WO2022218073A1 - 移相掩膜版及其制作方法 - Google Patents

移相掩膜版及其制作方法 Download PDF

Info

Publication number
WO2022218073A1
WO2022218073A1 PCT/CN2022/080333 CN2022080333W WO2022218073A1 WO 2022218073 A1 WO2022218073 A1 WO 2022218073A1 CN 2022080333 W CN2022080333 W CN 2022080333W WO 2022218073 A1 WO2022218073 A1 WO 2022218073A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase
light
shifting
layer
shielding
Prior art date
Application number
PCT/CN2022/080333
Other languages
English (en)
French (fr)
Inventor
黄早红
任新平
Original Assignee
上海传芯半导体有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海传芯半导体有限公司 filed Critical 上海传芯半导体有限公司
Priority to JP2023600137U priority Critical patent/JP3246095U/ja
Publication of WO2022218073A1 publication Critical patent/WO2022218073A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/26Phase shift masks [PSM]; PSM blanks; Preparation thereof
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/26Phase shift masks [PSM]; PSM blanks; Preparation thereof
    • G03F1/32Attenuating PSM [att-PSM], e.g. halftone PSM or PSM having semi-transparent phase shift portion; Preparation thereof

Definitions

  • the invention belongs to the field of semiconductor integrated circuit manufacturing, in particular to a phase-shift mask and a manufacturing method thereof.
  • the area of semiconductor devices is becoming smaller and smaller.
  • the layout of semiconductors has evolved from ordinary single-function separation devices to integrated high-density multi-function devices. From the initial IC (Integrated Circuit) to LSI (Large Scale Integrated Circuit), VLSI (Very Large Scale Integrated Circuit), until today's ULSI (Ultra Large Scale Integrated Circuit), the area of the device is further reduced.
  • IC Integrated Circuit
  • LSI Large Scale Integrated Circuit
  • VLSI Very Large Scale Integrated Circuit
  • ULSI Ultra Large Scale Integrated Circuit
  • the phase-shift mask technology is one of the most practical technologies to improve the resolution of lithography.
  • the principle of this technology is to reverse the phase of adjacent areas by 180 degrees, so that the interference effects cancel each other out, and then
  • the key point of this technology is that the phase-shifting layer can precisely control the reticle pattern of the reticle. phase.
  • a conventional phase-shifting mask includes a quartz substrate 11 and a chromium layer 12. After patterning the chromium layer 12 on the phase-shifting mask, a channel on the quartz substrate 11 is formed The depth d provides the phase shift.
  • another phase shift mask includes a quartz substrate 21, a phase shift layer 23 and a chromium layer 22. After patterning the chromium layer 22 and the phase shift layer 23 on the phase shift mask , the phase shift amount and the attenuation amount are determined by the thickness d of the phase shift layer 23 .
  • the phase shift mask may also contain multiple layers of material.
  • the thickness relationship between the multi-layer materials By adjusting the thickness relationship between the multi-layer materials, areas with different phase shift angles are formed on the mask, so that the "ghost lines" on the exposed positive photoresist pattern on the wafer can be avoided.
  • the thickness of each layer of material is required to be high, and the process is also very complex, which will seriously increase the cost of chip manufacturing.
  • the object of the present invention is to provide a phase-shift mask and a method for making the same, which are used to solve the problem that the phase-shift mask in the prior art is easy to cause ghost lines or to eliminate ghost lines. This results in the problem of a significant increase in process difficulty and cost.
  • the present invention provides a phase-shift mask
  • the phase-shift mask comprises: a transparent substrate, the transparent substrate defines a light-transmitting area and is adjacent to the light-transmitting area at least one light-shielding area; a light-shielding layer, covering the light-shielding area on the transparent substrate; a phase-shifting side wall piece, located on the sidewall of the light-shielding layer between the light-transmitting area and the light-shielding area , the phase-shifting sidewall sheet causes the exposure light passing through the phase-shifting sidewall sheet to produce phase conversion or/and light attenuation.
  • the phase conversion and/or light attenuation ratio of the exposure light passing through the phase-shifting sidewall sheet is controlled.
  • the material of the transparent substrate includes quartz glass
  • the material of the light shielding layer includes chromium, chromium oxide or chromium nitride.
  • the material of the phase-shifting spacers includes one of molybdenum silicon oxide, molybdenum oxynitride silicon, molybdenum oxycarbide silicon, chromium oxide silicon, chromium silicon oxynitride, and chromium oxycarbide silicon, wherein each The composition can vary and can determine the degree of phase inversion or/and light attenuation.
  • the ratio of the thickness of the phase-shifting side wall sheet to the thickness of the light-shielding layer is between 0.5:1 and 1:1, and the ratio of the width of the phase-shifting side wall sheet to the thickness of the light-shielding layer is between 0.5:1 and 1:1. Between 0.2:1 and 0.5:1.
  • the phase-shifting sidewall sheet causes the exposure light passing through the phase-shifting sidewall sheet to produce a phase conversion change between 0 and 180 degrees.
  • the phase-shifting sidewall sheet makes the ratio of light attenuation generated by the exposure light passing through the phase-shifting sidewall sheet between 0-80%.
  • the light-transmitting area has grooves so that the exposure light transmitted by the light-transmitting area includes phase conversion and/or light attenuation.
  • the present invention also provides a manufacturing method of a phase shift mask, the manufacturing method comprising the steps of: providing a transparent substrate, the transparent substrate defines a light-transmitting area and at least one light-shielding area adjacent to the light-transmitting area ; deposit a light-shielding layer on the transparent substrate, and etch the light-shielding layer to reveal the light-transmitting area; deposit a phase-shifting material layer on the transparent substrate, and perform an etchback process on the phase-shifting material layer , remove the phase-shifting material layer in the light-transmitting area and the light-shielding area, and retain part of the phase-shifting material layer located on the sidewall of the light-shielding layer to form a phase-shifting sidewall sheet, which makes the phase-shifting sidewall sheet
  • the exposure light passing through the phase-shifting sidewall sheet produces phase conversion or/and light attenuation.
  • the manufacturing method further includes: etching the light-transmitting region to form a groove with a certain depth, so as to form a light-transmitting region with phase conversion or/and light attenuation.
  • the present invention also provides a phase-shifting mask, the phase-shifting mask comprising: a transparent substrate, the transparent substrate defines a first light-transmitting area and at least one first light-transmitting area adjacent to the first light-transmitting area Two light-transmitting regions; a phase-shifting layer covering the first light-transmitting region on the transparent substrate, the phase-shifting layer causing phase conversion or/and light attenuation of the exposure light passing through the phase-shifting layer;
  • the light-shielding side wall sheet is located on the side wall of the phase-shifting layer between the first light-transmitting area and the second light-transmitting area.
  • the material of the transparent substrate includes quartz glass
  • the material of the light-shielding sidewall sheet includes chromium, chromium oxide or chromium nitride
  • the material of the phase-shifting layer includes molybdenum silicon oxide, molybdenum oxynitride silicon, nitrogen oxide
  • molybdenum silicon oxycarbide chromium silicon oxide, chromium silicon oxynitride, and chromium oxycarbide silicon, wherein each component can determine the degree of phase conversion or/and light attenuation.
  • the ratio of the thickness of the light-shielding side wall sheet to the thickness of the phase-shifting layer is between 0.5:1 and 1:1, and the ratio of the width of the light-shielding side wall sheet to the thickness of the phase-shifting layer Between 0.2:1 and 0.5:1.
  • the phase-shifting layer causes the exposure light passing through the phase-shifting layer to produce a phase conversion change between 0 and 180 degrees.
  • the phase-shifting layer causes the light attenuating ratio of the exposure light transmitted through the phase-shifting layer to be between 0% and 80%.
  • the present invention also provides a method for manufacturing a phase-shifting mask, the manufacturing method comprising the steps of: providing a transparent substrate, the transparent substrate defines a first light-transmitting area and a first light-transmitting area adjacent to the first light-transmitting area at least one second light-transmitting region; depositing a phase-shifting layer on the transparent substrate, etching the phase-shifting layer to retain the phase-shifting layer in the first light-transmitting region, and revealing the second light-transmitting region , the phase-shifting layer causes phase conversion or/and light attenuation of the exposure light passing through the phase-shifting layer; depositing a light-shielding material layer on the transparent substrate, and performing an etching back process on the light-shielding material layer to remove the light-shielding material layer.
  • a part of the light-shielding material layer located on the sidewall of the phase-shifting layer is reserved to form a light-shielding side wall sheet.
