received signal in the first time domain resource.
  • the processing unit is further configured to: if the first forwarding gain is determined by the first gain configuration information, and the second forwarding gain is determined by the second gain configuration information, or, if the first forwarding gain is determined by the second gain configuration information, and the second forwarding gain is determined by the first gain configuration information, then the last one or The last multiple time units switch the forwarding gain; wherein, the second forwarding gain is the forwarding gain used by the relay device to forward the received signal in the second time domain resource; the first time domain resource and the second time domain resource are adjacent time domain resources, and the second forwarding gain is different from the first forwarding gain.
  • the transceiver unit is further configured to: report the amplified noise power information to the donor base station, so that the donor base station determines the forwarding gain configuration information according to the amplified noise power information.
  • the transceiver unit is further configured to: receive indication information from the donor base station; the indication information is used to instruct the relay device to measure the amplified noise power information under the specified resource; the specified resource includes one of the following or multiple types: time-domain resources, frequency-domain resources, and access beams; the processing unit is further configured to measure amplified noise power information under designated resources.
  • the present application provides a communication system, including a donor base station and a relay device; the donor base station is configured to determine forwarding gain configuration information, and send the forwarding gain configuration information to the relay device; the The forwarding gain configuration information includes an association relationship between the forwarding gain and resource information; the resource information includes one or more of the following: signal information, channel information, time-domain resource number, backhaul beam information, and access beam information ; the relay device is configured to determine the first forwarding gain corresponding to the first resource information according to the association between the forwarding gain and the resource information; the resource information includes one or more of the following: signal information, channel information , time-domain resource number, return beam information, and access beam information; the first time-domain resource is used to forward the received signal by using the first forwarding gain, wherein the first time-domain resource is determined by the first forwarding gain.
  • a resource information is determined.
  • different resource information corresponds to different forwarding gains.
  • the forwarding gain is an absolute gain, or an offset relative to a reference gain; wherein, the reference gain is one of the following information: a downlink forwarding gain, or a preset gain.
  • the forwarding gain configuration information is indicated by semi-static signaling, or the forwarding gain configuration information is indicated by dynamic signaling.
  • the priorities of the forwarding gains corresponding to different resource information are different, wherein the priority of the forwarding gains corresponding to the channel information is higher than the priority of the forwarding gains corresponding to the signal information.
  • the forwarding gain configuration information includes: first gain configuration information and second gain configuration information; wherein the first gain configuration information is indicated by semi-static signaling; the second gain configuration information is indicated by dynamic signaling Indicate: the priority of the first gain configuration information is higher than the priority of the second gain configuration information.
  • the first forwarding gain includes a first gain value and a second gain value; the first gain value is different from the second gain value; the first gain value is determined by the first gain configuration information; the second gain The value is determined by the second gain configuration information; the relay device is specifically configured to: use the first gain value to forward the received signal in the first time domain resource.
  • the relay device is further configured to: if the first forwarding gain is determined by using the first gain configuration information, and the second forwarding gain is determined by using the second gain configuration information, then in the second time domain resource One or the first multiple time units switch the forwarding gain; or, if the first forwarding gain is determined by the second gain configuration information, and the second forwarding gain is determined by the first gain configuration information, then the last one of the first time domain resources or the last multiple time units switch the forwarding gain; wherein, the second forwarding gain is the forwarding gain used by the relay device to forward the received signal in the second time domain resource; the first time domain resource and the second time domain resource are the same. adjacent time domain resources, and the second forwarding gain is different from the first forwarding gain.
  • the relay device is further configured to: report the amplified noise power information to the donor base station, so that the donor base station determines the forwarding gain configuration information according to the amplified noise power information.
  • the relay device is further configured to: receive indication information from the donor base station; the indication information is used to instruct the relay device to measure the amplified noise power information under the specified resource; the specified resource includes one of the following One or more types: time domain resources, frequency domain resources, and access beams; the processing unit is further configured to measure amplified noise power information under the specified resources.
  • the present application provides a communication device, comprising a processor; when the device is running, the processor executes a computer program or an instruction in a memory, so that the communication device executes the first aspect or the first aspect above.
  • a communication device comprising a processor; when the device is running, the processor executes a computer program or an instruction in a memory, so that the communication device executes the first aspect or the first aspect above.
  • the memory may be located in the processor, or may be implemented by a chip independent of the processor, which is not specifically limited in this application.
  • the present application also provides a computer-readable storage medium, where computer-readable instructions are stored in the computer-readable storage medium, and when the computer-readable instructions are executed on a computer, the computer executes the first Aspect or the apparatus of embodiments of the first aspect.
  • the present application provides a computer program product comprising a computer program or instructions, which, when run on a computer, causes the computer to execute the above-mentioned first aspect or the apparatus of each embodiment of the first aspect.
  • the present application provides a chip system, where the chip system includes a processor, and may further include a memory, for implementing the first aspect or the device of each embodiment of the first aspect.
  • the chip system can be composed of chips, and can also include chips and other discrete devices.
  • FIG. 1 shows a schematic diagram of the architecture of a communication system provided by an embodiment of the present application
  • FIG. 2 shows a schematic diagram of a relay device provided by an embodiment of the present application
  • FIG. 3 shows a schematic flowchart of a signal forwarding method provided by an embodiment of the present application
  • FIG. 4 shows a schematic diagram of a gain conflict provided by an embodiment of the present application
  • FIG. 5A shows a schematic diagram of gain switching provided by an embodiment of the present application
  • FIG. 5B shows a schematic diagram of gain switching provided by an embodiment of the present application.
  • FIG. 6 shows a schematic structural diagram of a relay device provided by an embodiment of the present application.
  • FIG. 7 shows a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • FIG. 1 shows a schematic diagram of the architecture of a communication system applicable to the present application.
  • the communication system includes: a terminal device, a donor base station, and a relay device.
  • the number of terminal devices, donor base stations and relay devices is not limited.
  • the relay device can amplify the downlink signal from the donor base station and forward the amplified downlink signal to the terminal device, or amplify the uplink signal from the terminal device and forward the amplified uplink signal to the donor base station.
  • the terminal device may also be referred to as a terminal (Terminal), a user equipment (UE), a mobile station (mobile station, MS), a mobile terminal (mobile terminal, MT), and the like.
  • the terminal device can be a mobile phone (mobile phone), a tablet computer (Pad), a computer with wireless transceiver function, a virtual reality (VR) terminal device, an augmented reality (AR) terminal device, an industrial control (industrial control) Wireless terminals in ), wireless terminals in self-driving, such as in-vehicle equipment, wireless terminals in remote medical surgery, wireless terminals in smart grid, transportation safety Wireless terminals in (transportation safety), wireless terminals in smart cities, such as video surveillance equipment, etc., wireless terminals in smart homes, such as smart home appliances (speakers, TVs, refrigerators) and many more.
  • the various terminal devices described above if they are located on the vehicle (for example, placed in the vehicle or installed in the vehicle), can be considered as on-board terminal equipment.
  • the on-board terminal equipment is also called on-board unit (OBU). ).
  • the donor base station may be a device that communicates with the terminal device and the relay device.
  • the donor base station can be a relay station or an access point.
  • the donor base station may also be an evolved base station (evolutional Node B, eNB or e-NodeB) in long term evolution (LTE).
  • the host base station may also be a wireless controller in a cloud radio access network (cloud radio access network, CRAN) scenario.
  • the donor base station may also be a base station device in a future fifth generation (5th generation, 5G) network or a network device in a future evolved public land mobile network (public land mobile network, PLMN).
  • the host base station can also be a wearable device or a vehicle-mounted device.
  • the embodiments of the present application are not specifically limited.
  • a relay device is a device with a forwarding function, which can be one of the above-mentioned host base stations or terminal devices, or an independent device form, a vehicle-mounted device, or a mobile object. installation.
  • the name of the relay device can be a relay node (RN), a relay sending and receiving point (rTRP), an integrated access and backhaul (IAB) node (node), etc., a repeater (repeater), Smart repeater (smart repeater), etc.;
  • the upper-level node of the relay node can be a gNB (including gNB-DU, gNB-CU, etc.), or another relay node.
  • the relay node of the present application may also be a radio frequency signal reflection or refraction device such as an intelligent reflecting surface (IRS).
  • the relay device in this embodiment of the present application may include multiple antenna panels, and FIG. 2 only illustrates a relay device with two antenna panels (it is assumed that one antenna panel is provided with two antennas).
  • one antenna panel of the relay device faces the host base station and is used to receive downlink signals from the host base station or forward uplink signals to the host base station; the other antenna panel faces the terminal device and is used to receive the uplink signal sent by the terminal device or to the terminal device. Forward downlink signals.
  • the link between the relay device and the donor base station is called a backhaul link (may also be called a fronthaul link), and the link between the relay device and the terminal device is called an access link.
  • the relay device may transmit uplink signals or downlink signals through different beams (Beam).
  • the beams can be wide beams, or narrow beams, or other types of beams. Different beams can be considered as different resources.
  • the same information or different information can be sent through different beams.
  • multiple beams with the same or similar communication characteristics may be regarded as one type of beam.
  • the beam of the relay device can be divided into a backhaul beam and an access beam.
  • the backhaul beam of the relay device is used to forward the uplink signal from the terminal device to the donor base station, and the access beam of the relay device is used to receive the uplink signal from the terminal device.
  • the beams may correspond to time resources, and/or space resources, and/or frequency domain resources.
  • the beams may also correspond to reference signal resources (eg, beamformed reference signal resources), or beamforming information.
  • the beam can also correspond to the information associated with the reference signal resource of the donor base station, wherein the reference signal can be a channel state information reference signal (CSI-RS), a synchronous signal broadcast channel block (synchronous signal block, SSB) ) demodulation reference signal (demodulation reference signal, DMRS), phase tracking signal (phase tracking reference signal, PTRS) tracking signal (tracking reference signal, TRS), etc.
  • the information associated with the reference signal resource can be the reference signal resource identifier, or the standard Co-location (quasi-collocation, QCL) information (especially type D type QCL) and so on.
  • the embodiments of the present application may also be applied to other communication systems, for example: long term evolution (long term evolution, LTE) system, LTE frequency division duplex (frequency division duplex, FDD) system, LTE time division duplex (time division duplex, TDD) system , universal mobile telecommunication system (UMTS), worldwide interoperability for microwave access (WiMAX) communication system, future fifth generation (5th generation, 5G) mobile communication system or new wireless (new wireless) radio, NR), etc.
  • the 5G mobile communication system described in this application includes a non-standalone (NSA) 5G mobile communication system and/or an independent (standalone, SA) 5G mobile communication system.
  • the technical solutions provided in this application can also be applied to future communication systems, such as the sixth generation mobile communication system.
  • the communication system may also be a PLMN network, a device-to-device D2D network, a machine-to-machine (M2M) network, an IoT network, or other networks.
  • M2M machine-
  • the uplink signal that the relay device can receive not only includes useful information, the device can better receive useful information, but if the uplink signal is amplified too small, the network device cannot receive the uplink signal. useful information.
  • the present application proposes a signal forwarding method.
  • the signal forwarding method is mainly implemented through interaction between a relay device and a donor base station.
  • multiple relay devices, donor base stations, and terminal devices may be involved, which are not illustrated one by one.
  • one relay device and one donor base station are used as an example for illustration. Can be executed as follows:
  • the relay device determines a first time domain resource according to the first resource information.
  • the relay device determines the first forwarding gain corresponding to the first resource information according to the association between the forwarding gain and the resource information; the resource information includes one or more of the following: signal information, channel information, time-domain resource number, return transmit beam information and access beam information.
  • the first resource information may be one or more of the above-mentioned resource information, and the first time domain resource may be a time slot, a symbol, a TDD configuration period or a subframe, or the like.
  • the first resource information may include identifiers of time domain resources or time units, such as time slot numbers, symbol numbers, etc.; the first resource information may also include signal or channel information, such as SRS signal information, PRACH channel information, PUCCH channel information, and the like.
  • the relay device may determine the time domain resources corresponding to each channel and signal (that is, the first resource information) according to broadcast or unicast signaling sent by the network device or the donor base station.
  • the relay device determines the time domain resources occupied by the PRACH channel (the first resource information is equivalent to the PRACH channel information) by reading broadcast information (such as SIB information), or the relay device reads unicast information (such as RRC information) Determine the time domain resources occupied by the SRS signal (the first resource information is equivalent to the SRS signal information).
  • broadcast information such as SIB information
  • RRC information unicast information
  • the relay device may receive forwarding gain configuration information from the donor base station; the forwarding gain configuration information includes an association relationship between forwarding gains and resource information. That is, the forwarding gain information may be pre-configured by the donor base station, and after the donor base station is configured, the forwarding gain configuration information is sent to the relay device; or it may be forwarding sent by the donor base station after receiving a certain indication information. Gain configuration information.
  • the forwarding gain information can be either uplink forwarding gain information or downlink forwarding gain information, which is not specifically limited in this application. The following only takes the forwarding gain information as the uplink forwarding gain information as an example to carry out Schematic description.
  • the uplink forwarding gain information pre-configured by the donor base station may not be applicable in real time, and the donor base station can send the uplink forwarding gain configuration information after After updating the uplink forwarding gain configuration information, and sending the updated uplink forwarding gain configuration information to the relay device; it is also possible to update the uplink forwarding gain configuration in time when it is determined that the attribute information (location, signal occupied resources, etc.) of the terminal device changes information, and send the updated uplink forwarding gain configuration information to the relay device.
  • the configuration rules of the uplink forwarding gain information may also include other types, which are not described here, and all the above configuration rules or the combination of the above configuration rules are applicable to the present application.
  • the received signal may come from the donor base station or the terminal device.
  • the signal from the donor base station can be understood as a downlink signal.
  • the relay device can forward the downlink signal to the terminal device according to the forwarding gain after receiving the downlink signal.
  • the signal from the terminal device can be Understanding the uplink signal, the relay device can forward the uplink signal to the donor base station according to the forwarding gain after receiving the uplink signal.
  • the received signal may be only an interference or noise signal, and at this time, the relay device forwards the interference or noise signal according to the forwarding gain.
  • the uplink forwarding gain configuration information is associated with a variety of resource information (signal information, channel information, time domain resource number, backhaul beam information, access beam information, etc.), that is, for different resource information or Different sets of resource information may correspond to the same or different uplink forwarding gain values.
  • resource information signal information, channel information, time domain resource number, backhaul beam information, access beam information, etc.
  • the relay device Before introducing the configuration of the uplink forwarding gain configuration information in this application, briefly explain the working mechanism of the relay device and the donor base station. It is assumed that in time domain resource 1, the relay device needs to perform uplink forwarding on the received signal (whether it is useful signal or interference noise signal), the relay device can first determine the first resource information associated with the time domain resource, and then determine the gain value of the uplink forwarding gain according to the first resource information and the association between the forwarding gain and the resource information. If the gain value of the uplink forwarding gain is A, regardless of whether the relay device receives the uplink signal in time domain resource 1, the uplink forwarding operation is performed according to A, that is, the relay device does not receive the uplink signal when it is actually working.
  • the device still needs to forward the amplified noise and interference signals; the relay device can forward the uplink signal, noise and interference when the relay device actually works when it receives the uplink signal; if there is an uplink signal from the terminal device in the first time domain resource , then forward or amplify the uplink signal, noise and interference information according to the uplink forwarding gain configuration information.
  • the donor base station does not distinguish resource information, and configures the same uplink forwarding gain information.
  • the gain value of the uplink forwarding gain is A
  • the relay device performs uplink forwarding on the received signal according to the gain value A when the time domain resources of the uplink forwarding are enabled. operate.
  • the donor base station may configure or indicate forwarding gain information for a specific channel or signal of the relay device, that is, different uplink channels or signals may be configured or indicate different forwarding gain information.
  • the uplink channel may include PRACH, physical uplink shared channel (PUSCH), PUCCH, etc., and the signal may include: SRS.
  • PRACH may be one or more specific RACH occasions, or one or more RACH occasions associated with specific one or more SSBs.
  • the specific RACH occasion or SSB information may be configured or indicated by the donor base station for the relay device, for example, the donor base station indicates the RACH occasion index or SSB index for the relay device; or, the specific SSB or RACH occasion may be the relay device.
  • the donor base station After configuring the uplink forwarding gain information related to the signal or the channel, the donor base station sends the uplink forwarding gain information to the relay device, and the relay device performs the uplink forwarding operation based on this.
  • the relay device may perform the following operations:
  • the gain information of uplink forwarding is shown in Table 1.
  • the relay device determines that the first resource information is PRACH. By looking up Table 1, it can be known that the gain information of uplink forwarding corresponding to the channel PRACH is A1.
  • the occupied time domain resource performs uplink forwarding on the received signal from the time domain resource.
  • the relay device determines that the first resource information is the SRS, and by looking up Table 1, the gain information of the uplink forwarding corresponding to the SRS is C1, and the relay device interprets the received signal from the time domain resource according to the gain C1 in the time domain resource occupied by the SRS. Perform upstream forwarding.
  • the first resource information is the SRS
  • the gain information of the uplink forwarding corresponding to the SRS is C1
  • the relay device interprets the received signal from the time domain resource according to the gain C1 in the time domain resource occupied by the SRS. Perform upstream forwarding.
  • only one or more rows in the following table may be applied, which is not specifically limited in this application.
  • the gain value is A1
  • the gain value is B1 SRS
  • the gain value is C1 .... ...
  • different components of the same channel or signal may also be configured or indicate different uplink forwarding gain information.
  • different RACH occasions may be configured with different uplink forwarding gain information
  • different SRS resources may be configured with different uplink forwarding gain information.
  • the gain information of the uplink forwarding corresponding to PRACH#K1 is A11.
