WO2022218222A1 - 像素结构和图像传感器 - Google Patents

像素结构和图像传感器 Download PDF

Info

Publication number
WO2022218222A1
WO2022218222A1 PCT/CN2022/085795 CN2022085795W WO2022218222A1 WO 2022218222 A1 WO2022218222 A1 WO 2022218222A1 CN 2022085795 W CN2022085795 W CN 2022085795W WO 2022218222 A1 WO2022218222 A1 WO 2022218222A1
Authority
WO
WIPO (PCT)
Prior art keywords
pixel
pixel units
pixel structure
microlens
partition wall
Prior art date
Application number
PCT/CN2022/085795
Other languages
English (en)
French (fr)
Inventor
罗轶
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Publication of WO2022218222A1 publication Critical patent/WO2022218222A1/zh
Priority to US18/379,247 priority Critical patent/US20240038806A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/1462Coatings
    • H01L27/14621Colour filter arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14625Optical elements or arrangements associated with the device
    • H01L27/14627Microlenses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/1463Pixel isolation structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14643Photodiode arrays; MOS imagers
    • H01L27/14645Colour imagers

Definitions

  • the present application belongs to the field of image technology, and in particular relates to a pixel structure and an image sensor.
  • the image sensor can use the photoelectric conversion function of the photoelectric device to convert the light image on the photosensitive surface into an electrical signal that is proportional to the light image, realize photoelectric conversion, and can complete functions such as photography of electronic devices such as mobile phones or tablet computers.
  • CMOS Complementary Metal-Oxide-Semiconductor
  • CMOS image sensors have the characteristics of high integration, low power consumption, high speed, and low cost, so CMOS image sensors are widely used.
  • CMOS image sensor will seriously distort the image when the electronic device outputs the high-resolution image, which will affect the image quality.
  • the present application aims to provide a pixel structure and an image sensor, at least solving the problem of poor image quality when an existing image sensor outputs a high-resolution image.
  • an embodiment of the present application proposes a pixel structure, including:
  • micro-lens assembly is located on the upper side of all the pixel units, and the micro-lens assembly is opposite to all the pixel units;
  • the pixel unit includes a color filter, a pixel microlens and a photoelectric conversion layer arranged in sequence from top to bottom, and the color filters of adjacent pixel units are different in color.
  • an embodiment of the present application provides an image sensor, including the pixel structure described above.
  • the colors of the color filters of adjacent pixel units are different, which can avoid technical compromise by using the pixel rearrangement technology, and prevent image distortion.
  • An optical partition wall can reduce crosstalk noise between pixels, and a pixel microlens is arranged under the color filter, which can help the pixel unit to better condense light and improve the optical performance, so that the application can output high resolution in the image sensor of the present application. higher image quality with better image quality.
  • FIG. 1 is a schematic structural diagram of a pixel unit according to a first embodiment of the present invention
  • Fig. 2 is the top view when the first microlens is opposite to 4 pixel units;
  • Fig. 3 is the top view when the first microlens is opposite to 9 pixel units
  • FIG. 4 is a schematic structural diagram of a pixel unit according to a second embodiment of the present invention.
  • Pixel unit 11. Color filter; 12. Pixel microlens; 13. Photoelectric conversion layer; 2. First optical partition wall; 3. First microlens; 4. Second optical partition wall; 5. No. Two microlenses; 6, a third microlens; 7, a circuit layer.
  • the terms “installed”, “connected” and “connected” should be understood in a broad sense, unless otherwise expressly specified and limited, for example, it may be a fixed connection or a detachable connection Connection, or integral connection; can be mechanical connection, can also be electrical connection; can be directly connected, can also be indirectly connected through an intermediate medium, can be internal communication between two elements.
  • installed should be understood in a broad sense, unless otherwise expressly specified and limited, for example, it may be a fixed connection or a detachable connection Connection, or integral connection; can be mechanical connection, can also be electrical connection; can be directly connected, can also be indirectly connected through an intermediate medium, can be internal communication between two elements.
  • a pixel structure according to an embodiment of the present invention is described below with reference to FIGS. 1 to 4 .
  • a pixel structure includes a plurality of adjacent pixel units 1 and microlens components arranged in an array.
  • the pixel unit 1 can be a pixel structure corresponding to a single pixel, each pixel unit 1 has a clear assigned color value, and a first optical partition wall 2 is arranged between adjacent pixel units 1, so
  • the first optical partition wall 2 can be a structure formed by using deep trench isolation technology (DTI), which can prevent crosstalk noise between adjacent pixel units 1, and can help a single pixel unit 1 to better focus light,
