WO2022215695A1 - 耐アルカリ性非晶質無機組成物及びその繊維 - Google Patents

耐アルカリ性非晶質無機組成物及びその繊維 Download PDF

Info

Publication number
WO2022215695A1
WO2022215695A1 PCT/JP2022/017119 JP2022017119W WO2022215695A1 WO 2022215695 A1 WO2022215695 A1 WO 2022215695A1 JP 2022017119 W JP2022017119 W JP 2022017119W WO 2022215695 A1 WO2022215695 A1 WO 2022215695A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
iron oxide
amorphous
inorganic composition
alumina
Prior art date
Application number
PCT/JP2022/017119
Other languages
English (en)
French (fr)
Inventor
裕 深澤
美也 上床
Original Assignee
新日本繊維株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日本繊維株式会社 filed Critical 新日本繊維株式会社
Priority to AU2022255977A priority Critical patent/AU2022255977A1/en
Priority to CN202280026302.9A priority patent/CN117279870A/zh
Priority to US18/285,819 priority patent/US20240182353A1/en
Priority to JP2023513024A priority patent/JPWO2022215695A1/ja
Priority to EP22784677.1A priority patent/EP4321492A1/en
Priority to CA3214133A priority patent/CA3214133A1/en
Priority to KR1020237034704A priority patent/KR20230167372A/ko
Publication of WO2022215695A1 publication Critical patent/WO2022215695A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • C03C3/085Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal
    • C03C3/087Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal containing calcium oxide, e.g. common sheet or container glass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09BDISPOSAL OF SOLID WASTE NOT OTHERWISE PROVIDED FOR
    • B09B3/00Destroying solid waste or transforming solid waste into something useful or harmless
    • B09B3/40Destroying solid waste or transforming solid waste into something useful or harmless involving thermal treatment, e.g. evaporation
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C1/00Ingredients generally applicable to manufacture of glasses, glazes, or vitreous enamels
    • C03C1/002Use of waste materials, e.g. slags
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C13/00Fibre or filament compositions
    • C03C13/06Mineral fibres, e.g. slag wool, mineral wool, rock wool
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/38Fibrous materials; Whiskers
    • C04B14/42Glass
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/38Fibrous materials; Whiskers
    • C04B14/46Rock wool ; Ceramic or silicate fibres
    • C04B14/4643Silicates other than zircon
    • C04B14/4675Silicates other than zircon from slags
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Definitions