  • the present invention also provides a phase-shifting mask, the phase-shifting mask comprising: a transparent substrate, the transparent substrate defines a first light-transmitting area, at least one first light-transmitting area adjacent to the first light-transmitting area Two light-transmitting regions and a light-shielding region; a phase-shifting layer covering the first light-transmitting region and the light-shielding region on the transparent substrate, the phase-shifting layer making the exposure light passing through the phase-shifting layer phase-converted or/and light attenuation; a light-shielding layer, located on the phase-shifting layer and covering the light-shielding region; a phase-shifting sidewall sheet, the light-shielding layer located between the first light-transmitting region and the light-shielding region On the side wall of the phase-shifting sidewall sheet, the phase-shifting sidewall sheet causes the exposure light passing through the phase-shifting sidewall sheet to produce phase conversion or/and light attenuation
  • the material of the transparent substrate includes quartz glass
  • the material of the phase-shifting layer includes molybdenum silicon oxide, molybdenum oxynitride silicon, molybdenum oxycarbide silicon, chromium silicon oxide, chromium silicon oxynitride, and chromium oxycarbide
  • the material of the phase-shifting sidewall sheet includes one of molybdenum silicon oxide, molybdenum oxynitride silicon, molybdenum oxycarbide silicon, chromium silicon oxide, chromium silicon oxynitride and chromium oxycarbide silicon, Each of these components can determine the degree of phase conversion or/and light attenuation.
  • the ratio of the thickness of the phase-shifting side wall sheet to the thickness of the light-shielding layer is between 0.5:1 and 1:1, and the ratio of the width of the phase-shifting side wall sheet to the thickness of the light-shielding layer is between 0.5:1 and 1:1. Between 0.2:1 and 0.5:1.
  • the phase-shifting layer causes the exposure light passing through the phase-shifting layer to produce a phase conversion change between 0 and 180 degrees
  • the phase-shifting side wall piece makes the phase-shifting side wall pass through the phase-shifting side.
  • the change amount of the phase conversion produced by the exposure light of the wall piece is between 0 and 180 degrees.
  • the phase-shifting layer makes the ratio of light attenuation generated by the exposure light transmitted through the phase-shifting layer between 0-80%, and the phase-shifting side wall sheet allows the phase-shifting side wall sheet to pass through the phase-shifting side.
  • the proportion of light attenuation produced by the exposure light of the wall piece is between 0 and 80%.
  • phase-shift mask of the present invention and its manufacturing method have the following beneficial effects:
  • a light-transmitting area and at least one light-shielding area adjacent to the light-transmitting area are defined on the transparent substrate, the light-shielding layer covers the light-shielding area on the transparent substrate, and the phase-shifting side walls are located in the light-transmitting area and the light-shielding area.
  • the exposure light passing through the phase-shifting sidewall sheet is used to produce phase conversion or/and light attenuation.
  • the thickness of the phase-shifting sidewall sheet can be adjusted to control the light transmission area and the
  • the phase of the exposure light at the light-shielding area avoids the generation of "ghost lines", thereby greatly improving the contrast and resolution of the photoresist pattern exposed by the phase-shifting mask.
  • a first light-transmitting region and at least one second light-transmitting region adjacent to the first light-transmitting region are defined on the transparent substrate, and the phase-shifting layer covers the first light-transmitting region on the transparent substrate, Phase conversion or/and light attenuation are generated for the exposure light passing through the phase-shifting layer, and the light-shielding sidewall sheet is located between the first light-transmitting area and the second light-transmitting area of the phase-shifting layer.
  • the blocking effect of the shading side wall sheet on the exposure light avoids the generation of "ghost lines", thereby greatly improving the contrast and resolution of the photoresist pattern exposed by the phase-shift mask.
  • the phase-shifting layer covers the first light-transmitting region on the transparent substrate.
  • the light area and the light-shielding area are used for phase conversion or/and light attenuation of the exposure light passing through the phase-shifting layer.
  • the light-shielding layer is located on the phase-shifting layer and covers the light-shielding area.
  • the sidewalls of the light shielding layer between the light area and the light shielding area are used for phase conversion or/and light attenuation of the exposure light passing through the phase-shifting sidewall sheet.
  • the present invention can adjust the phase and contrast of the exposure light in the first light-transmitting area and the light-shielding area and/or the second light-transmitting area at the first light-shielding area by adjusting the thickness and width of the phase-shifting layer and/or the phase-shifting sidewall sheet , to avoid the generation of "ghost lines", thereby greatly improving the contrast and resolution of the photoresist pattern exposed by the phase-shift mask.
  • FIG. 1 is a schematic structural diagram of a phase shift mask.
  • FIG. 2 shows a schematic diagram of another phase shift mask and its mechanism.
  • FIG. 3 to 6 are schematic diagrams showing the structure of each step of the manufacturing method of the phase-shift mask in Embodiment 1 of the present invention, wherein FIG. 6 is a schematic diagram of the structure of the phase-shift mask in Embodiment 1 of the present invention .
  • FIG. 7 is a schematic diagram showing a photoresist pattern obtained by exposure using the phase shift mask of Example 1 of the present invention.
  • FIG. 8 to 11 are schematic structural diagrams of each step of the manufacturing method of the phase-shift mask in Embodiment 2 of the present invention, wherein FIG. 11 is a schematic structural diagram of the phase-shift mask in Embodiment 2 of the present invention .
  • FIG. 12 is a schematic diagram showing a photoresist pattern obtained by exposure using the phase shift mask of Example 2 of the present invention.
  • FIG. 13 is a schematic structural diagram of a phase-shift mask according to Embodiment 3 of the present invention.
  • spatially relative terms such as “below,” “below,” “below,” “below,” “above,” “on,” etc. may be used herein to describe an element shown in the figures or The relationship of a feature to other components or features. It will be understood that these spatially relative terms are intended to encompass other directions of the device in use or operation than those depicted in the figures.
  • a layer when referred to as being 'between' two layers, it can be the only layer between the two layers, or one or more intervening layers may also be present.
  • references where a first feature is "on" a second feature can include embodiments in which the first and second features are formed in direct contact, and can also include further features formed over the first and second features. Embodiments between the second features such that the first and second features may not be in direct contact.
  • the present embodiment provides a method for manufacturing a phase-shift mask, the manufacturing method comprising the steps of:
  • step 1) is first performed, and a transparent substrate 101 is provided.
  • the transparent substrate 101 defines a light-transmitting region 104 and at least one light-shielding region 103 adjacent to the light-transmitting region 104 .
  • the light transmittance of the transparent substrate 101 is preferably more than 80%.
  • the material of the transparent substrate 101 can be quartz glass, which has a high light transmittance and can ensure that the transparent substrate 101 can pass through. exposure light intensity.
  • the transparent substrate 101 can also be made of other materials with good light transmittance, which are not limited to the examples listed here.
  • step 2) is performed, depositing a light-shielding layer 102 on the transparent substrate 101 , and etching the light-shielding layer 102 to expose the light-transmitting region 104 .
  • a method such as magnetron sputtering can be used to deposit the light shielding layer 102 on the transparent substrate 101 , and the material of the light shielding layer 102 can be chromium, chromium oxide or chromium nitride. Then, the light-shielding layer 102 can be etched by a photolithography process and an etching process, and the etching depth is up to the transparent substrate 101 to expose the light-transmitting region 104 .
  • the light-transmitting region 104 may be etched to form a groove with a certain depth, so that the exposure light transmitted by the light-transmitting region 104 includes phase conversion and/or light attenuation.
  • step 3 is finally performed, a phase-shifting material layer 105 is deposited on the transparent substrate 101 , and an etch-back process is performed on the phase-shifting material layer 105 to remove the light-transmitting area Part of the phase-shifting material layer 105 in 104, and part of the phase-shifting material layer 105 located on the sidewall of the light shielding layer 102 is reserved to form a phase-shifting sidewall sheet 106, and the phase-shifting sidewall sheet 106 allows transmission through The exposure light of the phase-shifting sidewall sheet 106 produces phase conversion or/and light attenuation.
  • phase-shifting material layer 105 can be used to deposit a phase-shifting material layer 105 on the transparent substrate 101 , and the phase-shifting material layer 105 fills the light-transmitting area 104 and covers the light-shielding layer 102 at the same time.