  • DTI deep trench isolation technology
  • the optical performance of the single pixel unit 1 is improved, and the existence of any off-chip lens/film is not required, and the imaging quality is improved.
  • the micro-lens assembly is located on the upper side of all the pixel units 1, and the micro-lens assembly is opposite to all the pixel units 1, which can assist the pixel units 1 to better condense light, improve the optical performance of the pixel units 1, and improve the Image Quality.
  • the microlens assembly may be a single-layer structure or a multi-layer stack structure.
  • the multi-layer microlenses may be completely overlapped structures, for example, The size and shape of the multi-layered microlens structures are exactly the same, and the multi-layered microlens structures are stacked in one-to-one correspondence, and the projections of the edges of the multi-layered microlenses in the vertical direction are coincident; It is an incompletely overlapped structure, for example, the size or shape of the multi-layer microlenses are not exactly the same.
  • the multi-layer microlens structure is stacked, the projections of the edges of the multi-layer microlenses in the vertical direction are not exactly the same. , at this time, due to the larger area of the microlenses whose edge projections are located on the outside, the effect of receiving light for the pixel unit 1 can be better achieved, thereby improving the optical performance of the pixel structure.
  • the pixel unit 1 includes a color filter 11 , a pixel microlens 12 and a photoelectric conversion layer 13 arranged in sequence from top to bottom.
  • the color filter 11 can be a color filter array (Color Filter Array, CFA), which is an optical filter for expressing colors, which can accurately select the light waves in a small range of wavelengths to be passed, and reflect other light waves that do not want to pass through.
  • CFA Color Filter Array
  • Each pixel unit 1 corresponds to a pixel micro-lens 12, which can help the pixel unit 1 to better receive light, make the pixel unit 1 achieve better optical performance, improve image quality, and in a single pixel unit 1
  • the pixel microlens 12 is surrounded by the first optical partition wall 2, which can better assist the pixel unit 1 to condense light.
  • the shape, size or material of the pixel microlens 12 can be selected according to the actual application; the photoelectric conversion layer 13 can The light passing through the micro lens and the color filter 11 is converted into electrical signals, and the electrical signals are transmitted to the processing unit through the circuit layer 7 , and the photoelectric conversion layer 13 may include elements such as photodiodes.
  • the colors of the color filters 11 of the adjacent pixel units 1 are different, which can avoid the need to use pixel rearrangement technology for outputting high-resolution pictures when the color filters 11 of the adjacent pixel units 1 have the same color. In order to make technical compromises, avoid image distortion and affect picture quality.
  • the adjacent pixel synthesis technology needs to be used, because the adjacent pixel synthesis technology is the color filter of adjacent pixel units 1.
  • the pixel rearrangement technology must be used when outputting high-resolution pictures, that is, the signal is performed on the circuit side or the software side. Refactor.
  • the pixel rearrangement technology is used to output a high-resolution picture, since the structure of the color filter 11 is fixed, many technical compromises will be made. Much of the rearranged pixel information is "guessed", which leads to serious distortion of high-resolution images and affects the quality of the output image.
  • the colors of the color filters 11 of the adjacent pixel units 1 are different, which can avoid technical compromise by using the pixel rearrangement technology, prevent image distortion, and make the output high-resolution picture real pixels signal, at the same time, a first optical partition wall 2 is arranged between adjacent pixel units 1, which can reduce crosstalk noise between pixels, and a pixel microlens 12 is arranged under the color filter 11, which can help the pixel unit 1 to improve Good light condensing improves optical performance, so that the present application has better image quality when outputting high-resolution images.
  • a pixel microlens 12 is arranged under the color filter 11, which can simplify the calibration between the microlens and the pixel structure, and the above-mentioned calibration includes the distance calibration between the microlens and the pixel structure, the center axis calibration and The calibration of whether the edge is right, etc., and the pixel microlenses 12 arranged under the color filter 11 in this application can refer to the lens of the lens module on some cameras, reduce the number of layers of the lens on the lens module or simplify the lens model.
  • the structure of the group avoids the difficulty of manufacturing the lens module.
  • the pixel units 1 are arranged to form a sub-pixel structure, for example, the number of pixel units 1 is 4, the 4 pixel units 1 are arranged in a matrix, and the 4 pixel units 1 are continuously arranged to form a sub-pixel structure.