  • the present invention relates to an alkali-resistant amorphous inorganic composition and fibers thereof. More particularly, the present invention relates to an alkali-resistant amorphous inorganic composition and its fibers that effectively utilize coal-fired power generation waste.
  • Coal-fired power generation produces a large amount of coal ash (fly ash and clinker ash) as waste.
  • Coal ash is mostly used as an aggregate for concrete, such as by mixing with cement (see, for example, Patent Document 1).
  • copper slag as an industrial waste for which effective utilization is desired. Copper slag is also mostly used as aggregate for concrete, and is in demand for other uses.
  • Concrete generally exhibits high alkalinity with a pH of 12 to 13.
  • Calcium hydroxide (Ca(OH) 2 ) is generated.
  • aggregates and the like to be mixed with cement are required to have high alkali resistance.
  • sufficient studies have not been made so far to further increase the alkali resistance of aggregates.
  • the present inventors found that in an amorphous inorganic composition containing silica (SiO 2 ), iron oxide (Fe 2 O 3 ), alumina (Al 2 O 3 ) and calcium oxide (CaO) as main components, i) the total content of silica, alumina and calcium oxide is 50% by mass or more and 75% by mass or less, ii) the content of iron oxide is 26% by mass or more and less than 40% by mass, and iii) the iron oxide is The inventors have found that an inorganic composition derived from an amorphous raw material has very excellent alkali resistance and can be processed into fibers, and have completed the present invention. The present invention will be described in detail below.
  • the inorganic composition of the present invention uses an inorganic oxide as a raw material and is obtained by melting and solidifying the raw material. Therefore, there is no substantial difference between the component ratio in the blended mixture of raw materials and the component ratio in the material after melting the mixture. Therefore, the component ratio in the compounded mixture can be used as the finally obtained inorganic composition component ratio.
  • the inorganic composition of the present invention is an amorphous inorganic composition containing silica (SiO 2 ), iron oxide (Fe 2 O 3 ), alumina (Al 2 O 3 ) and calcium oxide (CaO) as main components. . If even a small amount of crystalline phase is generated in the inorganic composition, alkaline substances are likely to enter from the interface of the crystalline phase/amorphous phase, causing a decrease in alkali resistance. In this regard, the inorganic composition of the present invention is amorphous and has excellent alkali resistance. In the present invention, the determination of whether the inorganic composition is amorphous or not was based on the X-ray diffraction (XRD) spectrum. That is, when only an amorphous halo was observed in the X-ray diffraction (XRD) spectrum of the inorganic composition and no crystal phase peak was observed, it was determined to be amorphous.
  • XRD X-ray diffraction
  • the inorganic composition of the present invention must contain silica, alumina, calcium oxide, and iron oxide within specific ranges.
  • the contents of the components are values converted into oxides.
  • the total content of silica, alumina and calcium oxide contained in the inorganic composition of the present invention is 50% by mass or more and 75% by mass or less.
  • silica and alumina disperse the iron oxide component evenly in the inorganic composition, make the inorganic composition more likely to become amorphous, and increase the iron oxide content in the inorganic composition. also functions to maintain good spinnability of the melt.
  • the total content of silica and alumina in the inorganic composition is preferably 40% by mass or more, more preferably 50% by mass or more, and most preferably 60% by mass or more.
  • the mass ratio of alumina to the total of silica and alumina is preferably 0.15 to 0.40.
  • Calcium oxide affects the melt viscosity of inorganic compositions.
  • the content of calcium oxide in the inorganic composition is preferably 5% by mass or more and 20% by mass or less.
  • the iron oxide content in the inorganic composition of the present invention is 26% by mass or more and less than 40% by mass, and that the iron oxide component is derived from an amorphous raw material. If the iron oxide content is less than 26% by mass, the alkali resistance is lowered.
  • the iron oxide content is preferably at least 28% by weight, most preferably at least 30% by weight.
  • the content of iron oxide is 40% by mass or more, the melt spinnability is deteriorated.
  • the iron oxide content is preferably 38% by mass or less, more preferably 35% by mass or less.
  • it is essential that the iron oxide is derived from an amorphous raw material.
  • the amorphous raw material is an amorphous substance containing silica, alumina, calcium oxide, and iron oxide as essential components.
  • the amorphous raw material preferably has a total content of silica, alumina, calcium oxide and iron oxide of 80% by mass or more, more preferably 90% by mass or more.
  • Any of industrial products, industrial wastes, and natural products can be used as the amorphous raw material.
  • Industrial waste is preferable as the amorphous raw material from the viewpoint of economy, but it is not limited to this.
  • Copper slag and coal ash can be cited as industrial wastes that satisfy the above requirements.
  • Coal ash also includes slag (IGCC slag) discharged from thermal power plants that adopt the Integrated coal Gasification Combined Cycle system.
  • IGCC slag slag
  • iron oxide can be artificially melted and solidified together with silica, alumina and calcium oxide to form an amorphous raw material.
  • none of the copper slag, coal ash, basalt, and volcanic ash described above contain iron oxide in the range of 26% by mass or more and less than 40% by mass, so that the inorganic composition of the present invention can be made by using only that. can't.
  • basalt contains silica, alumina, calcium oxide, and iron oxide as main components, and is well known as a natural raw material that can be processed into fibers, but the iron oxide content is 12% or less (see Non-Patent Document 1 if necessary). , alone cannot be the inorganic composition of the present invention.
  • coal ash has silica, alumina, calcium oxide, and iron oxide as main components, and can be a raw material that can be processed into fibers, but the iron oxide content is usually 20% by mass or less, and it alone is the inorganic composition of the present invention. cannot be.
  • basalt and coal ash contain iron oxide and contain large amounts of silica, alumina, and calcium oxide. As a very useful raw material.
  • the general composition of copper slag is iron oxide: 45-54%, silica: 30-36%, alumina: 3-6%, calcium oxide: 2-7%, and is amorphous.
  • the copper slag has too high an iron oxide content so that its melt lacks melt spinnability and cannot be the inorganic composition of the present invention by itself. Nonetheless, copper slag provides a useful iron oxide source (amorphous iron oxide source) that is amorphous and rich in the essential and important iron oxide component of the inorganic compositions of the present invention.
  • iron oxide is the largest component (about 50 parts by mass), and silica, alumina, and calcium oxide are added to the raw material, and the raw material is melted and solidified at a high temperature in advance. It can also be applied as a source of quality iron oxide.
  • the present invention provides a silica-alumina source having too little iron oxide content by itself and an amorphous iron oxide source having too high iron oxide content by itself, to finally obtain an inorganic composition.
  • An inorganic composition having excellent alkali resistance and excellent melt spinnability was created by adjusting the content of iron oxide in the inside to be within the above range and melting and solidifying it.
  • the inorganic composition of the present invention does not exclude unavoidable contamination of impurities contained in raw materials.
  • impurities include MgO, Na2O , K2O , TiO2 , CrO2 and the like. Since the inorganic composition of the present invention is excellent in melt spinnability, it can be processed into fibers by existing glass fiber manufacturing facilities.
  • the inorganic composition of the present invention has excellent alkali resistance and excellent melt spinnability, it can be processed into fibers, further processed into fabrics, cloths, strand mats, etc., and used in a variety of applications.
  • coal ash discharged from a coal-fired power plant can be effectively used as a main raw material.
  • copper slag can be used as an amorphous iron oxide source, the effective utilization rate of industrial waste can be further increased.
  • FIG. 1 shows XRD spectra of copper slag (IC-1) and iron oxide (reagent) used in Examples and Comparative Examples.
  • 1 is an enlarged view (micrograph) of an example of a fiber obtained in an example;
  • FIG. 1 is the XRD spectrum of the fiber of Example 1; It is a photograph showing a sample and a testing apparatus used in an alkali resistance test.
  • FIG. 2 shows the XRD spectra of iron oxide (reagent) and IC-1 (copper slag).
  • silica reagent
  • alumina reagent
  • calcium oxide reagent
  • the pseudo copper slag (IC-2) was obtained by weighing 50 parts by mass of iron oxide, 33 parts by mass of silica, 5 parts by mass of alumina, and 12 parts by mass of calcium oxide from the above reagents and pulverizing them in a mortar. The mixture was transferred to a crucible, held at a temperature of 1,700 to 2,200° C. for about 8 hours using an electric furnace and a gas furnace, and the melt was solidified in water.
  • SA-1 to SA-4 have a total content of silica and alumina of 60% by mass or more in the raw materials, and are high-quality silica-alumina sources.
  • IC-1 and IC-2 have an iron oxide content of 50% by mass or more in the raw material, and are good sources of amorphous iron oxide.
  • SA-1 to SA-4, IC-1 and IC-2 all have a total content of silica, alumina, calcium oxide and iron oxide of 90% by mass or more.
  • the content of iron oxide (Fe 2 O 3 ) is [F]
  • the content of silica (SiO 2 ) is [S]
  • the content of alumina (Al 2 O 3 ) is [A]