  • the material of the phase-shifting material layer 105 includes one of molybdenum silicon oxide, molybdenum oxynitride silicon, molybdenum oxycarbide silicon, chromium silicon oxide, chromium silicon oxynitride, and chromium silicon oxynitride.
  • phase-shifting material layer 105 above the transparent substrate 101 to remove the light shielding layer 102
  • the phase-shifting material layer 105 above, and part of the phase-shifting material layer 105 in the light-transmitting area 104 is removed at the same time, because the etching rate of the phase-shifting material layer 105 located on the sidewall of the light-shielding layer 102 is compared with other positions.
  • the etching rate is low, so after the phase-shifting material layer 105 in the middle region of the light-transmitting region 104 is etched back and removed, part of the phase-shifting material layer 105 located on the sidewall of the light-shielding layer 102 will remain to form a phase-shifting material layer 105 .
  • the sidewall sheet 106, the phase-shifting sidewall sheet 106 makes the exposure light passing through the phase-shifting sidewall sheet 106 produce phase conversion or/and light attenuation, wherein the material of the phase-shifting sidewall sheet 106 includes oxide One of molybdenum silicon, molybdenum oxynitride, molybdenum oxycarbide, chromium oxide silicon, chromium oxynitride silicon, and chromium oxycarbide silicon, each of which can be varied and can determine the degree of phase conversion or/and light attenuation .
  • the phase conversion and/or light attenuation ratio of the exposure light passing through the phase-shifting sidewall sheet 106 can be controlled. Specifically, by controlling the return The thickness of the phase-shifting spacers 106 can be controlled by adjusting the etching time of the etching process or adjusting the etching conditions of the etching-back process. Phase conversion.
  • the ratio of the thickness of the phase-shifting sidewall sheet 106 to the thickness of the light-shielding layer 102 is between 0.5:1 and 1:1, and the width of the phase-shifting sidewall sheet 106 is the same as the thickness of the light-shielding layer 102 .
  • the thickness ratio is between 0.2:1 and 0.5:1.
  • the thickness of the phase-shifting sidewall sheet 106 may be equal to the thickness of the light shielding layer 102 , and the width may be 1/3 of the thickness of the light shielding layer 102 .
  • the phase-shifting sidewall sheet 106 causes the exposure light passing through the phase-shifting sidewall sheet 106 to produce a phase conversion change of between Between 0 and 180 degrees, for example, it may be 90 degrees, 180 degrees, or the like.
  • the phase-shifting sidewall sheet 106 makes the ratio of light attenuation generated by the exposure light passing through the phase-shifting sidewall sheet 106 between 0-80%, for example, 20%, 30%, 50%, 60%. %Wait.
  • the present embodiment further provides a phase-shifting mask.
  • the phase-shifting mask includes: a transparent substrate 101 . At least one adjacent light-shielding area 103; a light-shielding layer 102 covering the light-shielding area 103 on the transparent substrate 101; On the sidewall of the light shielding layer 102, the phase-shifting sidewall sheet 106 causes the exposure light passing through the phase-shifting sidewall sheet 106 to produce phase conversion or/and light attenuation.
  • the light transmittance of the transparent substrate 101 is preferably more than 80%.
  • the material of the transparent substrate 101 can be quartz glass, which has a high light transmittance and can ensure that the transparent substrate 101 can pass through. exposure light intensity.
  • the transparent substrate 101 can also be made of other materials with good light transmittance, which are not limited to the examples listed here.
  • the material of the light shielding layer 102 includes chromium, chromium oxide or chromium nitride.
  • the phase conversion and/or light attenuation ratio of the exposure light passing through the phase-shifting sidewall sheet 106 can be controlled.
  • the ratio of the thickness of the phase-shifting sidewall sheet 106 to the thickness of the light-shielding layer 102 is between 0.5:1 and 1:1
  • the width of the phase-shifting sidewall sheet 106 is the same as the thickness of the light-shielding layer 102 .
  • the thickness ratio is between 0.2:1 and 0.5:1.
  • the thickness of the phase-shifting sidewall sheet 106 may be equal to the thickness of the light shielding layer 102
  • the width may be 1/3 of the thickness of the light shielding layer 102 .
  • the phase-shifting sidewall sheet 106 causes the exposure light passing through the phase-shifting sidewall sheet 106 to produce a phase conversion change of between Between 0 and 180 degrees, for example, it may be 90 degrees, 180 degrees, or the like.
  • the phase-shifting sidewall sheet 106 makes the ratio of light attenuation generated by the exposure light passing through the phase-shifting sidewall sheet 106 between 0-80%, for example, 20%, 30%, 50%, 60%. %Wait.
  • the material of the phase-shifting spacers 106 includes one of molybdenum silicon oxide, molybdenum oxynitride silicon, molybdenum oxycarbide silicon, chromium silicon oxide, chromium silicon oxynitride, and chromium oxycarbide silicon, wherein each The composition can vary and can determine the degree of phase inversion or/and light attenuation.
  • the light-transmitting area 104 has grooves so that the exposure light transmitted by the light-transmitting area 104 includes phase conversion and/or light attenuation.
  • a light-transmitting area 104 and at least one light-shielding area 103 adjacent to the light-transmitting area 104 are defined on the transparent substrate 101 , the light-shielding layer 102 covers the light-shielding area 103 on the transparent substrate 101 , and the phase-shifting side walls 106 are located at The sidewalls of the light-shielding layer 102 between the light-transmitting area 104 and the light-shielding area 103 are used for phase conversion and/or light attenuation of the exposure light passing through the phase-shifting side wall sheet 106.
  • the thickness, width and material composition of the wall piece 106 can control the phase of the exposure light at the light-transmitting area 104 and the light-shielding area 103, so as to avoid the generation of "ghost lines", so that the light obtained by using the phase-shifting mask is exposed.
  • the contrast and resolution of the resist pattern 107 are greatly improved, as shown in FIG. 7 .
  • this embodiment provides a method for manufacturing a phase-shift mask, and the manufacturing method includes the steps:
  • step 1) is first performed, and a transparent substrate 201 is provided.
  • the transparent substrate 201 defines a first transparent area 203 and at least one second transparent area adjacent to the first transparent area 203 area 204.
  • the light transmittance of the transparent substrate 201 is preferably more than 80%.
  • the material of the transparent substrate 201 can be quartz glass, which has a high light transmittance and can ensure that the transparent substrate 201 can pass through the transparent substrate. Exposure light intensity of the substrate 201 .
  • the transparent substrate 201 can also be made of other materials with good light transmittance, which is not limited to the examples listed here.
  • step 2) depositing a phase-shifting layer 202 on the transparent substrate 201 , and etching the phase-shifting layer 202 to retain the phase-shifting of the first light-transmitting region 203 layer 202 and expose the second light-transmitting region 204 , the phase-shifting layer 202 causes phase conversion or/and light attenuation of the exposure light passing through the phase-shifting layer 202 .
  • a phase-shifting material layer can be deposited on the transparent substrate 201 by a method such as magnetron sputtering, and the phase-shifting layer 202 can cause phase conversion or/and light attenuation of the exposure light passing through the phase-shifting layer 202
  • the material of the phase-shifting material layer includes one of molybdenum silicon oxide, molybdenum oxynitride silicon, molybdenum oxycarbide silicon, chromium oxide silicon, chromium silicon oxynitride and chromium oxycarbide silicon, wherein each component can be changed and Can determine the degree of phase inversion or/and light attenuation.
  • the phase-shifting material layer may be etched by a photolithography process and an etching process, and the etching depth is up to the transparent substrate 201 to expose the second light-transmitting region 204 .
  • step 3 is finally performed, depositing a light-shielding material layer 205 on the transparent substrate 201 , and performing an etch-back process on the light-shielding material layer 205 to remove the second light-transmitting area Part of the light-shielding material layer 205 in 204 retains a part of the light-shielding material layer 205 located on the sidewall of the phase-shifting layer 202 to form the light-shielding sidewall sheet 206 .
  • a method such as magnetron sputtering can be used to deposit a light-shielding material layer 205 on the transparent substrate 201 .
  • the material of the light-shielding material layer 205 includes chromium, chromium oxide or chromium nitride.
  • a plasma etching process is directly used to perform an etchback process on the light-shielding material layer 205 from above the transparent substrate 201 to remove the light-shielding material layer 205 above the light-shielding layer.
  • the light-shielding material layer 205 is removed, and part of the light-shielding material layer 205 in the light-transmitting area is removed at the same time. Since the etching rate of the light-shielding material layer 205 located on the sidewall of the light-shielding layer is lower than that of other positions, it is After the light-shielding material layer 205 in the middle region of the light-transmitting region is removed by etching back, part of the light-shielding material layer 205 located on the sidewall of the phase-shifting material layer will remain to form the light-shielding sidewall sheet 206 .