  • the pixel structure includes a plurality of sub-pixel structures, that is, the plurality of sub-pixel structures are continuously arranged to form the entire pixel structure.
  • the microlens assembly includes a first lens unit, and the first lens unit is formed by a plurality of first microlenses 3 arranged in the same plane; wherein, the first microlens 3 and the sub-pixel structure are one by one.
  • the pixel units 1 opposite to the first microlens 3 have at least two color filters 11 of the same color, that is, one first microlens 3 and one
  • the sub-pixel structures are opposite to each other, and at least four pixel units 1 forming the sub-pixel structure have at least two color filters 11 of the same color.
  • the above structure enables the pixel structure to assist in completing the phase detection auto focus (Phase Detection Auto Focus, PDAF) function, and on the premise of improving image quality, enriches the functions that the pixel structure can implement, and is convenient for consumers to use.
  • phase detection auto focus Phase Detection Auto Focus
  • the sub-pixel structure includes 4 of the pixel units 1, and the 4 of the pixel units 1 are arranged in a 2 ⁇ 2 matrix form, wherein a pair of the pixel units arranged diagonally 1.
  • the PDAF function with an angle of 45 degrees, its direction is shown by the double arrow in Fig. 2 .
  • the sub-pixel structure includes 9 of the pixel units 1, and the 9 of the pixel units 1 are arranged in a 3 ⁇ 3 matrix, and the pixel units 1 distributed on the edge of the matrix.
  • the opposite pixel units 1 have the color filters 11 of the same color, and at this time, in the nine pixel units 1 under the first microlens 3, there are four pairs of color filters 11 of the same color , each pair of color filters 11 can implement a PDAF function in one direction, specifically an omnidirectional PDAF function, the direction of which is shown by the bidirectional arrows in FIG. 3 .
  • a second optical partition wall 4 is provided in the pixel unit 1 , and the second optical partition wall 4 extends from the color filter 11 to the photoelectric conversion layer 13 .
  • the second optical partition wall 4 is perpendicular to the photoelectric conversion layer 13
  • the second optical partition wall 4 may extend into the photoelectric conversion layer 13, or may not extend into the photoelectric conversion layer 13, so
  • the second optical partition wall 4 at least divides the pixel unit 1 into a first subunit and a second subunit, and the first subunit and the second subunit respectively have the color filter from top to bottom.
  • the light sheet 11 and the pixel microlens 12, and the first subunit and the second subunit share the photoelectric conversion layer 13, that is to say, in the same pixel unit 1, a second optical partition wall is formed.
  • 4 is divided into a first subunit and a second subunit, different pixel units 1 have independent photoelectric conversion layers 13 respectively, and the first subunit and the second subunit separated by the same pixel unit 1 share a photoelectric conversion layer 13.
  • the above structure enables the same pixel unit 1 to have the same number of pixel microlenses 12 in the divided subunits, which can increase the light condensing effect of the pixel unit 1, improve the optical performance of the pixel structure, and improve the picture quality.
  • the second optical partition wall 4 is embedded in the photoelectric conversion layer 13, which can prevent crosstalk noise between adjacent sub-units formed by the separation of the same pixel unit 1.
  • one first microlens 3 can only Opposite to one pixel unit 1
  • the PDAF function can also be realized, because at this time, it is equivalent to having at least two color filters 11 of the same color under one first microlens 3 , and the conditions for realizing the PDAF function are met.
  • the micro-lens assembly includes at least a second lens unit and a third lens unit arranged in sequence from top to bottom, and the second lens unit and the third lens unit can cooperate with each other, for example, changing the second lens unit The distance between the unit and the third lens unit, etc., enables the lens unit to assist the pixel structure to achieve different functions, such as achieving better light collection effect, larger light collection angle or better light collection efficiency.
  • the micro-lens assembly may also include a fourth lens unit, a fifth lens unit, and the like on the basis of the second lens unit and the third lens unit.
  • the second lens unit is formed by arranging a plurality of second microlenses 5 in the same plane
  • the third lens unit is formed by arranging a plurality of third microlenses 6 in the same plane
  • the The shapes and/or sizes of the second microlenses 5 and the third microlenses 6 are different.
  • the size of four second microlenses 5 is the same as the size of one third microlens 6.
  • the shape of the microlenses can be Prominent hemispherical or concave shape, etc.
  • the complexity of the lens module placed in front of the pixel structure can be greatly reduced, and even the lens module can be replaced to achieve lensless imaging
  • computational image applications such as light field cameras can be realized.
  • the manufacturing materials of the second lens unit and the third lens unit are nanomaterials, which can enhance the light-collecting efficiency of the lens units.
  • An image sensor includes the above-mentioned pixel structure.