  • the content of calcium oxide (CaO ) is abbreviated as [C].
  • melt spinnability test A melt spinnability test (hereinafter simply abbreviated as "spinnability test") was evaluated using an electric furnace.
  • An electric furnace (1) has a height (H) of 60 cm, an outer diameter (D) of 50 cm, and an opening (4) with a diameter (d) of 10 cm in the center.
  • a Tammann tube (2) with an inner diameter ( ⁇ ) of 2.1 cm and a length of 10 cm.
  • a hole with a diameter of 2 mm is opened in the center of the bottom of the Tammann tube (2).
  • the Tammann tube (2) is held in place within the opening (4) of the electric furnace by hanging rods (3).
  • the temperature of the electric furnace is raised according to a predetermined temperature raising program, and the maximum temperature in the furnace is set to 1350°C.
  • the melt flows and falls to form a thread before the temperature in the furnace reaches 1350 ° C., that is, the melting temperature of the sample is 1300 ° C. or less.
  • the acceptable level was to have the correct melt viscosity to form a thread (fiber).
  • their melt spinnability was ranked in three stages from A to C below.
  • C The sample is melted, but the viscosity of the melt is too low, and the melt only drips as droplets, and no thread (fiber) is formed.
  • Table 2 shows the results of the melt spinnability and alkali resistance test of the raw materials obtained by the above procedure, that is, the silica-alumina source and the amorphous iron oxide source. From this, it was confirmed that fibers can be obtained using coal ash or basalt as a raw material, as in the prior art. It was also confirmed that the alkali resistance was at the level shown in Table 2. A comparison of the absolute values of alkali resistance of SA-1 and SA-3 showed a tendency that the higher the iron oxide content in the inorganic composition, the higher the alkali resistance. On the other hand, no fiber could be obtained from the copper slag and the pseudo-copper slag, but the alkali resistance of the melt-solidified product was extremely high (both weight loss was 0.00%). These results suggested that it is possible to create fibers superior to existing fly ash fibers and basalt fibers by increasing the iron oxide content in the inorganic composition.
  • Example 1 With reference to the findings obtained from the above preliminary tests, silica-alumina was used as a source of silica-alumina so that the iron oxide content of the final composition was higher than that of IGCC slag (SA-1) and basalt (SA-3). , SA-2: 20 parts by mass, SA-3: 20 parts by mass, SA-4: 30 parts by mass, and IC-1: 30 parts by mass as an iron oxide source.
  • the abundance ratio of oxides in the raw material is iron oxide: 28% by mass, silica: 47% by mass, alumina: 11% by mass, calcium oxide: 9% by mass, others: 5% by mass. %.
  • Example 2 A raw material was prepared in the same manner as in Example 1, except that IC-2 was used instead of the amorphous iron oxide source IC-1. gone. As a result, a fiber was obtained. The melt-solidified product was amorphous. As a result of the alkali resistance test, the weight reduction rate was 0.00%. Table 3 shows the results.
  • Example 3 A spinnability test was conducted in the same manner as in Example 1, except that SA-1: 50 parts by mass was used as the silica alumina source and IC-1: 50 parts by mass was used as the amorphous iron oxide source. gone.
  • the iron oxide content in the raw material was 32% by mass, and all the iron oxide components were derived from amorphous raw materials.
  • a fiber was obtained as a result of the spinnability test.
  • the melt-solidified product was amorphous.
  • the weight reduction rate was 0.00%. Table 4 shows the results. For reference, Comparative Example 1 is shown again in Table 4.
  • Example 4 A test was conducted in the same manner as in Example 3 except that IC-2 was used instead of IC-1.
  • the iron oxide content in the raw material was 30% by mass, and all the iron oxide components were derived from amorphous raw materials.
  • a fiber was obtained as a result of the spinnability test.
  • the melt-solidified product was amorphous.
  • the weight reduction rate was 0.00%. Table 4 shows the results.
  • Example 5 A spinnability test was conducted in the same manner as in Example 4, except that SA-1 was 37 parts by mass and IC-2 was 63 parts by mass.
  • the iron oxide content in the raw material was 35% by mass, and all the iron oxide components were derived from amorphous raw materials. Spinnability tests gave good fibers. The melt-solidified product was amorphous. As a result of the alkali resistance test, the weight reduction rate was 0.00%. Table 4 shows the results.
  • Example 6 A spinnability test was conducted in the same manner as in Example 4 except that SA-1 was 25 parts by mass and IC-2 was 75 parts by mass.
  • the iron oxide content in the raw material was 40% by mass, and all the iron oxide components were derived from amorphous raw materials.
  • the molten material merely dripped from the crucible and no fiber was obtained.
  • the melt-solidified product was amorphous.
  • the melt-solidified product had good alkali resistance (weight reduction rate: 0.00%). Table 4 shows the results.
  • Example 7 A spinnability test was conducted in the same manner as in Example 4, except that 12 parts by mass of SA-1 and 88 parts by mass of IC-2 were used.
  • the iron oxide content in the raw material was 45% by mass, and all the iron oxide components were derived from amorphous raw materials.
  • the molten material merely dripped from the crucible and no fiber was obtained.
  • the melt-solidified product was amorphous.
  • the melt-solidified product had good alkali resistance (weight reduction rate: 0.00%).
  • Table 4 shows the results. From Table 4, it was found that although the iron oxide component derived from the amorphous raw material contributes to the improvement of the alkali resistance of the inorganic composition, the melt spinnability deteriorates when the content is 40% by mass or more.
  • Example 6 SA-2: 20 parts by mass, SA-3: 20 parts by mass, SA-4: 30 parts by mass as silica-alumina source, IC-2: 30 parts instead of amorphous iron oxide source IC-1
  • SA-2 20 parts by mass
  • SA-3 20 parts by mass
  • SA-4 30 parts by mass as silica-alumina source
  • IC-2 30 parts instead of amorphous iron oxide source IC-1
  • a spinnability test was performed in the same manner as in Example 1, except that parts by mass were used as the raw material.
  • the iron oxide content in the raw material was 26% by mass, and all the iron oxide components were derived from amorphous raw materials.
  • the spinnability test resulted in fiber.
  • the melt-solidified product was amorphous.
  • the weight reduction rate was 0.00%. Table 5 shows the results.
  • Comparative Example 2 is shown again in Table 5.
  • Example 7 A spinnability test was conducted in the same manner as in Example 1, except that 65 parts by mass of SA-3 was used as the silica alumina source and 35 parts by mass of IC-2 was used as the amorphous iron oxide source. gone.
  • the iron oxide content in the raw material was 30% by mass, and all the iron oxide components were derived from amorphous raw materials.
  • a fiber was obtained as a result of the spinnability test.
  • the melt-solidified product was amorphous.
  • the weight reduction rate was 0.00%. Table 5 shows the results.
  • Example 8 A spinnability test was performed in the same manner as in Example 7, except that SA-3: 50 parts by mass and IC-2: 50 parts by mass.
  • the iron oxide content in the raw material was 35% by mass, and all the iron oxide components were derived from amorphous raw materials.
  • a fiber was obtained as a result of the test.
  • the melt-solidified product was amorphous.
  • the weight reduction rate was 0.00%. Table 5 shows the results.
  • Example 8 A spinnability test was performed in the same manner as in Example 7, except that SA-3: 30 parts by mass and IC-2: 70 parts by mass.
  • the iron oxide content in the raw material was 41% by mass, and all the iron oxide components were derived from amorphous raw materials.
  • the molten material merely dripped from the crucible and no fiber was obtained.
  • the melt-solidified product was amorphous.
  • the melt-solidified product had good alkali resistance (weight reduction rate: 0.00%). Table 5 shows the results.
  • Example 9 50 parts by mass of IC-1 (copper slag), 28 parts by mass of silica (reagent), 7 parts by mass of alumina (reagent), and 15 parts by mass of calcium oxide (reagent) were weighed and pulverized in a mortar. used as raw material.
  • the oxide composition of the raw material is iron oxide: 28% by mass, silica: 46% by mass, alumina: 10% by mass, calcium oxide: 16% by mass, and others: 2% by mass.
  • the iron oxide content in the raw material (the iron oxide content of the final inorganic composition) is all derived from the copper slag, ie the amorphous raw material.
  • silica, alumina and calcium oxide are reagents (crystalline).
  • the raw material thus prepared was subjected to a spinnability test, resulting in a fiber.
  • the melt-solidified product was amorphous.
  • the melt-solidified product had good alkali resistance (weight reduction rate: 0.00%).
  • silica, alumina, and calcium oxide may all contain a component derived from a crystalline raw material as long as the iron oxide component is derived from an amorphous raw material. That is, it is clear that the fact that the iron oxide component in the inorganic composition is derived from an amorphous raw material is important for improving the alkali resistance.
  • the iron oxide component is derived from an amorphous raw material, and It is clear that an inorganic composition and its fibers having excellent alkali resistance can be obtained by setting the content to 26% by mass or more and less than 40% by mass.
  • the inorganic composition of the present invention is excellent in alkali resistance, it can be used as an aggregate, and can also be used as an alkali-resistant inorganic fiber for reinforcing concrete by further fiber processing.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Ceramic Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Structural Engineering (AREA)
  • Civil Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Glass Compositions (AREA)
  • Inorganic Fibers (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