  • the relay device determines that the first resource information is PRACH#K1, it can use the time-domain resources occupied by the gain A11 in PRACH#K1 to compare the The received signal of the time domain resource is forwarded in the uplink; the gain information of the uplink forwarding corresponding to PRACH#K2 is A12, and the relay device can determine the first resource information as PRACH#K2 according to the gain A12 in the time domain occupied by PRACH#K2
  • the resource performs uplink forwarding on the received signal from the time domain resource.
  • only one or more rows in the following table may be applied, which is not specifically limited in this application.
  • the gain value is A11 PRACH#k2
  • the gain value is A12 .... ...
  • the donor base station configures uplink forwarding gain information for specific time domain resources.
  • the specific time domain resource may be a specific time slot, subframe, symbol set or symbol, and the like.
  • the specific time domain resource may be a periodic time domain resource, for example, the 5th time slot in every 20 time slots; or the uplink symbol in the 5th time slot in every 20 time slots ; or the second subframe or the second symbol.
  • the specific time domain resource may be the nth time unit after the relay node receives the configuration or indication information, such as a time slot, an uplink time slot, a symbol, and the like. This application does not specifically limit which resource a specific time domain resource refers to.
  • the donor base station After configuring the uplink forwarding gain information related to the time domain resources, the donor base station sends the uplink forwarding gain information to the relay device, and the relay device performs the uplink forwarding operation based on this.
  • the gain information of uplink forwarding is shown in Table 3.
  • the uplink forwarding operation is performed on the received signal according to the gain A2; in the 13th symbol, the uplink forwarding operation is performed on the received signal according to the gain B2.
  • the time domain resource of uplink forwarding gain information configured by the donor base station includes downlink sub-resources or flexible sub-resources.
  • the time slot configured with uplink forwarding gain information includes multiple downlink symbols and multiple flexible symbols.
  • the relay device ignores uplink forwarding gain information in downlink symbols and flexible symbols; in another possible implementation manner, the relay device ignores uplink forwarding gain information in downlink symbols, and uses flexible symbols in flexible symbols.
  • the configured gain information is forwarded upstream.
  • the gain value is A2 13th symbol
  • the gain value is B2 2nd subframe
  • the gain value is C2 .... ...
  • the donor base station configures different uplink forwarding gain information for different backhaul beams. After configuring the uplink forwarding gain information, the donor base station sends the uplink forwarding gain information to the relay device, and the relay device performs the uplink forwarding operation based on this.
  • the gain information of uplink forwarding is shown in Table 4. When backhaul beam 1 is used, the uplink forwarding operation is performed on the received signal according to gain A3; when backhaul beam 2 is used, the uplink forwarding operation is performed on the received signal according to gain B3.
  • Table 4 The gain information of uplink forwarding is shown in Table 4. When backhaul beam 1 is used, the uplink forwarding operation is performed on the received signal according to gain A3; when backhaul beam 2 is used, the uplink forwarding operation is performed on the received signal according to gain B3.
  • only one or more rows in the following table may be applied, which is not specifically limited in this application.
  • the backhaul beam information may be the transmission configuration indicator (TCI) information, QCL information, spatial relation, etc. communicated between the relay node and the donor base station; or, the backhaul beam information may be It is channel or signal information between the relay node and the donor base station, for example, SSB index, CSI-RS identifier (eg, resource ID), SRS identifier (eg, resource ID), and the like.
  • TCI transmission configuration indicator
  • QCL information QCL information
  • spatial relation etc.
  • the backhaul beam information may be It is channel or signal information between the relay node and the donor base station, for example, SSB index, CSI-RS identifier (eg, resource ID), SRS identifier (eg, resource ID), and the like.
  • the gain value is A3 Return beam 2
  • the gain value is B3 Return beam 3
  • the gain value is C3 .... ...
  • the donor base station configures different uplink forwarding gain information for different access beams. After configuring the uplink forwarding gain information, the donor base station sends the uplink forwarding gain information to the relay device, and the relay device performs the uplink forwarding operation based on this.
  • the gain information of uplink forwarding is shown in Table 5. When access beam 1 is used, the uplink forwarding operation is performed on the received signal according to gain A4; when access beam 2 is used, the uplink forwarding operation is performed on the received signal according to gain B4.
  • Table 5 The gain information of uplink forwarding is shown in Table 5. When access beam 1 is used, the uplink forwarding operation is performed on the received signal according to gain A4; when access beam 2 is used, the uplink forwarding operation is performed on the received signal according to gain B4.
  • Only one or more rows in the following table may be applied, which is not specifically limited in this application.
  • the access beam information may be indicated by information such as an access beam number, an access beam group number, and a reference signal identifier.
  • the reference signal identifier includes an SSB index, a CSI-RS identifier (eg, resource ID), an SRS identifier (eg, resource ID), and the like.
  • the gain value is A4 access beam 2
  • the gain value is B4 access beam 3
  • the gain value is C4 .... ...
  • the donor base station can configure uplink forwarding gain information according to different combinations of resource information, for example, configure uplink forwarding gain information according to time domain resources and channel information; configure uplink forwarding gain information according to channels and access beams; Resource and backhaul beam configuration uplink forwarding gain information, etc. include various combinations of different resource information, which will not be described here one by one, and all cases of configuring uplink forwarding gain information according to the combination of resource information are used in this application.
  • Table 6 illustrates that the combination is the signal or channel type, channel/signal identifier, backhaul beam and access beam configuration uplink forwarding gain information, where the channel is PRACH, the channel identifier is #k1, the backhaul beam is Spatial relation #n1, and the When the incoming beam is Beam#l1, the relay device performs the uplink forwarding operation on the received signal according to the gain X; when the signal is SRS, the signal ID is #m1, the return beam is Spatial relation#n3, and the access beam is Beam#l3 , the relay device performs an uplink forwarding operation on the received signal according to the gain Z.
  • the channel PRACH
  • the channel identifier is #k1
  • the backhaul beam is Spatial relation #n1
  • the relay device performs the uplink forwarding operation on the received signal according to the gain X
  • the signal is SRS
  • the signal ID is #m1
  • the return beam is Spatial relation#n3
  • the access beam is Beam#l3
  • the above table may indicate that the donor base station configures different backhaul beam information for different uplink channels, and the access beam information configures uplink forwarding gain information.
  • the donor base station may also configure only one of the backhaul beam information and the access beam information, or may even configure other information, which is not specifically limited in this application.
  • the donor base station is PRACH channel ID #k2 (for example, RACH occasion #k2), configures the backhaul beam Spatial relation #n2, configures the access beam Beam #12, and configures the uplink forwarding gain as gain Y.
  • the relay device when it performs uplink forwarding, it can refer to the configuration information of RACH occurrence#k2, select the backhaul beam Spatial relation#n2, access beam Beam#l2, and perform uplink forwarding operation on the received signal according to the gain Y. It is only exemplified here, and not illustrated one by one. The following is an example of how the donor base station can configure uplink forwarding gain information based on time-domain resources and backhaul beams. Time slot, the return beam is Spatial relation#n1, the access beam is Beam#l1, and the relay device performs the uplink forwarding operation on the received signal according to the gain X. Of course, in practical application, only one or more rows in the following table may be applied, which is not specifically limited in this application.
  • the above table may indicate that the donor base station configures different backhaul beam information, access beam information, and uplink forwarding gain information for different uplink time domain resources.
  • the donor base station may also configure only one of the backhaul beam information and the access beam information, or may even configure other information, which is not specifically limited in this application.
  • the donor base station is the 13th symbol, configures the return beam Spatial relation #n2, configures the access beam Beam #12, and configures the uplink forwarding gain as gain Y.
  • the relay device when it performs uplink forwarding, it can refer to the configuration information of the thirteenth symbol, select the backhaul beam Spatial relation #n2, access the beam Beam #12, and perform the uplink forwarding operation on the received signal according to the gain Y. It is only exemplified here, and not illustrated one by one.
  • different uplink forwarding gains are configured according to different resource information, so that when the donor base station schedules remote users, it instructs the relay device to use a higher uplink forwarding gain for forwarding, thereby improving the coverage enhancement capability of the relay device ;
  • the donor base station schedules near-end users it instructs the relay device to use a lower uplink forwarding gain for forwarding, so as to avoid interference caused by amplified noise;
  • the donor base station receives a common channel (such as PRACH) instructs the relay device to use appropriate forwarding at the forwarding gain, so as to balance the access success rate of directly connected and non-directly connected users.
  • the directly connected user refers to the user who is directly connected to the donor base station
  • the non-directly connected user refers to the user who accesses the donor base station through the relay device.
  • higher amplification gain that is, forwarding gain
  • a lower amplification gain can avoid or reduce the influence of amplification noise and interference on direct users, but a lower amplification gain has less improvement in coverage of non-directly connected users.
  • the user mentioned above refers to a terminal device.
  • the present application instructs the relay device to perform the uplink forwarding operation by configuring the relationship between different resource information and the uplink forwarding gain, which can improve the uplink forwarding performance of the relay device.
  • the forwarding gain indicated or configured by the donor base station may be an absolute gain value or a relative gain value.
  • This application does not specifically limit whether the uplink forwarding gain is an absolute gain value or a relative gain value.
  • gain value If it is an absolute gain value, it can be the gain value of the amplifying circuit (unit is decibel dB or linear multiple), where the linear multiple refers to the linear amplification of power or the linear amplification of amplitude.
  • the gain information of the uplink forwarding is 10dB, that is, the gain value of the amplifying circuit is 10dB.
  • it is a relative gain value it can be an offset value relative to the reference gain (unit is decibel dB or a linear multiple). For example, if the gain of uplink forwarding is 5dB and the reference gain is 30dB, then the actual gain of uplink forwarding is 35dB (30+ 5dB).
  • the reference gain can be configured according to the downlink forwarding gain. For example, if the downlink forwarding gain is 20dB, the reference gain can be set to 20dB; If the predefined value is 30dB, set the reference gain to 30dB. It should also be noted that, for different resource information or combinations of different resource information, the value of the reference gain may be different, for example, for the time domain resource, the reference gain is A; for the backhaul beam, the reference gain is B; for the access beam, the reference gain is B; Beam, the reference gain is C; for time domain resource 1, the access beam, the reference gain is D.
  • the donor base station may instruct the relay device to perform an uplink forwarding operation in different ways, as follows:
  • the donor base station configures the relay device with uplink forwarding gain information, but the donor base station instructs the relay device not to perform the uplink forwarding operation, that is, the relay device does not perform the uplink forwarding operation regardless of whether the relay device receives an uplink signal.
  • the donor base station periodically instructs the relay device to perform an uplink forwarding operation. For example, the donor base station instructs the relay device to perform an uplink forwarding operation every 10 time slots.
  • the host base station instructs the relay device to perform an uplink forwarding operation on the received signal according to the maximum forwarding gain.
  • the gain value performs the upstream forwarding operation on the received signal.
  • the donor base station instructs the relay device to perform the forwarding configuration information used in the uplink forwarding operation, such as uplink amplification power, access beam, return beam, and the like.
  • the donor base station instructs the relay device to perform uplink forwarding operations according to power 1; the donor base station performs uplink forwarding operations according to access beam 1; the donor base station instructs the relay device to access beam 1 and return beam 2 according to power 1 to perform uplink forwarding operations operate. All operations instructing the forwarding of configuration information are applicable to this application, and will not be illustrated here.
  • the donor base station can indicate the configuration information of the forwarding gain through signaling, and can indicate through the following signaling, as follows:
  • the configuration information of the uplink forwarding gain indicated by the donor base station through semi-static signaling may be stored in the relay device.
  • the semi-static signaling may be RRC signaling, or may be other signaling, which is not specifically limited in this application.
  • the semi-static signaling can indicate a variety of uplink forwarding gains configured in the above-mentioned different situations, which can be the resource information and the configuration information of the uplink forwarding gains shown in any table shown in the above Table 1-Table 7, or other
  • the configuration information of the uplink forwarding gain is not specifically limited in this application.
  • dynamic signaling is more flexible, and can flexibly indicate the uplink forwarding gains of different resource information configurations, such as: indicating the uplink forwarding gains corresponding to all resource information through DCI or MAC CE; indicating time domain resources through DCI
  • the uplink forwarding gain, etc. is not specifically limited in this application.
  • the dynamic signaling can indicate the uplink forwarding gain configured in the above-mentioned different situations, and can be the uplink forwarding gain configuration information shown in any row in the above Table 1-Table 7.
  • the dynamic signaling indicates that the relay device is performing uplink. During forwarding, select the backhaul beam Spatial relation#n2 under the 13th symbol of time domain resource 2, access beam Beam#l2, and perform the uplink forwarding operation according to the gain Y.
  • the dynamic signaling may also indicate other uplink forwarding gain information. This application is not specifically limited here.
  • the donor base station instructs the relay device to perform an uplink forwarding operation through dynamic signaling, it can also indicate other uplink forwarding through new dynamic signaling. operation, each time the relay device is instructed to use the same or different gain values to perform the uplink forwarding operation, which is not specifically limited in this application.
  • semi-static signaling and dynamic signaling can jointly configure or indicate uplink forwarding gain information, such as: semi-static signaling configures the uplink forwarding gain corresponding to the signal or channel, and dynamic signaling indicates the corresponding resource information other than the signal or channel.
  • Uplink forwarding gain For example, the RRC signaling indicates that the uplink forwarding gain corresponding to PRACH is X, and the DCI indicates that the uplink forwarding gain corresponding to time domain resource 1 (eg, time slot 3, or time slot 3 to time slot 10) is Y.
  • the semi-static signaling and the dynamic signaling indicate the uplink forwarding gain corresponding to what kind of resource information.
  • the donor base station may indicate the uplink forwarding gain of the relay device through semi-static configuration signaling and/or dynamic signaling.
  • the donor base station can set an appropriate forwarding gain for the relay device according to the characteristics of the relay device's forwarding channel or signal, so as to ensure a balance between the uplink coverage improvement capability of the relay device and the amplification effect of noise interference.
  • time slot 1 includes the PRACH channel ( For example, a RACH occasion)
  • the donor base station configures the uplink forwarding gain corresponding to the PRACH as A through semi-static signaling, and the donor base station indicates through dynamic signaling that the uplink forwarding gain corresponding to time slot 1 is B, then in time slot 1
  • there are two gain values that can perform the uplink forwarding operation namely A and B, and a gain conflict will exist in this case.
  • the present application specifies priorities according to the situation that the same resource information corresponds to different uplink gains, and the relay device can perform uplink forwarding operations according to the priority order.
  • the forwarding gain configuration information includes: first gain configuration information and second gain configuration information; wherein the first gain configuration information is indicated by semi-static signaling; the second gain configuration information is indicated by dynamic signaling; the first gain configuration information The priority is higher than the priority of the second gain configuration information.
  • the first forwarding gain includes a first gain value and a second gain value; the first gain value is different from the second gain value; the first gain value is determined by the first gain configuration information; The second gain value is determined by the second gain configuration information, and then the relay device can forward the received signal by using the first gain value in the first time domain resource.
  • the reason for the higher priority of the forwarding gain configuration information indicated by the semi-statically is to ensure the smooth access of the direct and non-directly connected users.
  • the relay device when the gain conflict shown in FIG. 4 occurs, considering that the uplink forwarding gain value corresponding to the uplink forwarding gain configuration information indicated by the semi-static signaling is A, the relay device Then, the received signal is forwarded upstream according to the gain A.
  • the setting of the priority is also applicable to the uplink forwarding gain corresponding to other resource information, which will not be described here, but only the uplink forwarding gain corresponding to the backhaul beam will be described as an example.
  • semi-static signaling indicates the backhaul beam.
  • the uplink forwarding gain corresponding to 1 is X
  • the dynamic signaling indicates that the uplink forwarding gain corresponding to backhaul beam 1 is Y. Because the forwarding gain configuration information indicated by the semi-static signaling has a higher priority than the forwarding gain configuration information indicated by the dynamic signaling
  • the relay device can forward the received signal upstream according to the gain X.
  • a gain conflict may also occur in the uplink forwarding gain information indicated by the same signaling, and the forwarding gains corresponding to different resource information have different priorities, wherein the forwarding gain corresponding to the channel information has a higher priority than The priority of the forwarding gain corresponding to the signal information.
  • the time slot 1 indicates that the uplink forwarding gain corresponding to PRACH is A through semi-static signaling, and the uplink forwarding gain corresponding to SRS indicated through semi-static signaling is B. It is assumed that the priority of PRACH is higher than that of SRS. , then the relay device can perform uplink forwarding on the received signal according to the uplink forwarding gain A.
  • the time slot 1 indicates that the uplink forwarding gain corresponding to the PUCCH is A by dynamic signaling, and the uplink forwarding gain corresponding to the SRS indicated by the dynamic signaling is B.
  • the relay device can perform uplink forwarding on the received signal according to the uplink forwarding gain B.
  • the priority order of the uplink forwarding gain indicated by the semi-static signaling or the priority order of the uplink forwarding gain indicated by the dynamic signaling is not specifically limited here.
  • the donor base station and the relay device can agree that each resource information is in the same Priority of time domain resources.
  • the embodiment of the present application may further limit that the donor base station configures the same uplink forwarding gain for the same time domain resource or time unit.
  • the first time domain resource and the second time domain resource are adjacent time domain resources, but the forwarding gain configured or indicated by the first time domain resource is the first forwarding gain, and the second time domain resource is the first forwarding gain.
  • the forwarding gain configured or indicated by the domain resource is the second forwarding gain (the relay device can determine the second forwarding gain according to the association between the forwarding gain and the resource information and the second resource information, and then the relay device can use the second time domain resource to determine the second forwarding gain.
  • the received signal is forwarded with a second forwarding gain), and the second forwarding gain is different from the first forwarding gain.
  • the forwarding gain is switched in the first or first multiple time units of the second time domain resource; or, if the first forwarding gain is determined by the second gain configuration information, and the second forwarding gain is determined by the first gain configuration information, then The forwarding gain is switched in the last one or the last multiple time units of the first time domain resource.
  • FIG. 5A shows a schematic diagram of a gain switching scenario to which the present application may be applied, wherein the first time domain resource and the second time domain resource are adjacent time domain resources, and the thirteenth symbol of the first time domain resource is the same as the second time domain resource.
  • the 0th symbol of the time domain resource is adjacent, if the uplink forwarding gain corresponding to the first time domain resource is a gain of 1, and the uplink forwarding gain corresponding to the second time domain resource is a gain of 2.
  • FIG. 5B shows a schematic diagram of a gain switching scenario that may be applied in this application. If gain 1 is determined by the second gain configuration information, and gain 2 is determined by the first gain configuration information, because the priority of the first gain configuration information is high Depending on the priority of the second gain configuration information, the gain switching operation can be performed on the 12th and 13th symbols of the first time domain resource, that is, gradually switching from gain 1 to gain 2, as shown in FIG. 5B .
  • FIG. 5A and FIG. 5B are only schematic illustrations.
  • the gain switching can be performed according to a linear function, or the gain switching can be performed according to the actual device capability, which is not specifically limited in this application. .
  • the gain switching may also occur in the uplink forwarding gain information indicated by the same signaling.