Abstract

本申请公开了一种像素结构和图像传感器,像素结构包括多个邻接且阵列排布的像素单元,相邻所述像素单元之间设置有第一光学隔墙;微透镜组件,微透镜组件位于所有像素单元上侧,且微透镜组件与所有像素单元相对;像素单元包括由上至下依次设置的彩色滤光片、像素微透镜和光电转换层,相邻像素单元的彩色滤光片的颜色不同。

Description

像素结构和图像传感器
相关申请的交叉引用
本申请要求于2021年04月12日提交的申请号为2021103919817,发明名称为“像素结构和图像传感器”的中国专利申请的优先权,其通过引用方式全部并入本申请。
技术领域
本申请属于图像技术领域,具体涉及一种像素结构和图像传感器。
背景技术
图像传感器能够利用光电器件的光电转换功能将感光面上的光像转换为与光像成相应比例关系的电信号,实现光电转换,能够完成如手机或者平板电脑等电子设备的摄像等功能。其中,互补金属氧化物半导体(Complementary Metal-Oxide-Semiconductor,CMOS)图像传感器具有集成度高、功耗小、速度快、成本低等特点,因而CMOS图像传感器得到了普遍应用。
但是CMOS图像传感器在电子设备输出高分辨率的图像时会使图像严重失真,影响图像质量。
发明内容
本申请旨在提供一种像素结构和图像传感器,至少解决现有的图像传感器输出高分辨率的图像时会使图像质量较差的问题。
为了解决上述技术问题,本申请是这样实现的:
第一方面,本申请实施例提出了一种像素结构,包括:
多个邻接且阵列排布的像素单元,相邻所述像素单元之间设置有第一 光学隔墙;
微透镜组件,所述微透镜组件位于所有所述像素单元上侧,且所述微透镜组件与所有所述像素单元相对;
其中,所述像素单元包括由上至下依次设置的彩色滤光片、像素微透镜和光电转换层,相邻所述像素单元的彩色滤光片的颜色不同。
第二方面,本申请实施例提出了一种图像传感器,包括以上所述的像素结构。
在本申请的实施例中,相邻所述像素单元的彩色滤光片的颜色不同,能够避免使用像素重排技术进行技术妥协,防止图像失真,同时,相邻的像素单元之间设置有第一光学隔墙,能够减少像素间的串扰噪音,且在彩色滤光片下设置有像素微透镜,能够帮助像素单元更好的聚光,提升光学性能,从而使本申请在图像传感器输出高分辨率的图像时具有较佳的图像质量。
本发明的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本发明的实践了解到。
附图说明
本发明的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:
图1是根据本发明第一实施例的像素单元结构示意图;
图2是第一微透镜与4个像素单元相对时的俯视图;
图3是第一微透镜与9个像素单元相对时的俯视图;
图4是根据本发明第二实施例的像素单元结构示意图。
附图标记:
1、像素单元;11、彩色滤光片;12、像素微透镜;13、光电转换层;2、第一光学隔墙;3、第一微透镜;4、第二光学隔墙;5、第二微透镜;6、第三微透镜;7、线路层。
具体实施方式
下面将详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,仅用于解释本发明,而不能理解为对本发明的限制。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请的说明书和权利要求书中的术语“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本发明的描述中,除非另有说明,“多个”的含义是两个或两个以上。此外,说明书以及权利要求中“和/或”表示所连接对象的至少其中之一,字符“/”,一般表示前后关联对象是一种“或”的关系。
在本发明的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
在本发明的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本发明中的具体含义。
下面结合图1-图4描述根据本发明实施例的像素结构。