【課題】石炭火力発電所より排出される廃棄物並びに銅精錬所より排出される銅スラグを有効利用して、耐アルカリ性に優れた高付加価値素材を開発する。 【解決手段】シリカ(SiO2)、酸化鉄(Fe2O3)、アルミナ(Al2O3)及び酸化カルシウム(CaO)を主要成分とする非晶質無機組成物において、i)シリカ、アルミナ、酸化カルシウムの合計の含量を50質量%以上75質量%以下とし、ii)酸化鉄の含量を26質量%以上40質量%未満とし、かつ、iii)酸化鉄を非晶質原料由来とすることにより、溶融紡糸可能で、耐アルカリ性に優れる無機組成物が得られる。当該無機組成物は、原料のほとんどを石炭灰及び銅スラグとすることができる。

Description

耐アルカリ性非晶質無機組成物及びその繊維
 本発明は、耐アルカリ性非晶質無機組成物及びその繊維に関する。さらに詳しくは、石炭火力発電廃棄物を有効利用した、耐アルカリ性非晶質無機組成物及びその繊維に関する。
 東日本震災後、原子力発電の稼働が制限されたため、日本ではエネルギー供給に占める火力発電の比率が高い割合で推移している。中でも、石炭火力発電の割合が高い。石炭火力発電からは廃棄物として石炭灰(フライアッシュ及びクリンカアッシュ)が多量に発生する。石炭灰の有効利用としては、セメントと混合するなどコンクリートの骨材としての(例えば、特許文献1を参照)の使用が大部分を占める。
 この他、有効利用が求められている産業廃棄物として銅スラグがある。銅スラグもその用途の大部分がコンクリート用骨材であり、他の用途が求められている。
国際公開WO2018/008513号
インターナショナル ジャーナル オブ サイエンス[International Journal of Textile Science] 2012, 1(4):19-28
一般にコンクリートはペーハー値(pH)が12~13と高いアルカリ性を示す。これは、コンクリートの原料(結合材)であるセメント内に含まれる鉱物(例えば、カルシウム、珪素、アルミニウム、鉄など)が水と反応(水和反応)して水酸化カルシウム(Ca(OH))が生成されるためである。このように、コンクリートは高いアルカリ性を示すため、セメントと混合する骨材等には、高い耐アルカリ性が求められる。しかしながら、本発明者らが知る限り、骨材の耐アルカリ性を更に高めるという検討はこれまで十分になされていなかった。また、骨材の範疇を超えた高付加価値素材の開発には注力されていないようである。
 そこで、本発明者らは、石炭灰や銅スラグなどの産業廃棄物を主原料とする新たな高付加価値素材の開発を目的に、鋭意検討を行った。
その結果、本発明者らは、シリカ(SiO2)、酸化鉄(Fe2O3)、アルミナ(Al2O3)及び酸化カルシウム(CaO)を主要成分とする非晶質無機組成物において、i)シリカ、アルミナ、酸化カルシウムの合計の含量が50質量%以上75質量%以下であり、ii)酸化鉄の含量が26質量%以上40質量%未満であり、かつ、iii)前記酸化鉄は非晶質原料由来である無機組成物が、耐アルカリ性に非常に優れ、かつ繊維加工できることを見出し、本発明を完成するに至った。
 以下、本発明につき、詳細に説明する。
 本発明の無機組成物は、無機酸化物を原料とし、その原料を溶融固化して得られる。したがって、原料の配合混合物中の成分比と、当該混合物を溶融した後の材料中の成分比に実質的な差は見られない。よって、配合混合物中の成分比をもって最終的に得られる無機組成物成分比とすることができる。
 本発明の無機組成物は、シリカ(SiO2)、酸化鉄(Fe2O3)、アルミナ(Al2O3)及び酸化カルシウム(CaO)を主要成分とする非晶質の無機組成物である。無機組成物中にわずかでも結晶相が生成すると、結晶相/非晶質相の界面よりアルカリ物質が侵入しやすくなり、耐アルカリ性が低下する原因となる。この点、本発明の無機組成物は非晶質であり、耐アルカリ性に優れる。
  本発明にて、無機組成物が非晶質であるか否かの判定は、X線回折(XRD)スペクトラムに拠った。すなわち、無機組成物のX線回折(XRD)スペクトラムに非晶質ハローのみが認められ、結晶相のピークが認められない場合を非晶質と判定した。
 本発明の無機組成物は、シリカ、アルミナ、酸化カルシウム、及び酸化鉄を特定範囲で含有することが必要である。なお、以下の説明にて、成分の含有量は酸化物換算による値である。
 本発明の無機組成物に含まれるシリカ、アルミナ、及び酸化カルシウムの合計含量は50質量%以上75質量%以下である。上記成分のうち、シリカ、アルミナは、酸化鉄成分を無機組成物中に均等に分散させ、無機組成物を非晶質になりやすくし、かつ、無機組成物中の酸化鉄含量が高くなっても溶融物の紡糸性を良好に保つ機能を果たす。よって、無機組成物中のシリカ、アルミナの合計含量は好ましくは40質量%以上であり、さらに好ましくは50質量%以上であり、最も好ましくは60質量%以上である。また、溶融物の紡糸性を一層高めるためには、シリカとアルミナの合計に占めるアルミナの質量比は0.15~0.40であることが好ましい。
 酸化カルシウムは無機組成物の溶融粘性に影響する。無機組成物中の酸化カルシウムの含有量は好ましくは5質量%以上20質量%以下である。
 次に、本発明の無機組成物中の酸化鉄の含有量は26質量%以上40質量%未満、かつ、当該酸化鉄成分が非晶質原料由来であることが必要である。
 酸化鉄の含有量が、26質量%未満であると耐アルカリ性が低下する。酸化鉄含量は好ましくは28質量%以上であり、最も好ましくは30質量%以上である。
 他方、酸化鉄の含有量が40質量%以上であると溶融紡糸性が悪くなる。酸化鉄含量は好ましくは38質量%以下であり、35質量%以下であることがさらに好ましい。
 なお、上記のとおり、酸化鉄は非晶質原料由来であることが必須である。本発明にて非晶質原料とは、シリカ、アルミナ、酸化カルシウム、及び酸化鉄を必須成分として含有する非晶質物質である。非晶質原料は、好ましくは、シリカ、アルミナ、酸化カルシウム、及び酸化鉄の合計含量が80質量%以上であることが好ましく、90質量%以上であることがさらに好ましい。工業品、産業廃棄物、天然品のいずれであっても非晶質原料として用いることができる。経済性の観点からは非晶質原料は産業廃棄物が好ましいが、これに限定されない。
 上記要件を満たす産業廃棄物としては銅スラグ、石炭灰を挙げることができる。石炭灰には、石炭ガス化複合発電(Integrated coal Gasification Combined Cycle)方式を採用の火力発電所より排出されるスラグ(IGCCスラグ)も含まれる。
 また天然品としては玄武岩、火山灰を挙げることができる。
 この他、人為的に酸化鉄をシリカ、アルミナ、酸化カルシウムとともに溶融固化して非晶質原料とすることもできる。
 しかしながら、上記した銅スラグ、石炭灰、玄武岩、火山灰のいずれも、酸化鉄を26質量%以上40質量%未満の範囲で含有するものではないため、それのみで本発明の無機組成物とすることはできない。
 例えば玄武岩はシリカ、アルミナ、酸化カルシウム、及び酸化鉄を主要成分とし、繊維加工できる天然の原材料として周知であるが、酸化鉄含量は12%以下であり(要すれば、非特許文献1参照)、それ単独では本発明の無機組成物とはなり得ない。
 同様に、石炭灰もシリカ、アルミナ、酸化カルシウム、及び酸化鉄を主要成分とし、繊維加工できる原材料となり得るが、酸化鉄含量は通常20質量%以下であり、それ単独では本発明の無機組成物とはなり得ない。
 玄武岩や石炭灰は、しかしながら、酸化鉄を含み、かつ、シリカ、アルミナ、酸化カルシウムを多く含んでいるため、本発明の無機組成物を構成に必要なシリカ、アルミナの供給源(シリカアルミナ源)として極めて有用な原料となる。