  • the first time domain resource in the above-mentioned FIG. 5A indicates the uplink forwarding gain corresponding to the PRACH through semi-static signaling is: A.
  • the uplink forwarding gain corresponding to the SRS indicated by the semi-static signaling in the second time domain resource is B.
  • the relay device can use the second time domain resource at the 0th and 1 symbol performs the operation of gain switching.
  • the relay device can perform the gain switching operation on the 0th and 1st symbols of the second time domain resource.
  • the priority order of the uplink forwarding gain indicated by the semi-static signaling or the priority order of the uplink forwarding gain indicated by the dynamic signaling is not specifically limited here.
  • the donor base station and the relay device can agree on the corresponding resource information. The priority of the forwarding gain.
  • the present application may also limit that the gain switching operation is not performed on consecutive time domain resources.
  • the relay device performs the highest The uplink forwarding gain of the priority performs the uplink forwarding operation, that is, the uplink forwarding gain corresponding to the first time domain resource is gain 1, the uplink forwarding gain corresponding to the second time domain resource is gain 2, and the forwarding gain configuration information corresponding to gain 2
  • the relay device performs uplink forwarding on the received signal according to the gain 2 on both the first time domain resource and the second time domain resource.
  • the protocol may stipulate that the donor base station does not indicate different uplink forwarding gains in consecutive time domain resources.
  • the relay device can perform gain adjustment of the uplink circuit without performing the resource information of the uplink forwarding operation, wherein the resource information of the operation not performing the uplink forwarding includes: downlink forwarding resources, silent resources, and guard intervals.
  • the downlink forwarding resource is the resource that the relay device performs downlink forwarding
  • the silent resource is the resource that the relay device does not perform uplink forwarding and downlink forwarding
  • the guard interval is the interval that the relay device performs uplink and downlink forwarding switching.
  • the relay device performs gain adjustment on resources that do not perform uplink forwarding to avoid damage to uplink signal quality caused by gain adjustment.
  • the donor base station configures the uplink forwarding gain related to resource information for the relay device, and the relay device performs the uplink forwarding operation according to the uplink forwarding gain corresponding to the current resource information, but how does the donor base station determine the uplink corresponding to different resource information.
  • the forwarding gain is not described above.
  • the donor base station configures the uplink forwarding gain. It should be noted that the performance of uplink noise amplification is an important reference factor for the donor base station to determine the uplink forwarding gain, and the donor base station can adaptively configure different uplink forwarding gains for the amplified noise under different resource information.
  • the relay device may report the power information of the amplified noise to the donor base station.
  • the relay device may also measure the amplified noise power under the resources indicated by the donor base station, and use the measured power
  • the amplified noise power is reported to the donor base station, and the designated designated resources include one or more of the following: time domain resources, frequency domain resources, and access beams. Amplify the noise power for measurement, obtain the measurement result, and feed back the measurement result to the donor base station. This is only illustrative, and not specifically limited.
  • the relay device can report the amplified noise power information or the effective isotropic radiated power (EIRP) information of the amplified noise, wherein the amplified noise power information includes the backhaul array gain of the relay device , and the EIRP information does not include the return array gain of the relay device.
  • the amplified noise information (power or EIRP) reported by the relay device can be the amplified noise information of the entire bandwidth, or the amplified noise information of a partial bandwidth, such as a component carrier (CC), a resource block (resource block, RB), a resource element (resource element, RE), etc.
  • CC component carrier
  • resource block resource block
  • RE resource element
  • the amplified noise information reported by the relay device may be an absolute power value (unit: dBm) or a relative power value (unit: dB).
  • the reference power value When reporting the relative power value, the reference power value needs to be considered.
  • the reference power value may be the transmit power of the relay device control link, and may also be the theoretical thermal noise power value.
  • the relay device when the relay device reports the amplified noise power information, it needs to be performed based on a certain uplink amplification gain (the gain is used as a reference gain for description below).
  • the information of the reference gain may be specified by the communication protocol, or may be directly indicated by the donor base station, which is not specifically limited in this application.
  • the relay device may report multiple pieces of amplified noise power information based on the reference gain.
  • the noise power information reported by the relay device is based on a specific access beam, that is, the donor base station may instruct the relay device to report the amplified noise power information based on one or more access beams.
  • the relay device may also directly report the noise figure of the uplink forwarding channel to the donor base station, and the donor base station may determine the amplified noise power based on the noise figure.
  • the relay device may also directly report the unamplified noise power, and then the donor base station determines the amplified noise power through the unamplified noise power and the uplink forwarding gain.
  • the reporting method of unamplified noise power is similar to that of amplified noise power, including whether to consider the return array gain, reporting bandwidth, reporting absolute power value or relative power value, etc.
  • the donor base station After acquiring the amplified noise power information of the relay device, the donor base station can more appropriately configure the uplink forwarding gain of the relay device, thereby obtaining better uplink forwarding performance.
  • the relay device may also report its uplink amplification capability information to the donor base station.
  • the uplink amplification capability information includes maximum gain information for the relay device to perform uplink amplification.
  • the uplink amplification capability information is bound to the backhaul beam information or the access beam information, that is, the relay device reports the uplink amplification capability information or maximum information associated with different backhaul beam information or access beam information. gain information.
  • the relay device reports the maximum gain of uplink forwarding supported by backhaul beam 1 as A3; the relay device reports the maximum gain of uplink forwarding supported by backhaul beam 2 as B3, which is only done here. Schematic description, not one by one.
  • the relay device reports the maximum gain of uplink forwarding supported by access beam 1 as A4; the relay device reports the maximum gain of uplink forwarding supported by return beam 2 as B4, which is only schematically described here. Not one by one indicated.
  • Access beam information Maximum gain of upstream forwarding access beam 1
  • the gain value is A4 access beam 2
  • the gain value is B4 access beam 3
  • the gain value is C4 .... ...
  • the relay device may also report uplink amplification capability information or maximum gain information associated with different combinations of backhaul beams and access beams.
  • the maximum gain of the relay device under the combination of ⁇ return beam information X, access beam Y ⁇ is A5.
  • the donor base station can configure different uplink forwarding gain information in combination with the resource information according to the uplink amplification capability of the relay device, and the donor base station refers to the uplink amplification capability information configuration of the relay device.
  • the uplink forwarding gain information is more suitable for the equipment parameters of the relay equipment.
  • an embodiment of the present application provides a relay device, as shown in FIG. 6 , including a transceiver unit 61 and a processing unit 62 .
  • the transceiver unit may include a receiving unit and a sending unit, wherein the receiving unit may be used to implement the sending function in the method embodiment, the receiving unit may be used to implement the receiving function in the method embodiment, and other functions in the method embodiment may be implemented by processing unit to achieve.
  • the receiving unit may be configured to receive forwarding gain configuration information, and the sending unit may send the signal forwarded by the relay device (eg, the uplink signal from the terminal device, and/or the noise signal) to the donor base station.
  • the receiving unit may be implemented through the output interface in the data processing chip, and the transmitting unit may be implemented through the input interface of the data processing chip, which is not specifically limited in this application.
  • the processing unit 62 is configured to determine the first forwarding gain corresponding to the first resource information according to the association between the forwarding gain and the resource information; the resource information includes one or more of the following: signal information, channel information, time domain resource number, backhaul beam information, and access beam information; the transceiver unit 61 is configured to use the first forwarding gain to forward the received signal in the first time domain resource, where the first time domain resource Determined by the first resource information.
  • the relay device performs the forwarding operation according to the uplink forwarding gain corresponding to the configuration of different resource information, which can improve the coverage enhancement capability of the relay device. For example, when the donor base station schedules near-end users, the relay device is instructed to use a lower forwarding gain for forwarding, so as to avoid interference caused by amplified noise; when the donor base station receives a common channel (such as PRACH), the relay device is instructed to use a moderate forwarding at the forwarding gain, so as to balance the access success rate of directly connected and non-directly connected users.
  • a common channel such as PRACH
  • the transceiver unit 61 is further configured to: receive forwarding gain configuration information from the donor base station; the forwarding gain configuration information includes an association relationship between forwarding gains and resource information.
  • different resource information corresponds to different forwarding gains.
  • the present application instructs the relay device to perform the forwarding operation by configuring the relationship between different resource information and the forwarding gain, which can improve the forwarding performance of the relay device.
  • the forwarding gain is an absolute gain, or an offset relative to a reference gain; wherein, the reference gain is one of the following information: a downlink forwarding gain, or a preset gain.
  • the gain information of uplink forwarding is 10dB, that is, the gain value of the amplifying circuit is 10dB.
  • it is a relative gain value it can be an offset value relative to the reference gain (unit is decibel dB or linear multiple). For example, if the gain of uplink forwarding is 5dB and the reference gain is 30dB, then the actual gain of uplink forwarding is 35dB. If the uplink forwarding gain is a relative gain value, the reference gain can be configured according to the downlink forwarding gain.
  • the reference gain can be set to 20dB; it can also be set according to the pre-defined value of the donor base station, such as The predefined value is 30dB, then the reference gain is set to 30dB.
  • the forwarding gain configuration information is indicated by semi-static signaling.
  • the configuration information of the forwarding gain indicated by the donor base station through semi-static signaling may be stored in the memory of the relay device.
  • the semi-static signaling may be RRC signaling, or may be other signaling, which is not specifically limited in this application.
  • the forwarding gain configuration information is indicated by dynamic signaling.
  • dynamic signaling is more flexible, and can flexibly indicate the forwarding gains of different resource information configurations, such as: indicating the forwarding gains corresponding to all resource information through DCI or MAC CE; indicating the forwarding of time-domain resources through DCI
  • the gain and the like are not specifically limited in this application.
  • semi-static signaling may indicate the forwarding gain corresponding to the signal or channel
  • dynamic signaling may indicate the forwarding gain corresponding to resource information other than the signal or channel.
  • the RRC signaling indicates that the uplink forwarding gain corresponding to PRACH is X
  • the DCI indicates that the uplink forwarding gain corresponding to time domain resource 1 (eg, time slot 3, or time slot 3 to time slot 10) is Y.
  • the semi-static signaling and the dynamic signaling indicate the uplink forwarding gain corresponding to what kind of resource information.
  • the priorities of the forwarding gains corresponding to different resource information are different, wherein the priority of the forwarding gains corresponding to the channel information is higher than the priority of the forwarding gains corresponding to the signal information.
  • the priority of the forwarding gain corresponding to the PRACH is higher than the priority of the forwarding gain corresponding to the SRS.
  • the forwarding gain configuration information includes: first gain configuration information and second gain configuration information; wherein the first gain configuration information is indicated by semi-static signaling; the second gain configuration information is indicated by dynamic signaling Indicate: the priority of the first gain configuration information is higher than the priority of the second gain configuration information.
  • the priority of the forwarding gain information indicated by the semi-static signaling to be higher than the priority of the forwarding gain information indicated by the dynamic signaling, accurate forwarding of the semi-static signal can be ensured. It should be noted that, under normal circumstances, the forwarding of semi-static signals is more important, and its quality needs to be guaranteed during uplink forwarding. Therefore, the forwarding gain information indicated by this static signaling has a higher priority than the forwarding gain information executed by dynamic signaling. priority.
  • the first forwarding gain includes a first gain value and a second gain value; the first gain value is different from the second gain value; the first gain value is determined by the first gain configuration information; the second gain The value is determined by the second gain configuration information; the transceiver unit 61 is specifically configured to: use the first gain value to forward the received signal in the first time domain resource.
  • the processing unit 62 is further configured to: if the first forwarding gain is determined by using the first gain configuration information, and the second forwarding gain is determined by using the second gain configuration information, then in the second time domain resource One or the first multiple time units switch the forwarding gain; or, if the first forwarding gain is determined by the second gain configuration information, and the second forwarding gain is determined by the first gain configuration information, then the last one of the first time domain resources or the last multiple time units switch the forwarding gain; wherein, the second forwarding gain is the forwarding gain used by the relay device to forward the received signal in the second time domain resource; the first time domain resource and the second time domain resource are the same. adjacent time domain resources, and the second forwarding gain is different from the first forwarding gain.
  • the above-mentioned time unit is a continuous time unit, and the time unit may be a subframe, a symbol, etc.
  • the first time domain resource includes multiple time units, assuming that the time unit is a symbol, and the first time domain resource includes 14 symbols (0-13), when switching the forwarding gain, the 11th time domain resource can be used in the first time domain resource.
  • the to thirteenth symbols (the 11th to the thirteenth symbols can be understood as the last one or the last multiple time units) perform switching of the forwarding gain.
  • the second time domain resource includes a plurality of time units. It is assumed that the time unit is a symbol, and the second time domain resource includes 14 symbols (0-13).
  • the first to first 3 symbols (the first to third symbols can be understood as the first or previous time units) switch the forwarding gain.
  • the present application is merely illustrative and not specifically limited.
  • the transceiver unit 61 is further configured to report the amplified noise power information to the donor base station, so that the donor base station determines the forwarding gain configuration information according to the amplified noise power information.
  • the transceiver unit 61 is further configured to receive indication information from the donor base station; the indication information is used to instruct the relay device to measure the amplified noise power information under designated resources; the designated resources include one of the following or multiple types: time-domain resources, frequency-domain resources, and access beams; the processing unit 62 is further configured to measure amplified noise power information under designated resources.
  • a communication device 700 is provided for this application.
  • the communication device 700 may be a chip or a system of chips.
  • the chip system may be composed of chips, or may include chips and other discrete devices.
  • the input port of the chip can be used as a receiver, and the output port of the chip can be used as a transmitter.
  • the communication apparatus 700 may include at least one processor 710, and the communication apparatus 700 may further include at least one memory 720 for storing computer programs, program instructions and/or data.
  • Memory 720 is coupled to processor 710 .
  • the coupling in the embodiments of the present application is an indirect coupling or communication connection between devices, units or modules, which may be in electrical, mechanical or other forms, and is used for information exchange between devices, units or modules.
  • Processor 710 may cooperate with memory 720 .
  • the processor 710 may execute computer programs stored in the memory 720 .
  • the at least one memory 720 may be integrated in the processor 710 .
  • the communication apparatus 700 may further include a transceiver 730, and the communication apparatus 700 may exchange information with other devices through the transceiver 730.
  • the transceiver 730 can be a circuit, a bus, a transceiver, or any other device that can be used for communication.
  • the transceiver 730 may include a receiver and a transmitter. The receiver can be used to implement the receiving function in the method embodiment, the sending unit can be used to implement the sending function in the method embodiment, and other functions in the method embodiment can be implemented by a processor.
  • the communication apparatus 700 may be applied to the aforementioned terminal device, may also be the aforementioned relay device, or may be the aforementioned donor base station.
  • the memory 720 holds the necessary computer programs, program instructions and/or data to implement the functions of the relay device in any of the above-described embodiments.
  • the processor 710 can execute the computer program stored in the memory 720 to complete the method in any of the foregoing embodiments.
  • connection medium between the transceiver 730, the processor 710, and the memory 720 is not limited in the embodiments of the present application.
  • the memory 720, the processor 710, and the transceiver 730 are connected through a bus in FIG. 7.
  • the bus is represented by a thick line in FIG. 7.
  • the connection mode between other components is only for schematic illustration. It is not limited.
  • the bus can be divided into an address bus, a data bus, a control bus, and the like. For ease of presentation, only one thick line is used in FIG. 7, but it does not mean that there is only one bus or one type of bus.
  • the processor may be a general-purpose processor, a digital signal processor, an application-specific integrated circuit, a field programmable gate array or other programmable logic device, a discrete gate or transistor logic device, or a discrete hardware component, which may implement or The methods, steps and logic block diagrams disclosed in the embodiments of this application are executed.
  • a general purpose processor may be a microprocessor or any conventional processor or the like. The steps of the methods disclosed in conjunction with the embodiments of the present application may be directly embodied as executed by a hardware processor, or executed by a combination of hardware and software modules in the processor.
  • the memory may be a non-volatile memory, such as a hard disk drive (HDD) or a solid-state drive (SSD), etc., or may also be a volatile memory (volatile memory), for example Random-access memory (RAM).
  • the memory may also be, but is not limited to, any other medium that can be used to carry or store the desired program code in the form of instructions or data structures and that can be accessed by a computer.
  • the memory in this embodiment of the present application may also be a circuit or any other device capable of implementing a storage function, for storing computer programs, program instructions and/or data.
  • An embodiment of the present application further provides a communication system, including a donor base station and a relay device; the donor base station is configured to determine forwarding gain configuration information, and send the forwarding gain configuration information to the relay device; the forwarding gain configuration The information includes the association relationship between the forwarding gain and the resource information; the relay device is configured to determine the first forwarding gain corresponding to the first resource information according to the association between the forwarding gain and the resource information; the resource information includes the following: One or more of: signal information, channel information, time-domain resource number, backhaul beam information, and access beam information; the first time-domain resource uses the first forwarding gain to forward the received signal, wherein , the first time domain resource is determined by the first resource information.
  • the embodiments of the present application further provide a readable storage medium, where the readable storage medium stores instructions, and when the instructions are executed, the signal forwarding method in any of the above embodiments is implemented.
  • the readable storage medium may include: a USB flash drive, a removable hard disk, a read-only memory, a random access memory, a magnetic disk or an optical disk and other media that can store program codes.
  • the embodiments of the present application may be provided as a method, a system, or a computer program product. Accordingly, the present application may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment combining software and hardware aspects. Furthermore, the present application may take the form of a computer program product embodied on one or more computer-usable storage media (including, but not limited to, disk storage, CD-ROM, optical storage, etc.) having computer-usable program code embodied therein.
  • computer-usable storage media including, but not limited to, disk storage, CD-ROM, optical storage, etc.
  • the computer program instructions may also be stored in a computer readable memory capable of directing a computer or other programmable data processing apparatus to function in a particular manner, such that the instructions stored in the computer readable memory result in an article of manufacture comprising the instruction means, the instructions
  • the apparatus implements the functions specified in the flow or flow of the flowcharts and/or the block or blocks of the block diagrams.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供一种信号转发方法、中继设备及通信系统,涉及通信技术领域。中继设备根据第一资源信息确定第一时域资源;根据转发增益与资源信息的关联关系确定第一资源信息对应的第一转发增益;资源信息包括以下中的一种或多种:信号信息、信道信息、时域资源编号、回传波束信息以及接入波束信息;在第一时域资源采用第一转发增益对接收信号进行转发。本申请中,中继设备根据不同的资源信息对应的转发增益对在第一时域资源的接收到的信号进行转发,该方式可提升中继设备的覆盖增强能力。