如图1所示,根据本发明一些实施例的像素结构,包括多个邻接且阵列排布的像素单元1和微透镜组件。所述像素单元1可以为单个像素所对应的像素结构,每个像素单元1都具有一个明确的被分配的色彩数值,相邻所述像素单元1之间设置有第一光学隔墙2,所述第一光学隔墙2可以为采用深槽隔离技术(Deep trench isolation,DTI)形成的结构,能够防止相邻的像素单元1间的串扰噪音,能够帮助单个像素单元1更好的聚光,提升单个像素单元1的光学性能,且不需要任何芯片外的透镜/薄膜的存在,提高成像质量。
所述微透镜组件位于所有所述像素单元1上侧,且所述微透镜组件与所有所述像素单元1相对,能够辅助像素单元1更好的聚光,提升像素单元1的光学性能,提升图像质量。其中,所述微透镜组件可以为单层结构,也可以为多层叠摞的结构,在微透镜组件为多层叠摞的结构时,多层微透镜之间可以为完全重合式的结构,比如,多层微透镜结构的大小和形状完全相同,多层微透镜结构之间一一对应地叠摞设置,多层微透镜的边缘在竖直方向上的投影重合;多层微透镜之间也可以为不完全重合式的结构,比如多层微透镜之间为大小或者形状不完全相同,多层微透镜结构叠摞的状态下,多层微透镜的边缘在竖直方向上的投影不完全相同,此时,边缘的投影位于外侧的微透镜由于面积较大,能够更好的实现为像素单元1收光的效果,提升像素结构的光学性能。
其中,所述像素单元1包括由上至下依次设置的彩色滤光片11、像素微透镜12和光电转换层13。所述彩色滤光片11可以为色彩滤波阵列(Color Filter Array,CFA),是一种表现颜色的光学滤光片,它可以精确选择欲通过的小范围波段光波,而反射掉其他不希望通过的波段;每个像素单元1都对应一个像素微透镜12,能够帮助像素单元1更好的收光,使像素单元1达到较佳的光学性能,提升图像质量,且在单个像素单元1内的像素微透镜12被第一光学隔墙2包围,能够更好的辅助像素单元1聚光,同时,像素微透镜12的形状、大小或者材料可以随着实际应用而自行选择;光电 转换层13能够将通过微透镜和彩色滤光片11的光转化成电信号,并将电信号通过线路层7传输给处理单元,光电转换层13可以包括光电二极管等元件。相邻所述像素单元1的彩色滤光片11的颜色不同,能够避免在相邻像素单元1的彩色滤光片11的颜色相同的情况下,输出高分辨率图片需要使用像素重排技术,从而进行技术妥协的情况,避免图像失真,影响图片质量。
需要说明的是,在相邻像素单元1的彩色滤光片11的颜色相同的情况下,需要采用相邻像素合成技术,由于相邻像素合成技术是在相邻的像素单元1的彩色滤光片11的颜色相同的情况下进行的,且彩色滤光片11是固定不可调整位置和形状的,当输出高分辨率图片时必须使用像素重排技术,即,在电路端或者软件端进行信号重构。在使用像素重排技术输出高分辨率图片时,由于彩色滤光片11的结构固定,会进行很多的技术妥协。重排后的像素信息很多都是“猜”出来的,导致高分辨率图片严重失真,影响输出图像的质量。
在本申请的实施例中,相邻所述像素单元1的彩色滤光片11的颜色不同,能够避免使用像素重排技术进行技术妥协,防止图像失真,使输出的高分辨率图片为真实像素信号,同时,相邻的像素单元1之间设置有第一光学隔墙2,能够减少像素间的串扰噪音,且在彩色滤光片11下设置有像素微透镜12,能够帮助像素单元1更好的聚光,提升光学性能,从而使本申请在输出高分辨率的图像时具有较佳的图像质量。
进一步的,本申请中在彩色滤光片11下设置有像素微透镜12,能够简化微透镜与像素结构之间的校准,上述校准包括微透镜与像素结构之间的距离校准、中轴线校准以及边缘是否正对的校准等,且本申请中设置在彩色滤光片11下的像素微透镜12能够提到部分摄像头上镜头模组的透镜,减少镜头模组上透镜的层数或者简化镜头模组的结构,避免了镜头模组制造困难的问题。
可选地,至少四个所述像素单元1排布形成子像素结构,比如像素单 元1的数量为4个,4个像素单元1呈矩阵排布,且4个像素单元1连续排布形成子像素结构。所述像素结构包括多个子像素结构,即,多个子像素结构连续排布形成整个像素结构。所述微透镜组件包括第一透镜单元,所述第一透镜单元由多个第一微透镜3在同一平面内排布形成;其中,所述第一微透镜3与所述子像素结构一一对应地相对设置,使所述第一微透镜3相对的所述像素单元1中至少具有两个颜色相同的所述彩色滤光片11,也就是说,一个所述第一微透镜3与一个所述子像素结构相对,而形成子像素结构的至少4个像素单元1中具有至少两个相同颜色的彩色滤光片11。上述结构能够使像素结构辅助完成相位检测自动对焦(Phase Detection Auto Focus,PDAF)功能,在提高图像质量的前提下,丰富了像素结构能够实现的功能,便于消费者使用。