  • this embodiment further provides a phase-shift mask
  • the phase-shift mask includes: a transparent substrate 201 , the transparent substrate 201 defines a first light-transmitting area 203 and a A light-transmitting region 203 adjacent to at least one second light-transmitting region 204; the phase-shifting layer 202 covers the first light-transmitting region 203 on the transparent substrate 201, and the phase-shifting layer 202 transmits the The exposure light of the phase-shifting layer 202 produces phase conversion and/or light attenuation; on the side wall.
  • the material of the transparent substrate 201 includes quartz glass
  • the material of the light-shielding sidewall sheet 206 includes chromium, chromium oxide or chromium nitride
  • the material of the phase-shifting layer 202 includes molybdenum silicon oxide, molybdenum silicon oxynitride, One of molybdenum oxycarbide silicon carbide, silicon chromium oxide, silicon chromium oxynitride, and silicon oxynitride chromium nitride, wherein each component can be changed and can determine the degree of phase conversion or/and light attenuation.
  • the ratio of the thickness of the light-shielding sidewall sheet 206 to the thickness of the phase-shifting layer 202 is between 0.5:1 and 1:1, and the width of the light-shielding sidewall sheet 206 is the same as the thickness of the phase-shifting layer 202 .
  • the thickness ratio is between 0.2:1 and 0.5:1.
  • the phase-shifting layer 202 causes the exposure light passing through the phase-shifting layer 202 to produce a phase conversion change between 0 and 180 degrees.
  • the phase-shifting layer 202 makes the light attenuating ratio of the exposure light transmitted through the phase-shifting layer 202 between 0-80%.
  • a first transparent area 203 and at least one second transparent area 204 adjacent to the first transparent area 203 are defined on the transparent substrate 201 , and the phase-shifting layer 202 covers the first transparent area on the transparent substrate 201 .
  • the light area 203 causes phase conversion or/and light attenuation of the exposure light passing through the phase-shifting layer 202
  • the light-shielding sidewall sheet 206 is located between the first light-transmitting area 203 and the second light-transmitting area 204 .
  • the blocking effect of the light-shielding side wall sheet 206 on the exposure light is used to avoid the generation of "ghost lines", so that the photoresist obtained by using the phase-shifting mask is exposed.
  • the contrast and resolution of the etched pattern 207 are greatly improved, as shown in FIG. 12 .
  • this embodiment provides a phase-shifting mask.
  • the phase-shifting mask includes: a transparent substrate 301 , the transparent substrate 301 defines a first light-transmitting area 306 , and the first light-transmitting area 306 . At least one second light-transmitting region 307 and light-shielding region 305 adjacent to the light-transmitting region 306 ; the phase-shifting layer 302 covers the first light-transmitting region 306 and the light-shielding region 305 on the transparent substrate 301 .
  • the phase layer 302 causes phase conversion or/and light attenuation of the exposure light passing through the phase-shifting layer 302;
  • the light-shielding layer 303 is located on the phase-shifting layer 302 and covers the light-shielding area 305;
  • the phase-shifting sidewall sheet 304 located on the side wall of the light shielding layer 303 between the first light transmission area 306 and the light shielding area 305 , the phase-shifting sidewall sheet 304 allows the light passing through the phase-shifting sidewall sheet 304 .
  • Exposure light produces phase shift or/and light attenuation.
  • the material of the transparent substrate 301 includes quartz glass
  • the material of the phase-shifting layer 302 includes molybdenum silicon oxide, molybdenum oxynitride silicon, molybdenum oxycarbide silicon, chromium silicon oxide, chromium silicon oxynitride, and chromium silicon oxynitride.
  • the material of the phase-shifting spacer 304 includes one of molybdenum silicon oxide, molybdenum oxynitride silicon, molybdenum oxycarbide silicon, chromium silicon oxide, chromium silicon oxynitride and chromium silicon oxynitride.
  • the ratio of the thickness of the phase-shifting sidewall sheet 304 to the thickness of the light-shielding layer 303 is between 0.5:1 and 1:1, and the ratio of the width of the phase-shifting sidewall sheet 304 to the thickness of the light-shielding layer 303 is between 0.5:1 and 1:1. Between 0.2:1 and 0.5:1.
  • the phase-shifting layer 302 causes the exposure light passing through the phase-shifting layer 302 to produce a phase conversion change between 0 and 180 degrees, and the phase-shifting sidewall sheet 304 allows the phase-shifting sidewall sheet 304 to pass through the phase-shifting sidewall.
  • the exposure light of the sheet 304 produces a phase transition with an amount of change between 0 and 180 degrees.
  • the phase-shifting layer 302 makes the ratio of light attenuation generated by the exposure light transmitted through the phase-shifting layer 302 between 0-80%, and the phase-shifting sidewall sheet 304 allows the phase-shifting sidewall sheet 304 to pass through the phase-shifting sidewall.
  • the proportion of light attenuation produced by the exposure light of sheet 304 is between 0 and 80%.
  • the transparent substrate 301 defines a first transparent area 306, at least one second transparent area 307 adjacent to the first transparent area 306, and a light shielding area 305, and the phase-shifting layer 302 covers the transparent substrate 301.
  • the first light-transmitting area 306 and the light-shielding area 305 are used for phase conversion or/and light attenuation of the exposure light passing through the phase-shifting layer 302
  • the light-shielding layer 303 is located on the phase-shifting layer 302 and covers the light-shielding area 305
  • the phase-shifting sidewall sheet 304 is located on the sidewall of the light shielding layer 303 between the first light-transmitting area 306 and the light-shielding area 305, and is used to make the exposure light passing through the phase-shifting sidewall sheet 304 produce phase conversion or/or and light attenuation.
  • the present invention can adjust the exposure light at the first light-transmitting area 306 and the light-shielding area 305 and/or the second light-transmitting area 307 at the first light-shielding area 305 by adjusting the thickness of the phase-shifting layer 302 and/or the phase-shifting sidewall sheet 304 phase, avoiding the generation of "ghost lines", so that the contrast and resolution of the photoresist pattern obtained by using the phase-shifting mask for exposure are greatly improved.
  • phase-shift mask of the present invention and its manufacturing method have the following beneficial effects:
  • a light-transmitting area and at least one light-shielding area adjacent to the light-transmitting area are defined on the transparent substrate, the light-shielding layer covers the light-shielding area on the transparent substrate, and the phase-shifting side walls are located in the light-transmitting area and the light-shielding area.
  • the exposure light passing through the phase-shifting sidewall sheet is used to produce phase conversion or/and light attenuation.
  • the thickness of the phase-shifting sidewall sheet can be adjusted to control the light transmission area and the
  • the phase of the exposure light at the light-shielding area avoids the generation of "ghost lines", thereby greatly improving the contrast and resolution of the photoresist pattern exposed by the phase-shifting mask.
  • a first light-transmitting region and at least one second light-transmitting region adjacent to the first light-transmitting region are defined on the transparent substrate, and the phase-shifting layer covers the first light-transmitting region on the transparent substrate, Phase conversion or/and light attenuation are generated for the exposure light passing through the phase-shifting layer, and the light-shielding sidewall sheet is located between the first light-transmitting area and the second light-transmitting area of the phase-shifting layer.
  • the blocking effect of the shading side wall sheet on the exposure light avoids the generation of "ghost lines", thereby greatly improving the contrast and resolution of the photoresist pattern exposed by the phase-shift mask.
  • the phase-shifting layer covers the first light-transmitting region on the transparent substrate.
  • the light area and the light-shielding area are used for phase conversion or/and light attenuation of the exposure light passing through the phase-shifting layer.
  • the light-shielding layer is located on the phase-shifting layer and covers the light-shielding area.
  • the sidewalls of the light shielding layer between the light area and the light shielding area are used for phase conversion or/and light attenuation of the exposure light passing through the phase-shifting sidewall sheet.
  • the present invention can adjust the phase and contrast of the exposure light in the first light-transmitting area and the light-shielding area and/or the second light-transmitting area at the first light-shielding area by adjusting the thickness and width of the phase-shifting layer and/or the phase-shifting sidewall sheet , to avoid the generation of "ghost lines", thereby greatly improving the contrast and resolution of the photoresist pattern exposed by the phase-shift mask.
  • the present invention effectively overcomes various shortcomings in the prior art and has high industrial utilization value.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Preparing Plates And Mask In Photomechanical Process (AREA)