Description

一种信号转发方法、中继设备及通信系统
相关申请的交叉引用
本申请要求在2021年04月16日提交中国专利局、申请号为202110414015.2、申请名称为“一种信号转发方法、中继设备及通信系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及通信技术领域,尤其涉及一种信号转发方法、中继设备及通信系统。
背景技术
在无线通信系统中,网络设备和终端设备传输数据时,可通过增大传输带宽来满足用户对传输速率需求。为获取更大的传输带宽,无线通信系统可采用更高频段的频谱资源。虽然高频段可以提供丰富的频谱资源,但高频电磁波存在传播衰减大,绕射能力弱等缺点。因此,高频段部署的蜂窝通信系统很难实现区域的全覆盖。
为了解决无线通信系统中的高频段的覆盖问题,引入了中继设备,通过中继设备放大、转发网络设备与终端设备之间的传输信号,以解决高频段的覆盖问题。需要说明的是,中继设备在放大终端设备发送的上行信号的同时会放大干扰噪声。通常,中继设备接收到的上行信号功率较低,此时,若中继设备的放大增益较大时,放大噪声功率较大,易影响网络设备(对其他终端设备)的接收性能;若中继设备的放大增益较小时,上行信号放大不足,导致网络设备对待转发的终端设备的上行信号接收不足。
发明内容
本申请提供一种信号转发方法、中继设备及通信系统,以提升中继设备的上行转发性能。
第一方面,本申请提供一种信号转发方法,该方法可以应用于中继设备,中继设备又称中继节点,在执行本申请的方法时,中继设备可根据第一资源信息确定第一时域资源;根据转发增益与资源信息的关联关系确定第一资源信息对应的第一转发增益;资源信息包括以下中的一种或多种:信号信息、信道信息、时域资源编号、回传波束信息以及接入波束信息;在第一时域资源采用第一转发增益对接收信号进行转发。
需要说明的是,第一资源信息可以为上述资源信息中的一种或多种,第一时域资源可以为时隙、符号、时分双工(time division duplex,TDD)配置周期或子帧等。第一资源信息可包括时域资源或时间单元的标识,例如时隙编号,符号编号等;第一资源信息还可以包括信号或信道信息,例如探测参考信号(sounding reference signal,SRS)信号信息,物理随机接入信道(physical random access channel,PRACH)信道信息、物理上行控制信道(physical uplink control channel,PUCCH)信道信息等。其中,中继设备可以根据网络设备或宿主基站发送的广播或单播信令确定各个信道和信号(也即第一资源信息)所对应的时域资源。例如,中继设备通过读取广播信息(例如系统消息块(system information block, SIB)信息)确定PRACH信道(第一资源信息相当于PRACH信道信息)所占用时域资源,或中继设备通过读取单播信息(例如无线资源控制(radio resource control,RRC)信息)确定SRS信号(第一资源信息相当于SRS信号信息)所占用时域资源。
上述转发增益与资源信息的关联关系可以是宿主基站预先配置好的发送给中继设备,中继设备存储的;也可以是宿主基站在接收到某个指示信息后才发送给中继设备的。
此外,随着终端设备的位置的不断变化、发送信号占用资源信息的变化等情况的发生,宿主基站预先配置好的转发增益信息可能不能实时适用,宿主基站可在已经发送转发增益配置信息后,更新转发增益配置信息,并将更新的转发增益配置信息发送至中继设备;还可以在确定终端设备属性信息(位置、信号占用资源等)发生变化时,及时更新转发增益配置信息,并将更新的转发增益配置信息发送至中继设备。另外,转发增益信息的配置规则可能还包括其他类型,在此不赘述,凡是上述几种配置规则或上述几种配置规则的结合的方式均适用于本申请。
还要说明的是,转发增益配置信息与资源信息(信号信息、信道信息、时域资源编号、回传波束信息以及接入波束信息等)存在关联关系,也即针对不同的资源信息或不同的资源信息的集合可以对应相同或不同的转发增益值。
另外,接收信号可能来自宿主基站,或终端设备,来自宿主基站的信号可以理解为下行信号,中继设备可在接收到下行信号后按照转发增益转发下行信号至终端设备,来自终端设备的信号可以理解上行信号,中继设备可在接收到上行信号后按转发增益转发上行信号至宿主基站。另外中继设备在未收到上行信号或下行信号的情况下,接收信号还可能仅为噪声信号,此时中继设备则按照转发增益对噪声信号进行转发。
本申请中,中继设备根据不同的资源信息配置对应的转发增益对接收信号进行转发,可提升中继设备的覆盖增强能力。例如,当宿主基站调度近端用户时,指示中继设备采用较低的转发增益对接收信号进行转发,从而避免放大噪声导致的干扰;当宿主基站接收公共信道时(例如PRACH),指示中继设备采用适中的转发增益对接收信号进行转发,从而平衡直连和非直连用户的接入成功率。
在一种可选的方式中,接收来自宿主基站的转发增益配置信息;所述转发增益配置信息包括所述转发增益与资源信息的关联关系。
在一种可选的方式中,不同的资源信息对应不同的转发增益。
本申请通过配置不同的资源信息与转发增益的关系指示中继设备执行转发的操作,可以提高中继设备的转发性能。
在一种可选的方式中,转发增益为绝对增益,或相对基准增益的偏移;其中,所述基准增益为以下信息中的一种:下行转发增益,或预设增益。
需要说明的是,若转发增益为绝对增益值,可以为放大电路的增益值,该转发增益可以为上行转发增益也可以为下行转发增益,在此仅以上行转发增益为例进行示意,例如,上行转发的增益信息为10dB,也即放大电路的增益值为10dB。若为相对增益值,可以为相对基准增益的偏移值(单位为分贝dB或线性倍数),例如,上行转发的增益为5dB,基准增益为30dB,那么上行转发的实际增益为35dB(30+5dB)。若上行转发增益为相对增益值,则基准增益可根据下行转发增益进行配置,例如,下行转发增益为20dB,那么可将基准增益设置为20dB;还可以根据宿主基站预定义的值进行设置,如预定义的值为30dB,则将基准增益设置为30dB。
在一种可选的方式中,转发增益配置信息可通过半静态信令指示。
需要说明的是,宿主基站通过半静态信令指示的转发增益的配置信息可以存储在中继设备中。其中,半静态信令可以为RRC信令,也可以为其他信令本申请在此不作具体限定。
在一种可选的方式中,转发增益配置信息可通过动态信令指示。
需要说明的是,动态信令的灵活性较强,可以灵活指示不同资源信息配置的转发增益,如:通过下行控制信息(downlink control information,DCI)或媒体接入控制元素(media access control control element,MAC CE),指示资源信息对应的转发增益,如,通过DCI指示时域资源的转发增益等,本申请在此不作具体限定。
此外,半静态信令可指示信号或信道对应的转发增益,动态信令可指示除信号或信道以外的资源信息对应的转发增益。例如,通过RRC信令指示PRACH对应的转发增益为X,通过DCI指示时域资源1(例如,时隙3,或者时隙3至时隙10)对应的转发增益为Y。在此仅示例性描述,并不具体限定,半静态信令和动态信令指示何种资源信息对应的转发增益。
在一种可选的方式中,不同的资源信息对应的转发增益的优先级不同,其中,信道信息对应的转发增益的优先级高于信号信息对应的转发增益的优先级。例如,PRACH对应的转发增益的优先级高于SRS对应的转发增益的优先级。
在一种可选的方式中,转发增益配置信息包括:第一增益配置信息和第二增益配置信息;其中,第一增益配置信息通过半静态信令指示;第二增益配置信息通过动态信令指示;第一增益配置信息的优先级高于第二增益配置信息的优先级。
本申请实施例通过配置半静态信令指示的转发增益信息的优先级高于动态信令指示的转发增益信息的优先级,可保证半静态信号的准确转发。需要说明的是,通常情况下,半静态信号的转发更重要,在进行上行转发时需要保证其质量,故而本静态信令指示的转发增益信息的优先级高于动态信令执行的转发增益信息的优先级。
在一种可选的方式中,第一转发增益包括第一增益值和第二增益值;第一增益值与第二增益值不同;第一增益值通过第一增益配置信息确定;第二增益值通过第二增益配置信息确定;中继设备可在第一时域资源采用第一增益值对接收信号进行转发。
在一种可选的方式中,若第一转发增益通过第一增益配置信息确定,第二转发增益通过第二增益配置信息确定,则在第二时域资源的第1个或前多个时间单元切换转发增益;或,若第一转发增益通过第二增益配置信息确定,第二转发增益通过第一增益配置信息确定,则在第一时域资源的最后1个或最后多个时间单元切换转发增益;其中,第二转发增益为中继设备在第二时域资源对接收信号进行转发所采用的转发增益;第一时域资源与第二时域资源为相邻时域资源,且第二转发增益与第一转发增益不同。
需要说明的是,上述的时间单元为连续的时间单元,时间单元可以为子帧,符号等本申请在此不具体限定。例如,第一时域资源包括多个时间单元,假定时间单元为符号,且第一时域资源包括14个符号(0~13),在切换转发增益时可在第一时域资源的第11~第13符号(第11~第13符号可以理解为最后多个时间单元)进行转发增益的切换。第二时域资源包括多个时间单元,假定时间单元为符号,且第二时域资源包括14个符号(0~13),在切换转发增益时可在第二时域资源的第1~第3符号(第1~第3符号可以理解为前多个时间单元)进行转发增益的切换。本申请在此仅作示例性说明,并不具体限定。
另外,中继设备可根据转发增益与资源信息的关联关系以及第二资源信息确定第二转发增益,以便中继设备在第二时域资源可采用第二转发增益进行对接收信号进行转发。
在一种可选的方式中,中继设备可上报放大噪声功率信息至宿主基站,以使宿主基站根据放大噪声功率信息确定转发增益配置信息。
在一种可选的方式中,中继设备可接收来自宿主基站的指示信息;指示信息用于指示中继设备在指定资源下测量放大噪声功率信息;指定资源包括以下中的一种或多种:时域资源、频域资源以及接入波束;在指定资源下,测量放大噪声功率信息。
第二方面,本申请提供一种中继设备,包括收发单元和处理单元。
其中,处理单元,用于根据转发增益与资源信息的关联关系确定第一资源信息对应的第一转发增益;资源信息包括以下中的一种或多种:信号信息、信道信息、时域资源编号、回传波束信息以及接入波束信息;收发单元,用于在第一时域资源采用第一转发增益对接收信号进行转发,其中,第一时域资源由第一资源信息确定。
在一种可选的方式中,收发单元,还用于:接收来自宿主基站的转发增益配置信息;转发增益配置信息包括转发增益与资源信息的关联关系。
在一种可选的方式中,不同的资源信息对应不同的转发增益。
在一种可选的方式中,转发增益为绝对增益,或相对基准增益的偏移;其中,基准增益为以下信息中的一种:下行转发增益,或预设增益。
在一种可选的方式中,转发增益配置信息通过半静态信令指示,或,转发增益配置信息通过动态信令指示。
在一种可选的方式中,不同的资源信息对应的转发增益的优先级不同,其中,信道信息对应的转发增益的优先级高于信号信息对应的转发增益的优先级。
在一种可选的方式中,转发增益配置信息包括:第一增益配置信息和第二增益配置信息;其中,第一增益配置信息通过半静态信令指示;第二增益配置信息通过动态信令指示;第一增益配置信息的优先级高于第二增益配置信息的优先级。
在一种可选的方式中,第一转发增益包括第一增益值和第二增益值;第一增益值与第二增益值不同;第一增益值通过第一增益配置信息确定;第二增益值通过第二增益配置信息确定;收发单元,具体用于:在第一时域资源采用第一增益值对接收信号进行转发。
在一种可选的方式中,处理单元还用于:若第一转发增益通过第一增益配置信息确定,第二转发增益通过第二增益配置信息确定,则在第二时域资源的第1个或前多个时间单元切换转发增益;或,若第一转发增益通过第二增益配置信息确定,第二转发增益通过第一增益配置信息确定,则在第一时域资源的最后1个或最后多个时间单元切换转发增益;其中,第二转发增益为中继设备在第二时域资源对接收信号进行转发所采用的转发增益;第一时域资源与第二时域资源为相邻时域资源,且第二转发增益与第一转发增益不同。
在一种可选的方式中,收发单元,还用于:上报放大噪声功率信息至宿主基站,以使宿主基站根据放大噪声功率信息确定转发增益配置信息。
在一种可选的方式中,收发单元,还用于:接收来自宿主基站的指示信息;指示信息用于指示中继设备在指定资源下测量放大噪声功率信息;指定资源包括以下中的一种或多种:时域资源、频域资源以及接入波束;处理单元,还用于在指定资源下,测量放大噪声功率信息。
第三方面,本申请提供一种通信系统,包括宿主基站和中继设备;所述宿主基站用于 确定转发增益配置信息,并将所述转发增益配置信息发送至所述中继设备;所述转发增益配置信息包括所述转发增益与资源信息的关联关系;所述资源信息包括以下中的一种或多种:信号信息、信道信息、时域资源编号、回传波束信息以及接入波束信息;所述中继设备用于根据所述转发增益与资源信息的关联关系确定第一资源信息对应的第一转发增益;所述资源信息包括以下中的一种或多种:信号信息、信道信息、时域资源编号、回传波束信息以及接入波束信息;在所述第一时域资源采用所述第一转发增益对接收信号进行转发,其中,所述第一时域资源由所述第一资源信息确定。
在一种可选的方式中,不同的资源信息对应不同的转发增益。
在一种可选的方式中,转发增益为绝对增益,或相对基准增益的偏移;其中,基准增益为以下信息中的一种:下行转发增益,或预设增益。
在一种可选的方式中,转发增益配置信息通过半静态信令指示,或,转发增益配置信息通过动态信令指示。
在一种可选的方式中,不同的资源信息对应的转发增益的优先级不同,其中,信道信息对应的转发增益的优先级高于信号信息对应的转发增益的优先级。
在一种可选的方式中,转发增益配置信息包括:第一增益配置信息和第二增益配置信息;其中,第一增益配置信息通过半静态信令指示;第二增益配置信息通过动态信令指示;第一增益配置信息的优先级高于第二增益配置信息的优先级。
在一种可选的方式中,第一转发增益包括第一增益值和第二增益值;第一增益值与第二增益值不同;第一增益值通过第一增益配置信息确定;第二增益值通过第二增益配置信息确定;中继设备,具体用于:在第一时域资源采用第一增益值对接收信号进行转发。
在一种可选的方式中,中继设备还用于:若第一转发增益通过第一增益配置信息确定,第二转发增益通过第二增益配置信息确定,则在第二时域资源的第1个或前多个时间单元切换转发增益;或,若第一转发增益通过第二增益配置信息确定,第二转发增益通过第一增益配置信息确定,则在第一时域资源的最后1个或最后多个时间单元切换转发增益;其中,第二转发增益为中继设备在第二时域资源对接收信号进行转发所采用的转发增益;第一时域资源与第二时域资源为相邻时域资源,且第二转发增益与第一转发增益不同。
在一种可选的方式中,中继设备,还用于:上报放大噪声功率信息至宿主基站,以使宿主基站根据放大噪声功率信息确定转发增益配置信息。
在一种可选的方式中,中继设备,还用于:接收来自宿主基站的指示信息;指示信息用于指示中继设备在指定资源下测量放大噪声功率信息;指定资源包括以下中的一种或多种:时域资源、频域资源以及接入波束;处理单元,还用于在指定资源下,测量放大噪声功率信息。
第四方面,本申请提供一种通信装置,包括处理器;当该装置运行时,该处理器执行存储器中的计算机程序或指令,以使该通信装置执行如上述第一方面或第一方面的各实施例的方法。该存储器可以位于处理器中,也可以为与处理器通过相互独立的芯片来实现,本申请在此不具体限定。
第五方面,本申请还提供一种计算机可读存储介质,所述计算机可读存储介质中存储有计算机可读指令,当所述计算机可读指令在计算机上运行时,使得计算机执行如第一方面或第一方面中各实施例的设备。
第六方面,本申请提供一种包含计算机程序或指令的计算机程序产品,当其在计算机 上运行时,使得计算机执行上述第一方面或第一方面中各实施例的设备。
第七方面,本申请提供了一种芯片系统,该芯片系统包括处理器,还可以包括存储器,用于实现上述第一方面或第一方面中各实施例的设备。该芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。
上述第二方面至第七方面可以达到的技术效果,请参照上述第一方面中相应可能设计方案可以达到的技术效果说明,本申请这里不再重复赘述。
