WO2022217495A1 - 车辆控制方法及装置、车辆 - Google Patents

车辆控制方法及装置、车辆 Download PDF

Info

Publication number
WO2022217495A1
WO2022217495A1 PCT/CN2021/087220 CN2021087220W WO2022217495A1 WO 2022217495 A1 WO2022217495 A1 WO 2022217495A1 CN 2021087220 W CN2021087220 W CN 2021087220W WO 2022217495 A1 WO2022217495 A1 WO 2022217495A1
Authority
WO
WIPO (PCT)
Prior art keywords
lane
vehicle
change
line
road
Prior art date
Application number
PCT/CN2021/087220
Other languages
English (en)
French (fr)
Inventor
苏箐
胡文潇
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2021/087220 priority Critical patent/WO2022217495A1/zh
Priority to CN202180006174.7A priority patent/CN114728658A/zh
Priority to EP21936387.6A priority patent/EP4316933A1/en
Publication of WO2022217495A1 publication Critical patent/WO2022217495A1/zh
Priority to US18/486,519 priority patent/US20240083438A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units, or advanced driver assistance systems for ensuring comfort, stability and safety or drive control systems for propelling or retarding the vehicle
    • B60W30/18Propelling the vehicle
    • B60W30/18009Propelling the vehicle related to particular drive situations
    • B60W30/18163Lane change; Overtaking manoeuvres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/08Interaction between the driver and the control system
    • B60W50/14Means for informing the driver, warning the driver or prompting a driver intervention
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W60/00Drive control systems specially adapted for autonomous road vehicles
    • B60W60/001Planning or execution of driving tasks
    • B60W60/0024Planning or execution of driving tasks with mediation between passenger and vehicle requirements, e.g. decision between dropping off a passenger or urgent vehicle service
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/08Interaction between the driver and the control system
    • B60W50/14Means for informing the driver, warning the driver or prompting a driver intervention
    • B60W2050/143Alarm means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/08Interaction between the driver and the control system
    • B60W50/14Means for informing the driver, warning the driver or prompting a driver intervention
    • B60W2050/146Display means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/20Direction indicator values
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/215Selection or confirmation of options
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2552/00Input parameters relating to infrastructure
    • B60W2552/53Road markings, e.g. lane marker or crosswalk