可选地,如图2所示,所述子像素结构包括4个所述像素单元1,4个所述像素单元1呈2×2矩阵形式排列,其中一对对角设置的所述像素单元1具有相同颜色的所述彩色滤光片11,此时在第一微透镜3下的4个像素单元1中,具有两个相同颜色的彩色滤光片11,可以实现单向PDAF功能,具体为可以实现45度角的PDAF功能,其方向如图2中的双向箭头所示。
可选地,如图3所示,所述子像素结构包括9个所述像素单元1,9个所述像素单元1呈3×3矩阵形式排列,在矩阵边缘上分布的所述像素单元1中,相对的所述像素单元1具有相同颜色的所述彩色滤光片11,此时,在第一微透镜3下的9个像素单元1中,具有四对相同颜色的彩色滤光片11,每对彩色滤光片11可以实现一个方向的PDAF功能,具体为可以实现全向PDAF功能,其方向如图3中的双向箭头所示。
可选地,如图4所示,在所述像素单元1中设置有第二光学隔墙4,所述第二光学隔墙4由所述彩色滤光片11延伸至所述光电转换层13,且所述第二光学隔墙4垂直于所述光电转换层13,所述第二光学隔墙4可以伸入所述光电转换层13,也可以不伸入所述光电转换层13,所述第二光学隔墙4将至少将所述像素单元1分隔成第一子单元和第二子单元,所述第一 子单元和所述第二子单元由上至下分别具有所述彩色滤光片11和所述像素微透镜12,且所述第一子单元和所述第二子单元共用所述光电转换层13,也就是说,在同一个像素单元1内由第二光学隔墙4分隔成第一子单元和第二子单元,不同的像素单元1分别具有独立的光电转换层13,而由同一像素单元1分隔成的第一子单元和第二子单元共用一个光电转换层13,上述结构使同一像素单元1内具有于分隔成的子单元的数量相同的像素微透镜12,能够增加像素单元1的聚光效果,提高像素结构的光学性能,提升图片质量。
可选地,所述第二光学隔墙4嵌入所述光电转换层13,能够防止同一像素单元1分隔形成的相邻子单元之间的串扰噪音,此时,一个第一微透镜3可以仅与一个像素单元1相对也能实现PDAF功能,因为此时也相当于在一个第一微透镜3下具有至少两个同色的彩色滤光片11,具备实现PDAF功能的条件。
可选地,所述微透镜组件至少包括由上至下由依次排列的第二透镜单元和第三透镜单元,所述第二透镜单元和第三透镜单元可以相互配合,比如,改变第二透镜单元和第三透镜单元之间的间距等,使透镜单元能够辅助像素结构实现不同功能,比如实现更佳的收光效果、实现较大的收光角度或者实现较佳的收光效能等。当然,所述微透镜组件也可以在上述第二透镜单元和第三透镜单元的基础上包括第四透镜单元和第五透镜单元等。
可选地,所述第二透镜单元由多个第二微透镜5在同一平面内排布形成,所述第三透镜单元由多个第三微透镜6在同一平面内排布形成,所述第二微透镜5和所述第三微透镜6的形状和/或大小不同,比如四个第二微透镜5的大小与一个第三微透镜6的大小相同,同时,微透镜的形状可以为突出的半球状或凹陷状等。通过改变微透镜阵列堆叠的层数,以及每个微透镜的大小和形状,可以大幅减轻放置在像素结构前端的镜头模组的复杂程度,甚至可以取代镜头模组实现无镜头(Lensless)呈像;同时,通过调整不同微透镜阵列之间的距离和填充材质,可以实现诸如光场相机这类 的运算图像应用。
可选地,所述第二透镜单元和所述第三透镜单元的制造材料为纳米材料,能够增强透镜单元的收光效能。
一种图像传感器,包括以上所述的像素结构。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示意性实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
尽管已经示出和描述了本发明的实施例,本领域的普通技术人员可以理解:在不脱离本发明的原理和宗旨的情况下可以对这些实施例进行多种变化、修改、替换和变型,本发明的范围由权利要求及其等同物限定。