附图说明
图1示出了本申请实施例提供的通信系统的架构示意图;
图2示出了本申请实施例提供的中继设备示意图;
图3示出了本申请实施例提供的一种信号转发方法的流程示意图;
图4示出了本申请实施例提供的增益冲突的示意图;
图5A示出了本申请实施例提供的增益切换的示意图;
图5B示出了本申请实施例提供的增益切换的示意图;
图6示出了本申请实施例提供的中继设备的结构示意图;
图7示出了本申请实施例提供的通信设备的结构示意图。
具体实施方式
为了使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请作进一步地详细描述。方法实施例中的具体操作方法也可以应用于装置实施例或系统实施例中。其中,在本申请的描述中,除非另有说明,“多个”的含义是两个或两个以上。
图1示出了可应用于本申请的通信系统的架构示意图,在该通信系统中包括:终端设备、宿主基站以及中继设备。在该通信系统中,并不限定终端设备、宿主基站以及中继设备的数量。其中,中继设备可将来自宿主基站的下行信号放大,并将放大后的下行信号转发至终端设备,也可将来自终端设备的上行信号放大,并将放大的上行信号转发至宿主基站。
其中,终端设备也可以称为终端(Terminal)、用户设备(user equipment,UE)、移动台(mobile station,MS)、移动终端(mobile terminal,MT)等。终端设备可以是手机(mobile phone)、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的无线终端、无人驾驶(self-driving)中的无线终端,如,车载设备等、远程手术(remote medical surgery)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端,如,视频监控设备等、智慧家庭(smart home)中的无线终端,如,智能家电(音箱、电视机、电冰箱等)等。
而如上介绍的各种终端设备,如果位于车辆上(例如放置在车辆内或安装在车辆内),都可以认为是车载终端设备,车载终端设备例如也称为车载单元(on-board unit,OBU)。
宿主基站可以为与终端设备以及中继设备通信的设备。宿主基站可以是中继站或接入点。宿主基站还可以是长期演进(long term evolution,LTE)中的演进型基站(evolutional Node B,eNB或e-NodeB)。宿主基站还可以是云无线接入网络(cloud radio access network, CRAN)场景下的无线控制器。宿主基站还可以是未来第五代(5th generation,5G)网络中的基站设备或者未来演进的公共陆地移动网络(public land mobile network,PLMN)中的网络设备。宿主基站还可以是可穿戴设备或车载设备。本申请实施例不具体限定。
中继设备为一种具有转发功能的设备,可以为如上述宿主基站或者终端设备中的一种,也可以是一种独立的设备形态,还可以是一种车载设备、或者设置在移动物体上的装置。中继设备的名称可以是中继节点(RN),中继发送接收点(rTRP),接入回传一体化(integrated access and backhaul,IAB)节点(node)等,直放站(repeater),智能直放站(smart repeater)等;中继节点的上级节点可以是gNB(包括gNB-DU,gNB-CU等),也可以是另一个中继节点。此外,本申请的中继节点还可以为智能反射面(intelligent reflecting surface,IRS)等射频信号反射或折射设备。
需要说明的是,本申请实施例中的中继设备可包括多个天线面板,图2仅以两个天线面板(假定一个天线面板设置2根天线)的中继设备进行示意。其中,中继设备的一个天线面板朝向宿主基站,用于接收宿主基站的下行信号或者向宿主基站转发上行信号;另一个天线面板朝向终端设备,用于接收终端设备发送的上行信号或者向终端设备转发下行信号。中继设备与宿主基站之间的链路称为回传链路(也可能被称为前传链路),中继设备与终端设备之间的链路被称为接入链路。
还要说明的是,中继设备可通过不用的波束(Beam)传输上行信号或下行信号。波束可以是宽波束,或者窄波束,或者其他类型波束。不同的波束可以认为是不同的资源。通过不同的波束可以发送相同的信息或者不同的信息。可选的,可以将具有相同或者类似的通信特征的多个波束视为是一类波束。在本申请中,中继设备的波束可以分为回传波束和接入波束。中继设备的回传波束用于转发来自终端设备的上行信号至宿主基站,中继设备的接入波束用于从终端设备接收上行信号。其中,波束可以对应时间资源,和/或,空间资源,和/或,频域资源。可选地,波束还可以与参考信号资源(例如,波束赋形的参考信号资源),或者波束赋形信息对应。此外,波束还可以与宿主基站的参考信号资源关联的信息对应,其中参考信号可以为信道状态信息参考信号(channel state information reference signal,CSI-RS),同步信号广播信道块(synchronous signal block,SSB)解调参考信号(demodulation reference signal,DMRS)、相位跟踪信号(phase tracking reference signal,PTRS)跟踪信号(tracking reference signal,TRS)等,参考信号资源关联的信息可以是参考信号资源标识,或者准共址(quasi-collocation,QCL)信息(特别是type D类型的QCL)等。
本申请实施例还可以应用于其它通信系统,例如:长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)、通用移动通信系统(universal mobile telecommunication system,UMTS)、全球互联微波接入(worldwide interoperability for microwave access,WiMAX)通信系统、未来的第五代(5th generation,5G)移动通信系统或新无线(new radio,NR)等,本申请所述的5G移动通信系统包括非独立组网(non-standalone,NSA)的5G移动通信系统和/或独立组网(standalone,SA)的5G移动通信系统。本申请提供的技术方案还可以应用于未来的通信系统,如第六代移动通信系统。通信系统还可以是PLMN网络、设备到设备D2D网络、机器到机器(machine to machine,M2M)网络、IoT网络或者其他网络。
在本申请的方案可以适用的通信系统中,中继设备可接收到的上行信号不仅包括有用 -设备更好地接收有用信息,若将上行信号放大过小,网络设备则不能接收到上行信号中的有用信息。为了让中继设备对接收信号转发时,采用恰当的值(也即增益)进行放大,提高接收信号的转发性能,本申请提出了一种信号转发方法。
接下来参阅图3来介绍本申请实施例提供的一种信号转发方法,该信号转发方法,主要是通过中继设备、宿主基站的交互来实现。在实际执行时,可能涉及多个中继设备、宿主基站、终端设备,不一一示意,在此以一个中继设备、一个宿主基站为例进行示意。可执行如下:
301,中继设备根据第一资源信息确定第一时域资源。
302,中继设备根据转发增益与资源信息的关联关系确定第一资源信息对应的第一转发增益;资源信息包括以下中的一种或多种:信号信息、信道信息、时域资源编号、回传波束信息以及接入波束信息。
需要说明的是,第一资源信息可以为上述资源信息中的一种或多种,第一时域资源可以为时隙、符号、TDD配置周期或子帧等。第一资源信息可包括时域资源或时间单元的标识,例如时隙编号,符号编号等;第一资源信息还可以包括信号或信道信息,例如SRS信号信息,PRACH信道信息、PUCCH信道信息等。其中,中继设备可以根据网络设备或宿主基站发送的广播或单播信令确定各个信道和信号(也即第一资源信息)所对应的时域资源。例如,中继设备通过读取广播信息(例如SIB信息)确定PRACH信道(第一资源信息相当于PRACH信道信息)所占用时域资源,或中继设备通过读取单播信息(例如RRC信息)确定SRS信号(第一资源信息相当于SRS信号信息)所占用时域资源。
303,在第一时域资源采用第一转发增益对接收信号进行转发。
在一种可选的实施方式中,中继设备可接收来自宿主基站的转发增益配置信息;转发增益配置信息包括转发增益与资源信息的关联关系。也即该转发增益信息可以是宿主基站预先配置好的,宿主基站配置好后则将该转发增益配置信息发送给中继设备;也可以是宿主基站在接收到某个指示信息后才发送的转发增益配置信息。另外,还要说明的是,该转发增益信息可以为上行转发增益信息也就可以为下行转发增益信息,本申请在此并不具体限定,下文仅仅以转发增益信息为上行转发增益信息为例进行示意性描述。
此外,随着终端设备的位置的不断变化、发送信号占用资源信息的变化等情况的发生,宿主基站预先配置好的上行转发增益信息可能不能实时适用,宿主基站可在已经发送上行转发增益配置信息后,更新上行转发增益配置信息,并将更新的上行转发增益配置信息发送至中继设备;还可以在确定终端设备属性信息(位置、信号占用资源等)发生变化时,及时更新上行转发增益配置信息,并将更新的上行转发增益配置信息发送至中继设备。另外,上行转发增益信息的配置规则可能还包括其他类型,在此不赘述,凡是上述几种配置规则或上述几种配置规则的结合的方式均适用于本申请。
另外,接收信号可能来自宿主基站,或终端设备,来自宿主基站的信号可以理解为下行信号,中继设备可在接收到下行信号后按照转发增益转发下行信号至终端设备,来自终端设备的信号可以理解上行信号,中继设备可在接收到上行信号后按转发增益转发上行信号至宿主基站。另外中继设备在未收到上行信号或下行信号的情况下,接收信号还可能仅为干扰或噪声信号,此时中继设备则按照转发增益对干扰或噪声信号进行转发。
还要说明的是,上行转发增益配置信息与多种资源信息(信号信息、信道信息、时域资源编号、回传波束信息以及接入波束信息等)相关联,也即针对不同的资源信息或不同 的资源信息的集合可以对应相同或不同的上行转发增益值。具体执行时,可分如下几种情况:
在介绍本申请的上行转发增益配置信息的配置情况之前,先简要说明一下,中继设备以及宿主基站的工作机制,假定在时域资源1,中继设备需要对接收信号进行上行转发(无论是有用信号还是干扰噪声信号),中继设备可先确定与该时域资源关联第一资源信息,之后根据该第一资源信息以及转发增益和资源信息的关联关系确定上行转发增益的增益值。若该上行转发增益的增益值为A,无论中继设备在时域资源1是否接收到上行信号,都按照A进行上行转发操作,也即中继设备实际工作时未接收到上行信号,中继设备仍需将放大噪声与干扰信号等进行转发;中继设备实际工作时接收到上行信号,中继设备可转发上行信号、噪声以及干扰;若第一时域资源下存在来自终端设备的上行信号,那么则根据上行转发增益配置信息对上行信号、噪声以及干扰信息进行转发或放大。
情况1、上行转发增益配置信息相同
宿主基站不区分资源信息,配置相同的上行转发增益信息,如:上行转发增益的增益值均为A,中继设备则在开启上行转发的时域资源均按照增益值A对接收信号执行上行转发操作。
情况2、针对信号或信道配置不同的上行转发增益
宿主基站可为中继设备的特定信道或信号配置或指示转发增益信息,即不同的上行信道或信号可以被配置或指示不同的转发增益信息。其中,上行信道可包括PRACH,物理上行共享信道(physical uplink shared channel,PUSCH),PUCCH等,信号可包括:SRS,在实际应用时,并不限定信道和信号的类型。其中,PRACH可以为特定的一个或多个RACH occasion,或者为关联至特定的一个或多个SSB的一个或多个RACH occasion。其中,特定RACH occasion或SSB信息可以是宿主基站为中继设备配置或指示的,例如,宿主基站为中继设备指示RACH occasion索引或SSB索引;或者,特定的SSB或RACH occasion可以为中继设备接入宿主基站所使用的SSB或RACH occasion;SRS可以为特定的一个或多个SRS资源,该一个或多个SRS资源信息,可以由宿主基站为中继设备指示,例如资源编号。宿主基站配置与信号或信道相关的上行转发增益信息后,将上行转发的增益信息发送给中继设备,中继设备基于此进行上行转发操作。
示例性地,当PRACH信道被配置了转发增益信息时,中继设备可执行以下操作:
1.根据宿主基站发送的广播或单播信息,确定一个或多个PRACH信道(也即第一资源信息)所占用的资源(也即第一时域资源)。
2.在确定的一个或多个PRACH资源根据所配置的上行转发增益信息进行上行转发。
上行转发的增益信息如表1所示,中继设备确定第一资源信息为PRACH,通过查询表1,可知信道PRACH对应的上行转发的增益信息为A1,那么中继设备则按照增益A1在PRACH所占用的时域资源对来自该时域资源的接收信号进行上行转发。中继设备确定第一资源信息为SRS,通过查询表1,SRS对应的上行转发的增益信息为C1,中继设备按照增益C1在SRS所占用的时域资源对来自该时域资源的接收信号进行上行转发。当然,在实际应用时,可能仅仅应用下述表格中的一行或多行,本申请在此不作具体限定。
表1
信号信息/信道信息 上行转发的增益
PRACH 增益值为A1
PUCCH 增益值为B1
SRS 增益值为C1
….
应理解,相同信道或信号的不同分量也可以被配置或指示不同的上行转发增益信息。示例性的,不同的RACH occasion可以被配置不同的上行转发增益信息,或者,不同的SRS资源可以被配置不同的上行转发增益信息。如表2所示,PRACH#K1对应的上行转发的增益信息为A11,中继设备在确定第一资源信息为PRACH#K1时,可按照增益A11在PRACH#K1所占用的时域资源对来自该时域资源的接收信号进行上行转发;PRACH#K2对应的上行转发的增益信息为A12,中继设备在确定第一资源信息为PRACH#K2可按照增益A12在PRACH#K2所占用的时域资源对来自该时域资源的接收信号进行上行转发。当然,在实际应用时,可能仅仅应用下述表格中的一行或多行,本申请在此不作具体限定。
表2
信号信息/信道信息 上行转发的增益
PRACH#k1 增益值为A11
PRACH#k2 增益值为A12
….
情况3、针对时域资源配置不同的上行转发增益
宿主基站为特定时域资源配置上行转发的增益信息。其中,特定的时域资源可以为特定的时隙,子帧,符号集合或符号等。可选的,特定时域资源可以为一个周期性的时域资源,例如,每20个时隙中的第5个时隙;或者每20个时隙中的第5个时隙中的上行符号;亦或者第2个子帧或第2个符号。可选的,特定的时域资源可以是中继节点收到配置或指示信息之后的第n个时间单元,例如时隙,上行时隙,符号等。本申请在此不具体限定特定时域资源具体是指哪个资源。宿主基站配置与时域资源相关的上行转发增益信息后,将上行转发的增益信息发送给中继设备,中继设备基于此进行上行转发操作。上行转发的增益信息如表3所示,在第5个时隙,按照增益A2对接收信号执行上行转发操作;在第13个符号,按照增益B2对接收信号执行上行转发操作。当然,在实际应用时,可能仅仅应用下述表格中的一行或多行,本申请在此不作具体限定。
在特定情况下,宿主基站配置的上行转发增益信息的时域资源包括下行子资源或灵活子资源,例如,被配置上行转发增益信息的时隙包含多个下行符号和多个灵活符号。
在一种可能的实现方式中,中继设备在下行符号和灵活符号忽略上行转发增益信息;在另一种可能的实现方式中,中继设备在下行符号忽略上行转发增益信息,在灵活符号采用被配置的增益信息进行上行转发。
表3
时域资源编号 上行转发的增益
第5个时隙 增益值为A2
第13个符号 增益值为B2
第2个子帧 增益值为C2
….
情况4、针对回传波束配置不同的上行转发增益
宿主基站针对不同回传波束配置不同的上行转发增益信息。宿主基站配置了上行转发增益信息后,将上行转发的增益信息发送给中继设备,中继设备基于此进行上行转发操作。上行转发的增益信息如表4所示,采用回传波束1时,按照增益A3对接收信号执行上行转发操作;采用回传波束2时,按照增益B3对接收信号执行上行转发操作。当然,在实际应用时,可能仅仅应用下述表格中的一行或多行,本申请在此不作具体限定。