Definitions

  • the present application relates to automatic driving technology, and in particular, to a vehicle control method and device, and a vehicle.
  • L1-L5 namely L1-L5, among which, L1, assisted driving, can help drivers to complete certain driving tasks, and can only help complete one Item driving operation
  • L2 level partial automation
  • L3 level conditional automation
  • the vehicle can realize automatic acceleration, deceleration and steering in a specific environment, without the driver's operation
  • L4 level Highly automated, it can realize the whole process of driving without a driver, but there are restrictions, such as limiting the speed of the vehicle to not exceed a certain value, and the driving area is relatively fixed
  • L5 level fully automated, fully adaptive driving, adaptable to any driving scene.
  • the current technology has not fully realized the high-level autonomous driving. Specifically, for example, the traffic scene in the actual situation is very complex, and there are still many scenes in the current autonomous driving technology that have not been fully considered, and are far from flexible enough compared with the human driving ability. That said, there is still room for improvement in autonomous driving technology in terms of flexibility to adapt to multiple traffic scenarios.
  • the present application provides a vehicle control method and device, a vehicle, etc., which can improve the flexibility of automatic driving.
  • a first aspect of the present application provides a vehicle control method, including: detecting a first operation of a driver of the vehicle, where the first operation is used to instruct the vehicle to change lanes from a current lane to a target lane; obtaining a lane change permission for the vehicle across the solid line state information of the switch; when the first operation is detected and the state information indicates that the lane change permission switch across the solid line is in an open state, a first control is performed, the first control including causing the vehicle to perform a lane change.
  • changing lanes across solid lines means changing lanes across solid line lane lines.
  • the cross-solid-line lane change permission switch as its name suggests, when it is turned on, a vehicle's cross-solid-line lane-change is enabled, and when it is turned off, a vehicle's cross-solid-line lane change is prohibited.
  • the vehicle control method as described above when the driver's first operation is detected and the lane change permission switch across the solid line is in the ON state, the vehicle is caused to perform an automatic lane change.
  • the ego vehicle can change lanes across the solid line, and avoid accidents or inconvenience caused by mechanically following the rule of "no lane change across solid lines", thereby improving the flexibility of automatic driving control.
  • the lane change is triggered by the operation of the driver (human), so that the human control is maintained as the highest priority, the subjective intervention authority of the human is maintained, and the automatic driving technology can better serve the human;
  • the highest right of judgment is reserved for the driver, which can make up for the lack of self-driving technology's judgment on the driver's emotion, better meet the individual needs of different drivers, and respect the driver's driving intention.
  • the vehicle control method further includes: acquiring type information of a lane line between the current lane and the target lane; when the type information indicates that the lane line is a solid lane line, the first control further includes: Issues a prompt indicating that the lane lines are solid lane lines.
  • the prompt includes, for example, a sound effect prompt, a display text prompt and/or a voice prompt.
  • the first control includes: after a preset time elapses from the detection of the first operation, causing the vehicle to change lanes.
  • the first control includes: within a preset time, when the first operation is detected again, causing the vehicle to change lanes.
  • the first control further includes adjusting a road change condition parameter, where the road change condition parameter indicates a condition that should be satisfied by the road condition of the target lane when the vehicle changes lanes, wherein the adjusted change The road condition condition parameter is easier to be satisfied than before the adjustment; the vehicle control method further includes: acquiring road condition information of the target lane; when the road condition indicated by the road condition information satisfies the condition indicated by the adjusted road condition condition parameter, making the The vehicle changes lanes.
  • the first operation is to switch the turn signal switch to a state where the left turn signal or the right turn signal is turned on.
  • the turn-on operation of the turn signal switch is set as the trigger operation for issuing a lane change command, so as to be consistent with the steering behavior of the driver when he is driving manually, and to avoid the driver feeling complicated when the other operations are newly defined. Or make mistakes when panicking.
  • a second aspect of the present application provides a vehicle control device, comprising: an operation detection module for detecting a first operation of a driver of the vehicle, where the first operation is used to instruct the vehicle to change lanes from a current lane to a target lane; switch state acquisition The module is used for acquiring the state information of the lane change permission switch across the solid line of the vehicle; the control module is used for executing the first control when the first operation is detected and the state information indicates that the lane change permission switch across the solid line is in an open state, The first control includes causing the vehicle to change lanes.
  • the vehicle control device As described above, when the first operation of the driver is detected and the lane change permission switch across the solid line is in the ON state, the vehicle is caused to change lanes. In this way, for example, in the case of emergency avoidance, the ego vehicle can change lanes across the solid line, and avoid accidents or inconvenience caused by mechanically following the rule of "no lane change across solid lines", thereby improving the flexibility of automatic driving control.
  • the vehicle control device further includes a lane line type acquisition module for acquiring type information of the lane line between the current lane and the target lane; when the type information indicates that the lane line is a solid line lane line , the first control further includes issuing a prompt for indicating that the lane line is a solid lane line.
  • the prompt includes a sound effect prompt, a displayed text prompt and/or a voice prompt.
  • the control module causes the vehicle to change lanes.
  • the control module causes the vehicle to change lanes.
  • the first control performed by the control module further includes adjusting a road change condition parameter, where the road change condition parameter indicates a condition that should be satisfied by the road condition of the target lane when the vehicle performs a lane change, wherein, The adjusted road condition condition parameters are easier to satisfy than before the adjustment;
  • the vehicle control device further includes a road condition acquisition module, which is used to acquire road condition information of the target lane; when the road condition indicated by the road condition information satisfies the adjusted road condition;
  • the control module executes the control to cause the vehicle to change lanes.
  • the first operation is to switch the turn signal switch to a state where the left turn signal or the right turn signal is turned on.
  • the turn-on operation of the turn signal switch is set as the trigger operation for issuing a lane change command, so as to be consistent with the steering behavior of the driver when he is driving manually, and to avoid the driver feeling complicated when the other operations are newly defined. Or make mistakes when panicking.
  • a third aspect of the present application provides a vehicle including the vehicle control device of any of the above structures.
  • the vehicle when the driver's first operation is detected and the lane change permission switch across the solid line is in the ON state, the vehicle is caused to change lanes.
  • the ego vehicle can change lanes across the solid line, and avoid accidents or inconvenience caused by mechanically following the rule of "no lane change across solid lines", thereby improving the flexibility of automatic driving control.
  • the vehicle is a special vehicle, and the special vehicle includes an ambulance, a fire engine, a police car or an engineering rescue vehicle.
  • a fourth aspect of the present application provides a computer-readable storage medium on which program instructions are stored, wherein the program instructions, when executed by a computer, cause the computer to execute any one of the above vehicle control methods.
  • 1 is a schematic diagram of an example of an application scenario of the application
  • FIG. 2 is a schematic diagram of another application scenario example of the application.
  • FIG. 3 is a schematic diagram of another application scenario example of the application.
  • FIG. 4 is a schematic flowchart of an automatic lane change involved in an embodiment of the present application.
  • FIG. 5 is a schematic explanatory diagram of a lane change permission switch across the solid line involved in an embodiment of the present application
  • FIG. 6 is a schematic explanatory diagram of an example of a display screen on a vehicle-mounted display involved in an embodiment of the application;
  • FIG. 7 is a schematic structural block diagram of a control device of a vehicle involved in an embodiment of the application.
  • FIG. 8 is a schematic flowchart of an automatic lane change involved in an embodiment of the present application.
  • FIG. 9 is a schematic block diagram of the structure of a control device of a vehicle involved in an embodiment of the application.
  • FIG. 10 is a schematic block diagram of the structure of the vehicle involved in the embodiment of the application.
  • FIG. 1 shows an example of an application scenario of the present application.
  • the vehicle 101 is driving near the ramp of the expressway, and the driver intends to exit the expressway from the ramp. However, the vehicle 101 is about to miss the ramp. At this time, the driver wants the vehicle 101 to perform a cross-solid line change. onto the ramp.
  • FIG. 2 shows another example of an application scenario of the present application.
  • FIG. 2 there is a vehicle 103 braking suddenly in front of the vehicle 102, and the vehicle 102 is about to collide with the vehicle 103.
  • the driver of the vehicle 102 wants the vehicle 102 to perform a lane change across the solid line and enter its current lane. Left lane to avoid collision with vehicle 103 .
  • FIG. 3 shows another application scenario example of the present application.
  • an ambulance 104 is traveling on a congested road, and the driver of the vehicle 105 wants the vehicle 105 to change lanes across the solid line into the right lane of its current lane in order to give way to the ambulance 104 .
  • special vehicles also include fire trucks, police cars, engineering rescue vehicles, etc. When driving on the road, they will encounter situations that give way to these special vehicles. In addition, for these special vehicles themselves, there is also a need to change lanes across the solid line.
  • the present application provides a technology that enables vehicles to change lanes across solid lines in automatic driving mode, so as to improve the performance of automatic driving. Scenario coverage, improve the flexibility of automatic driving, and better adapt to the driver's intention or personalized needs.
  • the present application mainly provides a vehicle control method, a vehicle control device, a vehicle, a computer program, a computer-readable storage medium, and a computing device.
  • FIG. 10 is a schematic structural block diagram of a vehicle with an automatic driving mode involved in the embodiment of the application.
  • the vehicle 100 includes a control device 10 , a camera 20 , a communication device 30 , a navigation device 40 , a power system 50 , a steering system 60 , and a braking system 70 .
  • the vehicle 100 also has a steering lever (turn signal switch), which has three states, namely, a right turn signal on state, an off state (neutral position), and a left turn signal turn on state.
  • the vehicle 100 has components other than these components, but the description is omitted here.
  • the camera 20 is used to detect the environment outside the vehicle, and the number may be one or more.
  • the camera 20 is an example of an external environment sensor, in addition to this, a lidar, a millimeter-wave radar, or the like can also be provided to detect the external environment of the vehicle.
  • the communication device 30 can wirelessly communicate with an external object (not shown).
  • the external objects may include, for example, unillustrated base stations, cloud servers, mobile terminals (smartphones, etc.), roadside equipment, other vehicles, and the like.
  • the navigation device 40 typically has a GNSS (Global Navigation Satellite System) receiver and a map database, not shown.
  • the navigation device 40 can determine the position of the vehicle 100 through satellite signals received by the GNSS receiver, and can generate a route to the destination according to the map information in the map database, and provide the information on the route to the control device 10 .
  • the navigation device 40 may also have an IMU (Inertial Measurement Unit, inertial measurement unit), and perform positioning by fusing the information of the GNSS receiver and the information of the IMU.
  • IMU Inertial Measurement Unit, inertial measurement unit
  • the powertrain 50 includes a drive ECU (not shown) and a drive source (not shown).
  • the drive ECU controls the drive force (torque) of the vehicle 100 by controlling the drive source.
  • the drive source an engine, a drive motor, or the like may be used.
  • the driving ECU can control the driving force by controlling the driving source according to the operation of the accelerator pedal by the driver.
  • the drive ECU can also control the driving force by controlling the driving source according to the command sent from the vehicle control device 10 .
  • the driving force of the driving source is transmitted to wheels not shown through a transmission or the like not shown, thereby driving the vehicle 100 to travel.
  • the steering system 60 includes an EPS (Electric Power Steering, electric power steering system) ECU which is a steering ECU (not shown) and an EPS motor (not shown).
  • the steering ECU can control the EPS motor according to the operation of the steering wheel by the driver, thereby controlling the orientation of the wheels (specifically, the steering wheels).
  • the steering ECU can also control the direction of the wheels by controlling the EPS motor according to the command sent from the vehicle control device 10 .
  • steering can also be performed by changing the distribution of torque or braking force to the left and right wheels.
  • the brake system 70 includes a brake ECU (not shown) and a brake mechanism (not shown).
  • the braking mechanism operates the braking components through a braking motor, a hydraulic mechanism, and the like.
  • the brake ECU can control the braking mechanism by controlling the braking force according to the operation of the brake pedal by the driver.
  • the brake ECU can also control the braking mechanism in accordance with the command sent from the vehicle control device 10, thereby being able to control the braking force.
  • the braking system 70 may also include a regenerative braking mechanism.
  • the vehicle control device 10 can be implemented by one ECU (Electronic Control Unit, electronic control unit), or can be implemented by a combination of multiple ECUs.