 銅スラグの一般的な組成は、酸化鉄:45~54%、シリカ:30~36%、アルミナ:3~6%、酸化カルシウム:2~7%とされ、かつ非晶質である。
 しかし、後記するように、銅スラグは酸化鉄含量が高すぎるがゆえに、その溶融物は溶融紡糸性を欠き、それのみでは本発明の無機組成物たり得ない。
 とはいえ、銅スラグは本発明の無機組成物の必須かつ重要な酸化鉄成分を非晶質で豊富に含有する有用な酸化鉄供給源(非晶質酸化鉄源)となる。
 なお、上記したように経済的ではないが、酸化鉄を最多成分(約50質量部)とし、これにシリカ、アルミナ、酸化カルシウムを加えた原料を、あらかじめ高温度で溶融固化したものを非晶質酸化鉄源として充当することもできる。
 本発明は、それ単独では酸化鉄の含有量が少なすぎるシリカアルミナ源と、それ単独では逆に酸化鉄の含有量が高すぎる非晶質酸化鉄源とを、最終的に得られる無機組成物中の酸化鉄含量が上記範囲となるよう調製し、溶融固化することにより、耐アルカリ性に優れかつ溶融紡糸性に優れる無機組成物を創出したものである。
 本発明の無機組成物は、原料中に含まれる不可避的な不純物の混入を排除するものではない。そのような不純物として、MgO, Na2O, K2O, TiO2, CrO2などを例示できる。
 本発明の無機組成物は溶融紡糸性に優れるので、既存のガラス繊維製造設備にて繊維加工することができる。
本発明の無機組成物は、耐アルカリ性に優れ、かつ溶融紡糸性にも優れるので、繊維に加工し、さらに織物、クロス、ストランドマット等に二次加工し、多種の用途に使用できる。また、主原料に石炭火力発電所から排出される石炭灰を有効に利用できる。さらに、非晶質酸化鉄源として、銅スラグを使用できるため、産業廃棄物の有効利用率を一層高められる。
本発明の無機組成物の溶融紡糸性の評価試験の概要を示す説明図である。 実施例、比較例に用いた銅スラグ(IC-1)及び酸化鉄(試薬)のXRDスペクトラムである。 実施例により得られたファイバーの一例の拡大図(顕微鏡写真)である。 実施例1のファイバーのXRDスペクトラムである。 耐アルカリ性試験に用いた試料及び試験装置を示す写真である。
 以下、本発明の試験例(実施例、比較例)においては、下記の試薬及び原料を用いた。
 <試薬>
  ・酸化鉄(試薬)
  ・シリカ(試薬)
  ・アルミナ(試薬)
  ・酸化カルシウム(試薬)
 <非晶質原料>
  ・SA-1:IGCCスラグ 
  ・SA-2:日本国内の火力発電所より産生の石炭灰
  ・SA-3:玄武岩
  ・SA-4:桜島火山灰
  ・IC-1:日本国内の銅精錬所より産生の銅スラグ
  ・IC-2:後記する手順にて調製した、銅スラグを模した非晶質かつ高酸化鉄含有の溶融固化物(擬似銅スラグ)
 これらの原料の組成を表1に示す。組成分析は蛍光X線分析法に拠った。なお、XRDスペクトル解析の結果、SA-1~SA-4,IC-1,IC-2はいずれも非晶質であることを確認してある。
 一方、同様の解析試験から、試薬の酸化鉄は結晶成分を含むことが判明した。
 図2に、酸化鉄(試薬)及びIC-1(銅スラグ)のXRDスペクトラムを示す。
 この他、シリカ(試薬)、アルミナ(試薬)、酸化カルシウム(試薬)のいずれも結晶質である。
 なお、上記の擬似銅スラグ(IC-2)は上記試薬より、酸化鉄50質量部、シリカ33質量部、アルミナ5質量部、及び酸化カルシウム12質量部を秤量し、乳鉢にて微粉砕したその混合物を坩堝に移し、電気炉およびガス炉を用いて、1,700~2,200℃の温度にて約8時間保持し、溶融物を水中で固化したものである。
 なお、上記非晶質原料のうち、SA-1~SA-4は、原料に占めるシリカ及びアルミナの合計含量が60質量%以上であり、良質なシリカアルミナ源である。
 他方、IC-1及びIC-2は、原料に占める酸化鉄の含有量が50質量%以上であり、良質な非晶質酸化鉄源である。
 表1に示すように、SA-1~SA-4,IC-1,IC-2はいずれも、シリカ、アルミナ、酸化カルシウム、及び酸化鉄の合計の含量が90質量%以上である。
 以下の表では、酸化鉄(Fe2O3)の含量を[F]、シリカ(SiO2)の含量を[S]、アルミナ(Al2O3)の含量を[A]、酸化カルシウム(CaO)の含量を[C]と略記した。
Figure JPOXMLDOC01-appb-T000001
  一連の耐アルカリ性試験を行うに先立ち、原料自身、つまりシリカアルミナ源及び非晶質酸化鉄源の溶融紡糸性と耐アルカリ性試験を行った。
 <溶融紡糸性試験>
 電気炉を用い溶融紡糸性試験(以下、単に「紡糸性試験」と略記する)の評価を行った。試験の概略を図1に示す。図1において、電気炉(1)は、高さ(H)60cm、外径(D)50cmであり、その中央に径(d)10cmの開口部(4)を備えている。他方、内径(φ)2.1cm、長さ10cmのタンマン管(2)に配合物30gが仕込まれる。なお、タンマン管(2)の底部中央には径2mmの穴が開いている。溶融試験中、タンマン管(2)は吊り棒(3)にて電気炉の開口部(4)内の所定位置に保持される。
加熱により、配合物が溶融すると、自重によりタンマン管の底部より流動落下し、外気に触れて固化され、糸(ファイバー)となる。
 電気炉は所定の昇温プログラムにより昇温され、炉内温度の最高到達温度が1350℃に設定してある。このとき、タンマン管内部(溶融物)の温度は炉内温度よりほぼ50℃低い温度で追随することをあらかじめ確認してある。
 本発明では、溶融紡糸性の評価の指標として、炉内温度が1350℃に達するまでに溶融物が流動落下し糸を形成すること、つまり試料の溶融温度が1300℃以下であり、かつ溶融物が糸(ファイバー)を形成するに適正な溶融粘性を有することを許容レベルとした。試料の溶融挙動に従い、その溶融紡糸性を下記のAよりCの3段階にランク付けした。
   A:糸(ファイバー)になる。
   B:試料の溶融が始まらないか、または溶融物が高粘性のため、タンマン管底部より何も出ない。
   C:試料は溶融するが、溶融物の粘度が低すぎ、液滴となって滴下するのみで、糸(ファイバー)が形成されない。
 <耐アルカリ性試験>
  紡糸性試験に際し、無機組成物が溶融固化すると、先端に楕円体状固化物を伴うファイバーか、または単なる楕円体状固化物が形成される(図5(a)の黒色固化物(X))。別途10質量%のNaOH溶液(pH約13)を調製し、試験管(W)に入れ、上記固化物(重量W1)を試料として浸漬し、試験管(W)をサンドヒーターにて90℃に保温し、30日間継続した。次いで、試料をメッシュにて採取し、乾燥後の重量(W2)を計測した。下記(1)式より、重量減少率(%)を算出した。
重量減少率(%)=(1-W2/W1)×100・・・(1)
 以上の手順にて得られた原料、すなわちシリカアルミナ源及び非晶質酸化鉄源の溶融紡糸性と耐アルカリ性試験の結果を表2に示す。
 これより、従来技術のとおり、石炭灰や玄武岩を原料としてファイバーが得られることを確認した。また耐アルカリ性は表2に示されるレベルであることも確認できた。SA-1とSA-3の耐アルカリ性の絶対値の比較から、無機組成物中の酸化鉄含量が高くなるほど耐アルカリ性が向上する傾向が示された。
 他方、銅スラグ及び擬似銅スラグからは繊維を得ることができなかったが、溶融固化物の耐アルカリ性は極めて高かった(ともに重量減少が0.00%)。これらの結果は、無機組成物中の酸化鉄含量を高めることにより、既存のフライアッシュ繊維や玄武岩繊維を上回る繊維の創出が可能であることを示唆するものであった。
Figure JPOXMLDOC01-appb-T000002
 