Abstract

一种移相掩膜版及其制作方法,移相掩膜版包括:透明基板(101),透明基板(101)定义有透光区域(104)及与透光区域(104)相邻的至少一个遮光区域(103);遮光层(102),覆盖于透明基板(101)上的遮光区域(103);移相侧墙片(106),位于透光区域(104)与遮光区域(103)之间的遮光层(102)的侧壁上,移相侧墙片(106)使透过移相侧墙片(106)的曝光光线产生相位转换或/及光衰减。通过调整移相侧墙片(106)的厚度和宽度来控制透光区域(104)与遮光区域(103)处的曝光光线的相位和对比,避免"鬼影线"的产生,从而使得采用移相掩膜版曝光所得的光致抗蚀图案的对比度和分辨率大大提高。

Description

移相掩膜版及其制作方法 技术领域
本发明属于半导体集成电路制造领域,特别是涉及一种移相掩膜版及其制作方法。
背景技术
光刻技术伴随集成电路制造方法的不断进步,线宽的不断缩小,半导体器件的面积正变得越来越小,半导体的布局己经从普通的单一功能分离器件,演变成整合高密度多功能的集成电路;由最初的IC(集成电路)随后到LSI(大规模集成电路),VLSI(超大规模集成电路),直至今天的ULSI(特大规模集成电路),器件的面积进一步缩小。考虑到工艺研发的复杂性,长期性和成本高昂等不利因素的制约,如何在现有技术水平的基础上进一步提高器件的集成密度,以在同一硅片上得到尽可能多的有效的芯片数,从而提高整体利益,将越来越受到芯片制造者的重视。其中光刻工艺就担负着关键的作用,对于光刻技术而言,光刻设备、工艺及掩模板技术是其中的重中之重。
对于掩模板而言,移相掩模技术是提高光刻分辨率最实用的技术之一,这项技术的原理是通过将相邻区域的相位进行180度反转,使干涉效应互相抵消,进而抵消由于线宽不断缩小而导致版图上相邻特征区域的光刻质量受光学临近效应的影响越来越大的负面影响,这项技术的关键点在于移相层能够精确的控制掩模板图形的相位。
如图1所示,传统的一种移相掩膜包含一石英衬底11和一铬层12,对移相掩膜上的铬层12进行图案化后,由石英衬底11上的沟道深度d提供相移。
如图2所示,另一种移相掩膜包含一石英衬底21、一移相层23和一铬层22,对移相掩膜上的铬层22和移相层23进行图形化后,相移量和衰减量由移相层23的厚度d决定。
对于上述两种移相掩膜方案,由于透射光和180°相移光的衍射而具有零强度的位置,其虽然可以增强图像图案的对比度,但也可能导致晶圆上的正光抗蚀剂图案上出现“鬼影线(ghost-lines)”,不利于正光抗蚀剂的曝光精度。
为了获得更好的掩模制作性能,移相掩模也可包含多层材料。通过对多层材料之间的厚度关系,在掩膜上形成不同移相角度的区域,从而可以避免晶圆上曝光后的正光抗蚀剂图案上出现“鬼影线”,然而,该方案对各层材料的厚度要求较高,工艺也十分复杂,会严重增加芯片制造的成本。
发明内容
鉴于以上所述现有技术的缺点,本发明的目的在于提供一种移相掩膜版及其制作方法,用于解决现有技术中移相掩膜容易造成鬼影线或为消除鬼影线而造成工艺难度及成本大幅增加的问题。
为实现上述目的及其他相关目的,本发明提供一种移相掩膜版,所述移相掩膜版包括:透明基板,所述透明基板定义有透光区域及与所述透光区域相邻的至少一个遮光区域;遮光层,覆盖于所述透明基板上的所述遮光区域;移相侧墙片,位于所述透光区域与所述遮光区域之间的所述遮光层的侧壁上,所述移相侧墙片使透过所述移相侧墙片的曝光光线产生相位转换或/及光衰减。
可选地,通过控制所述移相侧墙片的厚度、宽度和其材料成分以控制透过所述移相侧墙片的曝光光线的相位转换及/或光衰减的比例。
可选地,所述透明基板的材料包括石英玻璃,所述遮光层的材料包括铬或氧化铬或氮化铬。
可选地,所述移相侧墙片的材料包括氧化钼硅、氮氧化钼硅、氮氧碳化钼硅、氧化铬硅、氮氧化铬硅及氮氧碳化铬硅中的一种,其中各成分可变化且能决定相位转换或/及光衰减的程度。
可选地,所述移相侧墙片的厚度与所述遮光层的厚度比介于0.5:1~1:1之间,所述移相侧墙片的宽度与所述遮光层的厚度比介于0.2:1~0.5:1之间。
可选地,所述移相侧墙片使透过所述移相侧墙片的曝光光线产生相位转换的改变量介于0~180度之间。
可选地,所述移相侧墙片使透过所述移相侧墙片的曝光光线产生的光衰减的比例介于0~80%之间。
可选地,所述透光区域具有沟槽以使所述透光区域所透过的曝光光线包括有相位转换或/及光衰减。
本发明还提供一种移相掩膜版的制作方法,所述制作方法包括步骤:提供一透明基板,所述透明基板定义有透光区域及与所述透光区域相邻的至少一个遮光区域;于所述透明基板上沉积遮光层,刻蚀所述遮光层,以显露所述透光区域;于所述透明基板上沉积移相材料层,并对所述移相材料层进行回刻工艺,移除所述透光区域和遮光区域内的移相材料层,保留位于所述遮光层的侧壁的部分移相材料层,以形成移相侧墙片,所述移相侧墙片使透过所述移相侧墙片的曝光光线产生相位转换或/及光衰减。
可选地,所述制作方法还包括:刻蚀所述透光区域形成一定深度的沟槽,以形成有相位 转换或/及光衰减的透光区域。
本发明还提供一种移相掩膜版,所述移相掩膜版包括:透明基板,所述透明基板定义有第一透光区域及与所述第一透光区域相邻的至少一个第二透光区域;移相层,覆盖于所述透明基板上的所述第一透光区域,所述移相层使透过所述移相层的曝光光线产生相位转换或/及光衰减;遮光侧墙片,位于所述第一透光区域与所述第二透光区域之间的所述移相层的侧壁上。
可选地,所述透明基板的材料包括石英玻璃,所述遮光侧墙片的材料包括铬或氧化铬或氮化铬,所述移相层的材料包括氧化钼硅、氮氧化钼硅、氮氧碳化钼硅、氧化铬硅、氮氧化铬硅及氮氧碳化铬硅中的一种,其中各成分能决定相位转换或/及光衰减的程度。
可选地,所述遮光侧墙片的厚度与所述移相层的厚度比介于0.5:1~1:1之间,所述遮光侧墙片的宽度与所述移相层的厚度比介于0.2:1~0.5:1之间。
可选地,所述移相层使透过所述移相层的曝光光线产生相位转换的改变量介于0~180度之间。
可选地,所述移相层使透过所述移相层的曝光光线产生的光衰减的比例介于0~80%之间。
本发明还提供一种移相掩膜版的制作方法,所述制作方法包括步骤:提供一透明基板,所述透明基板定义有第一透光区域及与所述第一透光区域相邻的至少一个第二透光区域;于所述透明基板上沉积移相层,刻蚀所述移相层,以保留所述第一透光区域的移相层,并显露所述第二透光区域,所述移相层使透过所述移相层的曝光光线产生相位转换或/及光衰减;于所述透明基板上沉积遮光材料层,并对所述遮光材料层进行回刻工艺,移除所述第二透光区域内的部分所述遮光材料层,保留位于所述移相层的侧壁的部分遮光材料层,以形成遮光侧墙片。
本发明还提供一种移相掩膜版,所述移相掩膜版包括:透明基板,所述透明基板定义有第一透光区域、与所述第一透光区域相邻的至少一个第二透光区域及遮光区域;移相层,覆盖于所述透明基板上的所述第一透光区域及遮光区域,所述移相层使透过所述移相层的曝光光线产生相位转换或/及光衰减;遮光层,位于所述移相层上且覆盖于所述遮光区域;移相侧墙片,位于所述第一透光区域与所述遮光区域之间的所述遮光层的侧壁上,所述移相侧墙片使透过所述移相侧墙片的曝光光线产生相位转换或/及光衰减。
可选地,所述透明基板的材料包括石英玻璃,所述移相层的材料包括氧化钼硅、氮氧化钼硅、氮氧碳化钼硅、氧化铬硅、氮氧化铬硅及氮氧碳化铬硅中的一种,所述移相侧墙片的材料包括氧化钼硅、氮氧化钼硅、氮氧碳化钼硅、氧化铬硅、氮氧化铬硅及氮氧碳化铬硅中 的一种,其中各成分能决定相位转换或/及光衰减的程度。
可选地,所述移相侧墙片的厚度与所述遮光层的厚度比介于0.5:1~1:1之间,所述移相侧墙片的宽度与所述遮光层的厚度比介于0.2:1~0.5:1之间。
可选地,所述移相层使透过所述移相层的曝光光线产生相位转换的改变量介于0~180度之间,所述移相侧墙片使透过所述移相侧墙片的曝光光线产生相位转换的改变量介于0~180度之间。
可选地,所述移相层使透过所述移相层的曝光光线产生的光衰减的比例介于0~80%之间,所述移相侧墙片使透过所述移相侧墙片的曝光光线产生的光衰减的比例介于0~80%之间。
如上所述,本发明的移相掩膜版及其制作方法,具有以下有益效果:
本发明一方面通过在透明基板定义透光区域及与所述透光区域相邻的至少一个遮光区域,遮光层覆盖于透明基板上的遮光区域,移相侧墙片位于透光区域与遮光区域之间的遮光层的侧壁上,用于使透过所述移相侧墙片的曝光光线产生相位转换或/及光衰减,可以通过调整移相侧墙片的厚度来控制透光区域与遮光区域处的曝光光线的相位,避免“鬼影线”的产生,从而使得采用该移相掩膜版曝光所得的光致抗蚀图案的对比度和分辨率大大提高。
本发明另一方面通过在透明基板定义第一透光区域及与所述第一透光区域相邻的至少一个第二透光区域,移相层覆盖于透明基板上的第一透光区域,使透过所述移相层的曝光光线产生相位转换或/及光衰减,而遮光侧墙片位于所述第一透光区域与所述第二透光区域之间的所述移相层的侧壁上,通过遮光侧墙片对曝光光线的阻挡作用,避免“鬼影线”的产生,从而使得采用该移相掩膜版曝光所得的光致抗蚀图案的对比度和分辨率大大提高。
本发明又一方面通过在透明基板定义第一透光区域、与所述第一透光区域相邻的至少一个第二透光区域及遮光区域,移相层覆盖于透明基板上的第一透光区域及遮光区域,用于使透过所述移相层的曝光光线产生相位转换或/及光衰减,遮光层位于移相层上且覆盖于遮光区域,移相侧墙片位于第一透光区域与遮光区域之间的遮光层的侧壁上,用于使透过所述移相侧墙片的曝光光线产生相位转换或/及光衰减。本发明可以通过调整移相层及/或移相侧墙片的厚度和宽度,调整第一透光区域与遮光区域及/或第二透光区域第一遮光区域处的曝光光线的相位和对比,避免“鬼影线”的产生,从而使得采用该移相掩膜版曝光所得的光致抗蚀图案的对比度和分辨率大大提高。