  • the ECU is a computing device that includes a processor, a memory, and a communication interface connected through an internal bus. Program instructions are stored that, when executed by the processor, function as corresponding functional modules and functional units. These functional modules and functional units include a control module 13, an operation detection module 11, a switch state acquisition module 12, a lane line type acquisition module 14, a road condition acquisition module 15 (FIG. 7, FIG. 9), etc., which will be described in detail later.
  • the control module 13 may further include an action planning unit 13a, a driving control unit 13b, a prompting unit 13c (FIG. 7), a changing road condition parameter adjusting unit 13d (FIG. 9), and the like.
  • the vehicle control device 10 realizes these functional modules and/or functional units by executing programs (software) by a processor, however, the vehicle control device 10 may also be implemented by LSI (Large Scale Integration) and ASIC (Large Scale Integration) Application Specific Integrated Circuit) and other hardware to realize all or a part of these functional modules and/or functional units, or can also realize all or a part of these functional modules and/or functional units through a combination of software and hardware .
  • LSI Large Scale Integration
  • ASIC Large Scale Integration
  • control module 13 is used to control the autonomous driving (autonomous movement) of the vehicle 100 and the like, and includes an action planning unit 13a and a driving control unit 13b.
  • the action planning unit 13a is used to calculate the target trajectory of the vehicle 100 to the destination, and according to the external environment information detected by the optical sensor such as the camera 20, determine the driving condition of the vehicle 100, update the target trajectory, and determine various actions of the vehicle 100.
  • the route calculated by the above-mentioned navigation device 40 is a rough route.
  • the target trajectory calculated by the action planning unit 13 a includes relatively detailed contents for controlling the acceleration, deceleration and steering of the vehicle 100 in addition to the rough route calculated by the navigation device 40 .
  • the driving control unit 13b generates control commands for sending to the power system 50, the steering system 60 and the braking system 70 according to the action plan provided by the action planning unit 13a, so as to be able to control the power system 50, the steering system 60 and the braking system 70 , and the vehicle 100 is driven according to the action plan.
  • the vehicle 100 can realize automatic driving modes such as Navigation Cruise Assistant (NCA), Intelligent Cruise Assistant (ICA), etc., and can drive autonomously in the automatic driving mode.
  • NCA Navigation Cruise Assistant
  • ICA Intelligent Cruise Assistant
  • the vehicle control method, the vehicle control device, and the like in the embodiments of the present application may be implemented on an automatic driving vehicle whose automatic driving level is L2-L5.
  • the present embodiment relates to a vehicle control method regarding automatic lane changing when the ego vehicle is in the automatic driving mode, which vehicle control method is applied to the above-described automatic driving vehicle (hereinafter referred to as ego vehicle).
  • the automatic driving modes here include, for example, ICA mode and NCA mode, both of which belong to one type of automatic driving mode.
  • the main difference is that, usually, in NCA mode, the ego vehicle drives according to the navigation path, so there is an automatic lane change.
  • NCA mode if there is no automatic lane change command actively issued by the driver as described later, the vehicle generally does not automatically change lanes.
  • the vehicle control method of the present embodiment can also be applied to other automatic driving modes.
  • a navigation screen is simultaneously displayed on the in-vehicle display, and the scenario of the ego vehicle traveling on the road is schematically displayed on the navigation screen.
  • the navigation screen may not be displayed, or the driver may select whether or not to display the navigation screen.
  • the road includes three lanes, the middle lane is the current lane in which the ego vehicle travels, and the right lane is the target lane that the ego vehicle intends to enter.
  • the lane change process in the NCA mode described in this embodiment is the same as the lane change process in the ICA mode, and the main difference between the two is that the displayed content of the navigation screen is different. Specifically, as shown in the figure, in the NCA mode, a guide line is displayed in front of the own vehicle on the navigation screen, and the guide line indicates the navigation route, but in the ICA mode, the guide line is not displayed.
  • an automatic lane change instruction actively issued by the driver is obtained.
  • the driver manually toggles the steering lever (ie, the turn signal switch) to switch it to a state where the right turn signal is turned on (flashing).
  • the control device obtains a signal indicating that the steering lever is in this state, that is, receives an automatic lane change command actively issued by the driver.
  • the operation that the driver manually toggles the steering lever to switch it to the state where the right turn signal is turned on and the left turn signal is turned on is defined as issuing an automatic lane change command, which is used to command the ego vehicle to change from the current lane to the target lane. road.
  • the lane change condition is satisfied. Specifically, it is determined whether the lane line is a solid line lane line or a dotted line lane according to the type information of the lane line between the current lane where the vehicle is traveling and the target lane that the vehicle intends to enter.
  • the lane line is a solid line lane line or a dotted line lane according to the type information of the lane line between the current lane where the vehicle is traveling and the target lane that the vehicle intends to enter.
  • traffic rules vehicles are usually prohibited from changing lanes to the target lane, and it is judged that the lane change conditions are not met; when it is a dashed lane line, in traffic rules, vehicles are allowed to change lanes.
  • the target lane changes lanes, and it is judged that the lane change conditions are met at this time.
  • the solid line lane line is a lane change prohibited sign, that is, according to the provisions of the traffic law, the vehicle is prohibited from crossing the solid line lane line to change lanes.
  • the type information of the lane line between the current lane and the target lane can be obtained from, for example, electronic map data, or can also be obtained from image data captured by a camera provided in the vehicle.
  • the lane line may be a marking line consisting of a solid line and a dashed line parallel to it. At this time, if the current lane side is a solid line and the target lane side is a dashed line, this kind of lane line belongs to this application. If the current lane side is a dashed line and the target lane side is a solid line, then this kind of lane line does not belong to the solid line lane line described in this application.
  • the "type information of lane lines" described in the present application includes roadside sign information capable of indicating the type of lane lines.
  • S106 it is determined whether the lane line between the current lane and the target lane is a long solid line lane line. That is, it is determined whether or not the solid line lane line extends forward of the vehicle by a predetermined distance or more. If it does not extend more than the specified distance, it means that there is a dotted lane line not far ahead.
  • the judgment result in S106 is "No" that is, the lane line between the current lane and the target lane is not a long solid line lane line, the process in S104 is executed, and the lane change waits.
  • the determination result in S106 is "Yes", that is, when the lane line between the current lane and the target lane is a long solid line lane line, in S200, it is determined whether the cross-solid line lane change permission switch is on. Specifically, the state information of the lane change permission switch across the solid line is acquired, and based on the state information, it is determined whether or not the lane change permission switch across the solid line is in the ON state.
  • the cross-solid-line lane change permission switch is used to permit and prohibit the vehicle to perform a cross-solid-line lane change, and its open state indicates that the vehicle is permitted to perform a cross-solid-line lane change, that is, the vehicle cross-solid-line lane change becomes Possible state, closed state means that the vehicle is prohibited from changing lanes across the solid line.
  • the lane change permission switch across the solid line is a virtual switch, which is integrated in the vehicle control device. As another embodiment, it may also be a physical switch, for example, provided on the instrument panel.
  • the lane change permission switch across the solid line may be a dedicated switch or a multi-purpose switch.
  • the dedicated switch means that the cross-solid-line lane change permission switch only has the function of permitting and prohibiting the vehicle to change lanes across the solid-line lane line
  • the multi-purpose switch means that it also has other functions, such as permitting and prohibiting the vehicle to exceed the lane limit.
  • the function of speed driving that is, when the switch is turned on, the vehicle is allowed to change lanes across the solid lane line and exceed the lane speed limit; when the switch is turned off, the vehicle is prohibited from crossing the solid line lane changing lanes and exceeding Lane speed limit.
  • FIG. 5 An example (this embodiment) of the lane change permission switch across the solid line is shown in FIG. 5 .
  • the lane change permission switch across the solid line is a virtual switch, and its name is displayed as "forced lane change", but this does not change its essential function.
  • the lane change permission switch 16 across the solid line is displayed in the automatic driving mode (specifically, the NCA mode in the figure) setting interface 18 together with other switches and the like, when the driver clicks the lane change permission across the solid line
  • the switch 16 is intended to be turned on, a confirmation interface 19 pops up asking the driver whether to confirm the opening, and a disclaimer is also displayed in the confirmation interface, and the driver is informed that clicking the confirmation button means signing the disclaimer at the same time.
  • a prompt is issued to the driver to inform the driver that the lane change cannot be performed.
  • the lane line of the target lane is highlighted, for example, highlighted in red, and flashes, and at the same time, a voice prompt can be issued through the speaker of the own vehicle.
  • the lane change preparation control is executed. For example, in the navigation screen, the lane line of the target lane is highlighted, eg, highlighted in red, to remind the driver that the ego vehicle is about to perform a lane change across the solid line.
  • sound effects can be issued, such as a "beep" sound through the speaker.
  • the control to issue these prompts indicating that the lane lines are solid lane lines is an example of the first control in the present application.
  • the driver is also notified by means of text and/or voice that the operation of canceling the lane change across the solid line can be performed.
  • the right turn signal is turned off.
  • the control that issues a prompt "notifying the driver that the operation to cancel the lane change across the solid line can be performed" is an example of the first control in the present application.
  • the road changing conditions are satisfied, that is, it is determined whether the road conditions of the current lane and the target lane allow the ego vehicle to change lanes. For example, when there are no other vehicles in the preset range on the target lane, it is determined that the conditions for changing road conditions are met; when there are other vehicles in the preset range on the target lane (for example, refer to the "on the target lane" shown in S212 There are other vehicles running in parallel with the own vehicle”), and it is determined that the conditions for changing road conditions are not met.
  • the preset range here is an example of the changing road condition parameter in this application.
  • a waiting control is performed to wait for the road conditions of the target lane to change to allow the ego vehicle to perform a lane change.
  • the target lane is highlighted in the navigation screen, for example, highlighted in red, to remind the driver: "The vehicle cannot make a lane change to the target lane now”.
  • a dotted line is used to highlight the lane line between the current lane and the target lane to remind the driver: "The vehicle regards the lane line between the current lane and the target lane as a dotted lane line”. It can be the same color (red) as the target lane is displayed at this time.
  • the specific method of "using a dashed line to highlight the lane line between the current lane and the target lane" can be to make the lane line originally displayed as a solid line become a dashed line, or to superimpose different colors and/or on the basis of the solid line. or a thicker dashed line.
  • the target position of the ego vehicle (that is, the position on the target lane when the ego vehicle completes the lane change) is also displayed on the target lane, and a hatched line is displayed on the target position to remind the driver of the ego vehicle A lane change is not currently possible to this target location.
  • the processing in S212 is the same as that in S112, and the subsequent processing is also the same, which will be described in detail later.
  • control for automatically changing lanes across the solid line By executing the control for automatically changing lanes across the solid line after a preset time has elapsed, it is possible to allow time for the driver to perform a cancellation operation.
  • the driver resets the steering lever and then turns the steering lever in the same direction again, it can be considered that the driver is urging the vehicle to quickly perform an automatic lane change, which is likely to be an emergency situation. Therefore, here
  • the control of the automatic lane change across the solid line is immediately executed without waiting for the lapse of the preset time, and the control more in line with the driver's intention can be executed.
  • the "control to automatically change lanes across the solid line" of the own vehicle here is an example of the first control in the present application.
  • the target lane is also highlighted in the navigation screen, which can be highlighted with a color different from that when the conditions for changing road conditions are not met, such as blue, to prompt the driver: "The vehicle is about to change to the target lane. road”.
  • the lane line between the current lane and the target lane is highlighted with a dotted line to remind the driver: "The vehicle regards the lane line between the current lane and the target lane as a dotted lane line”. It can be the same color as the target lane is displayed at this time (blue).
  • the target position of the ego vehicle (that is, the position on the target lane when the ego vehicle completes the lane change) is also displayed on the target lane, and the display of the target position does not include the above-mentioned "hatched line" in S212, that is, the display mode is different In S212, the driver is prompted that the vehicle can change lanes to the target position at this time.
  • prompt text may be displayed on the navigation screen to inform the driver that the lane change can be canceled by a preset operation.
  • this message text is displayed when the control to change the own vehicle's lane across the solid line is about to start.
  • the prompt can also be issued by way of voice.
  • the preset operation is, for example, a reverse toggle of the steering switch. And, when the driver performs the preset operation, the automatic lane change control is canceled this time, but this processing step is not drawn in the figure.
  • FIG. 6 An example of the navigation screen at this time is shown in FIG. 6 .