 [実施例1]以上の予備試験より得られた知見を参考に、最終組成物の酸化鉄含量がIGCCスラグ(SA-1)や玄武岩(SA-3)よりも高くなるよう、シリカアルミナ源として、SA-2:20質量部、SA-3:20質量部、SA-4:30質量部、酸化鉄源としてIC-1:30質量部を原料とした。原料中の酸化物存在比(最終無機組成物の酸化物構成比)は、酸化鉄:28質量%、シリカ:47質量%、アルミナ:11質量%、酸化カルシウム:9質量%、その他:5質量%である。酸化鉄成分はすべて非晶質原料由来である。また、組成物に占めるシリカとアルミナの合計は58質量%であり、シリカ及びアルミナの合計に対するアルミナの比率は0.19である。原料を上記予備試験と同様の手順にて溶融紡糸を試みた結果、ファイバーが得られた(図3)。溶融固化物は非晶質であった。また、溶融固化物の耐アルカリ性も優れていた(重量減少率が0.00%)。結果を表3に示す。
 なお、比較のため、前記予備試験におけるSA-1の評価結果を比較例1とし、SA-3の評価結果を比較例2として再掲した。
 [比較例3]SA-2:66質量部、酸化鉄(試薬):8質量部、シリカ(試薬):9質量部、酸化カルシウム(試薬):15質量部を秤量し、実施例1と同様に、紡糸性試験をしたところ、ファイバーが得られた。XRDスペクトル解析の結果、結晶ピークが認められた。耐アルカリ性試験の結果、重量減少率は0.20%であった。結果を表3に示す。
 [比較例4、5]耐アルカリ性の向上を期待して、比較例3の組成物の酸化鉄含量が高くなるよう、SA-2、酸化鉄(試薬)、シリカ(試薬)、及び酸化カルシウム(試薬)の配合比を変えて、同様の試験を行った(比較例4,5)。結果を、原料配合比、酸化物構成比、組成物中のシリカ及びアルミナの合計、シリカ及びアルミナの合計に対するアルミナの比率とともに表3に示す。その結果、比較例4,5ともに良好な繊維が得られたが、期待に反し、酸化鉄含量が比較例3よりも高いにも関わらず、耐アルカリ性はむしろ悪化した。なお、溶融固化物は非晶質であった。
 比較例3~5は原料中に酸化鉄(試薬、結晶質)が含まれると、最終的に得られる無機組成物が非晶質であっても、耐アルカリ性が低下することを暗示するものである。
  [実施例2]実施例1において、非晶質酸化鉄源IC-1に代えてIC-2を用いた他は同様にして原料を調製し、実施例1と同様にして、紡糸性試験を行った。その結果、ファイバーが得られた。溶融固化物は非晶質であった。耐アルカリ性試験の結果、重量減少率は0.00%であった。結果を表3に示す。
Figure JPOXMLDOC01-appb-T000003
 