在协议中,回传波束信息可以为中继节点与宿主基站通信的传输配置信息(transmission configuration indicator information,TCI)信息,QCL信息,空间关系信息(spatial relation)等;或者,回传波束信息可以为中继节点与宿主基站之间信道或信号信息,例如,SSB索引,CSI-RS标识(例如资源ID),SRS标识(例如资源ID)等。
表4
回传波束信息 上行转发的增益
回传波束1 增益值为A3
回传波束2 增益值为B3
回传波束3 增益值为C3
….
情况5、针对接入波束配置不同的上行转发增益
宿主基站针对不同接入波束配置不同的上行转发增益信息。宿主基站配置上行转发增益信息后,将上行转发的增益信息发送给中继设备,中继设备基于此进行上行转发操作。上行转发的增益信息如表5所示,采用接入波束1时,按照增益A4对接收信号执行上行转发操作;采用接入波束2时,按照增益B4对接收信号执行上行转发操作。当然,在实际应用时,可能仅仅应用下述表格中的一行或多行,本申请在此不作具体限定。
接入波束信息可以由接入波束编号,接入波束组编号,参考信号标识等信息指示。其中,参考信号标识包括SSB索引,CSI-RS标识(例如资源ID),SRS标识(例如资源ID)等。
表5
接入波束信息 上行转发的增益
接入波束1 增益值为A4
接入波束2 增益值为B4
接入波束3 增益值为C4
….
情况6、针对不同的资源信息的组合配置不同的上行转发增益
需要说明的是,宿主基站可根据资源信息的不同组合配置上行转发增益信息,例如,根据时域资源以及信道信息配置上行转发增益信息;根据信道以及接入波束配置上行转发增益信;根据时域资源以及回传波束配置上行转发增益信息,等包括多种不同资源信息的组合,在此不一一说明,凡是根据资源信息组合的方式配置上行转发增益信息的情况均使用与本申请。表6以组合为信号或信道类型、信道/信号标识、回传波束以及接入波束配置上行转发增益信息来说明,在信道为PRACH信道标识为#k1,回传波束为Spatial relation #n1,接入波束为Beam#l1时,中继设备按照增益X对接收信号执行上行转发操作;在信号为SRS,信号标识为#m1,回传波束为Spatial relation#n3,接入波束为Beam#l3时,中继设备按照增益Z对接收信号执行上行转发操作。当然,在实际应用时,可能仅仅应用下述表格中的一行或多行,本申请在此不作具体限定。
表6
Figure PCTCN2022085862-appb-000001
在一种可能的实现中,上述表格可以表示宿主基站为不同上行信道配置不同的回传波束信息,接入波束信息配置上行转发增益信息。在实际应用时,宿主基站也可以仅配置回传波束信息、接入波束信息中的一种,甚至还可以配置其他信息,本申请在此不作具体限定。例如,宿主基站为PRACH信道信道标识#k2(例如RACH occasion#k2),配置回传波束Spatial relation#n2,配置接入波束Beam#l2,并且配上行转发增益为增益Y。相应地,当中继设备进行上行转发时,可参照RACH occasion#k2的配置信息,选择回传波束Spatial relation#n2,接入波束Beam#l2,按照增益Y对接收信号执行上行转发操作。在此仅示例性说明,不一一示意。下面以宿主基站可根据时域资源以及回传波束配置上行转发增益信息为例说明,表7以组合为时域资源、回传波束以及接入波束配置上行转发增益信息来说明,在第5个时隙,回传波束为Spatial relation#n1,接入波束为Beam#l1,中继设备按照增益X对接收信号执行上行转发操作。当然,在实际应用时,可能仅仅应用下述表格中的一行或多行,本申请在此不作具体限定。
表7
时域资源编号 回传波束信息 接入波束信息 上行转发的增益
第5个时隙 Spatial relation#n1 Beam#l1 X
第13个符号 Spatial relation#n2 Beam#l2 Y
第2个子帧 Spatial relation#n3 Beam#l3 Z
在一种可能的实现中,上述表格可以表示宿主基站为不同上行时域资源配置不同的回传波束信息,接入波束信息,以及配置上行转发增益信息。在实际应用时,宿主基站也可以仅配置回传波束信息、接入波束信息中的一种,甚至还可以配置其他信息,本申请在此不作具体限定。例如,宿主基站为第13个符号,配置回传波束Spatial relation#n2,配置接 入波束Beam#l2,并且配置的上行转发增益为增益Y。相应地,当中继设备进行上行转发时,可参照第13个符号的配置信息,选择回传波束Spatial relation#n2,接入波束Beam#l2,按照增益Y对接收信号执行上行转发操作。在此仅示例性说明,不一一示意。
在上述不同的情况中,根据不同的资源信息配置不同的上行转发增益,以便宿主基站调度远端用户时,指示中继设备采用较高上行转发增益进行转发,从而提升中继设备的覆盖增强能力;当宿主基站调度近端用户时,指示中继设备采用较低的上行转发增益进行转发,从而避免放大噪声导致的干扰;当宿主基站接收公共信道时(例如PRACH),指示中继设备采用适当的转发增益进行转发,从而平衡直连和非直连用户的接入成功率。其中,直连用户是指直接连接宿主基站的用户,而非直连用户是通过中继设备接入宿主基站的用户。具体地,较高的放大增益(也即转发增益)可提升非直连用户的接入概率,但较高的放大增益引入的额外放大噪声可能干扰直连用户的上行信号,从而降低直连用户的接入概率。较低的放大增益可以避免或减弱放大噪声与干扰对直接用户的影响,但是较低的放大增益对非直连用户的覆盖提升较小。需要说明的是,上述所说的用户是指终端设备。
本申请通过配置不同的资源信息与上行转发增益的关系,来指示中继设备执行上行转发的操作,可以提高中继设备的上行转发性能。
在一个可选的实施方式中,宿主基站所指示或配置的转发增益可以为绝对增益值,也可以为相对增益值,本申请在此并不具体限定上行转发增益到底为绝对增益值,还是相对增益值。若为绝对增益值,可以为放大电路的增益值(单位为分贝dB或线性倍数),其中,线性倍数是指对功率的线性放大倍数或者对幅度的线性放大倍数。例如,上行转发的增益信息为10dB,也即放大电路的增益值为10dB。若为相对增益值,可以为相对基准增益的偏移值(单位为分贝dB或线性倍数),例如,上行转发的增益为5dB,基准增益为30dB,那么上行转发的实际增益为35dB(30+5dB)。
需要说明的是,若上行转发增益为相对增益值,则基准增益可根据下行转发增益进行配置,例如,下行转发增益为20dB,那么可将基准增益设置为20dB;还可以根据宿主基站预定义的值进行设置,如预定义的值为30dB,则将基准增益设置为30dB。还要说明的是,针对不同的资源信息或不同资源信息的组合,基准增益的值可以不同,例如,针对时域资源,基准增益为A;针对回传波束,基准增益为B;针对接入波束,基准增益为C;针对时域资源1,接入波束,基准增益为D。
在一种可选的实施方式中,宿主基站可通过不同的方式指示中继设备执行上行转发操作,如下:
方式1、宿主基站为中继设备配置了上行转发增益的信息,但宿主基站指示中继设备不进行上行转发操作,也即无论中继设备是否接收到上行信号均不执行上行转发操作。
方式2、宿主基站周期性地指示中继设备执行上行转发操作,例如,宿主基站指示中继设备每10个时隙执行一次上行转发操作。
方式3、在上行转发增益包括最大转发增益时,宿主基站指示中继设备按照最大转发增益对接收信号执行上行转发操作,例如,中继设备的最大上行转发增益为50dB,中继设备按照50dB的增益值对接收信号执行上行转发操作。
方式4、宿主基站指示中继设备执行上行转发操作采用的转发配置信息如,上行放大 功率、接入波束、回传波束等。例如,宿主基站指示中继设备按照功率1执行上行转发操作;宿主基站按照接入波束1执行上行转发操作;宿主基站指示中继设备按照功率1,接入波束1,回传波束2执行上行转发操作。凡是指示转发配置信息的操作均适用于本申请,在此不一一示意。
在一种可选的实施例中,宿主基站可通过信令来指示转发增益的配置信息,可通过如下信令进行指示,具体如下:
信令1:半静态信令
需要说明的是,宿主基站通过半静态信令指示的上行转发增益的配置信息可以存储在中继设备中。其中,半静态信令可以为RRC信令,也可以为其他信令本申请在此不作具体限定。半静态信令可以指示如上述不同情况下配置的多种上行转发增益,可以如上述表1-表7示出的任一表格所示的资源信息与上行转发增益的配置信息,也可以是其他上行转发增益的配置信息本申请在此不具体限定。
信令2:动态信令
需要说明的是,动态信令的灵活性较强,可以灵活指示不同资源信息配置的上行转发增益,如:通过DCI或MAC CE,指示所有资源信息对应的上行转发增益;通过DCI指示时域资源的上行转发增益等,本申请在此不作具体限定。
动态信令可以指示如上述不同情况下配置的上行转发增益,可以如上述表1-表7中的一行任意一行所示的上行转发增益配置信息,如,动态信令指示中继设备在进行上行转发时按照在时域资源2的第13个符号下,选择回传波束Spatial relation#n2,接入波束Beam#l2,按照增益Y执行上行转发操作。动态信令还可能指示其他上行转发增益信息本申请在此不具体限定,另外,宿主基站通过动态信令指示中继设备进行一次上行转发操作后,还可以通过新的动态信令指示其他上行转发操作,每次指示中继设备可采用相同或不同的增益值进行上行转发操作,本申请在此不具体限定。
另外,半静态信令和动态信令可联合配置或指示上行转发增益信息,如:半静态信令配置信号或信道对应的上行转发增益,动态信令指示除信号或信道以外的资源信息对应的上行转发增益。例如,通过RRC信令指示PRACH对应的上行转发增益为X,通过DCI指示时域资源1(例如,时隙3,或者时隙3至时隙10)对应的上行转发增益为Y。在此仅示例性描述,并不具体限定,半静态信令和动态信令指示何种资源信息对应的上行转发增益。
本申请中,宿主基站可以通过半静态配置信令,和/或,动态信令指示中继设备的上行转发增益。宿主基站可以根据中继设备转发信道或信号的特征,为中继设备设置恰当的转发增益,以保证在中继设备上行覆盖提升能力与噪声干扰放大效应之间的平衡。
由于上行转发增益的配置信息可以通过半静态信令或动态信令来配置或指示,针对同一资源信息可能被配置或指示不同的上行转发增益,如图4所示,时隙1包括PRACH信道(例如一个RACH occasion),宿主基站在通过半静态信令配置该PRACH对应的上行转发增益为A,宿主基站又通过动态信令指示时隙1对应的上行转发增益为B,那么在时隙1中则存在两种可以执行上行转发操作的增益值,分别为A和B,此时则会存在增益冲突。
在一个可选的实施例中,本申请考虑到增益冲突的存在,根据同一资源信息对应不同的上行增益的情况规定了优先级,中继设备可依照优先级顺序执行上行转发操作。其中,转发增益配置信息包括:第一增益配置信息和第二增益配置信息;其中,第一增益配置信 息通过半静态信令指示;第二增益配置信息通过动态信令指示;第一增益配置信息的优先级高于第二增益配置信息的优先级。本申请在实施时,在执行303时,第一转发增益包括第一增益值和第二增益值;第一增益值与第二增益值不同;第一增益值通过第一增益配置信息确定;第二增益值通过第二增益配置信息确定,那么中继设备可在第一时域资源采用第一增益值对接收信号进行转发。在这里,假设半静态指示的转发增益配置信息的优先级更高的原因是为了保证直接和非直连用户的顺利接入。
在本申请实施例设置上行转发增益优先级的前提情况下,出现图4所示增益冲突时,考虑到半静态信令指示的上行转发增益配置信息对应的上行转发增益值为A,中继设备则按照增益A对接收信号进行上行转发。另外,优先级的设置同样适用于其他资源信息对应的上行转发增益,在此不一一说明,仅以回传波束对应的上行转发增益进行示例性描述,例如,半静态信令指示回传波束1对应的上行转发增益为X,动态信令指示回传波束1对应的上行转发增益为Y,由于半静态信令指示的转发增益配置信息的优先级高于动态信令指示的转发增益配置信息的优先级,中继设备可按照增益X对接收信号进行上行转发。
还要说明的是,增益冲突也可能发生在采用相同信令指示的上行转发增益信息中,不同的资源信息对应的转发增益的优先级不同,其中,信道信息对应的转发增益的优先级高于信号信息对应的转发增益的优先级。示例性地,上述图4中时隙1通过半静态信令指示PRACH对应的上行转发增益为A,通过半静态信令指示的SRS对应的上行转发增益为B,假定PRACH的优先级高于SRS,那么中继设备则可按照上行转发增益A对接收信号进行上行转发。示例性地,上述图4中时隙1通过动态信令指示PUCCH对应的上行转发增益为A,通过动态信令指示的SRS对应的上行转发增益为B,假定SRS的优先级高于PUCCH,那么中继设备则可按照上行转发增益B对接收信号进行上行转发。此外,半静态信令指示的上行转发增益的优先级顺序或动态信令指示的上行转发增益的优先级顺序,在此不具体限定,宿主基站和中继设备可协议约定好各资源信息在同一时域资源的优先级。
为了避免增益冲突的出现,本申请实施例还可限定宿主基站针对同一时域资源,或时间单元配置相同的上行转发增益。
在一种可选的实施中,第一时域资源与第二时域资源为相邻的时域资源,但是第一时域资源被配置或指示的转发增益为第一转发增益,第二时域资源被配置或指示的转发增益为第二转发增益(中继设备可根据转发增益与资源信息的关联关系以及第二资源信息确定第二转发增益,之后中继设备可在第二时域资源采用第二转发增益对接收信号进行转发),且第二转发增益与第一转发增益不同。若第一转发增益通过第一增益配置信息(也即半静态信令指示的转发增益信息)确定,第二转发增益通过第二增益配置信息(也即动态信令指示的转发增益信息)确定,则在第二时域资源的第1个或前多个时间单元切换转发增益;或,若第一转发增益通过第二增益配置信息确定,第二转发增益通过第一增益配置信息确定,则在第一时域资源的最后1个或最后多个时间单元切换转发增益。
为了更好第说明如何切换转发增益,通过图5A和图5B示意。图5A示意了本申请可能应用的一种增益切换的场景示意图,其中第一时域资源与第二时域资源为相邻的时域资源,第一时域资源的第13个符号与第二时域资源的第0个符号相邻,若第一时域资源对应的上行转发增益为增益1,第二时域资源对应的上行转发增益为增益2。若增益1是通过第一增益配置信息确定,增益2是通过第二增益配置信息确定,由于第一增益配置信息 的优先级高于第二增益配置信息的优先级,可在第二时域资源的第0个和第1个符号执行增益切换的操作,也即将增益2逐渐切换为增益1。图5B示意了本申请可能应用的一种增益切换的场景示意图,若增益1是通过第二增益配置信息确定,增益2是通过第一增益配置信息确定,由于第一增益配置信息的优先级高于第二增益配置信息的优先级,可在第一时域资源的第12个和第13个符号执行增益切换的操作,也即将增益1逐渐切换为增益2如图5B所示。需要说明的是,图5A和图5B仅作示意性说明,中继设备实际执行增益切换时,可按照线性函数进行增益切换,也可以根据实际器件能力进行增益切换,本申请在此不具体限定。
还要说明的是,增益切换也可能发生在采用相同信令指示的上行转发增益信息中,示例性地,上述图5A中第一时域资源通过半静态信令指示PRACH对应的上行转发增益为A,第二时域资源通过半静态信令指示的SRS对应的上行转发增益为B,假定PRACH的优先级高于SRS,那么中继设备则可在第二时域资源的第0个和第1个符号执行增益切换的操作。示例性地,上述图5A中第一时域资源通过动态信令指示PUCCH对应的上行转发增益为A,第二时域资源通过动态信令指示的SRS对应的上行转发增益为B,假定SRS的优先级高于PUCCH,那么中继设备则可在第二时域资源的第0个和第1个符号执行增益切换的操作。此外,半静态信令指示的上行转发增益的优先级顺序或动态信令指示的上行转发增益的优先级顺序,在此不具体限定,宿主基站和中继设备可协议约定好各资源信息对应的转发增益的优先级。