  • a map 501 is displayed on the right side, and a road scene where the own vehicle 100 is traveling is schematically displayed on the left side, wherein the current lane is 201 , the left lane is 203 , and the right lane is 203 . That is, the target lane is 202 , the target lane 202 is also highlighted, and the target position 401 of the ego vehicle 100 is displayed on the target lane 202 .
  • a steering instruction arrow 301 indicating a right turn at this time is also displayed, and the steering instruction arrow 301 is displayed blinking.
  • the text "Forced lane change is about to be” is displayed to remind the driver that the driver is about to change lanes across the solid line from 100, and the text "The reverse lever can be canceled” is also displayed to remind the driver The driver can cancel this cross-solid lane change by reversing the steering lever.
  • S214 it is judged (monitored) in real time whether the road condition of the target lane satisfies the lane change condition. For example, when there are no other vehicles in the preset range on the target lane, it is determined that the lane change condition is satisfied; when there are other vehicles in the preset range on the target lane (for example, see the "When the own vehicle changes" shown in S218 If there is another vehicle running immediately behind the own vehicle on the target lane during the course of the lane, it is judged that the lane change condition is not met.
  • the control for causing the own vehicle to change lanes is executed.
  • the ego vehicle can change lanes across the solid line in situations such as emergency avoidance, avoiding accidents or inconveniences caused by mechanically following the rule of “no lane changing across solid lines”, thereby improving the flexibility of automatic driving control.
  • the automatic lane change is triggered by the operation of the driver (human), so that the human control is maintained as the highest priority, the subjective intervention authority of the human is maintained, and the automatic driving technology can better serve the human;
  • the highest judgment right is reserved to the driver, which can make up for the lack of judgment of the driver's emotion by the automatic driving technology, better meet the individual needs of different drivers, and respect the driver's driving intention.
  • “Automatic lane change” means that the vehicle changes lanes in the automatic driving mode.
  • the acceleration and deceleration commands and steering commands during lane change are not derived from the driver's operations on the accelerator pedal, brake pedal and steering wheel, but are derived from Autonomous decision-making by vehicle controls.
  • the above mainly describes the processing flow when the lane line between the current lane and the target lane is a solid line lane line, and the following describes the processing flow when the lane line is a dotted line lane line.
  • a waiting control is executed to wait for the road condition of the target lane to change to allow the ego vehicle to perform a lane changing.
  • the target lane is also highlighted in the navigation screen, for example, highlighted in red, wherein the lane line between the current lane and the target lane is displayed as a dotted line, and its color can be the same as the display color of the target lane.
  • the target position of the ego vehicle is also displayed on the target lane, and a hatched line is displayed on the target position to remind the driver that the ego vehicle cannot change lanes to the target position at present.
  • the control of changing the own vehicle across the solid line is performed, that is, the control of the accelerator pedal and the steering wheel is performed to make the own vehicle move toward the target.
  • the target lane is also highlighted in the navigation screen, which can be highlighted with a different color than when the conditions for changing road conditions are not met, such as blue.
  • the lane line between the current lane and the target lane is displayed as a dotted line, and its color Can be the same color as the target lane display.
  • the target position of the ego vehicle is also displayed on the target lane, and the display of the target position does not include the "hatched line" described in S112, that is, the display method is different from S112, to remind the driver that the ego vehicle can go to this point at this time. Change lanes at the target location.
  • S114 it is judged (monitored) whether the road conditions of the target lane satisfy the lane change condition. For example, when there are no other vehicles within the preset range on the target lane, it is determined that the lane-changing condition is met; when there are other vehicles within the preset range on the target lane (for example, refer to "When the own vehicle changes" shown in S122 If there is another vehicle running immediately behind the own vehicle on the target lane during the course of the lane, it is judged that the lane change condition is not met.
  • the driver issues the automatic lane change instruction by toggling the steering lever (turn signal switch), however, the present application is not limited to this, for example, it can also be issued by air gesture operation or voice operation, etc.
  • Automatic lane change command the driver's operation of turning on the turn signal switch, the remote operation, and the voice operation correspond to the first operation in the present application.
  • the processing of S102 and S106 can be omitted, and the solid line lane line and the dashed line lane line are not distinguished, that is, regardless of whether the type of the lane line between the current lane and the target lane is the solid line lane line or the dashed line lane line, in the When the cross-solid lane change permission switch is turned on, it is regarded as a dashed lane line.
  • the present embodiment also provides a vehicle control device for executing the above-mentioned vehicle control method.
  • the vehicle control device 10 has an operation detection module 11 , a switch state acquisition module 12 , a control module 13 , a lane line type acquisition module 14 , a road condition acquisition module 15 and a lane change permission switch 16 across the solid line.
  • These modules It can be implemented by hardware or software, and the specific manner has been described above, and the description will not be repeated here.
  • the operation detection module 11 detects the driver's operation by acquiring the switch signal of the steering lever, and the operation is used to issue an automatic lane change instruction to instruct the self-vehicle 100 to automatically change lanes from the current lane to the target lane.
  • the lane change permission switch 16 across the solid line is a virtual switch, which is integrated in the control device 10 , an example of which can be seen in FIG. 5 .
  • the switch state acquisition module 12 is configured to detect state information of the lane change permission switch 16 across the solid line, the state information indicating that the lane change permission switch 16 across the solid line is in an open state or a closed state.
  • the control module 13 includes the above-described action planning unit 13a, the above-described travel control unit 13b, and a prompt unit 13c.
  • the action planning unit 13a and the driving control unit 13b have been described above, and the description will not be repeated here.
  • the prompting unit 13c is used to control the issuing of various prompts, including the sound effect prompts described above, the display text prompts, the display screen prompts, and the voice prompts.
  • the lane line type acquiring module 14 is configured to acquire the type information of the lane line between the current lane and the target lane, for example, the type information is obtained according to the processing result of the road surface image captured by the camera 20 .
  • the road condition acquisition module 15 is configured to acquire road condition information of the target lane, for example, the road condition information is obtained according to the processing result of the image captured by the camera 20 .
  • the processing in S100 to S130 and S200 to S218 is mainly executed by the control module 13, and the information required for execution is correspondingly obtained by the operation detection module 11, the switch state acquisition module 12, the lane line type acquisition module 14 and the road conditions.
  • the acquisition module 15 acquires.
  • this embodiment also provides a computer program, a computer-readable storage medium, and a computing device, the computing device has a processor and a computer-readable storage medium, and the computer-readable storage medium stores a computer program (program instruction), and the program instruction is stored by a computer When executed by the (processor), the processes in the above-described S100 to S130 and S200 to S218 are executed.
  • this embodiment also provides a vehicle having the above-mentioned vehicle control device.
  • the vehicle may be a family car or a truck, or a special vehicle such as an ambulance, a fire engine, a police car, or an engineering rescue vehicle.
  • the present embodiment relates to a vehicle control method regarding automatic lane change when the ego vehicle is in the automatic driving mode.
  • the main difference between this embodiment and the above-mentioned embodiments is that when the driver issues an automatic lane change command by operating the turn signal switch, etc., the vehicle turns on the "aggressive lane change" function, and adjusts the condition parameters of the road changing conditions so that the road conditions of the target lane are changed. Conditions are more easily met, allowing the vehicle to insert as much as possible into the convoy in the target lane based on the actual road conditions and on the basis of ensuring safety.
  • the "parameters that satisfy the condition of changing lanes” may be, for example, whether the distance between the self-vehicle and other vehicles in the target lane after completing the lane change is above the distance threshold (called the safety distance), and the target lane before the lane change. whether there are other vehicles within the preset range and whether the speed of the other vehicles is lower than the speed threshold, etc.
  • the meaning of "making it easier to satisfy the road conditions of the target lane” is, for example, reducing the preset safety distance, reducing the preset range, and increasing the preset vehicle speed threshold.
  • the vehicle control method for automatic lane change in this embodiment will be described below with reference to FIG. 8 .
  • the self-vehicle is in the ICA mode as an example for description.
  • the same reference numerals are added to the same parts as those of the above-described embodiment, and the descriptions thereof are appropriately omitted or briefly described.
  • an automatic lane change instruction actively issued by the driver is obtained.
  • the automatic lane change instruction is obtained, in S102, it is determined whether the lane change lane condition is satisfied, that is, it is determined whether the type of the lane line between the current lane and the target lane is a dotted lane line.
  • S106 it is determined whether the lane line between the current lane and the target lane is a long solid line lane line.
  • the judgment result in S106 is "No" that is, the lane line between the current lane and the target lane is not a long solid line lane line, the process in S104 is executed, and the lane change waits.
  • the target lane is highlighted, for example, highlighted in red, and at the same time, the lane line between the current lane and the target lane is highlighted with a dotted line.
  • the driver is also informed by means of text and/or voice that the operation of canceling the lane change across the solid line can be performed, for example, turning the steering lever in the opposite direction, that is, switching the steering lever to make the right steering. The light is turned off.
  • the road changing conditions are satisfied, that is, it is determined whether the road conditions of the current lane and the target lane allow the ego vehicle to change lanes. For example, when there are no other vehicles in the (adjusted) preset range on the target lane, it is determined that the condition of changing road conditions is met; when there are other vehicles in the preset range on the target lane (for example, refer to S312 ) "There are other vehicles parallel to the own vehicle in the target lane"), it is determined that the conditions for changing road conditions are not met.
  • the preset range here corresponds to the changing road condition parameter in this application.
  • a waiting control is executed to wait for the road condition of the target lane to change to allow the ego vehicle to perform a lane changing.
  • the target lane is highlighted in the navigation screen, for example, highlighted in red, to remind the driver: "The vehicle cannot make a lane change to the target lane now”.
  • a dotted line is used to highlight the lane line between the current lane and the target lane to remind the driver: "The vehicle regards the lane line between the current lane and the target lane as a dotted lane line”. It can be the same color (red) as the target lane is displayed at this time.
  • the highlighting manner of the target lane and the lane line between the target lane and the current lane in S312 is the same as that in S302.
  • the road changing condition parameter is adjusted to be more easily satisfied than the usual case (eg, the case in S108 ), as shown in S310 in FIG. 8 , when there is a small inter-vehicle distance (gap) on the target lane, the automatic The vehicle can then perform an automatic lane change and insert into the convoy in the target lane.
  • the target lane and the lane line between the target lane and the current lane are highlighted in the same manner as in S310.
  • S124 it is determined whether the conditions for automatically returning to the current lane are met, that is, it is determined whether the road conditions of the current lane allow the ego vehicle to return to the current lane for normal driving.
  • S124 and subsequent S126, S128, and S130 are the same as those in the above-described embodiment, and detailed descriptions thereof are omitted here.
  • the road changing condition condition parameter here indicates the road condition that the target lane should meet when the self-vehicle performs an automatic lane change, that is, when the road condition of the target lane meets the road condition indicated by the road changing condition parameter, the self-vehicle is allowed to automatically change lanes.
  • the nervous vehicle will automatically change lanes.
  • the parameters of the changing road conditions are adjusted.
  • the condition parameters of the changing road conditions are also adjusted, that is, the adjustment of the condition parameters of the changing road conditions does not require knowing the type of the lane line as a precondition.
  • the present embodiment also provides a vehicle control device, which is applied to the vehicle 100 and used to execute the above-mentioned vehicle control method.
  • FIG. 9 shows a schematic block diagram of the structure of the vehicle control device. The difference from FIG. 7 is that the control module of the vehicle control device 10 in this embodiment also has a road change condition parameter adjustment unit 13d, which uses The other structures are the same as those in FIG. 7 for performing the adjustment of the parameters of the changing road conditions mentioned in the description of S302, and the repeated description thereof is omitted here.
  • the processing in S100 to S130, S200, S206, S302 to S318 is mainly performed by the control module 13, and the information required for execution is correspondingly obtained by the operation detection module 11, the switch state acquisition module 12, and the lane line type.
  • the module 14 and the road condition obtaining module 15 obtain.
  • this embodiment also provides a computer program, a computer-readable storage medium, and a computing device, the computing device has a processor and a computer-readable storage medium, and the computer-readable storage medium stores a computer program (program instruction), and the program instruction is stored by a computer When executed by the (processor), the processes in the above-described S100 to S130, S200, S206, S302 to S318 are executed.