 
  [実施例3]シリカアルミナ源としてSA-1:50質量部、非晶質酸化鉄源としてIC-1:50質量部を原料とした他は、実施例1と同様にして、紡糸性試験を行った。本実施例において、原料中の酸化鉄含量(最終無機組成物の酸化鉄含量)は32質量%であり、かつ、酸化鉄成分はすべて非晶質原料に由来するものである。紡糸性試験の結果、ファイバーが得られた。溶融固化物は非晶質であった。耐アルカリ性試験の結果、重量減少率は0.00%であった。結果を表4に示す。
 なお、参照のため、表4には、比較例1を再掲してある。
  [実施例4]実施例3において、IC-1に代えてIC-2を用いた他は同様にして試験を行った。本実施例において、原料中の酸化鉄含量(最終無機組成物の酸化鉄含量)は30質量%であり、かつ、酸化鉄成分はすべて非晶質原料に由来するものである。紡糸性試験の結果、ファイバーが得られた。溶融固化物は非晶質であった。耐アルカリ性試験の結果、重量減少率は0.00%であった。結果を表4に示す。
  [実施例5]実施例4において、SA-1を37質量部、IC-2を63質量部とした他は同様にして、紡糸性試験を行った。本実施例において、原料中の酸化鉄含量(最終無機組成物の酸化鉄含量)は35質量%であり、かつ、酸化鉄成分はすべて非晶質原料に由来するものである。紡糸性試験の結果、良好な繊維が得られた。溶融固化物は非晶質であった。耐アルカリ性試験の結果、重量減少率は0.00%であった。結果を表4に示す。
  [比較例6]実施例4において、SA-1を25質量部、IC-2を75質量部とした他は同様にして、紡糸性試験を行った。本実施例において、原料中の酸化鉄含量(最終無機組成物の酸化鉄含量)は40質量%であり、かつ、酸化鉄成分はすべて非晶質原料に由来するものである。紡糸性試験の結果、溶融物は坩堝より滴下するのみで、ファイバーを得られなかった。溶融固化物は非晶質であった。なお、溶融固化物の耐アルカリ性は良好であった(重量減少率0.00%)。結果を表4に示す。
  [比較例7]実施例4において、SA-1を12質量部、IC-2を88質量部とした他は同様にして、紡糸性試験を行った。本実施例において、原料中の酸化鉄含量(最終無機組成物の酸化鉄含量)は45質量%であり、かつ、酸化鉄成分はすべて非晶質原料に由来するものである。紡糸性試験の結果、溶融物は坩堝より滴下するのみで、ファイバーを得られなかった。溶融固化物は非晶質であった。なお、溶融固化物の耐アルカリ性は良好であった(重量減少率0.00%)。結果を表4に示す。
 表4より、非晶質原料由来の酸化鉄成分は無機組成物の耐アルカリ性の向上に寄与するものの、その含量が40質量%以上になると溶融紡糸性が悪化することが判明した。
Figure JPOXMLDOC01-appb-T000004
 
  [実施例6]シリカアルミナ源としてSA-2:20質量部、SA-3:20質量部、SA-4:30質量部、非晶質酸化鉄源IC-1に代えてIC-2:30質量部を原料とした他は、実施例1と同様にして、紡糸性試験を行った。本試験例において、原料中の酸化鉄含量(最終無機組成物の酸化鉄含量)は26質量%であり、かつ、酸化鉄成分はすべて非晶質原料に由来するものである。紡糸性試験の結果、ファーバーが得られた。溶融固化物は非晶質であった。耐アルカリ性試験の結果、重量減少率は0.00%であった。結果を表5に示す。
 なお、参照のため、表5には、比較例2を再掲してある。
  [実施例7]シリカアルミナ源としてSA-3:65質量部、非晶質酸化鉄源としてIC-2:35質量部を原料とした他は、実施例1と同様にして、紡糸性試験を行った。本試験例において、原料中の酸化鉄含量(最終無機組成物の酸化鉄含量)は30質量%であり、かつ、酸化鉄成分はすべて非晶質原料に由来するものである。紡糸性試験の結果、ファイバーが得られた。溶融固化物は非晶質であった。耐アルカリ性試験の結果、重量減少率は0.00%であった。結果を表5に示す。
  [実施例8]実施例7において、SA-3:50質量部、IC-2:50質量部とした他は同様にして、紡糸性試験を行った。本試験例において、原料中の酸化鉄含量(最終無機組成物の酸化鉄含量)は35質量%であり、かつ、酸化鉄成分はすべて非晶質原料に由来するものである。試験の結果、ファイバーが得られた。溶融固化物は非晶質であった。耐アルカリ性試験の結果、重量減少率は0.00%であった。結果を表5に示す。
  [比較例8]実施例7において、SA-3:30質量部、IC-2:70質量部とした他は同様にして、紡糸性試験を行った。本試験例において、原料中の酸化鉄含量(最終無機組成物の酸化鉄含量)は41質量%であり、かつ、酸化鉄成分はすべて非晶質原料に由来するものである。紡糸性試験の結果、溶融物は坩堝より滴下するのみで、ファイバーを得られなかった。溶融固化物は非晶質であった。なお、溶融固化物の耐アルカリ性は良好であった(重量減少率0.00%)。結果を表5に示す。
  [比較例9]実施例7において、SA-3:15質量部、IC-2:85質量部とした他は同様にして、紡糸性試験を行った。本試験例において、原料中の酸化鉄含量(最終無機組成物の酸化鉄含量)は45質量%であり、かつ、酸化鉄成分はすべて非晶質原料に由来するものである。紡糸性試験の結果、溶融物は坩堝より滴下するのみで、ファイバーを得られなかった。溶融固化物は非晶質であった。なお、溶融固化物の耐アルカリ性は良好であった(重量減少率0.00%)。結果を表5に示す。
 表5より、IGCCスラグに代えて、玄武岩を原料として用いても、表4と同様の結果が得られた。
Figure JPOXMLDOC01-appb-T000005
 [実施例9]IC-1(銅スラグ)50質量部、シリカ(試薬)28質量部、アルミナ(試薬)7質量部、及び酸化カルシウム(試薬)15質量部を秤量し、乳鉢で粉砕して原料とした。ここで、原料の酸化物組成は、酸化鉄:28質量%、シリカ:46質量%、アルミナ:10質量%、酸化カルシウム:16質量%、その他:2質量%である。原料中の酸化鉄含量(最終無機組成物の酸化鉄含量)は全て銅スラグ由来、つまり非晶質原料由来である。他方、その他の酸化物、すなわち、シリカ、アルミナ、及び酸化カルシウムは試薬(結晶質)である。かくして調製した原料を紡糸性試験に供した結果、ファイバーが得られた。溶融固化物は非晶質であった。なお、溶融固化物の耐アルカリ性は良好であった(重量減少率0.00%)。
 本実施例より、酸化鉄成分を非晶質原料由来とする限り、シリカ、アルミナ、及び酸化カルシウムはいずれも結晶質原料由来の成分を含んでいてもよいことを示す。すなわち、無機組成物中の酸化鉄成分が非晶質原料由来であることが耐アルカリ性の向上に重要であることが明らかである。
 実施例1~9と比較例1~9との対比から、シリカ、酸化鉄、アルミナ及び酸化カルシウムを主要成分とする非晶質無機組成物において、酸化鉄成分を非晶質原料由来とし、かつ、その含量を26質量%以上40質量未満とすることにより、耐アルカリ性に優れる無機組成物及びその繊維が得られることが明らかである。
 本発明の無機組成物は耐アルカリ性に優れるので、骨材のほか、さらに繊維加工してコンクリート補強用の耐アルカリ性無機繊維とすることができる。

 

Claims (6)

  1. シリカ、アルミナ、酸化鉄、及び酸化カルシウムを必須成分として含む非晶質無機組成物であって、前記非晶質無機組成物中の、
     i)シリカ、アルミナ、及び酸化カルシウムの合計の含量は50質量%以上75質量%以下、
     ii)酸化鉄の含量は26質量%以上40質量%未満、であり、かつ
     iii)前記酸化鉄は、シリカ、アルミナ、酸化カルシウム、及び酸化鉄を含有する非晶質原料由来である、非晶質無機組成物。
  2. 前記非晶質原料中のシリカ、アルミナ、酸化カルシウム、及び酸化鉄の合計含量は80質量%以上である、請求項1に記載の無機組成物。
  3. 前記非晶質原料には、銅スラグが含まれている請求項1または2に記載の非晶質無機組成物。
  4. 前記非晶質原料には、銅スラグに加え、さらに、石炭灰、玄武岩、または火山灰の一つ以上が含まれる、請求項1~3のいずれか一項に記載の非晶質無機組成物。
  5. 請求項4の非晶質無機組成物よりなる繊維。
  6. 請求項5の繊維を充填したコンクリート。
     