Claims (10)

  1. 一种像素结构,包括:
    多个邻接且阵列排布的像素单元,相邻所述像素单元之间设置有第一光学隔墙;
    微透镜组件,所述微透镜组件位于所有所述像素单元上侧,且所述微透镜组件与所有所述像素单元相对;
    其中,所述像素单元包括由上至下依次设置的彩色滤光片、像素微透镜和光电转换层,相邻所述像素单元的彩色滤光片的颜色不同。
  2. 根据权利要求1所述的像素结构,其中,至少四个所述像素单元排布形成子像素结构,所述像素结构包括多个子像素结构,所述微透镜组件包括第一透镜单元,所述第一透镜单元由多个第一微透镜在同一平面内排布形成;其中,所述第一微透镜与所述子像素结构一一对应地相对设置,使所述第一微透镜相对的所述像素单元中至少具有两个颜色相同的所述彩色滤光片。
  3. 根据权利要求2所述的像素结构,其中,所述子像素结构包括4个所述像素单元,4个所述像素单元呈2×2矩阵形式排列,其中一对对角设置的所述像素单元具有相同颜色的所述彩色滤光片11。
  4. 根据权利要求2所述的像素结构,其中,所述子像素结构包括9个所述像素单元,9个所述像素单元呈3×3矩阵形式排列,在矩阵边缘上分布的所述像素单元中,相对的所述像素单元具有相同颜色的所述彩色滤光片。
  5. 根据权利要求1所述的像素结构,其中,在所述像素单元中设置有第二光学隔墙,所述第二光学隔墙由所述彩色滤光片延伸至所述光电转换层,且所述第二光学隔墙垂直于所述光电转换层;
    所述第二光学隔墙至少将所述像素单元分隔成第一子单元和第二子单元,所述第一子单元和所述第二子单元由上至下分别具有所述彩色滤光片 和所述像素微透镜,且所述第一子单元和所述第二子单元共用所述光电转换层。
  6. 根据权利要求5所述的像素结构,其中,所述第二光学隔墙嵌入所述光电转换层。
  7. 根据权利要求1所述的像素结构,其中,所述微透镜组件至少包括由上至下由依次排列的第二透镜单元和第三透镜单元。
  8. 根据权利要求7所述的像素结构,其中,所述第二透镜单元由多个第二微透镜在同一平面内排布形成,所述第三透镜单元由多个第三微透镜在同一平面内排布形成,所述第二微透镜和所述第三微透镜的形状和/或大小不同。
  9. 根据权利要求7所述的像素结构,其中,所述第二透镜单元和所述第三透镜单元的制造材料为纳米材料。
  10. 一种图像传感器,包括权利要求1-9中任一项所述的像素结构。
PCT/CN2022/085795 2021-04-12 2022-04-08 像素结构和图像传感器 WO2022218222A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/379,247 US20240038806A1 (en) 2021-04-12 2023-10-12 Pixel structure and image sensor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110391981.7 2021-04-12
CN202110391981.7A CN113178457B (zh) 2021-04-12 2021-04-12 像素结构和图像传感器

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/379,247 Continuation US20240038806A1 (en) 2021-04-12 2023-10-12 Pixel structure and image sensor

Publications (1)

Publication Number Publication Date
WO2022218222A1 true WO2022218222A1 (zh) 2022-10-20

Family

ID=76924852

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/085795 WO2022218222A1 (zh) 2021-04-12 2022-04-08 像素结构和图像传感器

Country Status (3)