在一种可选的实施方式中,本申请还可限定在连续的时域资源不执行增益切换的操作,如在连续的时域资源具有不同的上行转发增益的情况下,中继设备按照最高优先级的上行转发增益执行上行转发操作,也即第一时域资源对应的上行转发增益为增益1,第二时域资源对应的上行转发增益为增益2,在增益2对应的转发增益配置信息的优先级高于增益1对应的转发增益配置信息的优先级的情况下,中继设备在第一时域资源和第二时域资源均按照增益2对接收信号进行上行转发。另外,为了避免增益切换的情况发生,协议可规定宿主基站在连续的时域资源不指示不同的上行转发增益。
需要说明的是,中继设备可在不执行上行转发操作的资源信息下执行上行电路的增益调节,其中不执行上行转发的操作的资源信息包括:下行转发资源、静默资源以及保护间隔等。其中,下行转发资源是中继设备执行下行转发的资源,静默资源是中继设备不进行上行转发和下行转发的资源,保护间隔是中继设备进行上下行转发切换的间隔。中继设备在不进行上行转发的资源进行增益调节可避免增益调节对上行信号质量的破坏。
上文介绍了宿主基站为中继设备配置与资源信息相关的上行转发增益,中继设备根据当前资源信息对应的上行转发增益执行上行转发操作,但是宿主基站具体如何确定不同的资源信息对应的上行转发增益上文并未说明,接下来说明,宿主基站如何配置上行转发增益。需要说明的是上行放大噪声的性能是宿主基站确定上行转发增益的一个重要的参考因素,针对不同资源信息下的放大噪声宿主基站可适应性配置不同的上行转发增益。
在一个可选的实施方式中,中继设备可以向宿主基站上报放大噪声的功率信息,可选的,中继设备还可以在宿主基站指示的资源下对放大噪声功率进行测量,并将测量的放大噪声功率上报给宿主基站,该指定的指定资源包括以下中的一种或多种:时域资源、频域资源以及接入波束,例如,宿主基站指示中继设备在时域资源1下对放大噪声功率进行测 量,获取测量结果,并将测量结果反馈给宿主基站。在此仅作示例性说明,并不作具体限定。
需要说明的是,中继设备可上报放大噪声功率信息或者放大噪声的等效全向辐射功率(effective isotropic radiated power,EIRP)信息,其中,放大噪声功率信息中包括中继设备的回传阵列增益,而EIRP信息中不包括中继设备的回传阵列增益。中继设备上报的放大噪声信息(功率或EIRP)可以是全部带宽的放大噪声信息,也可以是部分带宽的放大噪声信息,例如一个分量载波(component carrier,CC)、一个资源块(resource block,RB)、一个资源元素(resource element,RE)等。
另外,中继设备上报的放大噪声信息可以是绝对的功率值(单位为dBm),也可以是相对的功率值(单位为dB)。当上报相对的功率值时,需要考虑参考功率值。示例性地,参考功率值可以为中继设备控制链路的发送功率,还可以是理论热噪声功率值。
还要说明的是,中继设备上报放大噪声功率信息时,需要基于一定的上行放大增益(下文均以该增益为参考增益来说明)进行。该参考增益的信息可以由通信协议规定,也可以由宿主基站直接指示,本申请在此不作具体限定。可选的,为了使宿主基站配置的上行转发增益信息更加准确,中继设备可上报多个基于参考增益的放大噪声功率信息。
在一种可能的实现方式中,中继设备上报的噪声功率信息是基于特定接入波束的,即宿主基站可能指示中继设备上报基于一个或多个接入波束的放大噪声功率信息。
在一种可能的实现方式中,中继设备还可直接上报上行转发通道的噪声系数(noise figure)给宿主基站,宿主基站可基于该噪声系数确定放大噪声功率。
在一种可能的实现方式中,中继设备还可以直接上报未放大的噪声功率,之后宿主基站通过未放大噪声功率和上行转发增益确定放大噪声功率。未放大噪声功率的上报方式与放大噪声功率相似,包括是否考虑回传阵列增益、上报带宽、上报绝对功率值还是相对功率值等。
宿主基站获取了中继设备的放大噪声功率信息后,可以更恰当地配置中继设备的上行转发增益,从而获取到更好的上行转发性能。
此外,中继设备还可以像宿主基站上报其上行放大能力信息,示例性地,上行放大能力信息包括中继设备进行上行放大的最大增益信息。在一种可能的实现方式中,上行放大能力信息与回传波束信息或接入波束信息绑定,即中继设备上报关联于不同回传波束信息或接入波束信息的上行放大能力信息或最大增益信息。示例性地,如表8所示,中继设备上报回传波束1支持的上行转发的最大增益为A3;中继设备上报回传波束2支持的上行转发的最大增益为B3,在此仅做示意性描述,不一一示意。
表8
回传波束信息 上行转发的最大增益
回传波束1 增益值为A3
回传波束2 增益值为B3
回传波束3 增益值为C3
….
如表9所示,中继设备上报接入波束1支持的上行转发的最大增益为A4;中继设备上报回传波束2支持的上行转发的最大增益为B4,在此仅做示意性描述,不一一示意。
表9
接入波束信息 上行转发的最大增益
接入波束1 增益值为A4
接入波束2 增益值为B4
接入波束3 增益值为C4
….
在另一种可能的实现中,中继设备还可上报关联不同回传波束与接入波束组合下的上行放大能力信息或最大增益信息。例如,中继设备在{回传波束信息X,接入波束Y}组合下的最大增益为A5。
需要说明的是,中继设备上报上行放大能力信息后,宿主基站可根据中继设备的上行放大能力为结合资源信息配置不同的上行转发增益信息,宿主基站参考中继设备的上行放大能力信息配置上行转发增益信息,更加适配中继设备的设备参数。
基于同样的构思,本申请实施例提供一种中继设备如图6所示,包括收发单元61和处理单元62。在实际应用时,收发单元可包括接收单元和发送单元,其中接收单元可用于实现方法实施例中发送功能,接收单元可用以实现方法实施例中的接收功能,方法实施例中其他的功能可通过处理单元来实现。如,接收单元可用于接收转发增益配置信息,发送单元可将中继设备转发后的信号(如来自终端设备的上行信号,和/或,噪声信号)发送至宿主基站。接收单元可通过数据处理芯片中的输出接口来实现,发送单元可通过数据处理芯片的输入接口来实现,本申请在此不作具体限定。
其中,处理单元62,用于根据转发增益与资源信息的关联关系确定第一资源信息对应的第一转发增益;所述资源信息包括以下中的一种或多种:信号信息、信道信息、时域资源编号、回传波束信息以及接入波束信息;收发单元61,用于在所述第一时域资源采用所述第一转发增益对接收信号进行转发,其中,所述第一时域资源由所述第一资源信息确定。
本申请实施例中,中继设备根据不同的资源信息配置对应的上行转发增益进行转发操作,可提升中继设备的覆盖增强能力。例如,当宿主基站调度近端用户时,指示中继设备采用较低的转发增益进行转发,从而避免放大噪声导致的干扰;当宿主基站接收公共信道时(例如PRACH),指示中继设备采用适中的转发增益进行转发,从而平衡直连和非直连用户的接入成功率。
在一种可选的方式中,收发单元61,还用于:接收来自宿主基站的转发增益配置信息;转发增益配置信息包括转发增益与资源信息的关联关系。
在一种可选的方式中,不同的资源信息对应不同的转发增益。
本申请通过配置不同的资源信息与转发增益的关系,来指示中继设备执行转发的操作,可以提高中继设备的转发性能。
在一种可选的方式中,转发增益为绝对增益,或相对基准增益的偏移;其中,基准增益为以下信息中的一种:下行转发增益,或预设增益。
需要说明的是,若为绝对增益值,可以为放大电路的增益值,例如,上行转发的增益 信息为10dB,也即放大电路的增益值为10dB。若为相对增益值,可以为相对基准增益的偏移值(单位为分贝dB或线性倍数),例如,上行转发的增益为5dB,基准增益为30dB,那么上行转发的实际增益为35dB。若上行转发增益为相对增益值,则基准增益可根据下行转发增益进行配置,例如,下行转发增益为20dB,那么可将基准增益设置为20dB;还可以根据宿主基站预定义的值进行设置,如预定义的值为30dB,则将基准增益设置为30dB。
在一种可选的方式中,转发增益配置信息通过半静态信令指示。
需要说明的是,宿主基站通过半静态信令指示的转发增益的配置信息可以存储在中继设备的存储器中。其中,半静态信令可以为RRC信令,也可以为其他信令本申请在此不做具体限定。
在一种可选的方式中,转发增益配置信息通过动态信令指示。
需要说明的是,动态信令的灵活性较强,可以灵活指示不同资源信息配置的转发增益,如:通过DCI或MAC CE,指示所有资源信息对应的转发增益;通过DCI指示时域资源的转发增益等,本申请在此不作具体限定。
此外,半静态信令可指示信号或信道对应的转发增益,动态信令可指示除信号或信道以外的资源信息对应的转发增益。例如,通过RRC信令指示PRACH对应的上行转发增益为X,通过DCI指示时域资源1(例如,时隙3,或者时隙3至时隙10)对应的上行转发增益为Y。在此仅示例性描述,并不具体限定,半静态信令和动态信令指示何种资源信息对应的上行转发增益。
在一种可选的方式中,不同的资源信息对应的转发增益的优先级不同,其中,信道信息对应的转发增益的优先级高于信号信息对应的转发增益的优先级。例如,PRACH对应的转发增益的优先级高于SRS对应的转发增益的优先级。
在一种可选的方式中,转发增益配置信息包括:第一增益配置信息和第二增益配置信息;其中,第一增益配置信息通过半静态信令指示;第二增益配置信息通过动态信令指示;第一增益配置信息的优先级高于第二增益配置信息的优先级。
本申请实施例通过配置半静态信令指示的转发增益信息的优先级高于动态信令指示的转发增益信息的优先级,可保证半静态信号的准确转发。需要说明的是,通常情况下,半静态信号的转发更重要,在进行上行转发时需要保证其质量,故而本静态信令指示的转发增益信息的优先级高于动态信令执行的转发增益信息的优先级。
在一种可选的方式中,第一转发增益包括第一增益值和第二增益值;第一增益值与第二增益值不同;第一增益值通过第一增益配置信息确定;第二增益值通过第二增益配置信息确定;收发单元61,具体用于:在第一时域资源采用第一增益值对接收信号进行转发。
在一种可选的方式中,处理单元62还用于:若第一转发增益通过第一增益配置信息确定,第二转发增益通过第二增益配置信息确定,则在第二时域资源的第1个或前多个时间单元切换转发增益;或,若第一转发增益通过第二增益配置信息确定,第二转发增益通过第一增益配置信息确定,则在第一时域资源的最后1个或最后多个时间单元切换转发增益;其中,第二转发增益为中继设备在第二时域资源对接收信号进行转发所采用的转发增益;第一时域资源与第二时域资源为相邻时域资源,且第二转发增益与第一转发增益不同。
需要说明的是,上述的时间单元为连续的时间单元,时间单元可以为子帧,符号等本申请在此不具体限定。例如,第一时域资源包括多个时间单元,假定时间单元为符号,且第一时域资源包括14个符号(0~13),在切换转发增益时可在第一时域资源的第11~第13 符号(第11~第13符号可以理解为最后1个或最后多个时间单元)进行转发增益的切换。第二时域资源包括多个时间单元,假定时间单元为符号,且第二时域资源包括14个符号(0~13),在切换转发增益时可在第二时域资源的第1~第3符号(第1~第3符号可以理解为第1个或前多个时间单元)进行转发增益的切换。本申请在此仅作示例性说明,并不具体限定。
在一种可选的方式中,收发单元61,还用于上报放大噪声功率信息至宿主基站,以使宿主基站根据放大噪声功率信息确定转发增益配置信息。
在一种可选的方式中,收发单元61,还用于接收来自宿主基站的指示信息;指示信息用于指示中继设备在指定资源下测量放大噪声功率信息;指定资源包括以下中的一种或多种:时域资源、频域资源以及接入波束;处理单元62,还用于在指定资源下,测量放大噪声功率信息。
基于相同的构思,如图7所示,为本申请提供的一种通信装置700。示例性地,通信装置700可以是芯片或芯片系统。可选的,在本申请实施例中芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。在该通信装置通过芯片来实现时,芯片的输入端口可以作为接收器,芯片的输出端口可以作为发送器。
通信装置700可以包括至少一个处理器710,通信装置700还可以包括至少一个存储器720,用于存储计算机程序、程序指令和/或数据。存储器720和处理器710耦合。本申请实施例中的耦合是装置、单元或模块之间的间接耦合或通信连接,可以是电性,机械或其它的形式,用于装置、单元或模块之间的信息交互。处理器710可能和存储器720协同操作。处理器710可能执行存储器720中存储的计算机程序。可选的,所述至少一个存储器720可集成于处理器710中。
通信装置700中还可以包括收发器730,通信装置700可以通过收发器730和其它设备进行信息交互。收发器730可以是电路、总线、收发器或者其它任意可以用于进行信互的装置。该收发器730可以包括接收器和发送器。接收器可用于实现方法实施例中接收功能,发送单元可用以实现方法实施例中的发送功能,方法实施例中其他的功能可通过处理器来实现。
在一种可能的实施方式中,该通信装置700可以应用于前述的终端设备,也可以是前述的中继设备,还可以是前述的宿主基站。存储器720保存实施上述任一实施例中的中继设备的功能的必要计算机程序、程序指令和/或数据。所述处理器710可执行所述存储器720存储的计算机程序,完成上述任一实施例中的方法。
本申请实施例中不限定上述收发器730、处理器710以及存储器720之间的具体连接介质。本申请实施例在图7中以存储器720、处理器710以及收发器730之间通过总线连接,总线在图7中以粗线表示,其它部件之间的连接方式,仅是进行示意性说明,并不引以为限。所述总线可以分为地址总线、数据总线、控制总线等。为便于表示,图7中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。在本申请实施例中,处理器可以是通用处理器、数字信号处理器、专用集成电路、现场可编程门阵列或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件,可以实施或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。
在本申请实施例中,存储器可以是非易失性存储器,比如硬盘(hard disk drive,HDD)或固态硬盘(solid-state drive,SSD)等,还可以是易失性存储器(volatile memory),例如随机存取存储器(random-access memory,RAM)。存储器还可以是能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。本申请实施例中的存储器还可以是电路或者其它任意能够实施存储功能的装置,用于存储计算机程序、程序指令和/或数据。
本申请实施例还提供一种通信系统,包括宿主基站和中继设备;宿主基站用于确定转发增益配置信息,并将所述转发增益配置信息发送至所述中继设备;所述转发增益配置信息包括所述转发增益与资源信息的关联关系;所述中继设备用于根据所述转发增益与资源信息的关联关系确定第一资源信息对应的第一转发增益;所述资源信息包括以下中的一种或多种:信号信息、信道信息、时域资源编号、回传波束信息以及接入波束信息;在所述第一时域资源采用所述第一转发增益对接收信号进行转发,其中,所述第一时域资源由所述第一资源信息确定。
基于以上实施例,本申请实施例还提供一种可读存储介质,该可读存储介质存储有指令,当所述指令被执行时,使上述任一实施例中信号转发方法被实施。该可读存储介质可以包括:U盘、移动硬盘、只读存储器、随机存取存储器、磁碟或者光盘等各种可以存储程序代码的介质。
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请的方法、装置(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理装置的处理器以产生一个机器,使得通过计算机或其他可编程数据处理装置的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理装置以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理装置上,使得在计算机或其他可编程装置上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程装置上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。