附图说明
图1显示为一种移相掩膜的结构示意图。
图2显示为另一种移相掩膜的及机构示意图。
图3~图6显示为本发明实施例1中的移相掩膜版的制作方法各步骤所呈现的结构示意图,其中,图6显示为本发明实施例1的移相掩膜版的结构示意图。
图7显示为采用本发明实施例1的移相掩膜版曝光所得的光致抗蚀图案示意图。
图8~图11显示为本发明实施例2中的移相掩膜版的制作方法各步骤所呈现的结构示意图,其中,图11显示为本发明实施例2的移相掩膜版的结构示意图。
图12显示为采用本发明实施例2的移相掩膜版曝光所得的光致抗蚀图案示意图。
图13显示为本发明实施例3的移相掩膜版的结构示意图。
元件标号说明
101                    透明基板
102                    遮光层
103                    遮光区域
104                    透光区域
105                    移相材料层
106                    移相侧墙片
107                    光致抗蚀图案
201                    透明基板
202                    移相层
203                    第一透光区域
204                    第二透光区域
205                    遮光材料层
206                    遮光侧墙片
207                    光致抗蚀图案
301                    透明基板
302                    移相层
303                    遮光层
304                    移相侧墙片
305                    遮光区域
306                    第一透光区域
307                    第二透光区域
308                    光致抗蚀图案
具体实施方式
以下通过特定的具体实例说明本发明的实施方式,本领域技术人员可由本说明书所揭露的内容轻易地了解本发明的其他优点与功效。本发明还可以通过另外不同的具体实施方式加以实施或应用,本说明书中的各项细节也可以基于不同观点与应用,在没有背离本发明的精神下进行各种修饰或改变。
如在详述本发明实施例时,为便于说明,表示器件结构的剖面图会不依一般比例作局部放大,而且所述示意图只是示例,其在此不应限制本发明保护的范围。此外,在实际制作中应包含长度、宽度及深度的三维空间尺寸。
为了方便描述,此处可能使用诸如“之下”、“下方”、“低于”、“下面”、“上方”、“上”等的空间关系词语来描述附图中所示的一个元件或特征与其他元件或特征的关系。将理解到,这些空间关系词语意图包含使用中或操作中的器件的、除了附图中描绘的方向之外的其他方向。此外,当一层被称为在两层“之间”时,它可以是所述两层之间仅有的层,或者也可以存在一个或多个介于其间的层。
在本申请的上下文中,所描述的第一特征在第二特征“之上”的结构可以包括第一和第二特征形成为直接接触的实施例,也可以包括另外的特征形成在第一和第二特征之间的实施例,这样第一和第二特征可能不是直接接触。
需要说明的是,本实施例中所提供的图示仅以示意方式说明本发明的基本构想,遂图示中仅显示与本发明中有关的组件而非按照实际实施时的组件数目、形状及尺寸绘制,其实际实施时各组件的型态、数量及比例可为一种随意的改变,且其组件布局型态也可能更为复杂。
实施例1
本实施例提供一种移相掩膜版的制作方法,所述制作方法包括步骤:
如图3所示,首先进行步骤1),提供一透明基板101,所述透明基板101定义有透光区域104及与所述透光区域104相邻的至少一个遮光区域103。
所述透明基板101的透光率优选为80%以上,在本实施例中,所述透明基板101的材料可以为石英玻璃,具有较高的透光率,可以保证透过所述透明基板101的曝光光线强度。当然,在其他的实施例中,所述透明基板101也可以采用其他具有良好透光率的材料,并不限于此处所列举的示例。
如图3~4所示,然后进行步骤2),于所述透明基板101上沉积遮光层102,刻蚀所述遮光层102,以显露所述透光区域104。
例如,可以采用如磁控溅射等方法于所述透明基板101上沉积遮光层102,所述遮光层102的材料可以为铬或氧化铬或氮化铬。然后,可以采用如光刻工艺及刻蚀工艺刻蚀所述遮光层102,刻蚀的深度为直至所述透明基板101,以显露所述透光区域104。
进一步地,本实施例还可以刻蚀所述透光区域104形成一定深度的沟槽,以使所述透光区域104所透过的曝光光线包括有相位转换或/及光衰减。
如图5~图6所示,最后进行步骤3),于所述透明基板101上沉积移相材料层105,并对所述移相材料层105进行回刻工艺,移除所述透光区域104内的部分所述移相材料层105,保留位于所述遮光层102的侧壁的部分移相材料层105,以形成移相侧墙片106,所述移相侧墙片106使透过所述移相侧墙片106的曝光光线产生相位转换或/及光衰减。
例如,可以采用如磁控溅射等方法于所述透明基板101上沉积移相材料层105,所述移相材料层105填满所述透光区域104,并同时覆盖所述遮光层102,所述移相材料层105的材料包括氧化钼硅、氮氧化钼硅、氮氧碳化钼硅、氧化铬硅、氮氧化铬硅及氮氧碳化铬硅中的一种。然后,不需要使用光刻工艺制作光刻胶图形,而直接采用等离子体刻蚀工艺自所述透明基板101上方朝下对所述移相材料层105进行回刻工艺,去除所述遮光层102上方的移相材料层105,同时去除所述透光区域104内的部分所述移相材料层105,由于位于遮光层102侧壁的移相材料层105的刻蚀速率相比于其他位置的刻蚀速率低,故在回刻去除透光区域104中部区域的所述移相材料层105后,位于所述遮光层102的侧壁的部分移相材料层105会被保留下来,形成移相侧墙片106,所述移相侧墙片106使透过所述移相侧墙片106的曝光光线产生相位转换或/及光衰减,其中,所述移相侧墙片106的材料包括氧化钼硅、氮氧化钼硅、氮氧碳化钼硅、氧化铬硅、氮氧化铬硅及氮氧碳化铬硅中的一种,其中各成分可变化且能决定相位转换或/及光衰减的程度。
通过控制所述移相侧墙片106的厚度、宽度和其材料成分以控制透过所述移相侧墙片106的曝光光线的相位转换及/或光衰减的比例,具体地,通过控制回刻工艺的刻蚀时间或调整回刻工艺的刻蚀条件,可以控制所述移相侧墙片106的厚度,通过控制所述移相侧墙片106的厚度,可以实现其对曝光光线的不同相位的转换。优选地,所述移相侧墙片106的厚度与所述遮光层102的厚度比介于0.5:1~1:1之间,所述移相侧墙片106的宽度与所述遮光层102的厚度比介于0.2:1~0.5:1之间。例如,所述移相侧墙片106的厚度可以等于所述遮光层102,宽度可以为所述遮光层102厚度的1/3。
依据不同的移相侧墙片106的组分或结构的不同,作为示例,所述移相侧墙片106使透过所述移相侧墙片106的曝光光线产生相位转换的改变量介于0~180度之间,例如可以为90度、180度等。所述移相侧墙片106使透过所述移相侧墙片106的曝光光线产生的光衰减的比例介于0~80%之间,例如可以为20%、30%、50%、60%等。
如图6所示,本实施还提供一种移相掩膜版,所述移相掩膜版包括:透明基板101,所述透明基板101定义有透光区域104及与所述透光区域104相邻的至少一个遮光区域103;遮光层102,覆盖于所述透明基板101上的所述遮光区域103;移相侧墙片106,位于所述透光区域104与所述遮光区域103之间的所述遮光层102的侧壁上,所述移相侧墙片106使透过所述移相侧墙片106的曝光光线产生相位转换或/及光衰减。
所述透明基板101的透光率优选为80%以上,在本实施例中,所述透明基板101的材料可以为石英玻璃,具有较高的透光率,可以保证透过所述透明基板101的曝光光线强度。当然,在其他的实施例中,所述透明基板101也可以采用其他具有良好透光率的材料,并不限于此处所列举的示例。
所述遮光层102的材料包括铬或氧化铬或氮化铬。
通过控制所述移相侧墙片106的厚度、宽度和其材料成分以控制透过所述移相侧墙片106的曝光光线的相位转换及/或光衰减的比例。优选地,所述移相侧墙片106的厚度与所述遮光层102的厚度比介于0.5:1~1:1之间,所述移相侧墙片106的宽度与所述遮光层102的厚度比介于0.2:1~0.5:1之间。例如,所述移相侧墙片106的厚度可以等于所述遮光层102,宽度可以为所述遮光层102厚度的1/3。
依据不同的移相侧墙片106的组分或结构的不同,作为示例,所述移相侧墙片106使透过所述移相侧墙片106的曝光光线产生相位转换的改变量介于0~180度之间,例如可以为90度、180度等。所述移相侧墙片106使透过所述移相侧墙片106的曝光光线产生的光衰减的比例介于0~80%之间,例如可以为20%、30%、50%、60%等。
作为示例,所述移相侧墙片106的材料包括氧化钼硅、氮氧化钼硅、氮氧碳化钼硅、氧化铬硅、氮氧化铬硅及氮氧碳化铬硅中的一种,其中各成分可变化且能决定相位转换或/及光衰减的程度。