Abstract

一种车辆控制方法及装置10、车辆100。其中,车辆100上具有跨实线变道许可开关16,在该跨实线变道许可开关16打开的状态下,当驾驶员将转向灯开关切换到使左转向灯或右转向灯开启的状态时,可以使车辆100跨实线变道。

Description

车辆控制方法及装置、车辆 技术领域
本申请涉及自动驾驶技术,特别涉及一种车辆控制方法及装置、车辆。
背景技术
随着人工智能技术的发展,自动驾驶技术正在逐渐广泛地被应用,从而降低了驾驶员的驾驶负担。关于自动驾驶,例如国际自动机工程师学会(SAE International)提出了5个等级,即L1-L5级,其中,L1级,辅助驾驶,能够帮助驾驶员完成某些驾驶任务,且只能帮助完成一项驾驶操作;L2级,部分自动化,可以同时自动进行加减速和转向的操作;L3级,条件自动化,车辆在特定环境中可以实现自动加减速和转向,不需要驾驶者的操作;L4级,高度自动化,可以实现驾驶全程不需要驾驶员,但是会有限制条件,例如限制车辆车速不能超过一定值,且驾驶区域相对固定;L5级,完全自动化,完全自适应驾驶,适应任何驾驶场景。
这些等级越高,表示自动驾驶功能也越强大。但是目前的技术对于高等级的自动驾驶还没有完全实现。具体而言,例如实际情况中的交通场景是非常复杂的,而目前的自动驾驶技术还有许多场景没有充分考虑到,与人类的驾驶能力相比,还远远不够灵活。也就是说,在适应多种交通场景的灵活性方面,自动驾驶技术还存在改进的余地。
发明内容
本申请提供一种车辆控制方法及装置、车辆等,能够提高自动驾驶的灵活性。
本申请第一方面提供一种车辆控制方法,包括:检测车辆的驾驶员的第一操作,第一操作用于命令车辆由当前车道向目标车道进行变道;获取车辆的跨实线变道许可开关的状态信息;当检测到第一操作并且状态信息指示跨实线变道许可开关处于打开状态时,执行第一控制,第一控制包括使车辆进行变道。
这里,跨实线变道的含义是跨实线车道线进行变道。关于跨实线变道许可开关,如其名字所示的,在其被打开时,车辆的跨实线变道成为可能,在其被关闭时,车辆的跨实线变道被禁止。
采用如上所述的车辆控制方法,当检测到驾驶员的第一操作并且跨实线变道许可开关处于打开状态时,使车辆进行自动变道。如此,例如在紧急避险等情况下自车辆能够进行跨实线变道,避免机械地按照“禁止跨实线变道”规则行驶造成事故或不便,从而能够提高自动驾驶控制的灵活性。
另外,该变道由驾驶员(人)的操作来触发,从而保持人的控制为最高优先级,维护人的主观介入权限,让自动驾驶技术更好地服务于人;而且,将变道的最高判断权保留给驾驶员,能够弥补自动驾驶技术对于驾驶员情感的判断缺失以及更好地满足不同驾驶员的个性化需求,尊重驾驶员的驾驶意图。
作为第一方面的一种可能的实现方式,车辆控制方法还包括:获取当前车道与目标车道间的车道线的类型信息;当类型信息指示车道线为实线车道线时,第一控制还包括发出用于指示车道线为实线车道线的提示。
采用如上方式,由于在车道线为实线车道线时发出提示,从而能够警示驾驶员提高注意力,抑制误操作造成行车危险的可能性。
该提示例如包括音效提示、显示文字提示和/或语音提示。
作为第一方面的一种可能的实现方式,第一控制包括:在从检测到第一操作开始经过预设时间后,使车辆进行变道。
采用如上方式,由于在经过预设时间后使车辆进行变道,因而,能够给驾驶员留有取消变道的时间,抑制误操作造成行车危险的可能性。
另外,作为第一方面的一种可能的实现方式,第一控制包括:在预设时间内,当再次检测到第一操作时,使车辆进行变道。
采用如上方式,驾驶员再次进行第一操作,可以认为是要求车辆进行变道的意图强烈,此时,不再等待预设时间的经过而进行自动变道,从而能够执行更加符合乘员意图的控制。
作为第一方面的一种可能的实现方式,第一控制还包括调整变道路况条件参数,变道路况条件参数指示车辆进行变道时目标车道的路况应满足的条件,其中,调整后的变道路况条件参数相比于调整前更容易被满足;车辆控制方法还包括:获取目标车道的路况信息;当路况信息所指示的路况满足调整后的变道路况条件参数所指示的条件时,使车辆进行变道。
采用如上方式,乘员要求进行变道,可以认为乘员对变道的要求较为迫切,因而,通过调整变道路况条件参数使变道路况条件更容易得到满足(降低路况要求),使车辆更容易实现变道,从而能够更加适当地响应乘员的要求。
作为第一方面的一种可能的实现方式,第一操作为将转向灯开关切换到使左转向灯或右转向灯开启的状态。
采用如上方式,将转向灯开关的打开操作设定为发出变道指令的触发操作,从而与驾驶员进行人工驾驶时的转向操作行为相一致,避免新定义其他操作时使驾驶员感到操作复杂,或者在慌乱时产生误操作。
本申请第二方面提供一种车辆控制装置,包括:操作检测模块,用于检测车辆的驾驶员的第一操作,第一操作用于命令车辆由当前车道向目标车道进行变道;开关状态获取模块,用于获取车辆的跨实线变道许可开关的状态信息;控制模块,用于当检测到第一操作并且状态信息指示跨实线变道许可开关处于打开状态时,执行第一控制,第一控制包括使车辆进行变道。
采用如上所述的车辆控制装置,当检测到驾驶员的第一操作并且跨实线变道许可开关处于打开状态时,使车辆进行变道。如此,例如在紧急避险等情况下自车辆能够进行跨实线变道,避免机械地按照“禁止跨实线变道”规则行驶造成事故或不便,从而能够提高自动驾驶控制的灵活性。
作为第二方面的一个可能的实现方式,车辆控制装置还包括车道线类型获取模块,用于获取当前车道与目标车道间的车道线的类型信息;当类型信息指示车道线为实线 车道线时,第一控制还包括发出用于指示车道线为实线车道线的提示。
采用如上方式,由于在车道线为实线车道线时发出提示,从而能够警示驾驶员提高注意力,抑制误操作造成行车危险的可能性。
作为第二方面的一种可能的实现方式,该提示包括音效提示、显示文字提示和/或语音提示。
作为第二方面的一种可能的实现方式,在从操作检测模块检测到第一操作开始经过预设时间后,控制模块使车辆进行变道。
采用如上方式,由于在经过预设时间后使车辆进行变道,因而,能够给驾驶员留有取消变道的时间,抑制误操作造成行车危险的可能性。
作为第二方面的一种可能的实现方式,在预设时间内,当操作检测模块再次检测到第一操作时,控制模块使车辆进行变道。
采用如上方式,驾驶员再次进行第一操作,可以认为是要求车辆进行变道的意图强烈,此时,不再等待预设时间的经过而进行变道,从而能够执行更加符合乘员意图的控制。
作为第二方面的一种可能的实现方式,控制模块执行的第一控制还包括调整变道路况条件参数,变道路况条件参数指示车辆进行变道时目标车道的路况应满足的条件,其中,调整后的变道路况条件参数相比于调整前更容易被满足;车辆控制装置还包括路况获取模块,路况获取模块用于获取目标车道的路况信息;当路况信息所指示的路况满足调整后的变道路况条件参数所指示的条件时,控制模块执行使车辆进行变道的控制。
采用如上方式,乘员要求进行变道,可以认为乘员对变道的要求较为迫切,因而,通过调整变道路况条件参数使变道路况条件更容易得到满足(降低路况要求),使车辆更容易实现变道,从而能够更加适当地响应乘员的要求。
作为第二方面的一种可能的实现方式,第一操作为将转向灯开关切换到使左转向灯或右转向灯开启的状态。
采用如上方式,将转向灯开关的打开操作设定为发出变道指令的触发操作,从而与驾驶员进行人工驾驶时的转向操作行为相一致,避免新定义其他操作时使驾驶员感到操作复杂,或者在慌乱时产生误操作。
本申请第三方面提供一种车辆,包括上述任一结构的车辆控制装置。
采用这样的车辆,当检测到驾驶员的第一操作并且跨实线变道许可开关处于打开状态时,使车辆进行变道。如此,例如在紧急避险等情况下自车辆能够进行跨实线变道,避免机械地按照“禁止跨实线变道”规则行驶造成事故或不便,从而能够提高自动驾驶控制的灵活性。
作为第三方面的一种可能的实现方式,该车辆为特种车辆,特种车辆包括救护车、消防车、警车或工程抢险车。
对于特种车辆而言,相比于家用车辆等而言,跨实线变道的情况较多,因此适用于这些车辆更能够体现自动驾驶控制的灵活性。
本申请第四方面提供一种计算机可读存储介质,其上存储有程序指令,其特征在于,程序指令当被计算机执行时使得计算机执行上述任一种的车辆控制方法。
本申请的这些和其它方面在以下(多个)实施例的描述中会更加简明易懂。
附图说明
以下参照附图来进一步说明本申请的各个特征和各个特征之间的联系。附图均为示例性的,一些特征并不以实际比例示出,并且一些附图中可能省略了本申请所涉及领域的惯常的且对于本申请非必要的特征,或是额外示出了对于本申请非必要的特征,附图所示的各个特征的组合并不用以限制本申请。另外,在本说明书全文中,相同的附图标记所指代的内容也是相同的。具体的附图说明如下:
图1为本申请的一个应用场景例的示意图;
图2为本申请的另一个应用场景例的示意图;
图3为本申请的又一个应用场景例的示意图;
图4为本申请一个实施方式中涉及的自动变道的示意流程图;
图5为本申请一个实施方式中涉及的跨实线变道许可开关的示意说明图;
图6为本申请一个实施方式中涉及的车载显示器上的显示画面例的示意说明图;
图7为本申请一个实施方式中涉及的车辆的控制装置的结构示意框图;
图8为本申请一个实施方式中涉及的自动变道的示意流程图;
图9为本申请一个实施方式中涉及的车辆的控制装置的结构示意框图;
图10为本申请实施方式中涉及的车辆的结构示意框图。
具体实施方式
首先对本申请的一些应用场景例进行说明。
图1所示为本申请的一个应用场景例。如图1所示,车辆101行驶在高速公路的匝道口附近,驾驶员意图从匝道口驶出高速公路,然而,车辆101即将错过匝道口,此时,驾驶员希望车辆101执行跨实线变道而驶入匝道口。
图2所示为本申请的另一个应用场景例。如图2所示,在车辆102的前方存在急刹车的车辆103,车辆102即将撞上车辆103,此时,车辆102的驾驶员希望车辆102执行跨实线变道而驶入其当前车道的左侧车道以避免与车辆103发生碰撞。
图3所示为本申请的又一个应用场景例。如图3所示,在拥挤的道路上行驶有救护车104,为了给救护车104让路,车辆105的驾驶员希望车辆105跨实线变道而驶入其当前车道的右侧车道。另外,除了救护车之外,特种车辆还有消防车、警车、工程抢险车等,在道路上行驶时,会遇到给这些特殊车辆让路的情况。另外,对于这些特种车辆本身,也存在跨实线变道的需求。
如上,在实际情况中,存在很多需要跨越实线进行变道的需求,响应这些需求,本申请提供一种能够使车辆在自动驾驶模式下执行跨实线变道的技术,以提高自动驾驶的场景覆盖范围,提高自动驾驶的灵活性,更加良好地适应驾驶员的意图或者个性化需求。
具体而言,本申请主要提供一种车辆控制方法、车辆控制装置、车辆、计算机程序、计算机可读存储介质与计算设备。
接下来对具有自动驾驶模式的车辆的一般结构进行描述。图10为本申请实施方 式中涉及的一种具有自动驾驶模式的车辆的结构示意框图。
如图10所示,车辆100具有控制装置10、摄像头20、通信装置30、导航装置40、动力系统50、转向系统60、制动系统70。另外,车辆100还具有转向拨杆(转向灯开关),该转向拨杆具有三个状态,即使右转向灯开启的状态、关闭状态(中立位置)与使左转向灯开启的状态。另外,车辆100还具有这些结构要素以外的结构要素,但在此省略说明。
摄像头20用于检测车外环境,数量可以是一个也可以是多个。该摄像头20是外部环境传感器的一个例子,除此之外,还可以设置激光雷达、毫米波雷达等来检测车外环境。
通信装置30能够与未图示的外部对象之间进行无线通信。外部对象例如可以包括未图示的基站、云端服务器、移动终端(智能手机等)、路侧设备、其他车辆等。
导航装置40典型地具有未图示的GNSS(全球导航卫星系统,Global Navigation Satellite System)接收机和地图数据库。导航装置40能够通过GNSS接收机接收到的卫星信号来确定车辆100的位置,且能够根据地图数据库中的地图信息生成到达目的地的路径,并将关于该路径的信息提供给控制装置10。另外,导航装置40还可以具有IMU(Inertial Measurement Unit,惯性测量装置),通过融合GNSS接收机的信息和IMU的信息来进行定位。
动力系统50具有未图示的驱动ECU和未图示驱动源。驱动ECU通过控制驱动源来控制车辆100的驱动力(扭矩)。作为驱动源的例子,可以是发动机、驱动电机等。驱动ECU能够根据驾驶员对加速踏板的操作来控制驱动源,从而能够控制驱动力。另外,驱动ECU还能够根据从车辆控制装置10发送来的指令来控制驱动源,从而能够控制驱动力。驱动源的驱动力经由未图示的变速器等传递给未图示的车轮,从而驱动车辆100行驶。
转向系统60具有未图示的转向ECU即EPS(Electric Power Steering,电动助力转向系统)ECU和未图示的EPS电机。转向ECU能够根据驾驶员对方向盘的操作来控制EPS电机,从而控制车轮(具体而言是转向轮)的朝向。另外,转向ECU还能够根据从车辆控制装置10发送来的指令控制EPS电机,从而控制车轮的朝向。另外,也可以通过改变对左右车轮的扭矩分配或制动力分配来进行转向操纵。
制动系统70具有未图示的制动ECU和未图示的制动机构。制动机构通过制动电机、液压机构等使制动部件进行工作。制动ECU能够根据驾驶员对制动踏板的操作来控制制动机构,从而能够控制制动力。另外,制动ECU还能够根据从车辆控制装置10发送来的指令控制制动机构,从而能够控制制动力。在车辆100是电动车辆或者混合动力车辆的情况下,制动系统70还可以包括能量回收制动机构。
车辆控制装置10可以由一个ECU(Electronic Control Unit,电控单元)实现,也可以由多个ECU组合实现,ECU是包括通过内部总线连接的处理器、存储器和通信接口的计算设备,在存储器中存储有程序指令,该程序指令当被处理器执行时发挥相应的功能模块和功能单元的作用。这些功能模块和功能单元包括控制模块13以及后面详细描述的操作检测模块11、开关状态获取模块12、车道线类型获取模块14、路况获取模块15(图7、图9)等,其中,控制模块13还可以包括行动计划单元13a、行驶 控制单元13b、提示单元13c(图7)、变道路况条件参数调整单元13d(图9)等。