Claims (22)

  1. 一种信号转发方法,应用于中继设备,其特征在于,包括:
    根据转发增益与资源信息的关联关系确定第一资源信息对应的第一转发增益;所述资源信息包括以下中的一种或多种:信号信息、信道信息、时域资源编号、回传波束信息以及接入波束信息;
    在所述第一时域资源采用所述第一转发增益对接收信号进行转发,其中,所述第一时域资源由所述第一资源信息确定。
  2. 根据权利要求1所述的方法,其特征在于,还包括:
    接收来自宿主基站的转发增益配置信息;所述转发增益配置信息包括所述转发增益与所述资源信息的关联关系。
  3. 根据权利要求2所述的方法,其特征在于,所述转发增益配置信息通过半静态信令指示,或,所述转发增益配置信息通过动态信令指示。
  4. 根据权利要求1-3中任一所述的方法,其特征在于,不同的所述资源信息对应的转发增益的优先级不同,其中,所述信道信息对应的转发增益的优先级高于所述信号信息对应的转发增益的优先级。
  5. 根据权利要求2-4中任一所述的方法,其特征在于,转发增益配置信息包括:第一增益配置信息和第二增益配置信息;其中,所述第一增益配置信息通过半静态信令指示;所述第二增益配置信息通过动态信令指示;所述第一增益配置信息的优先级高于所述第二增益配置信息的优先级。
  6. 根据权利要求5所述的方法,其特征在于,所述第一转发增益包括第一增益值和第二增益值;所述第一增益值与所述第二增益值不同;所述第一增益值通过所述第一增益配置信息确定;所述第二增益值通过所述第二增益配置信息确定;所述在所述第一时域资源采用所述第一转发增益对接收信号进行转发,包括:
    在所述第一时域资源采用所述第一增益值对接收信号进行转发。
  7. 根据权利要求5所述的方法,其特征在于,所述方法,还包括:
    若所述第一转发增益通过所述第一增益配置信息确定,第二转发增益通过所述第二增益配置信息确定,则在所述第二时域资源的第1个或前多个时间单元切换转发增益;或,
    若所述第一转发增益通过所述第二增益配置信息确定,所述第二转发增益通过所述第一增益配置信息确定,则在第一时域资源的最后1个或最后多个时间单元切换转发增益;
    其中,所述第二转发增益为所述中继设备在第二时域资源对接收信号进行转发所采用的转发增益;所述第一时域资源与所述第二时域资源为相邻时域资源,且所述第二转发增益与所述第一转发增益不同。
  8. 根据权利要求2-7中任一所述的方法,其特征在于,还包括:
    上报放大噪声功率信息至所述宿主基站,以使所述宿主基站根据所述放大噪声功率信息确定所述转发增益配置信息。
  9. 根据权利要求8所述的方法,其特征在于,还包括:
    接收来自所述宿主基站的指示信息;所述指示信息用于指示所述中继设备在指定资源下测量所述放大噪声功率信息;所述指定资源包括以下中的一种或多种:时域资源、频域资源以及接入波束;
    在所述指定资源下,测量所述放大噪声功率信息。
  10. 一种中继设备,其特征在于,包括:
    处理单元,用于根据转发增益与资源信息的关联关系确定第一资源信息对应的第一转发增益;所述资源信息包括以下中的一种或多种:信号信息、信道信息、时域资源编号、回传波束信息以及接入波束信息;
    收发单元,用于在所述第一时域资源采用所述第一转发增益对接收信号进行转发,其中,所述第一时域资源由所述第一资源信息确定。
  11. 根据权利要求10所述的设备,其特征在于,所述收发单元,还用于:
    接收来自宿主基站的转发增益配置信息;所述转发增益配置信息包括所述转发增益与所述资源信息的关联关系。
  12. 根据权利要求11所述的设备,其特征在于,所述转发增益配置信息通过半静态信令指示,或,所述转发增益配置信息通过动态信令指示。
  13. 根据权利要求10-12中任一所述的设备,其特征在于,不同的所述资源信息对应的转发增益的优先级不同,其中,所述信道信息对应的转发增益的优先级高于所述信号信息对应的转发增益的优先级。
  14. 根据权利要求11-13中任一所述的设备,其特征在于,转发增益配置信息包括:第一增益配置信息和第二增益配置信息;其中,所述第一增益配置信息通过半静态信令指示;所述第二增益配置信息通过动态信令指示;所述第一增益配置信息的优先级高于所述第二增益配置信息的优先级。
  15. 根据权利要求14所述的设备,其特征在于,所述第一转发增益包括第一增益值和第二增益值;所述第一增益值与所述第二增益值不同;所述第一增益值通过所述第一增益配置信息确定;所述第二增益值通过所述第二增益配置信息确定;所述收发单元,具体用于:
    在所述第一时域资源采用所述第一增益值对接收信号进行转发。
  16. 根据权利要求14所述的设备,其特征在于,所述处理单元还用于:
    若所述第一转发增益通过所述第一增益配置信息确定,第二转发增益通过所述第二增益配置信息确定,则在所述第二时域资源的第1个或前多个时间单元切换转发增益;或,
    若所述第一转发增益通过所述第二增益配置信息确定,所述第二转发增益通过所述第一增益配置信息确定,则在第一时域资源的最后1个或最后多个时间单元切换转发增益;
    其中,所述第二转发增益为所述中继设备在第二时域资源对接收信号进行转发所采用的转发增益;所述第一时域资源与所述第二时域资源为相邻时域资源,且所述第二转发增益与所述第一转发增益不同。
  17. 根据权利要求11-16中任一所述的设备,其特征在于,所述收发单元,还用于:
    上报放大噪声功率信息至所述宿主基站,以使所述宿主基站根据所述放大噪声功率信息确定所述转发增益配置信息。
  18. 根据权利要求17所述的设备,其特征在于,所述收发单元,还用于:
    接收来自所述宿主基站的指示信息;所述指示信息用于指示所述中继设备在指定资源下测量所述放大噪声功率信息;所述指定资源包括以下中的一种或多种:时域资源、频域资源以及接入波束;
    所述处理单元,还用于在所述指定资源下,测量所述放大噪声功率信息。
  19. 一种通信装置,其特征在于,包括处理器;
    所述处理器,用于执行存储器中的计算机程序或指令,以使得所述通信装置执行如权利要求1-9中任一项所述的方法。
  20. 一种通信系统,其特征在于,包括:宿主基站和如权利要求10-18中任一项所述的中继设备;
    所述宿主基站用于确定转发增益配置信息,并将所述转发增益配置信息发送至所述中继设备;所述转发增益配置信息包括所述转发增益与资源信息的关联关系。
  21. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有计算机程序或指令,当所述指令被执行时,以使得计算机执行如权利要求1-9中任一项所述的方法。
  22. 一种包含计算机程序或指令的计算机程序产品,其特征在于,当其在计算机上运行时,使得计算机执行上述权利要求1-9中任一项所述的方法。
PCT/CN2022/085862 2021-04-16 2022-04-08 一种信号转发方法、中继设备及通信系统 WO2022218229A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP22787455.9A EP4311124A1 (en) 2021-04-16 2022-04-08 Signal forwarding method, relay device and communication system
US18/487,947 US20240040467A1 (en) 2021-04-16 2023-10-16 Signal forwarding method, relay device, and communication system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110414015.2A CN115225131A (zh) 2021-04-16 2021-04-16 一种信号转发方法、中继设备及通信系统
CN202110414015.2 2021-04-16

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/487,947 Continuation US20240040467A1 (en) 2021-04-16 2023-10-16 Signal forwarding method, relay device, and communication system

Publications (1)

Publication Number Publication Date
WO2022218229A1 true WO2022218229A1 (zh) 2022-10-20

Family

ID=83604872

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/085862 WO2022218229A1 (zh) 2021-04-16 2022-04-08 一种信号转发方法、中继设备及通信系统

Country Status (4)

Country Link
US (1) US20240040467A1 (zh)
EP (1) EP4311124A1 (zh)
CN (1) CN115225131A (zh)
WO (1) WO2022218229A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115843430A (zh) * 2022-09-30 2023-03-24 北京小米移动软件有限公司 一种中继通信方法、装置及存储介质
CN116868658A (zh) * 2023-03-24 2023-10-10 上海移远通信技术股份有限公司 被用于无线通信的节点的方法和装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101399799A (zh) * 2007-09-25 2009-04-01 中兴通讯股份有限公司 一种正交频分复用系统的数据中继方法及中继站
US20100105316A1 (en) * 2008-10-23 2010-04-29 Newtel Technology Inc. Multiple-input multiple-output relay system and method
US20110273981A1 (en) * 2010-05-07 2011-11-10 Comm. a l' ener. atom. et aux energies alter. Cooperative network with adaptive forwarding request policy
US20130142222A1 (en) * 2011-12-06 2013-06-06 Qualcomm Incorporated Wireless repeater implementing multi-parameter gain management
CN110350948A (zh) * 2018-04-03 2019-10-18 华为技术有限公司 Plc系统的中继传输配置方法、中继传输方法及装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101399799A (zh) * 2007-09-25 2009-04-01 中兴通讯股份有限公司 一种正交频分复用系统的数据中继方法及中继站
US20100105316A1 (en) * 2008-10-23 2010-04-29 Newtel Technology Inc. Multiple-input multiple-output relay system and method
US20110273981A1 (en) * 2010-05-07 2011-11-10 Comm. a l' ener. atom. et aux energies alter. Cooperative network with adaptive forwarding request policy
US20130142222A1 (en) * 2011-12-06 2013-06-06 Qualcomm Incorporated Wireless repeater implementing multi-parameter gain management
CN110350948A (zh) * 2018-04-03 2019-10-18 华为技术有限公司 Plc系统的中继传输配置方法、中继传输方法及装置

Also Published As

Publication number Publication date
EP4311124A1 (en) 2024-01-24
CN115225131A (zh) 2022-10-21
US20240040467A1 (en) 2024-02-01

Similar Documents

Publication Publication Date Title
WO2020164601A1 (zh) 传输配置编号状态指示的方法和通信装置
WO2020156174A1 (zh) 波束指示的方法和通信装置
WO2020029756A1 (zh) 资源分配方法、终端、网络设备和计算机存储介质
WO2022218229A1 (zh) 一种信号转发方法、中继设备及通信系统
EP3955678A1 (en) Data receiving and transmitting method and apparatus
WO2020015660A1 (zh) 信息元素的传输方法、通信节点、系统及存储介质
US20230089990A1 (en) Capability information reporting method and apparatus
US20240064655A1 (en) Power Control Method and Apparatus
CN109257818B (zh) 参考信号配置、发送方法、基站、终端、计算机可读存储介质
EP4022788A1 (en) Emission restricted transmission of reference signals
CN116210335A (zh) 用于降低能力设备的早期指示
WO2022041020A1 (zh) 一种通信方法及装置
WO2023131281A1 (zh) 基于多面板的上行发送方法及相关装置
WO2022057175A1 (zh) 一种通信方法和装置
WO2020200115A1 (zh) 通信方法、装置、系统和存储介质
CN117480834A (zh) 通信方法及终端
WO2024021981A1 (zh) 一种通信方法及装置
WO2023092841A1 (zh) 转发器、网络设备及其通信方法
WO2024032514A1 (zh) 用于信号转发的方法及相关装置
WO2024026832A1 (zh) 无线通信的方法及装置
WO2024061014A1 (zh) 一种通信方法及装置
WO2023092513A1 (zh) 信号发送方法、信息发送方法以及装置
WO2023284649A1 (zh) 信号传输方法及装置、通信系统
WO2024020822A1 (zh) 上行功率控制方法、装置、设备及存储介质
US20230163933A1 (en) Information transmission method and communication apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22787455

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022787455

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022787455

Country of ref document: EP

Effective date: 20231019

NENP Non-entry into the national phase

Ref country code: DE