作为示例,所述透光区域104具有沟槽以使所述透光区域104所透过的曝光光线包括有相位转换或/及光衰减。
本发明通过在透明基板101定义透光区域104及与所述透光区域104相邻的至少一个遮光区域103,遮光层102覆盖于透明基板101上的遮光区域103,移相侧墙片106位于透光区 域104与遮光区域103之间的遮光层102的侧壁上,用于使透过所述移相侧墙片106的曝光光线产生相位转换或/及光衰减,可以通过调整移相侧墙片106的厚度、宽度和其材料成分来控制透光区域104与遮光区域103处的曝光光线的相位,避免“鬼影线”的产生,从而使得采用该移相掩膜版曝光所得的光致抗蚀图案107的对比度和分辨率大大提高,如图7所示。
实施例2
如图8~图12所示,本实施例提供一种移相掩膜版的制作方法,所述制作方法包括步骤:
如图8所示,首先进行步骤1),提供一透明基板201,所述透明基板201定义有第一透光区域203及与所述第一透光区域203相邻的至少一个第二透光区域204。
例如,所述透明基板201的透光率优选为80%以上,在本实施例中,所述透明基板201的材料可以为石英玻璃,具有较高的透光率,可以保证透过所述透明基板201的曝光光线强度。当然,在其他的实施例中,所述透明基板201也可以采用其他具有良好透光率的材料,并不限于此处所列举的示例。
如图8~图9所示,然后进行步骤2),于所述透明基板201上沉积移相层202,刻蚀所述移相层202,以保留所述第一透光区域203的移相层202,并显露所述第二透光区域204,所述移相层202使透过所述移相层202的曝光光线产生相位转换或/及光衰减。
例如,可以采用如磁控溅射等方法于所述透明基板201上沉积移相材料层,所述移相层202使透过所述移相层202的曝光光线产生相位转换或/及光衰减,所述移相材料层的材料包括氧化钼硅、氮氧化钼硅、氮氧碳化钼硅、氧化铬硅、氮氧化铬硅及氮氧碳化铬硅中的一种,其中各成分可变化且能决定相位转换或/及光衰减的程度。通过通过控制所述移相层202的厚度,可以实现其对曝光光线的不同相位的转换。
然后,可以采用如光刻工艺及刻蚀工艺刻蚀所述移相材料层,刻蚀的深度为直至所述透明基板201,以显露所述第二透光区域204。
如图10~图11所示,最后进行步骤3),于所述透明基板201上沉积遮光材料层205,并对所述遮光材料层205进行回刻工艺,移除所述第二透光区域204内的部分所述遮光材料层205,保留位于所述移相层202的侧壁的部分遮光材料层205,以形成遮光侧墙片206。
例如,可以采用如磁控溅射等方法于所述透明基板201上沉积遮光材料层205,所述遮光材料层205填满所述透光区域,并同时覆盖所述移相层202,所述遮光材料层205的材料包括铬或氧化铬或氮化铬。然后,不需要使用光刻工艺制作光刻胶图形,而直接采用等离子体刻蚀工艺自所述透明基板201上方朝下对所述遮光材料层205进行回刻工艺,去除所述遮 光层上方的遮光材料层205,同时去除所述透光区域内的部分所述遮光材料层205,由于位于遮光层侧壁的遮光材料层205的刻蚀速率相比于其他位置的刻蚀速率低,故在回刻去除透光区域中部区域的所述遮光材料层205后,位于所述移相材料层的侧壁的部分遮光材料层205会被保留下来,形成遮光侧墙片206。
如图11所示,本实施例还提供一种移相掩膜版,所述移相掩膜版包括:透明基板201,所述透明基板201定义有第一透光区域203及与所述第一透光区域203相邻的至少一个第二透光区域204;移相层202,覆盖于所述透明基板201上的所述第一透光区域203,所述移相层202使透过所述移相层202的曝光光线产生相位转换或/及光衰减;遮光侧墙片206,位于所述第一透光区域203与所述第二透光区域204之间的所述移相层202的侧壁上。
例如,所述透明基板201的材料包括石英玻璃,所述遮光侧墙片206的材料包括铬或氧化铬或氮化铬,所述移相层202的材料包括氧化钼硅、氮氧化钼硅、氮氧碳化钼硅、氧化铬硅、氮氧化铬硅及氮氧碳化铬硅中的一种,其中各成分可变化且能决定相位转换或/及光衰减的程度。
例如,所述遮光侧墙片206的厚度与所述移相层202的厚度比介于0.5:1~1:1之间,所述遮光侧墙片206的宽度与所述移相层202的厚度比介于0.2:1~0.5:1之间。
例如,所述移相层202使透过所述移相层202的曝光光线产生相位转换的改变量介于0~180度之间。所述移相层202使透过所述移相层202的曝光光线产生的光衰减的比例介于0~80%之间。
本发明通过在透明基板201定义第一透光区域203及与所述第一透光区域203相邻的至少一个第二透光区域204,移相层202覆盖于透明基板201上的第一透光区域203,使透过所述移相层202的曝光光线产生相位转换或/及光衰减,而遮光侧墙片206位于所述第一透光区域203与所述第二透光区域204之间的所述移相层202的侧壁上,通过遮光侧墙片206对曝光光线的阻挡作用,避免“鬼影线”的产生,从而使得采用该移相掩膜版曝光所得的光致抗蚀图案207的对比度和分辨率大大提高,如图12所示。
实施例3
如图13所示,本实施例提供一种移相掩膜版,所述移相掩膜版包括:透明基板301,所述透明基板301定义有第一透光区域306、与所述第一透光区域306相邻的至少一个第二透光区域307及遮光区域305;移相层302,覆盖于所述透明基板301上的所述第一透光区域306及遮光区域305,所述移相层302使透过所述移相层302的曝光光线产生相位转换或/及 光衰减;遮光层303,位于所述移相层302上且覆盖于所述遮光区域305;移相侧墙片304,位于所述第一透光区域306与所述遮光区域305之间的所述遮光层303的侧壁上,所述移相侧墙片304使透过所述移相侧墙片304的曝光光线产生相位转换或/及光衰减。
所述透明基板301的材料包括石英玻璃,所述移相层302的材料包括氧化钼硅、氮氧化钼硅、氮氧碳化钼硅、氧化铬硅、氮氧化铬硅及氮氧碳化铬硅中的一种,所述移相侧墙片304的材料包括氧化钼硅、氮氧化钼硅、氮氧碳化钼硅、氧化铬硅、氮氧化铬硅及氮氧碳化铬硅中的一种。
所述移相侧墙片304的厚度与所述遮光层303的厚度比介于0.5:1~1:1之间,所述移相侧墙片304的宽度与所述遮光层303的厚度比介于0.2:1~0.5:1之间。
所述移相层302使透过所述移相层302的曝光光线产生相位转换的改变量介于0~180度之间,所述移相侧墙片304使透过所述移相侧墙片304的曝光光线产生相位转换的改变量介于0~180度之间。所述移相层302使透过所述移相层302的曝光光线产生的光衰减的比例介于0~80%之间,所述移相侧墙片304使透过所述移相侧墙片304的曝光光线产生的光衰减的比例介于0~80%之间。
本发明通过在透明基板301定义第一透光区域306、与所述第一透光区域306相邻的至少一个第二透光区域307及遮光区域305,移相层302覆盖于透明基板301上的第一透光区域306及遮光区域305,用于使透过所述移相层302的曝光光线产生相位转换或/及光衰减,遮光层303位于移相层302上且覆盖于遮光区域305,移相侧墙片304位于第一透光区域306与遮光区域305之间的遮光层303的侧壁上,用于使透过所述移相侧墙片304的曝光光线产生相位转换或/及光衰减。本发明可以通过调整移相层302及/或移相侧墙片304的厚度,调整第一透光区域306与遮光区域305及/或第二透光区域307第一遮光区域305处的曝光光线的相位,避免“鬼影线”的产生,从而使得采用该移相掩膜版曝光所得的光致抗蚀图案的对比度和分辨率大大提高。
如上所述,本发明的移相掩膜版及其制作方法,具有以下有益效果:
本发明一方面通过在透明基板定义透光区域及与所述透光区域相邻的至少一个遮光区域,遮光层覆盖于透明基板上的遮光区域,移相侧墙片位于透光区域与遮光区域之间的遮光层的侧壁上,用于使透过所述移相侧墙片的曝光光线产生相位转换或/及光衰减,可以通过调整移相侧墙片的厚度来控制透光区域与遮光区域处的曝光光线的相位,避免“鬼影线”的产生,从而使得采用该移相掩膜版曝光所得的光致抗蚀图案的对比度和分辨率大大提高。
本发明另一方面通过在透明基板定义第一透光区域及与所述第一透光区域相邻的至少 一个第二透光区域,移相层覆盖于透明基板上的第一透光区域,使透过所述移相层的曝光光线产生相位转换或/及光衰减,而遮光侧墙片位于所述第一透光区域与所述第二透光区域之间的所述移相层的侧壁上,通过遮光侧墙片对曝光光线的阻挡作用,避免“鬼影线”的产生,从而使得采用该移相掩膜版曝光所得的光致抗蚀图案的对比度和分辨率大大提高。
本发明又一方面通过在透明基板定义第一透光区域、与所述第一透光区域相邻的至少一个第二透光区域及遮光区域,移相层覆盖于透明基板上的第一透光区域及遮光区域,用于使透过所述移相层的曝光光线产生相位转换或/及光衰减,遮光层位于移相层上且覆盖于遮光区域,移相侧墙片位于第一透光区域与遮光区域之间的遮光层的侧壁上,用于使透过所述移相侧墙片的曝光光线产生相位转换或/及光衰减。本发明可以通过调整移相层及/或移相侧墙片的厚度和宽度,调整第一透光区域与遮光区域及/或第二透光区域第一遮光区域处的曝光光线的相位和对比,避免“鬼影线”的产生,从而使得采用该移相掩膜版曝光所得的光致抗蚀图案的对比度和分辨率大大提高。
所以,本发明有效克服了现有技术中的种种缺点而具高度产业利用价值。
上述实施例仅例示性说明本发明的原理及其功效,而非用于限制本发明。任何熟悉此技术的人士皆可在不违背本发明的精神及范畴下,对上述实施例进行修饰或改变。因此,举凡所属技术领域中具有通常知识者在未脱离本发明所揭示的精神与技术思想下所完成的一切等效修饰或改变,仍应由本发明的权利要求所涵盖。