即,车辆控制装置10通过由处理器来执行程序(软件)来实现这些功能模块和/或功能单元,然而,车辆控制装置10也可以通过LSI(Large Scale Integration,大规模集成电路)和ASIC(Application Specific Integrated Circuit,专用集成电路)等硬件来实现这些功能模块和/或功能单元的全部或一部分,或者还可以通过软件和硬件的组合来来实现这些功能模块和/或功能单元的全部或一部分。
另外,控制模块13用于控制车辆100自主行驶(自主移动)等,其包括行动计划单元13a与行驶控制单元13b。
行动计划单元13a用于计算车辆100到目的地的目标轨迹,并且,根据摄像头20等光学传感器检测到的外部环境信息,判断车辆100的行驶状况,更新目标轨迹来决定车辆100的各种行动。上述导航装置40计算出的路径是粗略的路径。与此相对,行动计划单元13a计算出的目标轨迹除了导航装置40计算出的粗略的路径之外,还包括用于控制车辆100的加速、减速和转向的比较细致的内容。
行驶控制单元13b根据行动计划单元13a提供的行动计划,生成用于发送给动力系统50、转向系统60和制动系统70的控制指令,以能够控制动力系统50、转向系统60和制动系统70,而使车辆100按照行动计划行驶。
通过具有上述结构,车辆100能够实现导航巡航辅助(Navigation Cruise Assistant,NCA)、智能巡航辅助(Intelligent Cruise Assistant,ICA)等自动驾驶模式,在自动驾驶模式下进行自主行驶。本申请实施方式中的车辆控制方法与车辆控制装置等可以实现于自动驾驶等级在L2-L5的自动驾驶车辆上。
下面参照图4-图7对本申请的一个实施方式涉及的车辆控制方法等进行详细描述。
本实施方式涉及自车辆处于自动驾驶模式下时关于自动变道的车辆控制方法,该车辆控制方法应用在上述自动驾驶车辆(在下面将其称之为自车辆)中。
这里的自动驾驶模式例如有ICA模式与NCA模式,二者同属于自动驾驶模式的一种,主要区别在于,通常,在NCA模式下,自车辆按照导航路径行驶,因此存在自动变道的情况,而在ICA模式下,如果不存在驾驶员如后面所描述的那样主动发出的自动变道指令的话,车辆一般不会进行自动变道。
另外,除了ICA模式与NCA模式之外,本实施方式的车辆控制方法还可以适用于其他自动驾驶模式。
在本实施方式中,当自车辆处于ICA模式或NCA模式等自动驾驶模式下时,在车载显示器上同时显示导航画面,在导航画面中示意性地显示自车辆行驶在道路上的情景。作为其他实施方式,也可以不显示导航画面,或者由驾驶员选择是否显示导航画面。另外,在本实施方式中,以道路包括3条车道,中间车道为自车辆所行驶的当前车道,右侧车道为自车辆意图驶入的目标车道为例进行描述。
本实施方式中描述的NCA模式下的变道流程与ICA模式下的变道流程是相同的,二者主要区别在于导航画面的显示内容有所不同。具体而言,如图所示,在NCA模式下,在导航画面中,在自车辆前显示指示线,该指示线表示导航路径,而在ICA模式下,并不显示该指示线。
下面以NCA模式为例,对本实施方式的变道处理流程进行详细描述。
在S100中,在NCA模式下,获取驾驶员主动发出的自动变道指令。这里,关于驾驶员主动发出自动变道指令,例如,驾驶员手动拨动转向拨杆(即转向灯开关),将其切换到使右转向灯开启(闪烁)的状态。此时,控制装置获得表示转向拨杆处于该状态的信号,即接收到驾驶员主动发出的自动变道指令。这里,驾驶员手动拨动转向拨杆将其切换为使右转向灯开启与左转向灯开启的状态的操作被定义为发出自动变道指令,用于命令自车辆由当前车道向目标车道进行变道。
之后,在S102中,判断是否满足变道车道条件,具体而言,根据车辆行驶的当前车道与意图驶入的目标车道间的车道线的类型信息确定该车道线是实线车道线还是虚线车道线,当为实线车道线时,在交通规则上,通常禁止车辆向目标车道变道,此时判断为不满足变道车道条件;当为虚线车道线时,在交通规则上,允许车辆向目标车道变道,此时判断为满足变道车道条件。
这里,按照交通规则,实线车道线为禁止变道标识,即,按照交通法规的规定,禁止车辆跨越实线车道线进行变道。当前车道与目标车道间的车道线的类型信息例如可以从电子地图数据中获取,或者也可以根据车辆具备的摄像头拍摄到的图像数据来获取。另外,实际情况中,车道线可能是一条实线和一条与其平行的虚线组成的标线,此时,如果当前车道侧为实线、目标车道侧为虚线,则这种车道线属于本申请中所述的实线车道线,而如果当前车道侧为虚线、目标车道侧为实线,则这种车道线不属于本申请中所述的实线车道线。
再者,作为禁止变道标识,除了车道线标识之外,还存在路边标识牌(例如禁止超车标识牌),因此,可以通过对路边标识牌的检测来获知当前车道与目标车道间的车道线的类型(特别是例如在下雪时难以根据摄像头拍摄到的路面图像数据来检测车道线的情况下)。故而,本申请中所述的“车道线的类型信息”包括能够指示车道线类型的路边标识牌信息。
在S102中的判断结果为“否”时,即不满足变道车道条件时,在S106中,判断当前车道与目标车道间的车道线是否为长实线车道线。也就是判断实线车道线是否向车辆前方延伸规定距离以上。如果没有延伸规定距离以上,意味着前方不远处存在虚线车道线。当S106中的判断结果为“否”,即当前车道与目标车道间的车道线不是长实线车道线时,执行S104中的处理,进行变道等待。
另外,在S106中的判断结果为“是”时,即当前车道与目标车道间的车道线为长实线车道线时,在S200中,判断跨实线变道许可开关是否为打开状态。具体而言,即,获取跨实线变道许可开关的状态信息,根据该状态信息判断跨实线变道许可开关是否为打开状态。这里,如其名字所示的含义,跨实线变道许可开关用于许可和禁止车辆进行跨实线变道,其打开状态表示许可车辆进行跨实线变道,即车辆跨实线变道成为可能状态,关闭状态表示禁止车辆进行跨实线变道。在本实施方式中,该跨实线变道许可开关是虚拟开关,集成在车辆控制装置中,作为其他实施方式,也可以是实体开关,例如设置在仪表板上。另外,该跨实线变道许可开关可以是专用开关,也可以是多用开关。这里,专用开关的意思是跨实线变道许可开关仅具有许可和禁止车辆跨越实线车道线进行变道的功能,多用开关的意思是还具有其他功能,例如,许可和 禁止车辆超过车道限速行驶的功能,也就是说,当该开关打开时,许可车辆跨越实线车道线进行变道以及超过车道限速行驶,当该开关关闭时,禁止车辆跨越实线车道线进行变道以及超过车道限速行驶。
图5中示出了该跨实线变道许可开关的一个例子(本实施方式)。
如图5所示,在该例子中,跨实线变道许可开关为虚拟开关,且其名字被显示为“强制变道”,但是这不改变其实质功能。另外,在该例子中,该跨实线变道许可开关16在自动驾驶模式(图中具体为NCA模式)设定界面18中与其他开关等一起显示,当驾驶员点击跨实线变道许可开关16而意图将其打开时,弹出询问驾驶员是否确认开启的确认界面19,并且,在该确认界面中同时显示免责声明,告知驾驶员点击确认按钮的话则意味着同时签署该免责声明。
在S200中的判断结果为“否”时,即跨实线变道许可开关为关闭状态时,在S206中,向驾驶员发出提示,以告知驾驶员不能执行变道。作为该提示的具体例子,在本实施方式中,使目标车道的车道线突出显示,例如以红色进行高亮显示,并闪烁,同时还可以通过自车辆的扬声器发出语音提示。在从发出该信息开始经过预设时间(例如3秒)后,或者在从获取到来自驾驶员的自动变道指令开始经过预设时间后,在S208中,执行通常的NCA控制。
另外,在S200中的判断结果为“是”时,即跨实线变道许可开关为打开状态时,在S202中,执行变道准备控制。例如,在导航画面中使目标车道的车道线突出显示,例如以红色进行高亮显示,以提示驾驶员自车辆将要执行跨实线变道。另外,还可以发出音效提示,例如通过扬声器发出“嘟嘟”的声音。发出这些用于指示车道线为实线车道线的提示的控制是本申请中的第一控制的一例。
另外,在S202中还通过文字有和/或语音的方式告知驾驶员可以执行取消跨实线变道的操作,该操作例如是反向拨动转向拨杆,即,使转向拨杆切换到使右转向灯关闭的状态。发出用于“告知驾驶员可以执行取消跨实线变道的操作”的提示的控制是本申请中的第一控制的一例。
之后,在S204中,判断是否满足变道路况条件,即判断当前车道与目标车道的路况条件是否允许自车辆进行变道。例如,当目标车道上的预设范围内不存在其他车辆时,判断为满足变道路况条件;当目标车道上预设范围内存在其他车辆时(例如可参见S212中所示的“目标车道上存在与自车辆并行的其他车辆”情况),判断为不满足变道路况条件。这里的预设范围是本申请中的变道路况条件参数的一例。
当S204中的判断结果为“否”时,即不满足变道路况条件时,在S212中,执行等待控制,以等待目标车道的路况条件变化为能够允许自车辆执行变道的情况。另外,在导航画面中使目标车道突出显示,例如以红色高亮显示,以提示驾驶员:“车辆现在不能向目标车道进行变道”。另外,在导航画面中,还用虚线来突出显示当前车道与目标车道间的车道线,以提示驾驶员:“车辆将当前车道与目标车道间的车道线看做虚线车道线”。其颜色可以与目标车道此时的显示颜色相同(红色)。这里的“用虚线来突出显示当前车道与目标车道间的车道线”的具体方式可以是使原本显示为实线的车道线变成虚线,也可以是在实线的基础上叠加不同颜色和/或较粗的虚线。
另外,在导航画面中,还在目标车道上显示自车辆的目标位置(即自车辆完成变 道时在目标车道上的位置),并且在该目标位置上显示阴影线,以提示驾驶员自车辆目前不能向此目标位置进行变道。该S212中的处理与S112相同,后续的处理也相同,具体将在后面进行描述。
当S204中的判断结果为“是”时,即满足变道路况条件时,并且在预设时间(例如5秒)内驾驶员没有执行取消跨实线变道的操作或者在预设时间(例如5秒)内驾驶员将转向拨杆复位(关闭转向灯开关)后再次同向拨动转向拨杆时,在S210中,执行使自车辆自动跨实线变道的控制,即通过控制油门踏板和方向盘等来使自车辆向目标车道驶入。这里的预设时间可以从接收到来源于驾驶员的自动变道指令起算。通过在经过预设时间后才执行使自车辆自动跨实线变道的控制,从而能够给驾驶员进行取消操作留有时间。另外,当驾驶员将转向拨杆复位后再次同向拨动转向拨杆时,可以认为是驾驶员在催促车辆迅速执行自动变道,此时属于紧急情况的可能性很高,因而,在此时立即执行自动跨实线变道的控制而不再等待预设时间的经过,能够执行更加符合驾驶员意图的控制。另外,这里的“使自车辆自动跨实线变道的控制”是本申请中的第一控制的一例。
另外,在S210中,还在导航画面中突出显示目标车道,可以用与不满足变道路况条件时不同的颜色例如蓝色进行高亮显示,以提示驾驶员:“车辆将要向目标车道进行变道”。另外,在导航画面中,用虚线突出显示当前车道与目标车道间的车道线,以提示驾驶员:“车辆将当前车道与目标车道间的车道线看做是虚线车道线”。其颜色可以与目标车道此时的显示颜色相同(蓝色)。
另外,还在目标车道上显示自车辆的目标位置(即自车辆完成变道时在目标车道上的位置),该目标位置的显示中不包括S212中上述的“阴影线”,即显示方式不同于S212,以提示驾驶员自车辆此时可以向此目标位置进行变道。
另外,在S210中,还可以例如通过在导航画面上显示提示文字以告知驾驶员可以通过预设操作取消此次变道。或者在即将开始执行使自车辆跨实线变道的控制时,显示该提示文字。另外,还可以通过语音的方式发出该提示。该预设操作例如是反向拨动转向开关。并且,当驾驶员执行了该预设操作时,取消此次自动变道控制,不过,该处理步骤没有在图中绘出。
图6中示出了此时的一个导航画面例。如图6所示,在导航画面200中,右侧显示地图501,左侧示意性地显示了自车辆100所行驶的道路场景,其中,当前车道为201,左侧车道为203,右侧车道即目标车道为202,目标车道202还被突出显示,且在目标车道202上显示自车辆100的目标位置401。另外,在显示画面的左侧部分上部还显示有表示此时为右转向的转向指示箭头301,该转向指示箭头301闪烁显示。另外,在导航画面200的文字提示区域204显示文字“即将强制变道”,以提示驾驶员自100将要进行跨实线变道,同时还显示文字“反向拨杆可撤销”,以提示驾驶员可以通过对转向拨杆进行反向操作取消该跨实线变道。
在S214中,实时判断(监视)目标车道的路况是否满足变道条件。例如,当目标车道上的预设范围内不存在其他车辆时,判断为满足变道条件;当目标车道上预设范围内存在其他车辆时(例如可参见S218中所示的“在自车辆变道的过程中目标车道上出现紧随在自车辆后方行驶的其他车辆”情况),判断为不满足变道条件。
当S214中的判断结果为“是”时,继续执行使自车辆跨实线变道的控制,直至S216中的完成变道。另外,在S216中,当完成自动变道时,突出显示目标车道的两侧车道线,例如以上述蓝色进行显示。
当S214中的判断结果为“否”时,在S218中确定为“变道过程中受阻”,停止执行使自车辆跨实线变道的控制。此时,导航画面的显示方式与S212中的显示方式相同。
之后,在S124中,判断是否满足自动退回当前车道的条件,即判断当前车道的路况是否允许自车辆返回当前车道进行正常行驶。例如,在当前车道的预设范围内不存在其他车辆时,判断为满足自动退回当前车道的条件。此时,在S126中,确定为“变道取消”,并执行使自车辆退回当前车道行驶的控制。
另外,参照S128中的画面,当自车辆在横向上移动到当前车道与目标车道之间而压实线车道线行驶时,有左侧车道上的其他车辆向自车辆的当前车道变道而阻碍了自车辆退回当前车道行驶,此时,在S124中判断为不满足自动退回当前车道的条件。当在S124中判断为不满足自动退回当前车道的条件时,在S128中,通过音效、文字和/或语音的方式向驾驶员发出提示,告知驾驶员应接管自车辆。之后,在S130中,当驾驶员通过操作方向盘等方式接管车辆时,自车辆按照驾驶员的操作进行行驶等。
采用如上的本实施方式,当接收到因驾驶员的操作而产生的自动变道指令(S100),并且跨实线变道许可开关处于打开状态时,执行使自车辆进行变道的控制。由此,例如在紧急避险等情况下自车辆能够进行跨实线变道,避免机械地按照“禁止跨实线变道”规则行驶造成事故或不便,从而能够提高自动驾驶控制的灵活性。另外,该自动变道由驾驶员(人)的操作来触发,从而保持人的控制为最高优先级,维护人的主观介入权限,让自动驾驶技术更好地服务于人;而且,将变道的最高判断权保留给驾驶员,能够弥补自动驾驶技术对于驾驶员情感的判断缺失以及更好地满足不同驾驶员的个性化需求,尊重驾驶员的驾驶意图。