     
PCT/JP2022/017119 2021-04-06 2022-04-05 耐アルカリ性非晶質無機組成物及びその繊維 WO2022215695A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
AU2022255977A AU2022255977A1 (en) 2021-04-06 2022-04-05 Alkali-resistant noncrystalline inorganic composition and fiber thereof
CN202280026302.9A CN117279870A (zh) 2021-04-06 2022-04-05 耐碱性非晶质无机组合物及其纤维
US18/285,819 US20240182353A1 (en) 2021-04-06 2022-04-05 Alkali-resistant non-crystalline inorganic composition and fiber thereof
JP2023513024A JPWO2022215695A1 (ja) 2021-04-06 2022-04-05
EP22784677.1A EP4321492A1 (en) 2021-04-06 2022-04-05 Alkali-resistant noncrystalline inorganic composition and fiber thereof
CA3214133A CA3214133A1 (en) 2021-04-06 2022-04-05 Alkali-resistant non-crystalline inorganic composition and fiber thereof
KR1020237034704A KR20230167372A (ko) 2021-04-06 2022-04-05 내알칼리성 비정질 무기 조성물 및 그 섬유

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-064565 2021-04-06
JP2021064565 2021-04-06

Publications (1)

Publication Number Publication Date
WO2022215695A1 true WO2022215695A1 (ja) 2022-10-13

Family

ID=83546385

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/017119 WO2022215695A1 (ja) 2021-04-06 2022-04-05 耐アルカリ性非晶質無機組成物及びその繊維

Country Status (9)

Country Link
US (1) US20240182353A1 (ja)
EP (1) EP4321492A1 (ja)
JP (1) JPWO2022215695A1 (ja)
KR (1) KR20230167372A (ja)
CN (1) CN117279870A (ja)
AU (1) AU2022255977A1 (ja)
CA (1) CA3214133A1 (ja)
TW (1) TW202306924A (ja)
WO (1) WO2022215695A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS632841A (ja) * 1986-06-20 1988-01-07 オウトクンプ オイ 金属生産からのスラグを利用する方法
CN106698914A (zh) * 2015-08-10 2017-05-24 沈阳有色金属研究院 一种铜冶炼渣配加煤矸石电炉熔炼保温制备无机矿物纤维的方法
WO2018008513A1 (ja) 2016-07-04 2018-01-11 株式会社トクヤマ フライアッシュの使用方法
WO2020218356A1 (ja) * 2019-04-25 2020-10-29 新日本繊維株式会社 耐放射線性無機材料及びその繊維

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS632841A (ja) * 1986-06-20 1988-01-07 オウトクンプ オイ 金属生産からのスラグを利用する方法
CN106698914A (zh) * 2015-08-10 2017-05-24 沈阳有色金属研究院 一种铜冶炼渣配加煤矸石电炉熔炼保温制备无机矿物纤维的方法
WO2018008513A1 (ja) 2016-07-04 2018-01-11 株式会社トクヤマ フライアッシュの使用方法
WO2020218356A1 (ja) * 2019-04-25 2020-10-29 新日本繊維株式会社 耐放射線性無機材料及びその繊維

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
INTERNATIONAL JOURNAL OF TEXTILE SCIENCE, vol. 1, no. 4, 2012, pages 19 - 28

Also Published As

Publication number Publication date
EP4321492A1 (en) 2024-02-14
US20240182353A1 (en) 2024-06-06
JPWO2022215695A1 (ja) 2022-10-13
AU2022255977A1 (en) 2023-10-12
CN117279870A (zh) 2023-12-22
CA3214133A1 (en) 2022-10-13
TW202306924A (zh) 2023-02-16
KR20230167372A (ko) 2023-12-08

Similar Documents

Publication Publication Date Title
RU2358928C2 (ru) Композиции стекловолокна
CN102471132B (zh) 玻璃组合物和由其制成的纤维
CN102482142B (zh) 改善了模量的不含锂玻璃
CN109180009B (zh) 一种高强度玻璃纤维及其制备方法
CN105753330A (zh) 一种耐碱玻璃纤维组合物、耐碱玻璃纤维及耐碱玻璃纤维的制备方法
EP0144349A4 (en) HIGH TEMPERATURE AND ALKALINE-RESISTANT FIRE-RESISTANT FIBERS FOR THE REINFORCEMENT OF CENTRAL PRODUCTS AND SO REINFORCED PRODUCTS.
CN105800943A (zh) 一种以赤泥和高炉矿渣为原料的玻璃纤维组合物、耐碱玻璃纤维及耐碱玻璃纤维制备方法
CN110142278A (zh) 一种垃圾焚烧飞灰等离子熔融的方法
CN108191234A (zh) 锡氧化物掺杂赤泥耐碱玻璃纤维及其制备方法
JP2003500330A (ja) ガラスファイバー組成物
Zhang et al. Preparation, thermal stability and mechanical properties of inorganic continuous fibers produced from fly ash and magnesium slag
WO2022215695A1 (ja) 耐アルカリ性非晶質無機組成物及びその繊維
CN107010839A (zh) 一种含镧铈稀土微晶材料及其制备方法
Christiansen Effects of composition and activator type on glass-based geopolymers
WO2021193343A1 (ja) ファイバー、ファイバー製造方法
Zisheng et al. Effect of the iron oxide content on the structure and alkali resistance of glass fibres prepared from red mud
CN108455863B (zh) 一种镧掺杂磷酸盐耐碱玻璃纤维及其制备方法
US20230294147A1 (en) Flake-like composition and flake-like composition production method
TW202021920A (zh) 一種含有氧化鋯摻雜的鈉鈣矽酸鹽玻璃
Li Research and Development of New Energy‐Saving, Environmentally Friendly Fiber Glass Technology
JP2001279534A (ja) 石炭灰を主原料とするファイバー組成物およびその製法
CN108455864B (zh) 一种铈掺杂磷酸盐耐碱玻璃纤维及其制备方法
JP2001270738A (ja) 無機繊維材料の製造方法
CN102050560B (zh) 一种低熔点玻璃熟料的制备方法
JPS6257580B2 (ja)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22784677

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023513024

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2022255977

Country of ref document: AU

Ref document number: AU2022255977

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 202280026302.9

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 3214133

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 18285819

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20237034704

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2022255977

Country of ref document: AU

Date of ref document: 20220405

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202317068788

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2023123888

Country of ref document: RU

Ref document number: 2022784677

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022784677

Country of ref document: EP

Effective date: 20231106