Claims (21)

  1. 一种移相掩膜版,其特征在于,所述移相掩膜版包括:
    透明基板,所述透明基板定义有透光区域及与所述透光区域相邻的至少一个遮光区域;
    遮光层,覆盖于所述透明基板上的所述遮光区域;
    移相侧墙片,位于所述透光区域与所述遮光区域之间的所述遮光层的侧壁上,所述移相侧墙片使透过所述移相侧墙片的曝光光线产生相位转换或/及光衰减。
  2. 根据权利要求1所述的移相掩膜版,其特征在于:所述透明基板的材料包括石英玻璃,所述遮光层的材料包括铬或氧化铬或氮化铬。
  3. 根据权利要求1所述的移相掩膜版,其特征在于:所述移相侧墙片的材料包括氧化钼硅、氮氧化钼硅、氮氧碳化钼硅、氧化铬硅、氮氧化铬硅及氮氧碳化铬硅中的一种。
  4. 根据权利要求1所述的移相掩膜版,其特征在于:通过控制所述移相侧墙片的厚度、宽度和其材料成分,以控制透过所述移相侧墙片的曝光光线的相位转换及/或光衰减的比例。
  5. 根据权利要求1所述的移相掩膜版,其特征在于:所述移相侧墙片的厚度与所述遮光层的厚度比介于0.5:1~1:1之间,所述移相侧墙片的宽度与所述遮光层的厚度比介于0.2:1~0.5:1之间。
  6. 根据权利要求1所述的移相掩膜版,其特征在于:所述移相侧墙片使透过所述移相侧墙片的曝光光线产生相位转换的改变量介于0~180度之间。
  7. 根据权利要求1所述的移相掩膜版,其特征在于:所述移相侧墙片使透过所述移相侧墙片的曝光光线产生的光衰减的比例介于0~80%之间。
  8. 根据权利要求1所述的移相掩膜版,其特征在于:所述透光区域具有沟槽以使所述透光区域所透过的曝光光线包括有相位转换或/及光衰减。
  9. 一种如权利要求1~8任意一项所述的移相掩膜版的制作方法,其特征在于,包括步骤:
    提供一透明基板,所述透明基板定义有透光区域及与所述透光区域相邻的至少一个遮光区域;
    于所述透明基板上沉积遮光层,刻蚀所述遮光层,以显露所述透光区域;
    于所述透明基板上沉积移相材料层,并对所述移相材料层进行回刻工艺,移除所述透光区域和遮光区域内的移相材料层,保留位于所述遮光层的侧壁的部分移相材料层,以形成移相侧墙片,所述移相侧墙片使透过所述移相侧墙片的曝光光线产生相位转换或/及光衰减。
  10. 根据权利要求9所示的移相掩膜版的制作方法,其特征在于,还包括:刻蚀所述透光区域形成一定深度的沟槽,以形成有相位转换或/及光衰减的透光区域。
  11. 一种移相掩膜版,其特征在于,所述移相掩膜版包括:
    透明基板,所述透明基板定义有第一透光区域及与所述第一透光区域相邻的至少一个第二透光区域;
    移相层,覆盖于所述透明基板上的所述第一透光区域,所述移相层使透过所述移相层的曝光光线产生相位转换或/及光衰减;
    遮光侧墙片,位于所述第一透光区域与所述第二透光区域之间的所述移相层的侧壁上。
  12. 根据权利要求11所述的移相掩膜版,其特征在于:所述透明基板的材料包括石英玻璃,所述遮光侧墙片的材料包括铬或氧化铬或氮化铬,所述移相层的材料包括氧化钼硅、氮氧化钼硅、氮氧碳化钼硅、氧化铬硅、氮氧化铬硅及氮氧碳化铬硅中的一种。
  13. 根据权利要求11所述的移相掩膜版,其特征在于:所述遮光侧墙片的厚度与所述移相层的厚度比介于0.5:1~1:1之间,所述遮光侧墙片的宽度与所述移相层的厚度比介于0.2:1~0.5:1之间。
  14. 根据权利要求11所述的移相掩膜版,其特征在于:所述移相层使透过所述移相层的曝光光线产生相位转换的改变量介于0~180度之间。
  15. 根据权利要求11所述的移相掩膜版,其特征在于:所述移相层使透过所述移相层的曝光光线产生的光衰减的比例介于0~80%之间。
  16. 一种如权利要求11~15任意一项所述的移相掩膜版的制作方法,其特征在于,包括步骤:
    提供一透明基板,所述透明基板定义有第一透光区域及与所述第一透光区域相邻的至少一个第二透光区域;
    于所述透明基板上沉积移相层,刻蚀所述移相层,以保留所述第一透光区域的移相层,并显露所述第二透光区域,所述移相层使透过所述移相层的曝光光线产生相位转换或/及光衰减;
    于所述透明基板上沉积遮光材料层,并对所述遮光材料层进行回刻工艺,移除所述第二透光区域内的部分所述遮光材料层,保留位于所述移相层的侧壁的部分遮光材料层,以形成遮光侧墙片。
  17. 一种移相掩膜版,其特征在于,所述移相掩膜版包括:
    透明基板,所述透明基板定义有第一透光区域、与所述第一透光区域相邻的至少一个第二透光区域及遮光区域;
    移相层,覆盖于所述透明基板上的所述第一透光区域及遮光区域,所述移相层使透过所述移相层的曝光光线产生相位转换或/及光衰减;
    遮光层,位于所述移相层上且覆盖于所述遮光区域;
    移相侧墙片,位于所述第一透光区域与所述遮光区域之间的所述遮光层的侧壁上,所述移相侧墙片使透过所述移相侧墙片的曝光光线产生相位转换或/及光衰减。
  18. 根据权利要求17所述的移相掩膜版,其特征在于:所述透明基板的材料包括石英玻璃,所述移相层的材料包括氧化钼硅、氮氧化钼硅、氮氧碳化钼硅、氧化铬硅、氮氧化铬硅及氮氧碳化铬硅中的一种,所述移相侧墙片的材料包括氧化钼硅、氮氧化钼硅、氮氧碳化钼硅、氧化铬硅、氮氧化铬硅及氮氧碳化铬硅中的一种。
  19. 根据权利要求17所述的移相掩膜版,其特征在于:所述移相侧墙片的厚度与所述遮光层的厚度比介于0.5:1~1:1之间,所述移相侧墙片的宽度与所述遮光层的厚度比介于0.2:1~0.5:1之间。
  20. 根据权利要求17所述的移相掩膜版,其特征在于:所述移相层使透过所述移相层的曝光光线产生相位转换的改变量介于0~180度之间,所述移相侧墙片使透过所述移相侧墙片的曝光光线产生相位转换的改变量介于0~180度之间。
  21. 根据权利要求17所述的移相掩膜版,其特征在于:所述移相层使透过所述移相层的曝光光线产生的光衰减的比例介于0~80%之间,所述移相侧墙片使透过所述移相侧墙片的曝光光线产生的光衰减的比例介于0~80%之间。
PCT/CN2022/080333 2021-04-14 2022-03-11 移相掩膜版及其制作方法 WO2022218073A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023600137U JP3246095U (ja) 2021-04-14 2022-03-11 移相マスク

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110402081.8 2021-04-14
CN202110402081.8A CN115202146A (zh) 2021-04-14 2021-04-14 移相掩膜版及其制作方法

Publications (1)

Publication Number Publication Date
WO2022218073A1 true WO2022218073A1 (zh) 2022-10-20

Family

ID=83573761

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/080333 WO2022218073A1 (zh) 2021-04-14 2022-03-11 移相掩膜版及其制作方法

Country Status (4)

Country Link
JP (1) JP3246095U (zh)
CN (1) CN115202146A (zh)
TW (1) TWI819571B (zh)
WO (1) WO2022218073A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115826348B (zh) * 2023-02-13 2023-10-24 上海传芯半导体有限公司 掩模版及其制备方法
CN117637448B (zh) * 2024-01-26 2024-05-03 粤芯半导体技术股份有限公司 一种侧墙制造方法、装置、芯片及电子设备

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5322749A (en) * 1991-11-15 1994-06-21 Goldstar Electron Co., Ltd. Phase shift mask and method of making the same
JP2000227651A (ja) * 1999-02-05 2000-08-15 Nec Corp 位相シフトマスク及びその製造方法
CN1453635A (zh) * 2002-03-05 2003-11-05 Asml荷兰有限公司 用于改进相移掩模成像性能的装置和系统及其方法
JP2004226893A (ja) * 2003-01-27 2004-08-12 Semiconductor Leading Edge Technologies Inc ハーフトーン位相シフトマスク及びそれを用いたレジスト露光方法並びにレジスト露光装置
CN103998985A (zh) * 2011-12-21 2014-08-20 大日本印刷株式会社 大型相移掩膜及大型相移掩膜的制造方法
CN108345171A (zh) * 2018-02-11 2018-07-31 京东方科技集团股份有限公司 一种相移掩膜板的制作方法及相移掩膜板
CN108363270A (zh) * 2018-02-11 2018-08-03 京东方科技集团股份有限公司 一种相移掩模板、阵列基板、其制备方法及显示装置
CN112099308A (zh) * 2020-10-22 2020-12-18 泉芯集成电路制造(济南)有限公司 衰减相移掩模版及其制程方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104834178A (zh) * 2014-02-12 2015-08-12 中芯国际集成电路制造(上海)有限公司 一种制备光掩模的装置及方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5322749A (en) * 1991-11-15 1994-06-21 Goldstar Electron Co., Ltd. Phase shift mask and method of making the same
JP2000227651A (ja) * 1999-02-05 2000-08-15 Nec Corp 位相シフトマスク及びその製造方法
CN1453635A (zh) * 2002-03-05 2003-11-05 Asml荷兰有限公司 用于改进相移掩模成像性能的装置和系统及其方法
JP2004226893A (ja) * 2003-01-27 2004-08-12 Semiconductor Leading Edge Technologies Inc ハーフトーン位相シフトマスク及びそれを用いたレジスト露光方法並びにレジスト露光装置
CN103998985A (zh) * 2011-12-21 2014-08-20 大日本印刷株式会社 大型相移掩膜及大型相移掩膜的制造方法
CN108345171A (zh) * 2018-02-11 2018-07-31 京东方科技集团股份有限公司 一种相移掩膜板的制作方法及相移掩膜板
CN108363270A (zh) * 2018-02-11 2018-08-03 京东方科技集团股份有限公司 一种相移掩模板、阵列基板、其制备方法及显示装置
CN112099308A (zh) * 2020-10-22 2020-12-18 泉芯集成电路制造(济南)有限公司 衰减相移掩模版及其制程方法

Also Published As

Publication number Publication date
TWI819571B (zh) 2023-10-21
JP3246095U (ja) 2024-03-21
TW202248744A (zh) 2022-12-16
CN115202146A (zh) 2022-10-18

Similar Documents

Publication Publication Date Title
WO2022218073A1 (zh) 移相掩膜版及其制作方法
US5750290A (en) Photo mask and fabrication process therefor
CN104155844A (zh) 利用单次曝光形成多层图案的具有三种状态的光掩模
JP2006119651A (ja) 位相シフトマスクを製作するための方法および位相シフトマスク
KR100845173B1 (ko) Euv 포토리소그래피를 위한 위상-시프팅 마스크 및 그형성 방법
TW201802573A (zh) 具有多層遮光層的光罩
CN101458447B (zh) 光学近距修正、光掩模版制作及图形化方法
US20080311485A1 (en) Photomasks Used to Fabricate Integrated Circuitry, Finished-Construction Binary Photomasks Used to Fabricate Integrated Circuitry, Methods of Forming Photomasks, and Methods of Photolithographically Patterning Substrates
TWI825715B (zh) 移相光刻版及其製作方法
TWI585510B (zh) 相移式光罩及其製造方法
KR100752673B1 (ko) 보조 패턴을 갖는 포토마스크 및 그 제조 방법
CN210835580U (zh) 光掩膜板
CN111640657B (zh) 半导体器件及其形成方法
JP2661392B2 (ja) ホトマスク
CN113671788B (zh) 光掩膜版及其制作方法
KR100685891B1 (ko) 위상반전마스크
KR101076782B1 (ko) Euv 마스크 및 그 형성방법
KR100190088B1 (ko) 위상반전 마스크의 제조방법
US8192903B2 (en) Photomasks
KR100259582B1 (ko) 하프-톤 위상 반전 마스크의 제조 방법.
KR100518224B1 (ko) 위상반전마스크 및 그의 제조방법
JPH05307258A (ja) フォトマスクおよびその製造方法
US6015642A (en) Method for forming a photomask
KR100849722B1 (ko) 반도체소자의 위상반전마스크 형성방법
KR20090021483A (ko) 바이너리 마스크용 블랭크 마스크 및 이를 이용한 포토마스크의 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22787303

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023600137

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22787303

Country of ref document: EP

Kind code of ref document: A1