“自动变道”的含义是车辆以自动驾驶模式进行的变道,变道时的加减速指令和转向指令等不是源于驾驶员对油门踏板、制动踏板和方向盘的操作,而是源于车辆控制装置的自主决策。
上面主要描述了当前车道与目标车道间的车道线为实线车道线时的处理流程,下面描述该车道线为虚线车道线时的处理流程。
当S102中的判断结果为“是”,即满足变道车道条件时,或者,当S106中的判断结果为“否”,即当前车道与目标车道间的车道线不是实线车道线(是虚线车道线)时,在S104中,进行变道等待。之后,在S108中,判断是否满足变道路况条件。例如,当目标车道上的预设范围内不存在其他车辆时,判断为满足变道路况条件;当目标车道上预设范围内存在其他车辆时(例如可参见S112中所示的“目标车道上存在与自车辆并行的其他车辆”情况),判断为不满足变道路况条件。
当S108中的判断结果为“否”时,即不满足变道路况条件时,在S112中,执行等待控制,以等待目标车道的路况条件变化为能够允许自车辆执行变道的情况。。另外,还在导航画面中突出显示目标车道,例如以红色高亮显示,其中,当前车道与目标车道间的车道线以虚线显示,其颜色可以与目标车道的显示颜色相同。另外,还在目标车道上显示自车辆的目标位置,并且在该目标位置上显示阴影线,以提示驾驶员自车 辆目前不能向此目标位置进行变道。
之后,在S116中,判断是否满足变道路况条件,即判断当前车道与目标车道的路况条件是否允许自车辆进行变道。当S116中的判断结果为“是”时,即路况条件允许自车辆进行变道时,执行S110中的处理,具体在后面描述。当S116中的判断结果为“否”时,即路况条件不允许自车辆进行变道时,执行S120中的处理。在S120中,因长时间无法进行变道,因而确定为“变道取消”,放弃本次变道,并且,可以向驾驶员发出提示,例如,使当前车道的车道线被突出显示,例如以蓝色突出显示当前车道的两侧车道线。
当S108中的判断结果为“是”时,即满足变道路况条件时,在S110中,执行使自车辆跨实线变道的控制,即通过控制油门踏板和方向盘等来使自车辆向目标车道驶入。另外,还在导航画面中突出显示目标车道,可以用与不满足变道路况条件时不同的颜色例如蓝色进行高亮显示,其中,当前车道与目标车道间的车道线以虚线显示,其颜色可以与目标车道的显示颜色相同。另外,还在目标车道上显示自车辆的目标位置,该目标位置的显示中不包括S112中所述的“阴影线”,即显示方式不同于S112,以提示驾驶员自车辆此时可以向此目标位置进行变道。
在S114中,判断(监视)目标车道的路况是否满足变道条件。例如,当目标车道上的预设范围内不存在其他车辆时,判断为满足变道条件;当目标车道上预设范围内存在其他车辆时(例如可参见S122中所示的“在自车辆变道的过程中目标车道上出现紧随在自车辆后方行驶的其他车辆”情况),判断为不满足变道条件。
当S114中的判断结果为“是”时,继续执行使自车辆跨实线变道的控制,直至S118中的完成变道。另外,在S118中,当完成自动变道时,突出显示目标车道的两侧车道线,例如以上述蓝色进行显示。
当S114中的判断结果为“否”时,在S122中确定为“变道过程中受阻”,停止执行使自车辆跨实线变道的控制。此时,导航画面的显示方式与S212中的显示方式相同。之后,执行S124中的处理,由于上面已经对S124中的处理以及其后的处理进行了描述,因而这里不再重复描述。
在上面的描述中,驾驶员通过拨动转向拨杆(转向灯开关)来发出自动变道指令,然而,本申请并不限于此,例如还可以通过隔空手势操作或者语音操作等方式来发出自动变道指令。这里的驾驶员使转向灯开关切换为打开的操作、隔空操作、语音操作对应于本申请中的第一操作。
另外,在上面的描述中,在S102和S106中判断当前车道与目标车道间的车道线的类型是实线车道线还是虚线车道线,根据车道线类型的不同执行不同的控制,然而,本申请并不限于此,例如可以省略S102与S106的处理,不区分实线车道线与虚线车道线,也就是不论当前车道与目标车道间的车道线的类型是实线车道线还是虚线车道线,在跨实线变道许可开关打开的情况下,都视为虚线车道线。
本实施方式还提供一种车辆控制装置,该车辆控制装置用于执行上述车辆控制方法。如图7所示,该车辆控制装置10具有操作检测模块11、开关状态获取模块12、控制模块13、车道线类型获取模块14、路况获取模块15与跨实线变道许可开关16,这些模块可以由硬件实现也可以由软件实现,具体方式在上面已经进行了描述,这里 不再重复描述。
操作检测模块11通过获取转向拨杆的开关信号来检测驾驶员的操作,该操作用于发出自动变道指令,以命令自车辆100由当前车道向目标车道进行自动变道。
在本实施方式中,跨实线变道许可开关16为虚拟开关,集成在控制装置10中,其实例可以参见图5。
开关状态获取模块12用于检测跨实线变道许可开关16的状态信息,该状态信息指示跨实线变道许可开关16处于打开状态或关闭状态。
控制模块13具有上述行动计划单元13a、上述行驶控制单元13b与提示单元13c。行动计划单元13a与行驶控制单元13b在上面已经进行了描述,这里不再重复描述。提示单元13c用于控制各种提示的发出,包括前面描述的音效提示、显示文字提示、显示画面提示与语音提示等。
车道线类型获取模块14用于获取当前车道与目标车道间的车道线的类型信息,该类型信息例如根据摄像头20拍摄到的路面图像的处理结果得到。
路况获取模块15用于获取目标车道的路况信息,该路况信息例如根据摄像头20拍摄到的图像的处理结果得到。
上述控制方法中,S100至S130、S200至S218中的处理主要由控制模块13执行,执行时所需的信息相应地由操作检测模块11、开关状态获取模块12、车道线类型获取模块14与路况获取模块15获取。
另外,本实施方式还提供计算机程序、计算机可读存储介质与计算设备,计算设备具有处理器与计算机可读存储介质,计算机可读存储介质中存储有计算机程序(程序指令),程序指令被计算机(处理器)执行时,执行上述S100至S130、S200至S218中的处理。
再者,本实施方式还提供具有上述车辆控制装置的车辆,该车辆可以是家用轿车或载货汽车等,还可以是特种车辆例如救护车、消防车、警车或工程抢险车等。
下面参照图8、图9对本申请另一个实施方式涉及的车辆控制方法等进行说明。
本实施方式涉及自车辆处于自动驾驶模式下时关于自动变道的车辆控制方法。本实施方式与上述实施方式的主要区别在于,在驾驶员通过操作转向灯开关等方式发出自动变道指令时,车辆开启“激进变道”功能,调整变道路况条件参数,使目标车道的路况条件更容易得到满足,从而使车辆能够根据实际路况在保证安全的基础上尽可能插入目标车道上的车队中。这里的“满足变道路况条件参数”例如可以是自车辆预测得到的完成变道后与目标车道上的其他车辆间的距离是否在距离阈值(称之为安全距离)以上、变道前目标车道上在预设范围内是否存在其他车辆以及该其他车辆的车速是否低于速度阈值等。“使目标车道的路况条件更容易得到满足”的含义是例如将预设的上述安全距离减小、将上述预设范围缩小、将预设的上述车速阈值调高。
下面参照图8对本实施方式中关于自动变道的车辆控制方法进行描述。另外,在下面的描述中以自车辆处于ICA模式为例进行说明。再者,在下面的描述中,对于与上述实施方式相同的部分,添加了相同的附图标记,并适当省略了对其的描述或简略性地对其进行描述。
如图8所示,在S100中,在ICA模式下,获取驾驶员主动发出的自动变道指令。 之后,在获取到该自动变道指令时,在S102中,判断是否满足变道车道条件,即判断当前车道与目标车道间的车道线的类型是否为虚线车道线。
在S102中的判断结果为“否”时,即不满足变道车道条件时,在S106中,判断当前车道与目标车道间的车道线是否为长实线车道线。当S106中的判断结果为“否”,即当前车道与目标车道间的车道线不是长实线车道线时,执行S104中的处理,进行变道等待。
另外,当S102中的判断结果为“是”时,即满足变道车道条件时,也执行S104中的处理。这里,S104以及其后的处理与图4B中所示的内容相同,省略了对其的详细说明。
另外,在S106中的判断结果为“是”时,即当前车道与目标车道间的车道线为长实线车道线时,在S200中,判断跨实线变道许可开关是否为打开状态。在S200的判断结果为“否”,即跨实线变道许可开关为关闭状态时,执行S206中的处理。
在S200的判断结果为“是”,即跨实线变道许可开关为打开状态时,执行S302中的处理。在S302中,执行变道准备控制,在此,调整变道路况参数,调整后的变道路况参数相比于调整前更容易被满足。这里的“调整变道路况参数”的控制是本申请中的第一控制的一例。
另外,在导航画面中,对目标车道进行突出显示,例如以红色进行高亮显示,同时,用虚线来突出显示当前车道与目标车道间的车道线。再者,还通过文字有和/或语音的方式告知驾驶员可以执行取消跨实线变道的操作,该操作例如是反向拨动转向拨杆,即,使转向拨杆切换到使右转向灯关闭的状态。
之后,在S304中,判断是否满足变道路况条件,即判断当前车道与目标车道的路况条件是否允许自车辆进行变道。例如,当目标车道上的(调整后的)预设范围内不存在其他车辆时,判断为满足变道路况条件;当目标车道上预设范围内存在其他车辆时(例如可参见S312中所示的“目标车道上存在与自车辆并行的其他车辆”情况),判断为不满足变道路况条件。这里的预设范围对应于本申请中的变道路况条件参数。
当S304中的判断结果为“否”时,即不满足变道路况条件时,在S312中,执行等待控制,以等待目标车道的路况条件变化为能够允许自车辆执行变道的情况。另外,在导航画面中使目标车道突出显示,例如以红色高亮显示,以提示驾驶员:“车辆现在不能向目标车道进行变道”。另外,在导航画面中,还用虚线来突出显示当前车道与目标车道间的车道线,以提示驾驶员:“车辆将当前车道与目标车道间的车道线看做虚线车道线”。其颜色可以与目标车道此时的显示颜色相同(红色)。在本实施方式中,S312中对目标车道以及目标车道与当前车道间的车道线的突出显示方式与S302中相同。
当S304中的判断结果为“是”时,即满足变道路况条件时,并且在预设时间(例如5秒)内驾驶员没有执行取消跨实线变道的操作或者在预设时间(例如5秒)内驾驶员将转向拨杆复位(关闭转向灯开关)后再次同向拨动转向拨杆时,在S310中,执行使自车辆自动跨实线变道的控制,即通过控制油门踏板和方向盘等来使自车辆向目标车道驶入。
这里,由于变道路况条件参数被调整得比通常情况(例如S108中的情况)更容易 被满足,因此如图8中S310所示,在目标车道上存在很小的车间距(间隙)时自车辆即可执行自动变道,而向目标车道上的车队插入。
另外,在本实施方式中,在S310中,用与S310中相同的方式对目标车道以及目标车道与当前车道间的车道线进行突出显示。
之后,在变道的过程中,在S314中,实时判断(监视)目标车道的路况是否满足变道条件。例如,当目标车道上的预设范围内不存在其他车辆时,判断为满足变道条件;当目标车道上预设范围内存在其他车辆时(例如可参见S318中所示的“在自车辆变道的过程中目标车道上自车辆意图插入的间隙变小”情况),判断为不满足变道条件。
当S314中的判断结果为“是”时,继续执行使自车辆跨实线变道的控制,直至S316中的完成变道。另外,在S316中,当完成自动变道时,突出显示目标车道的两侧车道线,例如以蓝色进行显示。
当S314中的判断结果为“否”时,在S318中确定为“变道过程中受阻”,停止执行使自车辆跨实线变道的控制。此时,导航画面中用与S3相同的方式对目标车道以及目标车道与当前车道间的车道线进行突出显示。
之后,在S124中,判断是否满足自动退回当前车道的条件,即判断当前车道的路况是否允许自车辆返回当前车道正常行驶。S124以及其后的S126、S128、S130中的处理与上述实施方式相同,这里省略对其的详细描述。
采用如上所描述的本实施方式,在驾驶员通过打开转向灯开关等方式发出自动变道指令,且跨实线变道许可开关处于打开状态下时,调整变道路况条件参数,使其更容易被满足,从而,使车辆更容易实现变道,从而能够更加适当地响应驾驶员的要求。
这里的变道路况条件参数指示自车辆进行自动变道时目标车道应满足的路况条件,即,当目标车道的路况满足该变道路况条件参数所指示的路况条件时,许可自车辆进行自动变道,当目标车道的路况不满足变道路况条件参数所指示的路况条件时,紧张自车辆进行自动变道。
在上面的描述中,在当前车道与目标车道间的车道线为实线车道线的情况下,调整变道路况条件参数,作为本实施方式的一个变形例,也可以在当前车道与目标车道间的车道线为虚线车道线的情况下,也调整变道路况条件参数,即,变道路况条件参数的调整不以获知车道线的类型为前提条件。
另外,本实施方式还提供一种车辆控制装置,应用于车辆100,用于执行上述车辆控制方法。图9中示出了该车辆控制装置的结构示意框图,与图7中的不同之处在于,本实施方式中的车辆控制装置10的控制模块中还具有变道路况条件参数调整单元13d,用于执行在S302的描述中提及的变道路况条件参数的调整,其他结构与图7相同,在此省略了对其的重复描述。
上述控制方法中,S100至S130、S200、S206、S302至S318中的处理主要由控制模块13执行,执行时所需的信息相应地由操作检测模块11、开关状态获取模块12、车道线类型获取模块14与路况获取模块15获取。
另外,本实施方式还提供计算机程序、计算机可读存储介质与计算设备,计算设备具有处理器与计算机可读存储介质,计算机可读存储介质中存储有计算机程序(程序指令),程序指令被计算机(处理器)执行时,执行上述S100至S130、S200、S206、S302 至S318中的处理。
注意,上述仅为本申请的较佳实施例及所运用的技术原理。本领域技术人员会理解,本申请不限于这里所述的特定实施例,对本领域技术人员来说能够进行各种明显的变化、重新调整和替代而不会脱离本申请的保护范围。因此,虽然通过以上实施例对本申请进行了较为详细的说明,但是本申请不仅仅限于以上实施例,在不脱离本申请的构思的情况下,还可以包括更多其他等效实施例,均属于本申请的保护范畴。

Claims (17)

  1. 一种车辆控制方法,包括:
    检测车辆的驾驶员的第一操作,所述第一操作用于命令所述车辆由当前车道向目标车道进行变道;
    获取所述车辆的跨实线变道许可开关的状态信息;
    当检测到所述第一操作并且所述状态信息指示所述跨实线变道许可开关处于打开状态时,执行第一控制,所述第一控制包括使所述车辆进行变道。
  2. 根据权利要求1所述的车辆控制方法,还包括:
    获取所述当前车道与所述目标车道间的车道线的类型信息;
    当所述类型信息指示所述车道线为实线车道线时,所述第一控制还包括发出用于指示所述车道线为实线车道线的提示。
  3. 根据权利要求2所述的车辆控制方法,其特征在于,所述提示包括音效提示、显示文字提示和/或语音提示。
  4. 根据权利要求1-3中任一项所述的车辆控制方法,其特征在于,所述第一控制包括:在从检测到所述第一操作开始经过预设时间后,使所述车辆进行变道。
  5. 根据权利要求4所述的车辆控制方法,其特征在于,所述第一控制包括:在所述预设时间内,当再次检测到所述第一操作时,使所述车辆进行变道。
  6. 根据权利要求1-5中任一项所述的车辆控制方法,其特征在于,
    所述第一控制还包括调整变道路况条件参数,所述变道路况条件参数指示所述车辆进行变道时所述目标车道的路况应满足的条件,其中,所述调整后的所述变道路况条件参数相比于调整前更容易被满足;
    所述车辆控制方法还包括:
    获取所述目标车道的路况信息;
    当所述路况信息所指示的路况满足所述调整后的所述变道路况条件参数所指示的条件时,使所述车辆进行变道。
  7. 根据权利要求1-6中任一项所述的车辆控制方法,其特征在于,所述第一操作为将转向灯开关切换到使左转向灯或右转向灯开启的状态。
  8. 一种车辆控制装置,包括:
    操作检测模块,用于检测车辆的驾驶员的第一操作,所述第一操作用于命令所述车辆由当前车道向目标车道进行变道;
    开关状态获取模块,用于获取所述车辆的跨实线变道许可开关的状态信息;
    控制模块,用于当检测到所述第一操作并且所述状态信息指示所述跨实线变道许可开关处于打开状态时,执行第一控制,所述第一控制包括使所述车辆进行变道。
  9. 根据权利要求8所述的车辆控制装置,还包括车道线类型获取模块,用于获取所述当前车道与所述目标车道间的车道线的类型信息;
    当所述类型信息指示所述车道线为实线车道线时,所述第一控制还包括发出用于指示所述车道线为实线车道线的提示。
  10. 根据权利要求9所述的车辆控制装置,其特征在于,所述提示包括音效提示、显示文字提示和/或语音提示。
  11. 根据权利要求8-10中任一项所述的车辆控制装置,其特征在于,在从所述操作检测模块检测到所述第一操作开始经过预设时间后,所述控制模块使所述车辆进行变道。
  12. 根据权利要求11所述的车辆控制装置,其特征在于,在所述预设时间内,当所述操作检测模块再次检测到所述第一操作时,所述控制模块使所述车辆进行变道。
  13. 根据权利要求8-12中任一项所述的车辆控制装置,所述控制模块执行的所述第一控制还包括调整变道路况条件参数,所述变道路况条件参数指示所述车辆进行变道时所述目标车道的路况应满足的条件,其中,所述调整后的所述变道路况条件参数相比于调整前更容易被满足;
    所述车辆控制装置还包括路况获取模块,所述路况获取模块用于获取所述目标车道的路况信息;
    当所述路况信息所指示的路况满足所述调整后的所述变道路况条件参数所指示的条件时,所述控制模块执行使所述车辆进行变道的控制。
  14. 根据权利要求8-13中任一项所述的车辆控制装置,其特征在于,所述第一操作为将转向灯开关切换到使左转向灯或右转向灯开启的状态。
  15. 一种车辆,包括权利要求8-13中任一项所述的车辆控制装置。
  16. 根据权利要求15所述的车辆,其特征在于,为特种车辆,所述特种车辆包括救护车、消防车、警车或工程抢险车。
  17. 一种计算机可读存储介质,其上存储有程序指令,其特征在于,所述程序指令当被计算机执行时使得所述计算机执行权利要求1-7中任一项所述的方法。
PCT/CN2021/087220 2021-04-14 2021-04-14 车辆控制方法及装置、车辆 WO2022217495A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/CN2021/087220 WO2022217495A1 (zh) 2021-04-14 2021-04-14 车辆控制方法及装置、车辆
CN202180006174.7A CN114728658A (zh) 2021-04-14 2021-04-14 车辆控制方法及装置、车辆
EP21936387.6A EP4316933A1 (en) 2021-04-14 2021-04-14 Vehicle control method and device, and vehicle
US18/486,519 US20240083438A1 (en) 2021-04-14 2023-10-13 Vehicle control method and apparatus, and vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/087220 WO2022217495A1 (zh) 2021-04-14 2021-04-14 车辆控制方法及装置、车辆

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/486,519 Continuation US20240083438A1 (en) 2021-04-14 2023-10-13 Vehicle control method and apparatus, and vehicle

Publications (1)

Publication Number Publication Date
WO2022217495A1 true WO2022217495A1 (zh) 2022-10-20

Family

ID=82235812

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/087220 WO2022217495A1 (zh) 2021-04-14 2021-04-14 车辆控制方法及装置、车辆

Country Status (4)

Country Link
US (1) US20240083438A1 (zh)
EP (1) EP4316933A1 (zh)
CN (1) CN114728658A (zh)
WO (1) WO2022217495A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114495513B (zh) * 2022-01-18 2023-07-25 云从科技集团股份有限公司 违规变道监测方法、装置以及计算机可读存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110001782A (zh) * 2019-04-29 2019-07-12 重庆长安汽车股份有限公司 自动换道方法、系统及计算机可读存储介质
CN111243287A (zh) * 2020-01-16 2020-06-05 浙江吉利汽车研究院有限公司 一种特种车辆的避让方法、装置及汽车
WO2020212061A1 (de) * 2019-04-16 2020-10-22 Daimler Ag Verfahren zur prädiktion einer verkehrssituation für ein fahrzeug
CN111959507A (zh) * 2020-07-06 2020-11-20 江铃汽车股份有限公司 一种变道控制方法、系统、可读存储介质及车辆
CN112477856A (zh) * 2020-12-03 2021-03-12 东风汽车集团有限公司 一种紧急转向的仲裁方法及系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020212061A1 (de) * 2019-04-16 2020-10-22 Daimler Ag Verfahren zur prädiktion einer verkehrssituation für ein fahrzeug
CN110001782A (zh) * 2019-04-29 2019-07-12 重庆长安汽车股份有限公司 自动换道方法、系统及计算机可读存储介质
CN111243287A (zh) * 2020-01-16 2020-06-05 浙江吉利汽车研究院有限公司 一种特种车辆的避让方法、装置及汽车
CN111959507A (zh) * 2020-07-06 2020-11-20 江铃汽车股份有限公司 一种变道控制方法、系统、可读存储介质及车辆
CN112477856A (zh) * 2020-12-03 2021-03-12 东风汽车集团有限公司 一种紧急转向的仲裁方法及系统

Also Published As

Publication number Publication date
EP4316933A1 (en) 2024-02-07
US20240083438A1 (en) 2024-03-14
CN114728658A (zh) 2022-07-08

Similar Documents

Publication Publication Date Title
US10286907B2 (en) Vehicle and lane change timing determination method
CN112638749B (zh) 车辆的行驶控制方法及行驶控制装置
US11731632B2 (en) Vehicle travel control method and travel control device
US9714036B2 (en) Autonomous driving device
JP6528583B2 (ja) 運転支援制御装置
US10696295B2 (en) Parking assist device
CN107924622B (zh) 行驶控制方法及行驶控制装置
KR101946220B1 (ko) 주행 제어 방법 및 주행 제어 장치
KR101886019B1 (ko) 주행 제어 방법 및 주행 제어 장치
CN109421713B (zh) 车辆控制装置、车辆控制方法及存储介质
CN107924623B (zh) 行驶控制方法及行驶控制装置
KR101868318B1 (ko) 주행 장치의 주행 제어 방법 및 주행 제어 장치
JP2019034622A (ja) 車両制御システムおよび車両制御方法
JP2019036086A (ja) 車両制御システムおよび車両制御方法
US11964668B2 (en) Vehicle travel control method and travel control device
JP2020163907A (ja) 車両制御装置、車両制御方法、及びプログラム
JPWO2020049721A1 (ja) 車両の走行制御方法及び走行制御装置
US20240083438A1 (en) Vehicle control method and apparatus, and vehicle
JP2017121851A (ja) 車両の走行制御装置
JP7131143B2 (ja) 車両の運転支援装置
JP2019194886A (ja) 車両制御システムおよび車両制御方法
JP2023150579A (ja) 制御装置、制御方法、およびプログラム
JP7226238B2 (ja) 車両制御システム
JP7256867B2 (ja) 制御装置、制御方法及びプログラム
JP7180497B2 (ja) 自動運転制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21936387

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2021936387

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2021936387

Country of ref document: EP

Effective date: 20231023

NENP Non-entry into the national phase

Ref country code: DE