Country Link
US (1) US20240038806A1 (zh)
CN (1) CN113178457B (zh)
WO (1) WO2022218222A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113178457B (zh) * 2021-04-12 2022-11-11 维沃移动通信有限公司 像素结构和图像传感器
CN113725245B (zh) * 2021-09-06 2024-03-15 上海集成电路装备材料产业创新中心有限公司 Cis芯片的像元结构、微透镜阵列、图像传感器及制作方法
CN113992856A (zh) * 2021-11-30 2022-01-28 维沃移动通信有限公司 图像传感器、摄像模组和电子设备
CN115361532B (zh) * 2022-08-17 2023-11-21 维沃移动通信有限公司 图像传感器、图像采集方法及装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105493285A (zh) * 2014-07-03 2016-04-13 索尼公司 固态成像器件及电子设备
CN108900750A (zh) * 2018-07-19 2018-11-27 维沃移动通信有限公司 一种图像传感器及移动终端
CN110349987A (zh) * 2019-07-15 2019-10-18 德淮半导体有限公司 相位检测自动对焦像素元件及其形成方法,图像传感器及其形成方法
CN110896083A (zh) * 2018-09-12 2020-03-20 佳能株式会社 光电转换装置和设备
CN113178457A (zh) * 2021-04-12 2021-07-27 维沃移动通信有限公司 像素结构和图像传感器

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005079338A (ja) * 2003-08-29 2005-03-24 Matsushita Electric Ind Co Ltd 固体撮像装置とその製造方法
JP2008091841A (ja) * 2006-10-05 2008-04-17 Sony Corp 固体撮像装置及び撮像装置
JP2008108918A (ja) * 2006-10-25 2008-05-08 Sony Corp 固体撮像素子
JP2012074521A (ja) * 2010-09-28 2012-04-12 Sony Corp 固体撮像装置の製造方法、固体撮像装置、および電子機器
CN109922270A (zh) * 2019-04-17 2019-06-21 德淮半导体有限公司 相位对焦图像传感器芯片
CN111586323A (zh) * 2020-05-07 2020-08-25 Oppo广东移动通信有限公司 图像传感器、控制方法、摄像头组件和移动终端

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105493285A (zh) * 2014-07-03 2016-04-13 索尼公司 固态成像器件及电子设备
CN108900750A (zh) * 2018-07-19 2018-11-27 维沃移动通信有限公司 一种图像传感器及移动终端
CN110896083A (zh) * 2018-09-12 2020-03-20 佳能株式会社 光电转换装置和设备
CN110349987A (zh) * 2019-07-15 2019-10-18 德淮半导体有限公司 相位检测自动对焦像素元件及其形成方法,图像传感器及其形成方法
CN113178457A (zh) * 2021-04-12 2021-07-27 维沃移动通信有限公司 像素结构和图像传感器

Also Published As

Publication number Publication date
US20240038806A1 (en) 2024-02-01
CN113178457A (zh) 2021-07-27
CN113178457B (zh) 2022-11-11

Similar Documents

Publication Publication Date Title
WO2022218222A1 (zh) 像素结构和图像传感器
WO2022143280A1 (zh) 图像传感器、摄像模组和电子设备
JP5399215B2 (ja) 多眼カメラ装置および電子情報機器
JP5538553B2 (ja) 固体撮像素子及び撮像装置
US20180288398A1 (en) Asymmetric angular response pixels for singl sensor stereo
US9521319B2 (en) Array cameras and array camera modules including spectral filters disposed outside of a constituent image sensor
KR20220066226A (ko) 이면 조사형 촬상 소자, 그 제조 방법 및 촬상 장치
JP5227368B2 (ja) 3次元撮像装置
KR101572020B1 (ko) 다중 피사계 심도 감광소자, 시스템, 피사계 심도 확장방법 및 광학 화상 시스템
US7732846B2 (en) Semiconductor device including solid state image pickup device, and portable electronic apparatus
CN102118551A (zh) 成像装置
TW201008264A (en) Solid-state image sensor
WO2012174751A1 (zh) 一种混合多光谱感光象素组、感光器件、及感光系统
CN104241310A (zh) 一种具有双微透镜层的cmos图像像素阵列
JP2012137721A (ja) カラーフィルタ、固体撮像素子、液晶表示装置および電子情報機器
JP2011103359A (ja) 固体撮像素子および電子情報機器
CN101098400A (zh) 数字照相机模块
JP5331119B2 (ja) 固体撮像素子および撮像装置
EP4033535A1 (en) Image sensor, camera assembly and mobile terminal
JP5507362B2 (ja) 3次元撮像装置および光透過板
CN113055575B (zh) 图像传感器、摄像头模组及电子设备
WO2023179589A1 (zh) 摄像模组以及电子设备
JP2019092145A (ja) シフトされたマイクロレンズアレイを有するイメージセンサ
JP5705462B2 (ja) 固体撮像素子および電子情報機器
US11513324B2 (en) Camera module

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22787448

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE