WO2022215491A1 - チャート製造装置、チャート製造方法、プログラム及び画像形成システム - Google Patents

チャート製造装置、チャート製造方法、プログラム及び画像形成システム Download PDF

Info

Publication number
WO2022215491A1
WO2022215491A1 PCT/JP2022/012545 JP2022012545W WO2022215491A1 WO 2022215491 A1 WO2022215491 A1 WO 2022215491A1 JP 2022012545 W JP2022012545 W JP 2022012545W WO 2022215491 A1 WO2022215491 A1 WO 2022215491A1
Authority
WO
WIPO (PCT)
Prior art keywords
color
chart
measurement
patch
white
Prior art date
Application number
PCT/JP2022/012545
Other languages
English (en)
French (fr)
Inventor
清巳 珠川
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to EP22784476.8A priority Critical patent/EP4321343A1/en
Priority to JP2023512902A priority patent/JPWO2022215491A1/ja
Publication of WO2022215491A1 publication Critical patent/WO2022215491A1/ja
Priority to US18/476,319 priority patent/US20240020499A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K15/00Arrangements for producing a permanent visual presentation of the output data, e.g. computer output printers
    • G06K15/02Arrangements for producing a permanent visual presentation of the output data, e.g. computer output printers using printers
    • G06K15/021Adaptations for printing on specific media
    • G06K15/023Adaptations for printing on specific media for printing on transparent media
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/21Ink jet for multi-colour printing
    • B41J2/2107Ink jet for multi-colour printing characterised by the ink properties
    • B41J2/2114Ejecting specialized liquids, e.g. transparent or processing liquids
    • B41J2/2117Ejecting white liquids
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K15/00Arrangements for producing a permanent visual presentation of the output data, e.g. computer output printers
    • G06K15/02Arrangements for producing a permanent visual presentation of the output data, e.g. computer output printers using printers
    • G06K15/027Test patterns and calibration
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K15/00Arrangements for producing a permanent visual presentation of the output data, e.g. computer output printers
    • G06K15/02Arrangements for producing a permanent visual presentation of the output data, e.g. computer output printers using printers
    • G06K15/10Arrangements for producing a permanent visual presentation of the output data, e.g. computer output printers using printers by matrix printers
    • G06K15/102Arrangements for producing a permanent visual presentation of the output data, e.g. computer output printers using printers by matrix printers using ink jet print heads
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K15/00Arrangements for producing a permanent visual presentation of the output data, e.g. computer output printers
    • G06K15/02Arrangements for producing a permanent visual presentation of the output data, e.g. computer output printers using printers
    • G06K15/18Conditioning data for presenting it to the physical printing elements
    • G06K15/1867Post-processing of the composed and rasterized print image
    • G06K15/1868Post-processing of the composed and rasterized print image for fitting to an output condition, e.g. paper colour or format
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K15/00Arrangements for producing a permanent visual presentation of the output data, e.g. computer output printers
    • G06K15/02Arrangements for producing a permanent visual presentation of the output data, e.g. computer output printers using printers
    • G06K15/18Conditioning data for presenting it to the physical printing elements
    • G06K15/1867Post-processing of the composed and rasterized print image
    • G06K15/1872Image enhancement
    • G06K15/1878Adjusting colours
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/90Determination of colour characteristics
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/46Colour picture communication systems
    • H04N1/54Conversion of colour picture signals to a plurality of signals some of which represent particular mixed colours, e.g. for textile printing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/46Colour picture communication systems
    • H04N1/56Processing of colour picture signals
    • H04N1/60Colour correction or control
    • H04N1/603Colour correction or control controlled by characteristics of the picture signal generator or the picture reproducer
    • H04N1/6033Colour correction or control controlled by characteristics of the picture signal generator or the picture reproducer using test pattern analysis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2202/00Embodiments of or processes related to ink-jet or thermal heads
    • B41J2202/01Embodiments of or processes related to ink-jet heads
    • B41J2202/21Line printing

Definitions

  • the present invention relates to a chart manufacturing apparatus, a chart manufacturing method, a program, and an image forming system.
  • An inkjet printing apparatus uses white ink to form a base for printed matter that uses a transparent base material. For example, a color image is printed, and a full-page white ink image is printed over the color image. When the printed matter printed in this way is viewed from the side opposite to the printed side of the substrate, a color image is visually recognized on the white background.
  • the density of white ink can be managed using the concealment rate as an index.
  • the hiding rate represents the degree to which the white ink applied to the substrate hides the color of the underlying layer of the white ink, such as the base of the substrate.
  • White ink is measured using a white background and a black background in deriving the hiding ratio.
  • Patent Document 1 describes a printing apparatus that acquires an error in the amount of ink deposited on a transparent base material and corrects the amount of ink deposited on the basis of the error.
  • the apparatus described in this document prints white patches and process color patches such as cyan on a transparent substrate, measures the colors of the patches in the Lab space, and performs color correction based on the colorimetric data.
  • FIG. 17 of the same document illustrates colorimetry in which a black-and-white background is used, a white background is applied to cyan, magenta, yellow, and black, and a black background is applied to white.
  • Patent document 2 has a switching mechanism for switching between a white background and a black background, a black background is applied to read white ink, and a white background is applied to read black ink, etc., and defective nozzles can be accurately detected for various inks.
  • a detecting printing device is described.
  • Patent Document 3 describes an image forming apparatus equipped with an image reading section for reading an image formed on a transparent support. The device described in the document determines whether the background color for reading an image should be black or white, and the background color is set based on the determination result.
  • each of Patent Documents 1 to 3 each include a component for switching between a white background and a black background, and switch the background color. That is, none of Cited Document 1, Cited Document 2, and Cited Document 3 describes a contrivance related to a chart for using one type of background color. In other words, none of the inventions described in Cited Document 1, Cited Document 2, and Cited Document 3 is designed to form a chart without switching the background color.
  • the present invention has been made in view of such circumstances, and provides a chart manufacturing apparatus, a chart manufacturing method, a program, and a chart manufacturing method that eliminate the need to switch the background when measuring a chart using two backgrounds of different colors.
  • An object of the present invention is to provide an image forming system.
  • a chart manufacturing apparatus includes: an image forming apparatus that forms a chart measured by applying a first background color and a second background color that are different from each other on a transparent substrate; a processor; a storage device in which is stored a program for producing a chart, the processor executing the instructions of the program to make a first measurement onto the transparent substrate using a colorant corresponding to the first background color; forming a background image, forming a first patch group including one or more first patches using a coloring material of a first color at a position corresponding to the first measurement background image on the transparent substrate; A chart making apparatus for forming a second group of patches including one or more second patches at locations on the material where the first measurement background image is not formed.
  • the first A patch group is measured against a first measurement background image to which a coloring material corresponding to a first background color is applied, and a second patch group is measured against a background using a second background color. be implemented. This eliminates the need to switch between the first background color and the second background color, which are different from each other, when performing the measurement of the first patch group and the measurement of the second patch group.
  • a patch can apply a small piece image that represents the density of each color.
  • a square shape can be applied to the patch.
  • a base material with a visible light transmittance of less than 100% can be applied.
  • coloring materials examples include ink and toner.
  • the processor forms the first measurement background image on one surface of the transparent base material, and forms the first patch group on the first measurement background image.
  • the chart can be formed by superimposing the first patch group on the first measurement background image.
  • the processor forms a transparent image to which the transparent coloring material is applied, superimposed on the first measurement background image, and superimposes the first patch group on the transparent image.
  • color mixing between the coloring material applied to the first measurement background image and the coloring material applied to the first patch group can be suppressed.
  • the processor forms the first patch group on one surface of the transparent base material, and forms the first patch group on the other surface of the transparent base material corresponding to the position of the first patch group. Form a measurement background image.
  • color mixing between the coloring material applied to the first measurement background image and the coloring material applied to the first patch group can be suppressed.
  • Such an aspect is suitable for a double-sided machine capable of forming images on both sides of a transparent substrate.
  • the processor forms the first patch group on one surface of the transparent base material, and folds the transparent base material along the folding line to a position overlapping the first patch group. A first measurement background image is formed.
  • the processor forms the second patches using the coloring material of the first color.
  • the first patch and the second patch formed using the coloring material of the first color can be measured using mutually different background colors.
  • the processor forms the first patch and the second patch using a white coloring material as the coloring material of the first color, and uses a black coloring material as the coloring material corresponding to the first background color.
  • a colorant is used to form a first measurement background image.
  • a white patch can be measured by applying a white background and a black background.
  • the processor forms the second patches using the coloring material of the second color different from the coloring material of the first color.
  • the processor forms the first patches using a white colorant as a first colorant, and uses at least one process color colorant as a second color. , forming a second patch and forming a first measured background image using a black colorant as the colorant corresponding to the first background color.
  • a black background may be applied to measure white patches
  • a white background may be applied to measure process color patches.
  • the processor forms the second measurement background image at the position corresponding to the position of the second patch group using the coloring material corresponding to the second background color.
  • measurement can be performed using the first measurement background image and the second measurement background image.
  • the processor forms the second measurement background image using a white coloring material as the coloring material corresponding to the second background color.
  • the second patch can be measured by applying a white second measurement background image.
  • a chart manufacturing apparatus wherein the processor forms a second measurement background image having a coverage of 85 percent or more.
  • the transparency of the second measurement background image is suppressed.
  • the processor forms the first patches using a white coloring material as the coloring material of the first color, and uses a black coloring material as the coloring material corresponding to the first background color. to form a first measurement background image.
  • the black first measurement background image can be applied to measure the white first patch.
  • a chart manufacturing apparatus forms a first measurement background image having a coverage of 85 percent or more.
  • the processor forms second patches to which the same gradation values as those of the first patches are applied.
  • the color applied to the first patch and the color applied to the second patch can be managed in common.
  • the processor forms a first patch group in which a plurality of first patches with different gradation values are arranged along the conveying direction of the transparent substrate, A plurality of second patches of color form a second patch group arranged along the transport direction of the transparent substrate.
  • the occurrence of in-plane unevenness for each patch is suppressed when forming using a line head.
  • a chart manufacturing method is a chart manufacturing method for forming a chart to be measured by applying a first background color and a second background color that are different from each other on a transparent substrate, wherein a computer performs the first background
  • a first measured background image is formed on a transparent substrate using a colorant corresponding to the color, and one or more colorants of the first color are applied to locations on the transparent substrate corresponding to the first measured background image.
  • a chart manufacturing method for forming a first patch group containing a first patch, and forming a second patch group containing one or more second patches at a position on a transparent substrate where the first measurement background image is not formed. is.
  • a program according to the present disclosure is a program for producing a chart that is measured by applying a first background color and a second background color that are different from each other, wherein the computer uses a coloring material corresponding to the first background color forming a first measured background image on a transparent substrate, wherein one or more first patches are included with a colorant of a first color at locations corresponding to the first measured background image on the transparent substrate;
  • An image forming system includes an image forming apparatus that forms a chart measured by applying a first background color and a second background color that are different from each other on a transparent substrate, a processor, and a processor.
  • a storage device in which a program is stored the processor executing the instructions of the program to form a first measured background image on the transparent substrate using a colorant corresponding to the first background color; forming a first patch group containing one or more first patches using a coloring material of a first color at a position corresponding to the first measurement background image on the transparent substrate;
  • An example of an image forming system is an inkjet printing system equipped with an inkjet printing device.
  • the first patch group is the first A measurement is performed with a first measurement background image to which a coloring material corresponding to the background color is applied, and a second group of patches is measured by applying a background with a second background color. This eliminates the need to switch between the first background color and the second background color, which are different from each other, when performing the measurement of the first patch group and the measurement of the second patch group.
  • FIG. 1 is a functional block diagram of a gradation correction data generation device.
  • FIG. 2 is a functional block diagram of the correction processing section shown in FIG.
  • FIG. 3 is a flow chart showing the procedure of the gradation correction LUT generation method.
  • FIG. 4 is a schematic diagram of the gradation correction LUT generation process.
  • FIG. 5 is an explanatory diagram of a gradation correction chart.
  • FIG. 6 is a plan view of the background showing a configuration example of the background.
  • FIG. 7 is a schematic diagram of a gradation correction chart in a measurement state.
  • FIG. 8 is an explanatory diagram of drive voltages applied to printing the gradation correction chart.
  • FIG. 9 is an overall configuration diagram of an inkjet printing system according to the embodiment.
  • FIG. 10 is a functional block diagram showing the electrical configuration of the inkjet printing system shown in FIG. 9.
  • FIG. 11 is a block diagram showing the hardware configuration of a control device applied to the inkjet printing system shown in FIG.
  • FIG. 12 is a flow chart showing the procedure of the chart manufacturing method according to the first embodiment.
  • FIG. 13 is a sectional view schematically showing a gradation correction chart manufactured by applying the gradation correction chart manufacturing method according to the first embodiment.
  • FIG. 14 is a configuration diagram showing a configuration example of a printer applied to the chart manufacturing apparatus according to the second embodiment.
  • FIG. 15 is a cross-sectional view schematically showing a chart manufactured by applying the chart manufacturing apparatus according to the second embodiment.
  • FIG. 16 is a cross-sectional view schematically showing a chart manufactured by applying the chart manufacturing apparatus and chart manufacturing method according to the third embodiment.
  • FIG. 17 is a cross-sectional view schematically showing a chart manufactured by applying the chart manufacturing apparatus according to the fourth embodiment.
  • FIG. 18 is a schematic diagram showing the measurement state of the chart shown in FIG.
  • FIG. 1 is a functional block diagram of a gradation correction data generation device.
  • a measuring device 12, a printer 14, and a display device 16 are connected to the gradation correction data generating device 10 shown in the figure.
  • the gradation correction data generating device 10 generates gradation correction data applied to correct non-linearity between gradation values and density values for image data printed by applying the printer 14 .
  • the printer 14 performs printing based on the image data to which the gradation values corrected by applying the gradation correction data are applied.
  • the printer 14 will be described as an inkjet printing device having an inkjet head.
  • the gradation correction data generation device 10 includes an image data storage unit 20 .
  • the image data storage unit 20 stores gradation correction chart data representing a gradation correction chart to be printed on the base material. Further, the image data storage unit 20 can store data representing a target density value for each gradation value to be reproduced when the gradation correction chart is printed. It should be noted that storing means storing data in memory, and is synonymous with storing, recording, holding, and the like.
  • the gradation correction data generation device 10 includes a printer control section 22 .
  • the printer control unit 22 reads the gradation correction chart data from the image data storage unit 20 and generates an ejection control signal based on the gradation correction chart data.
  • the printer 14 prints the gradation correction chart based on the ejection control signal.
  • the printer control unit 22 causes the display device 16 to display various information about the printer 14 .
  • a touch panel system is applied to the display device 16, and a printer operation screen 16A is displayed.
  • a user can operate the printer operation screen 16 ⁇ /b>A to transmit various information to the printer 14 .
  • the measuring device 12 measures the density values of the patches forming the gradation correction chart printed on the base material.
  • the measuring instrument 12 may apply a spectrophotometric densitometer.
  • the measuring device 12 transmits the measurement result to the gradation correction LUT generating section 26 .
  • the gradation correction data generating device 10 includes a measuring device control section 24.
  • the measuring instrument control unit 24 sets measurement conditions for the measuring instrument 12 and controls measurement of the gradation correction chart using the measuring instrument 12 .
  • the gradation correction data generation device 10 includes a gradation correction LUT generation section 26 and an LUT storage section 28 .
  • the gradation correction LUT generator 26 generates a gradation correction LUT that defines the conversion relationship between gradation values and density values. Note that LUT is an abbreviation for lookup table.
  • the patch measurement data for each tone value of the tone correction chart is compared with the target density value for each tone value, and the tone value that realizes the target density value is derived, A gradation correction LUT representing a conversion relationship between gradation values and density values is generated.
  • the gradation correction LUT generation unit 26 generates a gradation correction LUT for each color.
  • the gradation correction LUT generation unit 26 generates a gradation correction LUT for each of various conditions such as ink type, base material type, and printer settings.
  • Generation of the gradation correction LUT referred to here can include a mode of updating an existing gradation correction LUT.
  • the LUT storage unit 28 stores the gradation correction LUT generated using the gradation correction LUT generation unit 26.
  • the LUT storage unit 28 stores a gradation correction LUT for each color and for each condition.
  • the gradation correction data generation device 10 includes a correction processing section 30 .
  • the correction processing section 30 includes a gradation correction processing section 31 .
  • the correction processing section 30 can include various correction processing sections applied to the chart data for tone correction, such as an in-plane unevenness correction processing section and a non-ejection nozzle correction processing section.
  • FIG. 1 illustration of various correction processing units such as an in-plane unevenness correction processing unit is omitted.
  • the gradation correction processing unit 31 refers to the gradation correction LUT and corrects the gradation value for each color.
  • the printer control unit 22 generates an ejection control signal based on the gradation correction chart data in which the gradation value is corrected, and transmits the ejection control signal to the printer 14 .
  • the printer 14 prints the gradation correction chart based on the ejection control signal.
  • the image data storage unit 20, the correction processing unit 30, the printer control unit, and the printer 14 in the gradation correction data generation device 10 shown in FIG. 1 constitute the chart production device according to the embodiment. Details of the chart manufacturing apparatus will be described later.
  • FIG. 2 is a functional block diagram of the correction processing section shown in FIG.
  • a computer having one or more processors and one or more memories can be applied to the correction processing unit 30 shown in the figure.
  • the processor implements various functions of the correction processing section 30 by executing programs stored in the memory.
  • FIG. 2 shows a personal computer as an example of a computer.
  • the correction processing unit 30 includes a gradation correction processing unit 31 , an in-plane unevenness correction processing unit 52 and an ejection failure correction processing unit 54 .
  • the gradation correction processing unit 31 reads gradation correction chart data from the gradation correction chart data storage unit 20 .
  • the gradation correction processing unit 31 decomposes the gradation correction chart data into gradation correction chart data for each color of cyan, magenta, yellow-black, and white.
  • the gradation correction processing unit 31 refers to the gradation correction LUT for each color stored in the LUT storage unit 28 for the gradation correction chart data for each color, and corrects the gradation value for each color.
  • FIG. 2 illustrates a gradation correction LUT corresponding to a tone curve representing the relationship between gradation values and density values.
  • the in-plane non-uniformity correction processing unit 52 corrects in-plane non-uniformity in the patches that constitute the gradation correction chart. Specifically, the in-plane unevenness correction processing unit 52 corrects the ejection amount for each nozzle according to the ejection characteristics for each nozzle of the inkjet head provided in the printer 14 shown in FIG.
  • the ejection failure correction processing unit 54 performs ejection failure nozzle correction. Specifically, the non-discharge correction processing unit 54 masks the non-discharge nozzle, and performs alternative discharge for the non-discharge nozzle using nozzles in the vicinity of the non-discharge nozzle.
  • the printer 14 prints a gradation correction chart including patches that suppress in-plane unevenness and streak unevenness caused by ejection failure nozzles. can.
  • the gradation correction chart data corrected using the correction processing unit 30 is sent to the printer control unit 22 .
  • the printer control unit 22 generates an ejection control signal based on the received chart data for tone correction, and transmits the ejection control signal to the printer 14 .
  • the printer 14 prints the gradation correction chart based on the ejection control signal.
  • FIG. 3 is a flow chart showing the procedure of the gradation correction LUT generation method.
  • the printer control unit 22 shown in FIG. Examples of printing conditions include ink type and substrate type.
  • the printer control unit 22 prints the gradation correction chart based on the gradation correction chart data that has been subjected to various correction processes such as the gradation correction process.
  • the gradation correction chart printing step S12 includes a plurality of steps described later. Each step constituting the gradation correction chart printing step S12 constitutes a chart method applied to the chart manufacturing apparatus. Details of the gradation correction chart printing step S12 will be described later.
  • the measurement device 12 shown in FIG. 1 is applied to measure the gradation correction chart printed in the gradation correction chart printing step S12.
  • Automatic measurement or manual measurement may be applied to the measurement of the tone correction chart.
  • the substrate on which the gradation correction chart is output from the printer 14 is transported to the measuring instrument 12, the substrate is set on the measuring instrument 12, Measurement of the gradation correction chart is performed.
  • the base material printed with the gradation correction chart output from the printer 14 is manually set in the measuring device 12, and the gradation correction chart is measured.
  • the gradation correction LUT generation unit 26 acquires the measurement data of the gradation correction chart from the measuring device 12, and generates the gradation correction LUT based on the acquired measurement data of the gradation correction chart. Generate.
  • the gradation correction LUT generation unit 26 generates a gradation correction LUT that corrects the correspondence between gradation values and density values.
  • a tone curve in which the relationship between the gradation value and the density value for each color is corrected is shown in FIG.
  • FIG. 4 is a schematic diagram of the tone correction LUT generation process.
  • FIG. 4 illustrates the processing of each step in the gradation correction LUT generation step S16 using four types of graph format schematic diagrams. Here, a mode of correcting an existing gradation correction LUT will be described.
  • a straight line 60 indicates the relationship between the input signal value and the output signal value of the existing gradation correction LUT.
  • the input signal value and the output signal value are the same.
  • the existing gradation correction LUT referred to here represents the gradation correction LUT applied to printing the gradation correction chart.
  • a curve 62 schematically represents the relationship between the signal value applied to printing each patch of the tone correction chart and the target density value.
  • the target density values correspond to the density values of curve 62 .
  • a table representing the relationship between the signal value applied to printing each patch of the tone correction chart and the target density value is stored in the image data storage unit 20 or the like shown in FIG.
  • a curve 64 schematically shows the relationship between the signal value applied to printing each patch of the gradation correction chart and the measurement data of each patch obtained in the gradation correction chart measurement step S14.
  • the measured data for each patch corresponds to the density values of curve 64 .
  • the measurement data of each patch on the gradation correction chart should match the target density value.
  • a curve 66 schematically shows a tone correction LUT whose output signal value is a signal value that reproduces a target density value and whose input signal value is a tone value derived based on image data.
  • the gradation correction LUT is generated by applying the following steps. First, a signal value associated with the target density value is derived from a table representing the relationship between the target density value and the signal value applied to printing each patch of the gradation correction chart represented by the curve 62. .
  • the signal value that reproduces the target density value is derived.
  • the signal values that reproduce the target density values derived from curve 64 are assigned to the input signal values applied to the target density values.
  • the gradation correction LUT generation unit 26 stores the gradation correction LUT in the LUT storage unit 28.
  • the printer 14 reads the gradation correction LUT stored in the LUT storage unit 28 and applies the gradation correction LUT to the processing of the image data.
  • white Image Density Management An example of a white image printed using white ink is a base for a color image printed on a transparent substrate. It is important that the white image applied to the background of the color image is opaque. In general, the degree of transparency of the white image can be applied using the concealment rate as an evaluation index.
  • the concealment rate is calculated by applying a white background and a black background, measuring density values of each of a plurality of white patches having different signal values representing gradation values, and applying a standardized calculation method.
  • the concealment rate can be calculated by applying method B specified in Japanese Industrial Standards JIS K 5600-4-1 concealment power.
  • JIS K 5600-4-1 Concealment Power is a Japanese Industrial Standard created by translating ISO/FDIS 6504-3 published in 1998 without changing the technical content or format of the standard chart.
  • JIS is an abbreviation for Japanese Industrial Standards.
  • ISO is an abbreviation for International Organization for Standardization.
  • the white of white images and white ink is not limited to strict white that reflects 100% of all wavelengths of visible light, but includes white in a broad sense that is generally recognized as white.
  • White ink refers to inks sold under names such as white ink and white ink.
  • An example of a white ink is an ink containing a white pigment such as titanium oxide particles. Note that white is synonymous with white and white, and these can be read interchangeably.
  • white patches are measured using two types of backgrounds with different colors, and the gradation is calculated by associating the signal value applied when printing the white patches with the concealment rate that manages the white ink.
  • a correction LUT is created, and the signal value applied to printing is used to directly manage the white ink density.
  • FIG. 5 is an explanatory diagram of a gradation correction chart.
  • FIG. 5 shows a gradation correction chart 102 printed on the base material 100 .
  • the base material 100 is a transparent sheet-like medium, and a non-permeable medium is applied. Examples of materials for the base material 100 include ONY (Oriented Nylon), OPP (Oriented PolyPropylene), PET (polyEthylene Terephthalate), and the like.
  • Non-penetration means having impermeability to water-based ink, which will be described later.
  • transparent means that the transmittance of visible light is 30% or more and 100% or less, preferably 70% or more and 100% or less.
  • the gradation correction chart 102 includes a process color patch group 112 whose constituent elements are a plurality of patches 110 printed using process color inks.
  • the process color patch group 112 includes a cyan patch group 112C, a magenta patch group 112M, a yellow patch group 112Y and a black patch group 112K.
  • the cyan patch group 112C is composed of a plurality of cyan patches 110C.
  • the magenta patch group 112M has a plurality of magenta patches 110M as constituent elements.
  • the yellow patch group 112Y is composed of a plurality of yellow patches 110Y.
  • the black patch group 112K is composed of a plurality of black patches 110K.
  • the gradation correction chart 102 includes a spot color patch group 116 whose constituent elements are a plurality of spot color patches 114 printed using spot color ink.
  • Spot color patch group 116 includes orange patch group 116O, green patch group 116G, and violet patch group 116V.
  • the orange patch group 116O is composed of a plurality of orange patches 114O.
  • the green patch group 116G is composed of a plurality of green patches 114G.
  • the violet patch group 116V is composed of a plurality of violet patches 114V.
  • the tone correction chart 102 includes a first white patch group 120 and a second white patch group 122 .
  • First white patch group 120 includes a plurality of first white patches 124 .
  • Second white patch group 122 includes a plurality of second white patches 126 .
  • the plurality of first white patches 124 forming the first white patch group 120 increase in gradation value from the downstream side toward the upstream side in the base material conveying direction.
  • the minimum gradation value is applied to the first white patch 124 at the downstream end in the substrate conveying direction.
  • the maximum value of the gradation value is applied to the first white patch 124 at the end on the upstream side in the substrate conveying direction.
  • the first white patch group 120 shown in FIG. 5 is composed of 16 first white patches 124 .
  • the gradation values are represented by numerical values from 0 to 255
  • the gradation values of the 16 first white patches 124 have a minimum gradation value of 0 and a maximum gradation value of 255.
  • the gradation value is increased by 17.
  • the same gradation value as the second white patch 126 is applied to the plurality of first white patches 124 forming the second white patch group 122 . That is, the same gradation value is applied to the first white patch 124 and the second white patch 126 having the same position in the substrate conveying direction.
  • the first white patch group 120 and the second white patch group 122 are arranged at different positions in the substrate width direction orthogonal to the substrate conveying direction.
  • the orthogonal here means that the angle formed by two directions is less than 90 degrees or exceeds 90 degrees, but the same effect as when the angle formed by two directions is 90 degrees can be obtained. .
  • the same gradation values as the first white patch group 120 are applied.
  • the process color patch group 112 and the spot color patch group 116 are arranged at different positions in the substrate width direction.
  • Each color patch group that constitutes the process color patch group 112 is arranged at a different position in the substrate width direction.
  • each color patch group that constitutes the spot color patch group 116 is arranged at a different position in the substrate width direction.
  • patches of each color are arranged in the order of gradation values along the substrate conveying direction, and patches of different colors arranged along the substrate width direction have the same gradation value. is doing. Identical here is not limited to exact identical, but may include substantial identical.
  • a first measurement start position mark 106 and a second measurement start position mark 108 are printed on the tone correction chart 102 .
  • the first measurement start position mark 106 is printed using black ink.
  • the second measurement start position mark 108 is printed using white ink.
  • the first measurement start position mark 106 represents the measurement start position of the process color patch group 112, the spot color patch 114, and the first white patch group 120 on the tone correction chart 102.
  • a second measurement start position mark 108 represents the measurement start position of the second white patch group 122 .
  • a black measurement background image 130 is printed on the tone correction chart 102 using black ink.
  • the black measurement background image 130 is the area where the second white patch group 122 is printed, and is arranged in the area where the process color patch group 112 and the spot color patch group 116 are not printed.
  • black inks include inks containing carbon black particles. Details of the black measurement background image 130 will be described later.
  • the black measurement background image 130 described in the embodiment is an example of the first measurement background image.
  • the second white patch 126 described in the embodiment is an example of the first patch.
  • the second white patch group 122 described in the embodiment is an example of a first patch group including one or more first patches.
  • the first white patch 124 described in the embodiment is an example of a second patch.
  • the first white patch group 120 described in the embodiment is an example of a second patch group including one or more second patches.
  • the patches 110 forming the process color patch group 112 and the patches 110 forming the spot color patch group 116 described in the embodiment are another example of the second patch.
  • the process color patch group 112 and the spot color patch group 116 described in the embodiment are another example of the second patch group.
  • the white ink forming the second white patch 126 described in the embodiment is an example of the first colorant.
  • the printing of the first white patch 124 described in the embodiment is an example of forming one or more second patches.
  • Printing the patches 110 forming the process color patch group 112 and the patches 110 forming the spot color patch group 116 described in the embodiment is an example of forming one or more patches included in the second patch group.
  • Process colors and spot colors described in the embodiments are examples of second colors.
  • FIG. 6 is a plan view of the background showing a configuration example of the background.
  • a white background 202 shown in the figure is applied to the measuring device 12 shown in FIG.
  • the base material 100 is supported using a stage 201 .
  • a white background 202 is formed on the substrate support surface 201A that supports the substrate 100 of the stage 201 .
  • the formation of the white background 202 on the substrate support surface 201A can be applied by attaching a sheet on which the white background 202 is printed to the substrate support surface 201A.
  • Surface treatment such as painting may be applied to form the white background 202 on the substrate support surface 201A.
  • FIG. 7 is a schematic diagram of a gradation correction chart in a measurement state. 7, illustration of some of the symbols shown in FIG. 5 is omitted. The same applies to FIGS. 17 and 18 as well. As shown in the figure, the gradation correction chart 102 is aligned with the white background 202, and the gradation correction chart 102 is measured.
  • the Y value of the CIEXYZ color system is obtained for each of the plurality of first white patches 124 that make up the first white patch group 120.
  • the Y value of the CIEXYZ color system is obtained for each of the plurality of second white patches 126 that make up the second white patch group 122 .
  • the measured value of the first white patch 124 is affected by the density of the white background 202.
  • the second white patch 126 measurement is affected by the density of the black measurement background image 130 .
  • the density value of the white background 202 and the density of the black measurement background image 130 are normalized.
  • the normalized Y value Y nb (Y mk ⁇ Y bk )/(Y L ⁇ Y bk ).
  • the absolute measured value Y mb is converted to a relative Y value Y nb with respect to the black measured background image 130 .
  • the Y value of the white background 202 is Ywh
  • the measured value obtained with the white background 202 as the background is Ymw
  • the normalized Y value Ynw ( Y mw ⁇ Y wh )/(Y L ⁇ Y wh ).
  • the Y value Ywh of the white background 202 the Y value obtained by measuring the non-formation area of the gradation correction chart 102 on the base material 100 can be applied. The same is true for the Y value Ybk of the black measurement background image 130 .
  • the concealment ratio Ynb / Ynw for each gradation value in white ink is calculated. be done.
  • a target concealment rate for each gradation value of white ink is obtained, and the target concealment rate representing the density of the target white ink is compared with the concealment rate calculated from the measurement data of each patch to obtain the target concealment rate. is calculated.
  • a gradation correction LUT to be applied to white ink is generated based on the calculated difference in concealment ratio.
  • the gradation correction LUT is stored in the LUT storage section 28 shown in FIG.
  • the gradation correction LUT applied to white ink expresses the relationship between the signal value representing the gradation value and the concealment rate, which is the evaluation index value of the white patch.
  • the concealment rate which is the evaluation index value of the white patch.
  • a signal value that achieves the target concealment rate is derived, and printing that reproduces the target density value is possible. It is also possible to adjust the white ink density value corresponding to the target concealment rate when the density value is changed.
  • the white gradation correction LUT can be referred to to obtain the signal value representing the grayscale value for which the concealment rate is 51 percent.
  • the signal value representing the gradation value corresponding to the changed white ink concealment rate is calculated based on the printing and measurement of the gradation correction chart 102. need not be derived.
  • Process color ink such as cyan and special color ink such as orange are stored in the LUT storage unit shown in FIG. 28 is corrected for each color.
  • the Y value Y n obtained by normalizing the Y value Y L of the viewing light source and the Y value of the white background 202 using the Y wh is applied in the correction of the LUT.
  • the normalization of the measured value using the density of the white background 202 is not limited to the above example. Methods other than those described above can be applied as long as the absolute measured values can be converted to relative values with reference to the background color.
  • the measured absolute value is converted to a relative value
  • the warning there is a mode in which text information representing the content of the warning is displayed on the display device 16 shown in FIG.
  • the Y value of the white background 202 the Y value obtained by measuring the non-formation area of the gradation correction chart 102 on the substrate 100 can be applied.
  • the arrangement direction of the plurality of patches 110 of the same color is preferably parallel to the substrate conveying direction.
  • the plurality of patches 110 of the same color are arranged parallel to the substrate conveying direction, the in-plane density uniformity of each patch 110 can be relatively improved, and the LUT correction accuracy can be relatively improved.
  • parallel here strictly means crossing, it may include substantially parallel with which the same effect as parallel can be obtained.
  • the tone correction chart 102 When the tone correction chart 102 is measured, if the in-plane density uniformity of the white background 202 is relatively high, the LUT correction accuracy can be relatively improved. Therefore, it is preferable to measure the in-plane density unevenness of the white background 202 and issue a warning when the measured density unevenness is greater than or equal to a specified threshold value.
  • the warning may apply the aspects exemplified above. The user who has visually recognized the warning can replace the white background 202 and clean it, etc., and can suppress the in-plane density unevenness in the white background 202 .
  • FIG. 8 is an explanatory diagram of drive voltages applied to printing the gradation correction chart.
  • FIG. 8 shows one ejection cycle of the driving voltage supplied to the piezoelectric ejection type ink jet head provided in the printer 14 shown in FIG. 1 by applying a graph format.
  • the horizontal axis of the graph shown in FIG. 8 is the period, and the unit of the horizontal axis is microseconds.
  • the vertical axis of the graph shown in the figure is voltage, and the unit of the vertical axis is volt. Note that the numerical values shown in FIG. 8 are just an example, and can be appropriately defined according to the printing conditions and the standards of the piezoelectric elements provided in the inkjet head.
  • the inkjet head employs a continuous drive method, and is supplied with one or more ejection drive pulses corresponding to the ejection volume among a plurality of ejection drive pulses forming the drive waveform 300 shown in FIG.
  • the inkjet head can eject large droplets, medium droplets, and small droplets, each of which has a different volume.
  • the ejection drive pulse 312 is applied when ejecting droplets.
  • the ejection drive pulse 306, the ejection drive pulse 308, the ejection drive pulse 310, and the ejection drive pulse 312 are applied when ejecting medium droplets.
  • an ejection driving pulse 302 When ejecting large droplets, an ejection driving pulse 302, an ejection driving pulse 304, an ejection driving pulse 306, an ejection driving pulse 308, an ejection driving pulse 310, and an ejection driving pulse 312 are applied.
  • the drive waveform element that follows the ejection drive pulse 312 is the dereverberation waveform element 314 .
  • the reverberation suppression waveform element 314 can be added to all large, medium, and small droplets for the purpose of suppressing ink vibration immediately after ink droplet ejection.
  • the same printing conditions as normal printing are applied to the printing of the gradation correction chart 102 shown in FIG. That is, one or more patches for each color among the patches forming the patch group forming the gradation correction chart 102 are printed by combining dots of a plurality of sizes.
  • a patch 110 with a relatively small gradation value applies only small dots corresponding to small droplets, and a patch 110 with a relatively small gradation value applies small dots and medium dots corresponding to medium droplets. be done.
  • FIG. 9 is an overall configuration diagram of an inkjet printing system according to the embodiment.
  • the inkjet printing system 400 is equipped with a digital printing device 406 that applies single-pass printing to print color images on a transparent substrate 401 .
  • the base material 401 may be a single layer, or may be a stack of multiple layers.
  • the base material 401 may be in a roll-to-roll continuous form, or may be in a sheet form cut to a specified length.
  • the base material 401 may be called a medium, medium, sheet, film, substrate, or the like.
  • a substrate 401 shown in FIG. 9 corresponds to the substrate 100 shown in FIG.
  • the inkjet printing system 400 includes a substrate supply device 402 , a first intermediate transport device 404 , a printing device 406 , a second intermediate transport device 408 , a measuring device 410 , a drying device 412 and a stacking device 414 . Each part will be described in detail below.
  • the base material supply device 402 When the base material 401 is in a continuous form, the base material supply device 402 is provided with a roll container for containing rolls on which the base material 401 is wound. When the base material 401 is in the form of a sheet, the base material supply device 402 has a tray in which the base material 401 is accommodated. The substrate supply device 402 supplies the substrate 401 to the first intermediate transfer device 404 in accordance with the printing control of the printing device 406 .
  • the substrate supply device 402 can include a correction mechanism that corrects the posture of the substrate 401 .
  • the first intermediate transfer device 404 transfers the substrate 401 supplied from the substrate supply device 402 to the printing device 406 .
  • the first intermediate conveying device 404 can apply a known configuration according to the form of the base material 401 .
  • An arrow line from the base material supplying device 402 to the first intermediate conveying device 404 represents the base material conveying direction.
  • the printing device 406 includes an inkjet head 420C, an inkjet head 420M, an inkjet head 420Y, an inkjet head 420K and an inkjet head 420W.
  • the inkjet head 420C, the inkjet head 420M, the inkjet head 420Y, the inkjet head 420K, and the inkjet head 420W are arranged in the order described above from the upstream side along the substrate conveying direction.
  • the inkjet head 420C ejects cyan ink.
  • the inkjet head 420M ejects magenta ink.
  • the inkjet head 420Y ejects yellow ink.
  • the inkjet head 420K ejects black ink.
  • the inkjet head 420W ejects white ink.
  • the inkjet head 420C or the like may be a line head in which a plurality of nozzles are arranged over a length equal to or longer than the entire length of the substrate 401 in the width direction of the substrate.
  • a two-dimensional arrangement such as a matrix arrangement is applied to the plurality of nozzles provided in the inkjet head 420C or the like.
  • the inkjet head 420C and the like may employ a piezoelectric ejection method including a piezoelectric element as an ejection pressure element that generates an ejection pressure.
  • the inkjet head 420C and the like may employ a thermal method that ejects ink using the film boiling phenomenon of ink.
  • the printing device 406 uses color ink such as cyan ink to form a color image on the transparent substrate 401, and uses white ink to superimpose the color image on the color image to form a white image as a background image.
  • a printed matter produced using the base material 401 can be viewed as a color image when the base material 401 is viewed from the non-printing side.
  • the printing device 406 includes a printing drum 422 .
  • the print drum 422 has a cylindrical shape.
  • the print drum 422 has a substrate support area for supporting the substrate 401 on its peripheral surface. Illustration of the substrate supporting region is omitted.
  • the rotating shaft of the print drum 422 is connected to a motor (not shown) via a drive mechanism (not shown). Rotation of the motor causes print drum 422 to rotate in the direction indicated by the arrow line. When the print drum 422 is rotated, the substrate 401 supported on the peripheral surface of the print drum 422 is transported along the rotational direction of the print drum 422 .
  • a plurality of suction holes are formed in the substrate support area.
  • a plurality of suction holes are arranged according to a prescribed pattern.
  • the plurality of suction holes communicate with suction channels (not shown).
  • the adsorption channel is connected to an adsorption pump (not shown).
  • the transport form of the base material 401 in the printing device 406 is not limited to the transport form using the printing drum 422 .
  • a transport mode using a transport belt and a transport mode using a plurality of rollers are applicable.
  • the second intermediate conveying device 408 transfers the substrate 401 transferred from the printing drum 422 to the measuring device 410 .
  • the second intermediate conveying device 408 can apply the same configuration as the first intermediate conveying device 404 .
  • the arrow line shown in the second intermediate conveying device 408 represents the substrate conveying direction in the second intermediate conveying device 408 .
  • the measuring device 410 includes a density measuring device 430 , a plurality of reading conveying rollers 432 and a stage 434 .
  • the measuring device 410 comprises an illumination device. Illustration of the illumination device is omitted.
  • a concentration measuring device 430 shown in FIG. 9 corresponds to the measuring device 12 shown in FIG.
  • a stage 434 shown in FIG. 9 corresponds to the stage 201 provided in the measuring device 12 shown in FIG.
  • the density measuring device 430 shown in FIG. 9 can measure the gradation correction chart printed on the base material 401 in the same way as the measuring device 12 shown in FIG.
  • the inkjet printing system 400 can generate gradation correction data for each color based on the measurement data of the gradation correction chart, and can generate a gradation correction LUT for each color based on the gradation correction data for each color.
  • a roller conveying method is exemplified as a conveying method of the base material 401 in the measuring device 410, but other methods such as a belt conveying method and a drum conveying method are applied to the conveying method of the base material 401 in the measuring device 410. can.
  • the measurement device 410 may include an imaging device that captures an image of the test pattern printed on the base material 401 .
  • the inkjet printing system 400 can detect an ejection abnormality in the inkjet head 420C or the like based on the test pattern imaging data.
  • the drying device 412 performs a drying process on the printed base material 401 .
  • the drying device 412 includes a heater and a fan, and can apply a configuration for blowing hot air against the printed substrate 401 .
  • the drying device 412 includes a drying/conveying unit that conveys the printed base material 401 .
  • As a transport mode for the printed base material 401 known transport modes such as drum transport, belt transport, and roller transport can be applied.
  • the arrow line shown in the drying device 412 indicates the direction in which the drying device 412 substrate is conveyed.
  • the stacking device 414 accommodates the substrate 401 transferred from the drying device 412 .
  • the stacking device 414 includes a roll storage section for storing rolls on which the substrate 401 is wound.
  • the stacking device 414 includes a tray in which the substrate 401 is accommodated.
  • FIG. 10 is a functional block diagram showing the electrical configuration of the inkjet printing system shown in FIG. 9.
  • the inkjet printing system 400 includes a system control section 460 , a transport control section 462 , a print control section 466 , a measurement control section 468 , a drying control section 470 and an information acquisition section 472 .
  • the system control unit 460 controls overall operations of the inkjet printing system 400 .
  • the system control unit 460 transmits command signals to various control units.
  • the system control unit 460 functions as a memory controller that controls storage of data in the memory 474 and reading of data from the memory 474 .
  • the system control unit 460 acquires sensor signals transmitted from the sensor 476 and transmits command signals based on the sensor signals to various control units.
  • the sensor 476 includes a position detection sensor, a temperature sensor, and the like provided in each part of the inkjet printing system 400 .
  • the transport control unit 462 sets transport conditions based on command signals transmitted from the system control unit 460, and controls the operation of the transport device 464 based on the set transport conditions.
  • the conveying device 464 shown in FIG. 10 includes the first intermediate conveying device 404, the printing drum 422, the reading conveying roller 432, and the drying conveying device provided in the drying device 412 shown in FIG. Transport device 464 may include substrate feeder 402 and accumulator 414 .
  • the print control unit 466 sets printing conditions based on command signals transmitted from the system control unit 460, and controls the operation of the printing device 406 based on the set printing conditions.
  • the print control unit 466 shown in FIG. 10 has the functions of the printer control unit 22 shown in FIG.
  • the print control unit 466 includes an image processing unit that performs color separation processing, color conversion processing, correction processing for each processing, and halftone processing on image data for printing to generate halftone data for each color. Prepare.
  • the print control unit 466 includes a drive voltage generation unit that generates drive voltages to be supplied to the inkjet heads 420C and the like based on halftone data for each color.
  • the print control unit 466 includes a drive voltage output unit that supplies a drive voltage to the inkjet head 420C.
  • the print control unit 466 uses the inkjet head 420C or the like shown in FIG. 9 to print a gradation correction chart including patch groups of cyan, magenta, yellow, black, and white based on the gradation correction chart data. can.
  • the print control unit 466 When generating the halftone image of the gradation correction chart, the print control unit 466 generates a multivalued halftone image, and based on the multivalued halftone image, creates a plurality of types of dots with different sizes. In combination, the gradation correction chart is printed.
  • the print control unit 466 arranges a plurality of patches forming a patch group of each color along the base material transport direction.
  • the print control unit 466 can have the functions of the tone correction LUT generation unit 26 and the correction processing unit 30 shown in FIG.
  • the inkjet printing system 400 shown in FIG. 10 can include a gradation correction data generation section having the same function as the gradation correction data generation device 10 shown in FIG. 1, separately from the print control section 466.
  • the processing unit corresponding to the tone correction data generation device 10 shown in FIG. A gradation correction LUT is generated based on the measured data of the chart.
  • the measurement control unit 468 sets measurement conditions based on command signals transmitted from the system control unit 460, and controls the operation of the measurement device 410 based on the set measurement conditions.
  • the measurement controller 468 shown in FIG. 10 may have the functionality of the meter controller 24 shown in FIG.
  • the measurement control unit 468 can issue a warning when the density value of the background formed on the stage 434 is equal to or less than a specified threshold. In addition, the measurement control unit 468 can issue a warning when the in-plane density unevenness in the background formed on the stage 434 is greater than or equal to a prescribed threshold value.
  • the drying control unit 470 sets processing conditions for the main drying process based on command signals transmitted from the system control unit 460, and controls the operation of the drying device 412 based on the set processing conditions.
  • the information acquisition unit 472 acquires various types of information applied to control the inkjet printing system 400 .
  • the system control unit 460 transmits command signals to various control units based on various information acquired using the information acquisition unit 472 .
  • the memory 474 can store various data, parameters and programs applied to the inkjet printing system 400 .
  • Memory 474 may function as LUT storage 28 shown in FIG.
  • FIG. 11 is a block diagram showing the hardware configuration of a control device applied to the inkjet printing system shown in FIG.
  • the controller 500 included in the inkjet printing system 400 includes a processor 502 , a non-transitory tangible computer-readable medium 504 , a communication interface 506 and an input/output interface 508 .
  • a computer is applied to the control device 500 .
  • the form of the computer may be a server, a personal computer, a workstation, a tablet terminal, or the like.
  • the processor 502 includes a CPU (Central Processing Unit). Processor 502 may include a GPU (Graphics Processing Unit). Processor 502 is coupled to computer-readable media 504 , communication interface 506 , and input/output interface 508 via bus 510 . Input device 512 and display device 514 are connected to bus 510 via input/output interface 508 .
  • CPU Central Processing Unit
  • GPU Graphics Processing Unit
  • the processor 502 can function as a first processor that performs processing related to tone correction data generation, a second processor that performs processing related to image formation, and a third processor that performs processing related to measurement.
  • the computer-readable medium 504 includes memory as a main memory and storage as an auxiliary memory.
  • the computer-readable medium 504 can apply a semiconductor memory, a hard disk device, a solid state drive device, and the like. Computer readable medium 504 may apply any combination of devices.
  • the hard disk device can be called HDD, which is an abbreviation for Hard Disk Drive in English.
  • a solid state drive device may be referred to as SSD, which is an abbreviation for the English notation Solid State Drive.
  • the control device 500 is connected to a network via a communication interface 506 and is communicably connected to an external device.
  • a network such as a LAN (Local Area Network) can be applied. Note that illustration of the network is omitted.
  • a computer-readable medium 504 stores a transport control program 520, a print control program 522, a measurement control program 524, a drying control program 526, and a tone correction data generation program 528.
  • the transport control program 520 corresponds to transport control applied to the transport device 464 shown in FIG.
  • Print control program 522 corresponds to print control applied to printing device 406 .
  • the print control program 522 includes a program for manufacturing the gradation correction chart 102 shown in FIG.
  • the measurement control program 524 corresponds to measurement control applied to the measurement device 410 .
  • Drying control program 526 corresponds to the drying control applied to drying device 412 .
  • the gradation correction data generation program 528 corresponds to generation of correction data applied to gradation correction processing and gradation correction processing.
  • Various programs stored in computer-readable medium 504 include one or more instructions.
  • the computer-readable medium 504 stores various data, various parameters, and the like. Note that the memory 474 shown in FIG. 10 is included in the computer-readable medium 504 shown in FIG.
  • the computer-readable medium 504 can function as a first storage device in which the gradation correction data generation program 528 is stored.
  • the computer readable medium 504 can function as a second storage device in which a transport control program 520, a print control program 522 and a drying control program 526 are stored.
  • Computer readable medium 504 may serve as a third storage device in which measurement control program 524 is stored.
  • the inkjet printing system 400 implements various functions in the inkjet printing system 400 by executing various programs stored in the computer-readable medium 504 by the processor 502 .
  • program is synonymous with the term software.
  • the control device 500 performs data communication with an external device via the communication interface 506.
  • the communication interface 506 can apply various standards such as USB (Universal Serial Bus).
  • the communication form of the communication interface 506 may be either wired communication or wireless communication.
  • An input device 512 and a display device 514 are connected to the control device 500 via an input/output interface 508 .
  • Input devices such as a keyboard and a mouse are applied to the input device 512 .
  • Various information applied to the control device 500 is displayed on the display device 514 .
  • a liquid crystal display, an organic EL display, a projector, or the like can be applied to the display device 514 .
  • the display device 514 may apply any combination of multiple devices.
  • EL in the organic EL display is an abbreviation for Electro-Luminescence.
  • Display device 514 shown in FIG. 11 corresponds to display device 16 shown in FIG.
  • examples of the hardware structure of the processor 502 include a CPU, GPU, PLD (Programmable Logic Device), and ASIC (Application Specific Integrated Circuit).
  • a CPU is a general-purpose processor that executes programs and acts as various functional units.
  • a GPU is a processor specialized for image processing.
  • a PLD is a processor whose electrical circuit configuration can be changed after the device is manufactured. Examples of PLDs include FPGAs (Field Programmable Gate Arrays). An ASIC is a processor with dedicated electrical circuitry specifically designed to perform a particular process.
  • One processing unit may be composed of one of these various processors, or may be composed of two or more processors of the same type or different types. Examples of combinations of various processors include combinations of one or more FPGAs and one or more CPUs, and combinations of one or more FPGAs and one or more GPUs. Another example of a combination of various processors is a combination of one or more CPUs and one or more GPUs.
  • a single processor may be used to configure multiple functional units.
  • a combination of one or more CPUs and software such as SoC (System On a Chip), typified by a computer such as a client or server, is applied.
  • SoC System On a Chip
  • a mode is given in which one processor is configured and this processor is operated as a plurality of functional units.
  • IC is an abbreviation for Integrated Circuit.
  • various functional units are configured using one or more of the various processors described above as a hardware structure.
  • the hardware structure of the various processors described above is, more specifically, an electric circuit combining circuit elements such as semiconductor elements.
  • the computer-readable medium 504 may include semiconductor devices such as ROM (Read Only Memory) and RAM (Random Access Memory).
  • Computer readable media 504 may include magnetic storage media such as hard disks.
  • Computer readable media 504 may comprise multiple types of storage media.
  • FIG. 12 is a flow chart showing the procedure of the chart manufacturing method according to the first embodiment.
  • FIG. 12 shows steps and procedures applied to the gradation correction chart printing step S12 shown in FIG.
  • FIG. 12 shows a procedure when the inkjet printing system 400 shown in FIG. 9 is applied as the printer 14 shown in FIG.
  • the print control unit 466 shown in FIG. 10 acquires gradation correction chart data applied when printing the gradation correction chart 102 shown in FIG. After the chart data acquisition step S100, the process proceeds to the color conversion step S102.
  • the print control unit 466 converts the gradation correction chart data into gradation correction chart data expressed using ink colors. If the gradation correction chart data is expressed using ink colors, the color conversion step S102 is omitted. After the color conversion step S102, the process proceeds to the color separation step S104.
  • the print control unit 466 color-separates the gradation correction chart data represented using the ink colors to generate gradation correction chart data for each ink color. After the color separation step S104, the process proceeds to the halftone processing step S106.
  • the print control unit 466 performs halftone processing on each of the gradation correction chart data for each ink color to generate a halftone image of the gradation correction chart for each ink color. After halftone processing step S106, the process proceeds to drive voltage generation step S107.
  • the print control unit 466 In the drive voltage generation step S107, the print control unit 466 generates a drive voltage for each ink color based on the halftone image of the gradation correction chart for each ink color. In other words, the driving voltage generation step S107 generates a driving voltage for each inkjet head. After the driving voltage generating step S109, the process proceeds to the CMY patch printing step S108.
  • the print control unit 466 uses the inkjet head 420C shown in FIG. 9 to print the cyan patch group 112C. In the same process, the print control unit 466 prints the magenta patch group 112M using the inkjet head 420M and prints the yellow patch group 112Y using the inkjet head 420Y.
  • the print control unit 466 prints the first measurement start position mark 106, the process color patch group 112, and the black measurement background image 130 using the inkjet head 420K.
  • the print control unit 466 prints the second measurement start position mark 108, the first white patch group 120 and the second white patch group 122 using the inkjet head 420W.
  • the CMY patch printing step S108, the black printing step S110, and the white patch printing step S112 are performed at the timing when the substrate 401 passes through the inkjet heads of each color.
  • the gradation correction chart 102 shown in FIG. 5 is printed through the steps shown in FIG. 12, the gradation correction data generating method shown in FIG. It changes to measurement process S14.
  • the order of the CMY patch printing step S108 and the black printing step S110 may be changed according to the arrangement of the inkjet heads for each color. For example, when inkjet heads of respective colors are arranged in order of black, cyan, magenta, yellow, and white from the upstream side in the substrate conveying direction, the CMY patch printing step S108 is performed after the black printing step S110.
  • FIG. 13 is a cross-sectional view schematically showing a gradation correction chart manufactured by applying the chart manufacturing method according to the first embodiment. This figure shows a cross-sectional view of the position where the second white patch group 122 and the black measurement background image 130 are printed in the gradation correction chart 102 shown in FIG. Note that FIG. 13 illustrates the measurement directions of the tone correction chart 102 .
  • the black measurement background image 130 is printed on the printing surface 401A of the base material 401, and the second white patch group 122 is printed over the black measurement background image 130.
  • a black measurement background image 130 that serves as the background of the second white patch group 122 is printed.
  • the white background 202 is used to measure the first white patch group 120 and the second white patch group 122 using two types of backgrounds with different colors. obtain.
  • the tone correction chart 102 is measured using a white background 202 . This eliminates the need for high-precision alignment between the first white patch group 120 and the second white patch group 122 and the white background 202 .
  • FIG. 14 is a configuration diagram showing a configuration example of a printer applied to the chart manufacturing apparatus according to the second embodiment.
  • a printing device 406A shown in the figure has an inkjet head 420CL added to the printing device 406 shown in FIG.
  • the inkjet head 420CL is arranged between the inkjet head 420K and the inkjet head 420W. Clear ink is applied to the inkjet head 420CL.
  • clear ink is ink from which components related to colorants are removed from process ink.
  • Clear ink may be referred to as transparent ink.
  • Transparency as used herein may be less than 100 percent transmittance of visible light rays.
  • the transmittance of the clear ink may be any value that does not lower the visibility of the white ink and the black ink that are overlaid and printed beyond a certain level.
  • FIG. 15 is a cross-sectional view schematically showing a chart manufactured by applying the chart manufacturing apparatus according to the second embodiment.
  • a clear ink image 140 is printed over a black measurement background image 130
  • a second white patch group 122 is printed over the clear ink image 140.
  • the clear ink image 140 may be printed over the entire surface of the black measurement background image 130 or may be printed only between the black measurement background image 130 and the second white patch group 122 .
  • the chart manufacturing apparatus and chart manufacturing method according to the second embodiment can obtain the same effects as those of the first embodiment. Also, a clear ink image 140 to which clear ink is applied is printed between the second white patch group 122 to which white ink is applied and the black measurement background image 130 to which black ink is applied.
  • a high gradation correction chart 102A can be printed.
  • the clear ink described in the embodiment is an example of a transparent coloring material.
  • the clear ink image 140 described in the embodiment is an example of a transparent image.
  • FIG. 16 is a cross-sectional view schematically showing a chart manufactured by applying the chart manufacturing apparatus and chart manufacturing method according to the third embodiment.
  • the black measurement background image 130 is printed on the back surface 401B that is the other surface of the base material 401 .
  • the black measurement background image 130 is printed on the area on the back surface 401B corresponding to the area on the printing surface 401A of the substrate 401 where the second white patch group 122 is printed.
  • a double-sided printing apparatus that prints on both sides of the base material 401 is applied to the chart manufacturing apparatus according to the third embodiment.
  • the duplex printing apparatus includes a substrate reversing mechanism for reversing the printing surface 401A and the back surface 401B of the substrate 401.
  • the black printing step S110 is omitted, and the white patch printing step S112 is performed. After that, the substrate reversing step is performed, and after the substrate reversing step is performed, the step of printing the black measurement background image 130 is performed.
  • the substrate reversing step is performed after the step of printing the black measurement background image 130 is performed, and after the substrate reversing step is performed, the CMY patch printing step S108 and the white A patch printing step S112 may be performed.
  • the chart manufacturing apparatus and chart manufacturing method according to the third embodiment can obtain the same effects as those of the first embodiment and the second embodiment. Also, the decrease in contrast of the second white patch group 122 is suppressed. Furthermore, the amount of white ink applied to the second white patch group 122 and the amount of black ink applied to the black measurement background image 130 can be relatively increased.
  • FIG. 17 is a cross-sectional view schematically showing a chart manufactured by applying the chart manufacturing apparatus according to the fourth embodiment.
  • the inkjet printing system 400 shown in FIGS. 9 and 10 is applied to the chart manufacturing apparatus according to the fourth embodiment.
  • the flowchart shown in FIG. 12 is applied to the chart manufacturing method according to the fourth embodiment.
  • the black measurement background image 130 is printed in the region 401D on the opposite side of the second white patch group 122 across the folding line 401C on the printing surface 401A of the base material 401.
  • a black measurement background image 130 may be printed on the back side 401B of the substrate 401 .
  • FIG. 18 is a schematic diagram showing the measurement state of the chart shown in FIG. As shown in FIG. 18, the black measurement background image 130 is printed at a position overlapping the second white patch group 122 when the substrate 401 is folded at the folding line 401C.
  • the chart manufacturing apparatus and chart manufacturing method according to the fourth embodiment are capable of printing only on the printing surface 401A of the base material 401, and cannot print the black measurement background image 130 and the second white patch group 122 in an overlapping manner. Even in this case, the second white patch group 122 and the black measurement background image 130 can be printed on the printing surface 401A of the substrate 401 .
  • the first white patch group 120 may not be printed on the gradation correction chart 102 or the like. This aspect applies when white ink patches are measured using a black background only and non-white ink patches are measured using a white background.
  • color patch groups other than the first white patch group 120 and the second white patch group 122, such as the cyan patch group 112C, may not be printed.
  • a white measurement background image that functions as a white background may be printed on the gradation correction chart 102 and the like.
  • white ink is used on the entire surface of the base material 100, the non-printing area of the black measurement background image 130 of the base material 100, the printing area of the first white patch group 120, etc., and the white measurement with a different color from the black measurement background image 130 A background image is printed.
  • the white measurement background image described in the embodiment is an example of the second measurement background image.
  • the opacity rate applied to the control of ink is an indicator of how opaquely printed the layer under the ink and the background of the substrate can be printed when the ink is used to cover the substrate.
  • the two different colored backgrounds that are applied to the measurement when deriving the concealment ratio are not limited to a white background and a black background.
  • colors similar to each ink color can be applied instead of white.
  • a black background may be applied instead of black, the color of the substrate or the color of the supporting surface supporting the substrate.
  • the first white patch group 120 is measured against the background of the white ink applied to the first white patch group 120 shown in FIG.
  • the second white patch group 122 is measured by applying a black background in which the white ink applied to the second white patch group 122 is susceptible to the watermark of the background color. Based on the measurement results of the first white patch group 120 and the measurement results of the second white patch group 122, how much the white ink blocks the background color is derived.
  • an ink that can be used to check how much the background color is blocked is cyan ink when printing images such as logo characters using cyan ink on a base material with a red surface color.
  • cyan ink is used in the case of attaching a printed matter, in which an image such as a logo character is printed on a transparent base material using cyan ink, to a support plate having a red surface color.
  • a patch of cyan ink is measured by applying a cyan ink background or a background similar to cyan and applying a red background that is the color of the substrate or a background similar to red. A patch of cyan ink is measured.
  • Y 2 /Y 1 is derived as a concealment rate from the measurement result Y 1 with a background such as cyan and the measurement result Y 2 with a background such as red, and the concealment rate Y 2 /Y 1 is above a certain level.
  • the density of cyan ink is managed so that the value of .
  • the first background color corresponding to the black background is the base color of the base material, a color similar to the base color of the base material, the color of the support surface that supports the base material, or the base material that supports the base material.
  • a color similar to the color of the corresponding support surface may be applied, and an ink color or a color similar to the ink color may be applied as a second background color corresponding to the white background.
  • the measured background image is less than 100%, and a certain amount of ink coverage is allowed.
  • the ink coverage of the measured background image can be 85 percent or greater.
  • the measurement background image is a general term for the black measurement background image 130 and the white measurement background image.
  • the inkjet printing system 400 including the inkjet printing apparatus 406 is illustrated as an example of the image forming system.
  • application to image forming methods other than the inkjet method is also possible.
  • Images shall be interpreted broadly and may include color images, black and white images, single color images, gradation images, uniform density and solid images, and the like.
  • the image is used as a comprehensive term including not only photographic images but also patterns, characters, symbols, line drawings, mosaic patterns, color-separated patterns, and various other patterns.
  • the image may contain any combination of the above.
  • Printing an image can encompass concepts such as forming an image, recording, printing, drawing and printing.
  • Gradation correction data generation device 12 Measuring device 14 Printer 16 Display device 16A Printer operation screen 20 Image data storage unit 22 Printer control unit 24 Measuring device control unit 26 Gradation correction LUT generation unit 28 LUT storage unit 30 Correction processing unit 31 Tone correction processing unit 52 In-plane unevenness correction processing unit 54 Non-ejection correction processing unit 60 Straight line 62 Curve 64 Curve 66 Curve 100 Base material 102 Gradation correction chart 102A Gradation correction chart 102B Gradation correction chart 102C Gradation correction chart 106 first measurement start position mark 108 second measurement start position mark 110 patch 110C cyan patch 110K black patch 110M magenta patch 110Y yellow patch 112 process color patch group 112C cyan patch group 112K black patch group 112M magenta patch group 112Y yellow patch Group 114 Spot color patch 114G Green patch 114O Orange patch 114V Violet patch 120 First white patch group 122 Second white patch group 124 First white patch 126 Second white patch 130 Black measurement background image 140 Clear ink image 201 Stage 201A Substrate

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Multimedia (AREA)
  • Mathematical Physics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Textile Engineering (AREA)
  • Facsimile Image Signal Circuits (AREA)
  • Color Image Communication Systems (AREA)
  • Color, Gradation (AREA)
  • Ink Jet (AREA)

Abstract

互いに色が異なる二種類の背景を用いてチャートを測定する際に背景の切り替えをせずに済むチャート製造装置、チャート製造方法、プログラム及び画像形成システムを提供する。第一背景色及び第二背景色を適用して測定されるチャート(102)を透明基材へ形成するチャート製造装置であって、第一背景色に対応する着色材を用いて透明基材(100)へ第一測定背景画像(130)を形成し、第一測定背景画像に対応する位置へ第一色の着色材を用いて一つ以上の第一パッチ(126)が含まれる第一パッチ群(122)を形成し、第一測定背景画像が非形成の位置へ一つ以上の第二パッチ(124)が含まれる第二パッチ群(120)を形成する。

Description

チャート製造装置、チャート製造方法、プログラム及び画像形成システム
 本発明はチャート製造装置、チャート製造方法、プログラム及び画像形成システムに関する。
 透明基材が用いられる印刷物の下地等の形成にホワイトインクが適用されるインクジェット印刷装置が知られている。例えば、カラー画像が印刷され、カラー画像に重ねてホワイトインクの全面画像が印刷される。このようにして印刷される印刷物を基材の印刷面と反対の側の面から見ると、白地にカラー画像が視認される。
 ホワイトインクの濃度は隠ぺい率を指標として管理し得る。隠ぺい率は、基材へ塗布されたホワイトインクが基材の下地など、ホワイトインクの下層の色を隠ぺいする程度を表す。隠ぺい率を導出する際に、白色背景及び黒色背景を用いてホワイトインクが測定される。
 特許文献1は、透明基材に付着させるインクの付着量の誤差を取得し、誤差に基づきインクの付着量を補正する印刷装置が記載される。同文献に記載の装置は、透明基材にホワイトパッチ及びシアン等のプロセスカラーのパッチが印刷され、パッチがLab空間で測色され、測色データに基づく色修正が実施される。
 同文献の図17には、白黒背景が使用され、シアン、マゼンタ、イエロー及びブラックは白色背景が適用され、ホワイトは黒色背景が適用される測色が図示される。
 特許文献2は、白色背景と黒色背景とを切り替える切替機構を備え、ホワイトインクの読み取りは黒色背景が適用され、ブラックインク等の読み取りは白色背景が適用され、種々のインクについて不良ノズルを精度よく検出する印刷装置が記載される。
 特許文献3は、透明支持体へ形成された画像を読み取る画像読み取り部を備える画像形成装置が記載される。同文献に記載の装置は、画像を読み取る際の背景色を黒色にするか、又は白色にするかを判定し、判定結果に基づき背景色が設定される。
特開2011-73306号公報 特開2012-232499号公報 特開2019-220782号公報
 しかしながら、特許文献1から特許文献3のそれぞれに記載の装置は、いずれも白色背景と黒色背景とを切り替える構成要素を備え、背景色の切り替えが実施される。すなわち、引用文献1、引用文献2及び引用文献3のいずれにも、背景色を一種類にするためのチャートに関する工夫について記載されていない。換言すると、引用文献1、引用文献2、及び引用文献3に記載の発明はいずれも、背景色の切り替えをせずに済むチャートの形成を工夫が課題とされていない。
 本発明はこのような事情に鑑みてなされたもので、互いに色が異なる二種類の背景を用いてチャートを測定する際に背景の切り替えをせずに済むチャート製造装置、チャート製造方法、プログラム及び画像形成システムを提供することを目的とする。
 本開示に係るチャート製造装置は、互いに色が異なる第一背景色及び第二背景色を適用して測定されるチャートを透明基材へ形成する画像形成装置と、プロセッサと、プロセッサを用いて実行されるプログラムが記憶される記憶装置と、を備えるチャート製造装置であって、プロセッサは、プログラムの命令を実行して、第一背景色に対応する着色材を用いて透明基材へ第一測定背景画像を形成し、透明基材における第一測定背景画像に対応する位置へ、第一色の着色材を用いて一つ以上の第一パッチが含まれる第一パッチ群を形成し、透明基材における第一測定背景画像が非形成の位置へ、一つ以上の第二パッチが含まれる第二パッチ群を形成するチャート製造装置である。
 本開示に係るチャート製造装置によれば、第二背景色が用いられる背景を適用して透明基材が支持され、第一パッチ群及び第二パッチ群の測定が実施される際に、第一パッチ群は第一背景色に対応する着色材が適用いられる第一測定背景画像が背景とされる測定が実施され、第二パッチ群は第二背景色が用いられる背景を適用して測定が実施される。これにより、第一パッチ群の測定及び第二パッチ群の測定を実施する際に、互いに異なる第一背景色と第二背景色との切り替えが不要である。
 パッチは、色ごとの濃度を表す小片画像を適用し得る。パッチの形状は四角形を適用し得る。
 透明基材は、可視光の透過率が100パーセント未満の基材を適用し得る。
 着色材の例として、インク及びトナーが挙げられる。
 他の態様に係るチャート製造装置は、プロセッサは、透明基材の一方の面へ第一測定背景画像を形成し、第一パッチ群を第一測定背景画像へ重ねて形成する。
 かかる態様によれば、第一測定背景画像に対して第一パッチ群を重ねてチャートを形成し得る。
 他の態様に係るチャート製造装置は、プロセッサは、透明着色材が適用される透明画像を第一測定背景画像へ重ねて形成し、第一パッチ群を透明画像へ重ねて形成する。
 かかる態様によれば、第一測定背景画像に適用される着色材と第一パッチ群に適用される着色材との混色を抑制し得る。
 他の態様に係るチャート製造装置は、プロセッサは、透明基材の一方の面へ第一パッチ群を形成し、第一パッチ群の位置に対応する透明基材の他方の面の位置へ第一測定背景画像を形成する。
 かかる態様によれば、第一測定背景画像に適用される着色材と第一パッチ群に適用される着色材との混色を抑制し得る。
 かかる態様は、透明基材の両面へ画像を形成し得る両面機に対して好適である。
 他の態様に係るチャート製造装置は、プロセッサは、透明基材の一方の面へ第一パッチ群を形成し、透明基材を折り返し線に沿って折り返した際に第一パッチ群と重なる位置へ第一測定背景画像を形成する。
 かかる態様によれば、折り返し線に沿って透明基材を折り返して、第一パッチ群を第一測定背景画像へ重畳させることが可能である。
 他の態様に係るチャート製造装置は、プロセッサは、第一色の着色材を用いて第二パッチを形成する。
 かかる態様によれば、第一色の着色材を用いて形成される第一パッチ及び第二パッチを互いに異なる背景色を用いて測定し得る。
 他の態様に係るチャート製造装置は、プロセッサは、第一色の着色材として白色の着色材を用いて第一パッチ及び第二パッチを形成し、第一背景色に対応する着色材として黒色の着色材を用いて第一測定背景画像を形成する。
 かかる態様によれば、白色背景及び黒色背景を適用して白色のパッチの測定を実施し得る。
 他の態様に係るチャート製造装置は、プロセッサは、第一色の着色材と異なる第二色の着色材を用いて第二パッチを形成する。
 かかる態様によれば、複数の色のパッチ群が含まれるチャートを形成し得る。
 他の態様に係るチャート製造装置は、プロセッサは、第一色の着色材として白色の着色材を用いて、第一パッチを形成し、第二色として少なくとも一色のプロセスカラーの着色材を用いて、第二パッチを形成し、第一背景色に対応する着色材として黒色の着色材を用いて第一測定背景画像を形成する。
 かかる態様によれば、黒色背景を適用して白色のパッチが測定され、白色背景を適用してプロセスカラーのパッチを測定し得る。
 他の態様に係るチャート製造装置は、プロセッサは、第二背景色に対応する着色材を用いて第二パッチ群の位置に対応する位置へ、第二測定背景画像を形成する。
 かかる態様によれば、透明基材が支持される面の色に関わらず、第一測定背景画像及び第二測定背景画像を適用した測定を実施し得る。
 他の態様に係るチャート製造装置は、プロセッサは、第二背景色に対応する着色材として白色の着色材を用いて第二測定背景画像を形成する。
 かかる態様によれば、白色の第二測定背景画像を適用して第二パッチを測定し得る。
 他の態様に係るチャート製造装置は、プロセッサは、85パーセント以上の被覆率を有する第二測定背景画像を形成する。
 かかる態様によれば、第二測定背景画像の透けが抑制される。
 他の態様に係るチャート製造装置は、プロセッサは、第一色の着色材として白色の着色材を用いて第一パッチを形成し、第一背景色に対応する着色材として黒色の着色材を用いて第一測定背景画像を形成する。
 かかる態様によれば、黒色の第一測定背景画像を適用して、白色の第一パッチを測定し得る。
 他の態様に係るチャート製造装置は、85パーセント以上の被覆率を有する第一測定背景画像を形成する。
 かかる態様によれば、第一測定背景画像の透けが抑制される。
 他の態様に係るチャート製造装置は、プロセッサは、第一パッチと同一の階調値が適用される第二パッチを形成する。
 かかる態様によれば、第一パッチに適用される色と第二パッチに適用される色との管理を共通化し得る。
 他の態様に係るチャート製造装置は、プロセッサは、階調値が異なる複数の第一パッチが透明基材の搬送方向に沿って配置される第一パッチ群を形成し、階調値が異なる同一色の複数の第二パッチが透明基材の搬送方向に沿って配置される第二パッチ群を形成する。
 かかる態様によれば、ラインヘッドを用いて形成される際に、パッチごとの面内ムラの発生が抑制される。
 本開示に係るチャート製造方法は、互いに色が異なる第一背景色及び第二背景色を適用して測定されるチャートを透明基材へ形成するチャート製造方法であって、コンピュータが、第一背景色に対応する着色材を用いて透明基材へ第一測定背景画像を形成し、透明基材における第一測定背景画像に対応する位置へ、第一色の着色材を用いて一つ以上の第一パッチが含まれる第一パッチ群を形成し、透明基材における第一測定背景画像が非形成の位置へ、一つ以上の第二パッチが含まれる第二パッチ群を形成するチャート製造方法である。
 本開示に係るチャート製造方法によれば、本開示に係るチャート製造装置と同様の作用効果を得ることが可能である。他の態様に係るチャート製造装置の構成要件は、他の態様に係るチャート製造方法の構成要件へ適用し得る。
 本開示に係るプログラムは、互いに色が異なる第一背景色及び第二背景色を適用して測定されるチャートを製造するプログラムであって、コンピュータに、第一背景色に対応する着色材を用いて透明基材へ第一測定背景画像を形成する機能、透明基材における第一測定背景画像に対応する位置へ、第一色の着色材を用いて一つ以上の第一パッチが含まれる第一パッチ群を形成する機能、及び透明基材における第一測定背景画像が非形成の位置へ、一つ以上の第二パッチが含まれる第二パッチ群を形成する機能の実現させるプログラムである。
 本開示に係るプログラムによれば、本開示に係るチャート製造装置と同様の作用効果を得ることが可能である。他の態様に係るチャート製造装置の構成要件は、他の態様に係るプログラムの構成要件へ適用し得る。
 本開示に係る画像形成システムは、互いに色が異なる第一背景色及び第二背景色を適用して測定されるチャートを透明基材へ形成する画像形成装置と、プロセッサと、プロセッサを用いて実行されるプログラムが記憶される記憶装置と、を備え、プロセッサは、プログラムの命令を実行して、第一背景色に対応する着色材を用いて透明基材へ第一測定背景画像を形成し、透明基材における第一測定背景画像に対応する位置へ、第一色の着色材を用いて一つ以上の第一パッチが含まれる第一パッチ群を形成し、透明基材における第一測定背景画像が非形成の位置へ、一つ以上の第二パッチが含まれる第二パッチ群を形成する画像形成装置である。
 本開示に係る画像形成システムによれば、本開示に係るチャート製造装置と同様の作用効果を得ることが可能である。他の態様に係るチャート製造装置の構成要件は、他の態様に係る画像形成システムの構成要件へ適用し得る。
 画像形成システムの一例として、インクジェット方式の印刷装置を備えるインクジェット印刷システムが挙げられる。
 本発明によれば、第二背景色が用いられる背景を適用して透明基材が支持され、第一パッチ群及び第二パッチ群の測定が実施される際に、第一パッチ群は第一背景色に対応する着色材が適用いられる第一測定背景画像が背景とされる測定が実施され、第二パッチ群は第二背景色が用いられる背景を適用して測定が実施される。これにより、第一パッチ群の測定及び第二パッチ群の測定を実施する際に、互いに異なる第一背景色と第二背景色との切り替えが不要である。
図1は階調補正データ生成装置の機能ブロック図である。 図2は図1に示す補正処理部の機能ブロック図である。 図3は階調補正LUT生成方法の手順を示すフローチャートである。 図4は階調補正LUT生成工程の模式図である。 図5は階調補正用チャートの説明図である 図6は背景の構成例を示す背景の平面図である。 図7は測定状態の階調補正用チャートの模式図である。 図8は階調補正用チャートの印刷に適用される駆動電圧の説明図である。 図9は実施形態に係るインクジェット印刷システムの全体構成図である。 図10は図9に示すインクジェット印刷システムの電気的構成を示す機能ブロック図である。 図11は図9に示すインクジェット印刷システムに適用される制御装置のハードウェア構成を示すブロック図である。 図12は第一実施形態に係るチャート製造方法の手順を示すフローチャートである。 図13は第一実施形態に係る階調補正用チャート製造方法を適用して製造される階調補正用チャートを模式的に示す断面図である。 図14は第二実施形態に係るチャート製造装置に適用される印刷装置の構成例を示す構成図である。 図15は第二実施形態に係るチャート製造装置を適用して製造されるチャートを模式的に示す断面図である。 図16は第三実施形態に係るチャート製造装置及びチャート製造方法を適用して製造されるチャートを模式的に示す断面図である。 図17は第四実施形態に係るチャート製造装置を適用して製造されるチャートを模式的に示す断面図である。 図18は図17に示すチャートの測定状態を示す模式図である。
 以下、添付図面に従って本発明の好ましい実施形態について詳説する。本明細書では、同一の構成要素には同一の参照符号を付して、重複する説明は適宜省略する。
 [階調補正データ生成装置の構成例]
 図1は階調補正データ生成装置の機能ブロック図である。同図に示す階調補正データ生成装置10は、測定器12、プリンタ14及びディスプレイ装置16が接続される。
 階調補正データ生成装置10は、プリンタ14を適用して印刷される画像データに対する階調値と濃度値との非線形性の補正に適用される、階調補正データを生成する。プリンタ14は、階調補正データを適用して補正される階調値が適用される画像データに基づき、印刷を実施する。以下、プリンタ14はインクジェットヘッドを備えるインクジェット印刷装置として説明する。
 階調補正データ生成装置10は、画像データ格納部20を備える。画像データ格納部20は、基材へ印刷される階調補正用チャートを表す階調補正用チャートデータが格納される。また、画像データ格納部20は、階調補正用チャートを印刷した際に再現される階調値ごとの濃度の目標値を表すデータが格納され得る。なお、格納はメモリへのデータの保存を表し、記憶、記録及び保持などと同義である。
 階調補正データ生成装置10は、プリンタ制御部22を備える。プリンタ制御部22は、画像データ格納部20から階調補正用チャートデータを読み出し、階調補正用チャートデータに基づく吐出制御信号を生成する。プリンタ14は、吐出制御信号に基づき、階調補正用チャートの印刷を実行する。
 プリンタ制御部22は、プリンタ14に関する各種の情報をディスプレイ装置16へ表示させる。ディスプレイ装置16はタッチパネル方式が適用され、プリンタ操作画面16Aを表示する。ユーザは、プリンタ操作画面16Aを操作して、プリンタ14へ各種の情報を送信し得る。
 測定器12は、基材へ印刷される階調補正用チャートを構成するパッチの濃度値を測定する。測定器12は、分光光学濃度計を適用し得る。測定器12は、測定結果を階調補正LUT生成部26へ送信する。
 階調補正データ生成装置10は、測定器制御部24を備える。測定器制御部24は、測定器12へ測定条件を設定し、測定器12を用いる階調補正用チャートの測定を制御する。
 階調補正データ生成装置10は、階調補正LUT生成部26及びLUT格納部28を備える。階調補正LUT生成部26は、階調値と濃度値との変換関係が規定される階調補正LUTを生成する。なお、LUTはlookup tableの省略語である。
 具体的には、階調補正用チャートの階調値ごとのパッチの測定データと、階調値ごとの目標の濃度値とを比較し、目標の濃度値を実現する階調値を導出し、階調値と濃度値との変換関係を表す階調補正LUTを生成する。
 階調補正LUT生成部26は、色ごとに階調補正LUTを生成する。階調補正LUT生成部26は、インクの種類、基材の種類及びプリンタの設定などの各種の条件ごとに、階調補正LUTを生成する。ここでいう階調補正LUTの生成は、既存の階調補正LUTを更新する態様を含み得る。
 LUT格納部28は、階調補正LUT生成部26を用いて生成される階調補正LUTを格納する。LUT格納部28は、色ごと及び各種の条件ごとに階調補正LUTを格納する。
 階調補正データ生成装置10は、補正処理部30を備える。補正処理部30は階調補正処理部31を備える。また、補正処理部30は、面内ムラ補正処理部及び不吐ノズル補正処理部など、階調補正用チャートデータに適用される各種の補正処理部を含み得る。なお、図1では、面内ムラ補正処理部等の各種の補正処理部の図示を省略する。
 階調補正処理部31は、色ごとに、階調補正LUTを参照して階調値を補正する。プリンタ制御部22は、階調値が補正された階調補正用チャートデータに基づき吐出制御信号を生成し、吐出制御信号をプリンタ14へ送信する。プリンタ14は、吐出制御信号に基づき、階調補正用チャートの印刷を実施する。
 図1に示す階調補正データ生成装置10における画像データ格納部20、補正処理部30及びプリンタ制御部並びにプリンタ14は、実施形態に係るチャート製造装置を構成する。チャート製造装置の詳細は後述する。
 [補正処理部の構成例]
 図2は図1に示す補正処理部の機能ブロック図である。同図に示す補正処理部30は、一以上のプロセッサ及び一以上のメモリを備えるコンピュータを適用し得る。プロセッサは、メモリへ記憶されるプログラムを実行して、補正処理部30の各種の機能を実現する。図2には、コンピュータの例として、パーソナルコンピュータを図示する。
 補正処理部30は、階調補正処理部31、面内ムラ補正処理部52及び不吐補正処理部54を備える。階調補正処理部31は、階調補正用チャートデータ格納部20から、階調補正用チャートデータを読み出す。
 階調補正処理部31は、階調補正用チャートデータをシアン、マゼンタ、イエローブラック及びホワイトの色ごとの階調補正用チャートデータに分解する。階調補正処理部31は、色ごとの階調補正用チャートデータに対して、LUT格納部28に格納される色ごとの階調補正LUTを参照して、色ごとの階調値を補正する。図2には、階調値と濃度値の関係を表すトーンカーブに対応する階調補正LUTを例示する。
 面内ムラ補正処理部52は、階調補正用チャートを構成するパッチにおける面内ムラを補正する。具体的には、面内ムラ補正処理部52は、図1に示すプリンタ14に具備されるインクジェットヘッドのノズルごとの吐出特性に応じてノズルごとの吐出量を補正する。
 不吐補正処理部54は、不吐ノズルの補正を実施する。具体的には、不吐補正処理部54は、不吐ノズルをマスクし、不吐ノズルの近傍のノズルを用いて不吐ノズルの代替吐出を実施する。
 面内ムラ補正及び不吐ノズル補正の実施に起因して、プリンタ14は面内ムラが抑制され、かつ、不吐ノズルに起因するスジムラが抑制されるパッチが含まれる階調補正用チャートを印刷し得る。
 補正処理部30を用いて補正された階調補正用チャートデータは、プリンタ制御部22へ送信される。プリンタ制御部22は受信した階調補正用チャートデータに基づき吐出制御信号を生成し、吐出制御信号をプリンタ14へ送信する。プリンタ14は、吐出制御信号に基づき、階調補正用チャートの印刷を実行する。
 [階調補正LUT生成方法の手順]
 図3は階調補正LUT生成方法の手順を示すフローチャートである。印刷条件設定工程S10では、図1に示すプリンタ制御部22は、プリンタ14に対して階調補正用チャートの印刷条件を設定する。印刷条件の例として、インクの種類及び基材の種類が挙げられる。
 階調補正用チャート印刷工程S12では、プリンタ制御部22は、階調補正処理等の各種の補正処理が施された階調補正用チャートデータに基づき、階調補正用チャートの印刷を実施する。
 階調補正用チャート印刷工程S12は、後述する複数の工程が含まれる。階調補正用チャート印刷工程S12を構成する各工程は、チャート製造装置に適用されるチャート方法を構成する。なお、階調補正用チャート印刷工程S12の詳細は後述する。
 階調補正用チャート測定工程S14では、図1に示す測定器12を適用して、階調補正用チャート印刷工程S12において印刷される階調補正用チャートの測定が実施される。階調補正用チャートの測定は、自動測定を適用してもよいし、手動測定を適用してもよい。
 自動測定では、プリンタ14と測定器12との間について、プリンタ14から出力された階調補正用チャートが印刷された基材が測定器12へ搬送され、測定器12へ基材がセットされ、階調補正用チャートの測定が実施される。
 手動測定では、プリンタ14から出力された階調補正用チャートが印刷された基材が、手動で測定器12へセットされ、階調補正用チャートの測定が実施される。
 階調補正LUT生成工程S16では、階調補正LUT生成部26は測定器12から階調補正用チャートの測定データを取得し、取得した階調補正用チャートの測定データに基づき階調補正LUTを生成する。
 具体的には、階調補正LUT生成工程S16では、階調補正LUT生成部26は階調値と濃度値との対応関係を補正する階調補正LUTを生成する。なお、色ごとの階調値と濃度値との関係が補正されたトーンカーブの例は、図2に図示される。
 図4は階調補正LUT生成工程の模式図である。図4には四種類のグラフ形式の模式図を用いて、階調補正LUT生成工程S16における各工程の処理を図示する。ここでは、既存の階調補正LUTを補正する態様について説明する。
 直線60は、既存の階調補正LUTの入力信号値と出力信号値との関係を示す。既存の階調補正LUTでは、入力信号値と出力信号値とは同じ値となる。入力信号値をXとし、出力信号値をYとする場合に、出力信号値YはY=Xと表される。ここでいう既存の階調補正LUTは、階調補正用チャートの印刷に適用された階調補正LUTを表す。
 曲線62は、階調補正用チャートの各パッチの印刷に適用される信号値と目標濃度値との関係を模式的に表す。目標濃度値は曲線62の濃度値に対応する。階調補正用チャートの各パッチの印刷に適用される信号値と目標濃度値との関係を表すテーブルは、図1に示す画像データ格納部20等に記憶される。
 曲線64は、階調補正用チャートの各パッチの印刷に適用される信号値と、階調補正用チャート測定工程S14において取得される各パッチの測定データとの関係を模式的に示す。各パッチの測定データは曲線64の濃度値に対応する。
 階調補正用チャートの各パッチの測定データは、理想的には目標濃度値と一致するはずであるが、インクジェットヘッドの吐出特性のバラつき等に起因して、各パッチの測定データは目標濃度値と相違する。
 曲線66は、目標濃度値を再現する信号値を出力信号値とし、画像データに基づき導出される階調値を入力信号値とする階調補正LUTを模式的に示す。
 階調補正LUTは以下のステップを適用して生成される。まず、曲線62として表される階調補正用チャートの各パッチの印刷に適用される信号値と目標濃度値との関係を表すテーブルから、目標濃度値に対応付けされる信号値が導出される。
 次に、曲線64として表される階調補正用チャートの各パッチの印刷に適用される信号値と各パッチの測定データとの関係を用いて、目標濃度値を再現する信号値が導出される。曲線64から導出される目標濃度値を再現する信号値は、目標濃度値に適用される入力信号値へ割り当てられる。
 これにより、既に各パッチへ割り当てられている補正前の信号値と目標濃度値を再現する補正後の信号値との関係が導出され、補正前の信号値を入力とし、補正後の信号値を出力とする階調補正LUTが生成される。
 階調補正LUT格納工程S18では、階調補正LUT生成部26は階調補正LUTをLUT格納部28へ格納する。プリンタ14は、LUT格納部28へ格納される階調補正LUTを読み出し、階調補正LUTを画像データの処理へ適用する。
 [ホワイト画像の濃度管理]
 ホワイトインクを用いて印刷されるホワイト画像の例として、透明基材へ印刷されるカラー画像の下地が挙げられる。カラー画像の下地に適用されるホワイト画像は、透けないことが重要である。一般に、ホワイト画像の透過の度合いは、隠ぺい率を評価指標として適用し得る。隠ぺい率は、白色背景及び黒色背景を適用して、階調値を表す信号値が異なる複数のホワイトパッチのそれぞれの濃度値を測定し、規格に定められる計算方法を適用して算出される。
 例えば、ホワイトパッチについて、日本工業規格JIS K 5600-4-1 隠ぺい力に規定される方法Bを適用して、隠ぺい率を算出し得る。JIS K 5600-4-1 隠ぺい力は、1998年に発行されたISO/FDIS 6504-3を翻訳し、技術的内容及び規格票の様式を変更することなく作成した日本工業規格である。なお、JISはJapanese Industrial Standardsの省略語である。ISOは、International Organization for Standardizationの省略語である。
 ホワイト画像及びホワイトインクのホワイトは、可視光線の全ての波長を100パーセント反射させる厳密なホワイトに限定されず、一般にホワイトと認識される広い意味でのホワイトが含まれる。ホワイトインクは、ホワイトインク及びホワイトインク等の名称で販売されているインクを表す。ホワイトインクの一例として、酸化チタン粒子などホワイト顔料を含有するインクが挙げられる。なお、ホワイトは白及び白色と同義であり、これらは相互に読み替えが可能である。
 本実施形態では、互いに色が異なる二種類の背景を用いてホワイトパッチを測定し、ホワイトパッチを印刷する際に適用される信号値と、ホワイトインクを管理する隠ぺい率とを関連付けして階調補正LUTを作成し、印刷に適用される信号値を用いて直接的にホワイトインクの濃度の管理を可能としている。
 [階調補正用チャートの具体例]
 図5は階調補正用チャートの説明図である。図5には、基材100に印刷される階調補正用チャート102を図示する。基材100は、透明のシート状の媒体であり、非浸透媒体が適用される。基材100の材料の例として、ONY(Oriented Nylon)、OPP(Oriented PolyPropylene)及びPET(polyEthylene Terephthalate)などが挙げられる。
 非浸透とは、後述する水性インクに対して非浸透性を有することをいう。透明とは、可視光の透過率が30%以上100%以下であることをいい、好ましくは70%以上100%以下であることをいう。
 階調補正用チャート102は、プロセスカラーインクを用いて印刷される複数のパッチ110を構成要素とするプロセスカラーパッチ群112が含まれる。プロセスカラーパッチ群112は、シアンパッチ群112C、マゼンタパッチ群112M、イエローパッチ群112Y及びブラックパッチ群112Kが含まれる。
 シアンパッチ群112Cは、複数のシアンパッチ110Cを構成要素とする。マゼンタパッチ群112Mは、複数のマゼンタパッチ110Mを構成要素とする。イエローパッチ群112Yは、複数のイエローパッチ110Yを構成要素とする。ブラックパッチ群112Kは、複数のブラックパッチ110Kを構成要素とする。
 階調補正用チャート102は、特色インクを用いて印刷される複数の特色パッチ114を構成要素とする特色パッチ群116が含まれる。特色パッチ群116は、オレンジパッチ群116O、グリーンパッチ群116G及びバイオレットパッチ群116Vが含まれる。
 オレンジパッチ群116Oは、複数のオレンジパッチ114Oを構成要素とする。グリーンパッチ群116Gは、複数のグリーンパッチ114Gを構成要素とする。バイオレットパッチ群116Vは、複数のバイオレットパッチ114Vを構成要素とする。
 階調補正用チャート102は、第一ホワイトパッチ群120及び第二ホワイトパッチ群122が含まれる。第一ホワイトパッチ群120は、複数の第一ホワイトパッチ124が含まれる。第二ホワイトパッチ群122は、複数の第二ホワイトパッチ126が含まれる。
 第一ホワイトパッチ群120を構成する複数の第一ホワイトパッチ124は、基材搬送方向の下流側から上流側へ向かって階調値が大きくなる。基材搬送方向の下流側の端の第一ホワイトパッチ124は階調値の最小値が適用される。また、基材搬送方向の上流側の端の第一ホワイトパッチ124は階調値の最大値が適用される。
 図5に示す第一ホワイトパッチ群120は、16個の第一ホワイトパッチ124から構成される。例えば、階調値が0から255までの数値で表される場合、16個の第一ホワイトパッチ124の階調値は、階調値の最小値を0とし、階調値の最大値を255とし、階調値を17ずつ増加させている。
 第二ホワイトパッチ群122を構成する複数の第一ホワイトパッチ124は、第二ホワイトパッチ126と同一の階調値が適用される。すなわち、基材搬送方向の位置が同一の第一ホワイトパッチ124と、第二ホワイトパッチ126とは、同一の階調値が適用される。
 第一ホワイトパッチ群120と第二ホワイトパッチ群122とは、基材搬送方向と直交する基材幅方向について異なる位置に配置される。なお、ここでいう直交は、二方向のなす角度が90度未満又は90度を超えるが、二方向のなす角度が90度の場合と同様の作用効果が得られる実質的な直交が含まれ得る。
 プロセスカラーパッチ群112及び特色パッチ群116は、第一ホワイトパッチ群120と同様の階調値が適用される。プロセスカラーパッチ群112と特色パッチ群116とは、基材幅方向について異なる位置に配置される。
 プロセスカラーパッチ群112を構成する各色のパッチ群のそれぞれは、基材幅方向について異なる位置に配置される。また、特色パッチ群116を構成する各色のパッチ群のそれぞれは、基材幅方向について異なる位置に配置される。
 階調補正用チャート102は、各色のパッチが階調値の順に基板搬送方向に沿って配置され、かつ、基材幅方向に沿って配置される色違いのパッチが同一の階調値を有している。ここでいう同一は厳密な同一に限定されず、実質的な同一が含まれ得る。
 階調補正用チャート102は、第一測定開始位置マーク106及び第二測定開始位置マーク108が印刷される。第一測定開始位置マーク106はブラックインクを用いて印刷される。第二測定開始位置マーク108はホワイトインクを用いて印刷される。
 第一測定開始位置マーク106は、階調補正用チャート102におけるプロセスカラーパッチ群112、特色パッチ114及び第一ホワイトパッチ群120の測定開始位置を表す。第二測定開始位置マーク108は、第二ホワイトパッチ群122の測定開始位置を表す。
 階調補正用チャート102は、ブラックインクを用いて黒色測定背景画像130が印刷される。黒色測定背景画像130は第二ホワイトパッチ群122が印刷される領域であり、プロセスカラーパッチ群112及び特色パッチ群116が非印刷となる領域に配置される。ブラックインクの例として、カーボンブラック粒子を含有するインクが挙げられる。なお、黒色測定背景画像130の詳細は後述する。
 実施形態に記載の黒色測定背景画像130は第一測定背景画像の一例である。実施形態に記載の第二ホワイトパッチ126は第一パッチの一例である。実施形態に記載の第二ホワイトパッチ群122は第一パッチを一以上含む第一パッチ群の一例である。実施形態に記載の第一ホワイトパッチ124は第二パッチの一例である。実施形態に記載の第一ホワイトパッチ群120は第二パッチを一以上含む第二パッチ群の一例である。
 また、実施形態に記載のプロセスカラーパッチ群112を構成するパッチ110及び特色パッチ群116を構成するパッチ110は、第二パッチの他の一例である。実施形態に記載のプロセスカラーパッチ群112及び特色パッチ群116は、第二パッチ群の他の一例である。実施形態に記載の第二ホワイトパッチ126を構成するホワイトインクは、第一色の着色材の一例である。
 実施形態に記載の第一ホワイトパッチ124の印刷は、第二パッチを一以上形成する、の一例である。実施形態に記載のプロセスカラーパッチ群112を構成するパッチ110及び特色パッチ群116を構成するパッチ110の印刷は、第二パッチ群に含まれるパッチを一以上形成する、の一例である。実施形態に記載のプロセスカラー及び特色は第二色の一例である。
 [階調補正用チャートの測定に適用される背景の構成例]
 図6は背景の構成例を示す背景の平面図である。同図に示す白色背景202は、図1に示す測定器12に適用される。図5に示す基材100へ印刷される階調補正用チャート102を測定する際に、基材100はステージ201を用いて支持される。
 ステージ201の基材100を支持する基材支持面201Aは、白色背景202が形成される。例えば、基材支持面201Aへの白色背景202の形成は、白色背景202が印刷されたシートの基材支持面201Aへの貼り付けを適用し得る。基材支持面201Aへの白色背景202の形成は、塗装などの表面処理を適用してもよい。
 [階調補正用チャートの測定及び階調補正データの算出]
 図7は測定状態の階調補正用チャートの模式図である。なお、図7では、図5に図示した符号のうち、一部の符号の図示を省略する。図17及び図18についても同様である。同図に示すように、白色背景202に対して階調補正用チャート102が位置合わせされ、階調補正用チャート102の測定が実施される。
 具体的には、第一ホワイトパッチ群120を構成する複数の第一ホワイトパッチ124のそれぞれについて、CIEXYZ表色系のY値が取得される。同様に、第二ホワイトパッチ群122を構成する複数の第二ホワイトパッチ126のそれぞれについて、CIEXYZ表色系のY値が取得される。
 第一ホワイトパッチ124の測定値は白色背景202の濃度の影響を受ける。同様に、第二ホワイトパッチ126の測定値は黒色測定背景画像130の濃度の影響を受ける。白色背景202の第一ホワイトパッチ124の測定値への影響及び黒色測定背景画像130の第二ホワイトパッチ126への影響の回避を目的として、白色背景202の濃度値及び黒色測定背景画像130の濃度値を用いて、第一ホワイトパッチ124の測定値及び第二ホワイトパッチ126の測定値は正規化される。
 観察光源のY値をYとし、黒色測定背景画像130のY値をYbkとし、黒色測定背景画像130を背景として取得される測定値をYmkとする場合、規格化されたY値Ynbは、Ynb=(Ymk-Ybk)/(Y-Ybk)と表される。換言すると、絶対値である測定値Ymbは、黒色測定背景画像130を基準とする相対値のY値Ynbへ変換される。
 白色背景202を用いる場合には、白色背景202のY値をYwhとし、白色背景202を背景として取得される測定値をYmwとし、規格化されたY値Ynwは、Ynw=(Ymw-Ywh)/(Y-Ywh)と表される。白色背景202のY値Ywhは、基材100における階調補正用チャート102の非形成領域を測定して得られるY値を適用し得る。黒色測定背景画像130のY値Ybkについても同様である。
 第一ホワイトパッチ124の測定データに基づくY値Ynw及び第二ホワイトパッチ126の測定データに基づくY値Ynbを用いて、ホワイトインクにおける階調値ごとの隠ぺい率Ynb/Ynwが算出される。
 ホワイトインクにおける階調値ごとの目標の隠ぺい率が取得され、目標のホワイトインクの濃度を表す目標の隠ぺい率と、各パッチの測定データから算出された隠ぺい率とが比較され、目標の隠ぺい率に対する算出された隠ぺい率の差分が算出される。算出された隠ぺい率の差分に基づき、ホワイトインクに適用される階調補正LUTが生成される。
 具体的には、図4を用いて説明される図3の階調補正LUT生成工程S16の手順に沿って、濃度値が隠ぺい率へ置き換えられ、ホワイトインクに適用される階調補正LUTが生成される。階調補正LUTは、図1に示すLUT格納部28へ格納される。
 ホワイトインクに適用される階調補正LUTは、階調値を表す信号値とホワイトパッチの評価指標値である隠ぺい率との関係を表す。ホワイトインクについて、目標の隠ぺい率を実現する信号値が導出され、目標濃度値が再現される印刷が可能となる。また、濃度値が変更された際の目標の隠ぺい率に対応するホワイトインクの濃度値への調整も可能となる。
 例えば、ホワイトインクの隠ぺい率が53パーセントに設定されるホワイト画像の印刷において、ホワイトインクのコストの抑制等を目的として、白色の隠ぺい率が51パーセントへ変更される場合、ホワイトの階調補正LUTを参照して、隠ぺい率が51パーセントとされる階調値を表す信号値を取得し得る。
 このようにして、ホワイトインクの隠ぺい率が変更される際に、階調補正用チャート102の印刷及び測定に基づいて、変更されたホワイトインクの隠ぺい率に対応する階調値を表す信号値を導出しなくてもよい。
 シアン等のプロセスカラーインク及びオレンジ等の特色インクは、階調補正用チャート102の測定において取得される色ごとの各パッチ110のCIEXYZ表色系のY値に基づき、図1に示すLUT格納部28へ格納される色ごとのLUTが補正される。
 シアン等のホワイト以外のプロセスインクについても、LUTの補正において、観察光源のY値Y及び白色背景202のY値をYwhを用いて正規化されたY値Yが適用される。なお、白色背景202の濃度を用いる測定値の規格化は上記の例に限定されない。背景色を基準として絶対値の測定値を相対値へ変換できれば、上記以外の方法を適用し得る。
 絶対値の測定値を相対値へ変換する際に、パッチ110と白色背景202との濃度コントラストが相対的に高いほど、LUTの補正精度が向上し得る。そこで、白色背景202の濃度が測定され、測定された濃度値が規定の閾値以下の場合に、警告を報知する態様が好ましい。
 警告の例として、図1に示すディスプレイ装置16へ警告の内容を表す文字情報を表示させ、白色背景202の交換等をユーザへ促す態様が挙げられる。白色背景202のY値は、基材100における階調補正用チャート102の非形成領域を測定して得られるY値を適用し得る。
 プリンタ14に対してシングルパス方式の印刷が適用される場合、同一色の複数のパッチ110の配置方向は、基材搬送方向に平行となる方向が好ましい。同一色の複数のパッチ110の配置が基材搬送方向と平行の場合、各パッチ110における面内の濃度均一性が相対的に向上し、LUTの補正精度が相対的に向上し得る。なお、ここでいう平行は、厳密には交差しているが、平行と同様の作用効果が得られる実質的な平行が含まれ得る。
 階調補正用チャート102が測定される際に、白色背景202における面内の濃度均一性が相対的に高い場合は、LUTの補正精度が相対的に向上し得る。そこで、白色背景202における面内の濃度ムラを測定し、測定される濃度ムラが規定の閾値以上の場合に、警告を報知する態様が好ましい。警告は上記に例示した態様を適用し得る。警告を視認したユーザは、白色背景202の交換及び清掃等を実施し、白色背景202における面内の濃度ムラを抑制し得る。
 [階調補正用チャートの印刷に適用される駆動電圧]
 図8は階調補正用チャートの印刷に適用される駆動電圧の説明図である。図8には、グラフ形式を適用して、図1に示すプリンタ14に具備される圧電吐出方式のインクジェットヘッドへ供給される駆動電圧の一吐出周期分を図示する。
 図8に示すグラフの横軸は期間であり、横軸の単位はマイクロ秒である。同図に示すグラフの縦軸は電圧であり、縦軸の単位はボルトである。なお、図8に示す数値は一例であり、印刷条件及びインクジェットヘッドに具備される圧電素子の規格に応じて、適宜、規定し得る。
 インクジェットヘッドは、連射駆動方式が適用され、図8に示す駆動波形300を構成する複数の吐出駆動パルスのうち、吐出体積に応じた一つ以上の吐出駆動パルスが供給される。これにより、インクジェットヘッドはそれぞれの体積が異なる大滴、中滴及び小滴の打ち分けが可能である。
 例えば、小滴を吐出させる場合は吐出駆動パルス312が適用される。中滴を吐出させる場合は吐出駆動パルス306、吐出駆動パルス308、吐出駆動パルス310及び吐出駆動パルス312が適用される。
 大滴を吐出させる場合は、吐出駆動パルス302、吐出駆動パルス304、吐出駆動パルス306、吐出駆動パルス308、吐出駆動パルス310及び吐出駆動パルス312が適用される。
 吐出駆動パルス312に後続する駆動波形要素は、残響抑制波形要素314である。残響抑制波形要素314は、インク液滴を吐出させた直後のインクの振動の抑制を目的として、大滴、中滴及び小滴の全ての場合に付加され得る。
 図5に示す階調補正用チャート102の印刷は、通常の印刷と同様の印刷条件が適用される。すなわち、階調補正用チャート102を構成するパッチ群を構成するパッチのうち、各色について一つ以上は、複数のサイズのドットを組み合わせて印刷される。
 例えば、階調値が相対的に小さいパッチ110は、小滴に対応する小ドットのみが適用され、階調値が相対的に小さいパッチ110は、小ドット及び中滴に対応する中ドットが適用される。
 [実施形態に係るインクジェット印刷システムの構成例]
 図9は実施形態に係るインクジェット印刷システムの全体構成図である。インクジェット印刷システム400は、シングルパス方式の印刷を適用して、透明の基材401にカラー画像を印刷するデジタル方式の印刷装置406が具備される。
 本実施形態では、基材401としてプラスチックフィルム等の軟包装を例示する。基材401は単層でもよいし、複数の層を重ね合わせてもよい。基材401はロールトゥロールの連続形態でもよいし、規定の長さにカットされた枚葉の形態でもよい。なお、基材401は、媒体、メディア、シート、フィルム、及び基板等と呼ばれる場合がある。図9に示す基材401は図5に示す基材100に相当する。
 インクジェット印刷システム400は、基材供給装置402、第一中間搬送装置404、印刷装置406、第二中間搬送装置408、測定装置410、乾燥装置412及び集積装置414を備える。以下、各部について詳細に説明する。
 〔基材供給装置〕
 基材401が連続形態の場合、基材供給装置402は基材401が巻かれたロールを収容するロール収容部を備える。基材401が枚葉の形態の場合、基材供給装置402は基材401が収容されるトレイを備える。基材供給装置402は印刷装置406の印刷制御に対応して基材401を第一中間搬送装置404へ供給する。基材供給装置402は、基材401の姿勢を補正する補正機構を備え得る。
 〔第一中間搬送装置〕
 第一中間搬送装置404は、基材供給装置402から供給された基材401を印刷装置406へ受け渡す。第一中間搬送装置404は、基材401の形態に応じた公知の構成を適用し得る。なお、基材供給装置402から第一中間搬送装置404へ向かう矢印線は基材搬送方向を表す。
 〔印刷装置〕
 印刷装置406は、インクジェットヘッド420C、インクジェットヘッド420M、インクジェットヘッド420Y、インクジェットヘッド420K及びインクジェットヘッド420Wを備える。
 インクジェットヘッド420C、インクジェットヘッド420M、インクジェットヘッド420Y、インクジェットヘッド420K及びインクジェットヘッド420Wは、基材搬送方向に沿って上流側から上記の記載の順に配置される。
 インクジェットヘッド420Cはシアンインクを吐出する。インクジェットヘッド420Mはマゼンタインクを吐出する。インクジェットヘッド420Yはイエローインクを吐出する。インクジェットヘッド420Kはブラックインクを吐出する。インクジェットヘッド420Wはホワイトインクを吐出する。
 インクジェットヘッド420C等は、基材幅方向について、基材401の全長以上の長さにわたって複数のノズルが配置されるラインヘッドを適用し得る。インクジェットヘッド420C等に具備される複数のノズルはマトリクス配置等の二次元配置が適用される。
 インクジェットヘッド420C等は、吐出圧力を発生させる吐出圧力素子として、圧電素子を備える圧電吐出方式を適用し得る。インクジェットヘッド420C等は、インクの膜沸騰現象を利用してインクを吐出させるサーマル方式を適用し得る。
 印刷装置406は、シアンインク等のカラーインクを用いて透明の基材401へカラー画像を形成し、ホワイトインクを用いてカラー画像に重ねて背景画像となるホワイト画像を形成する。基材401を用いて生成された印刷物は、基材401を非印刷面から見るとカラー画像を視認し得る。
 印刷装置406は印刷ドラム422を備える。印刷ドラム422は円筒形状を有する。印刷ドラム422は周面に基材401を支持する基材支持領域を備える。なお、基材支持領域の図示は省略する。
 印刷ドラム422の回転軸は図示しない駆動機構を介して図示しないモータと接続される。モータを回転させると、印刷ドラム422は矢印線が示す方向へ回転する。印刷ドラム422を回転させると、印刷ドラム422の周面に支持される基材401は、印刷ドラム422の回転方向に沿って搬送される。
 基材支持領域は、複数の吸着穴が形成される。複数の吸着穴は規定のパターンに基づき配置される。複数の吸着穴は図示しない吸着流路と連通する。吸着流路は図示しない吸着ポンプと接続される。吸着ポンプを動作させて複数の吸着穴に負圧を発生させることで、基材401は印刷ドラム422の周面に吸着支持される。
 印刷装置406における基材401の搬送形態は、印刷ドラム422を用いた搬送形態に限定されない。例えば、搬送ベルトを用いた搬送形態及び複数のローラを用いた搬送形態などを適用可能である。
 〔第二中間搬送装置〕
 第二中間搬送装置408は、印刷ドラム422から受け渡された基材401を測定装置410へ受け渡す。第二中間搬送装置408は、第一中間搬送装置404と同様の構成を適用し得る。なお、第二中間搬送装置408に示す矢印線は、第二中間搬送装置408における基材搬送方向を表す。
 〔測定装置〕
 測定装置410は、濃度測定器430、複数の読取搬送ローラ432及びステージ434を備える。測定装置410は照明装置を備える。なお、照明装置の図示を省略する。図9に示す濃度測定器430は、図1に示す測定器12に対応する。図9に示すステージ434は、図1に示す測定器12に具備されるステージ201に対応する。
 図9に示す濃度測定器430は、図1に示す測定器12と同様に、基材401へ印刷される階調補正用チャートを測定し得る。インクジェット印刷システム400は、階調補正用チャートの測定データに基づき、色ごとの階調補正データを生成し、色ごとの階調補正データに基づき色ごとの階調補正LUTを生成し得る。
 図9には、測定装置410における基材401の搬送方式としてローラ搬送方式を例示したが、測定装置410における基材401の搬送方式は、ベルト搬送方式及びドラム搬送方式等の他の方式を適用し得る。
 測定装置410は、基材401に印刷されるテストパターンを撮像する撮像装置を備え得る。インクジェット印刷システム400は、テストパターンの撮像データに基づき、インクジェットヘッド420C等の吐出異常を検出し得る。
 〔乾燥装置〕
 乾燥装置412は、印刷済みの基材401に対して乾燥処理を施す。乾燥装置412は、ヒータ及びファンを備え、印刷済みの基材401に対して温風を吹き付ける構成を適用し得る。乾燥装置412は印刷済みの基材401を搬送する乾燥搬送部を備える。印刷済みの基材401の搬送形態として、ドラム搬送、ベルト搬送及びローラ搬送など、公知の搬送形態を適用し得る。なお、乾燥装置412に示す矢印線は、乾燥装置412基材搬送方向を示す。
 〔集積装置〕
 集積装置414は、乾燥装置412から受け渡された基材401を収容する。基材401が連続形態の場合、集積装置414は基材401が巻き取られたロールを収容するロール収容部を備える。基材401が枚葉の形態の場合、集積装置414は基材401が収容されるトレイを備える。
 [インクジェット印刷システムの電気的構成]
 図10は図9に示すインクジェット印刷システムの電気的構成を示す機能ブロック図である。インクジェット印刷システム400は、システム制御部460、搬送制御部462、印刷制御部466、測定制御部468、乾燥制御部470及び情報取得部472を備える。
 システム制御部460は、インクジェット印刷システム400の全体動作を統括的に制御する。システム制御部460は、各種の制御部へ指令信号を送信する。システム制御部460は、メモリ474へのデータの記憶及びメモリ474からのデータの読み出しを制御するメモリコントローラとして機能する。
 システム制御部460は、センサ476から送信されるセンサ信号を取得し、センサ信号に基づく指令信号を各種の制御部へ送信する。センサ476は、インクジェット印刷システム400の各部に具備される位置検出センサ及び温度センサ等が含まれる。
 搬送制御部462は、システム制御部460から送信される指令信号に基づき、搬送条件を設定し、設定された搬送条件に基づき搬送装置464の動作を制御する。図10に示す搬送装置464は、図9に示す第一中間搬送装置404、印刷ドラム422、読取搬送ローラ432及び乾燥装置412に具備される乾燥搬送装置が含まれる。搬送装置464は、基材供給装置402及び集積装置414が含まれてもよい。
 印刷制御部466は、システム制御部460から送信される指令信号に基づき、印刷条件を設定し、設定された印刷条件に基づき印刷装置406の動作を制御する。図10に示す印刷制御部466は、図1に示すプリンタ制御部22の機能を備える。
 印刷制御部466は、印刷用の画像データに対して、色分解処理、色変換処理、各処理の補正処理及びハーフトーン処理を実施して、色ごとのハーフトーンデータを生成する画像処理部を備える。
 印刷制御部466は、色ごとのハーフトーンデータに基づきインクジェットヘッド420C等へ供給される駆動電圧を生成する駆動電圧生成部を備える。印刷制御部466は、インクジェットヘッド420Cへ駆動電圧を供給する駆動電圧出力部を備える。
 印刷制御部466は、図9に示すインクジェットヘッド420C等を用いて、階調補正用チャートデータに基づき、シアン、マゼンタ、イエロー、ブラック及びホワイトのパッチ群を含む階調補正用チャートの印刷を実施し得る。
 印刷制御部466は、階調補正用チャートのハーフトーン画像を生成する際に、多値のハーフトーン画像を生成し、多値のハーフトーン画像に基づき、互いにサイズが異なる複数の種類のドットを組み合わせて、階調補正用チャートの印刷を実施する。
 印刷制御部466は、階調補正用チャートの印刷を実施する際に、各色のパッチ群を構成する複数のパッチを基材搬送方向に沿って配置させる。
 印刷制御部466は、図1に示す階調補正LUT生成部26及び補正処理部30の機能を備え得る。図10に示すインクジェット印刷システム400は、印刷制御部466とは別に、図1に示す階調補正データ生成装置10と同様の機能を有する階調補正データ生成部を備え得る。
 図10に示す印刷制御部466のうち、図1に示す階調補正データ生成装置10に対応する処理部は、測定制御部468から階調補正用チャートの測定データを取得し、階調補正用チャートの測定データに基づき階調補正LUTを生成する。
 測定制御部468は、システム制御部460から送信される指令信号に基づき、測定条件を設定し、設定された測定条件に基づき測定装置410の動作を制御する。図10に示す測定制御部468は、図1に示す測定器制御部24の機能を備え得る。
 測定制御部468は、ステージ434に形成される背景の濃度値が規定の閾値以下の場合に、警告を報知し得る。また、測定制御部468は、ステージ434に形成される背景における面内の濃度ムラが規定の閾値以上の場合に、警告を報知し得る。
 乾燥制御部470は、システム制御部460から送信される指令信号に基づき、メイン乾燥処理の処理条件を設定し、設定された処理条件に基づき乾燥装置412の動作を制御する。
 情報取得部472は、インクジェット印刷システム400の制御に適用される各種の情報を取得する。システム制御部460は、情報取得部472を用いて取得した各種の情報に基づき、各種の制御部へ指令信号を送信する。
 メモリ474は、インクジェット印刷システム400に適用される各種のデータ、パラメータ及びプログラムが記憶され得る。メモリ474は、図1に示すLUT格納部28として機能し得る。
 図11は図9に示すインクジェット印刷システムに適用される制御装置のハードウェア構成を示すブロック図である。インクジェット印刷システム400に具備される制御装置500は、プロセッサ502、非一時的な有体物であるコンピュータ可読媒体504、通信インターフェース506及び入出力インターフェース508を備える。
 制御装置500は、コンピュータが適用される。コンピュータの形態は、サーバであってもよいし、パーソナルコンピュータであってもよく、ワークステーションであってもよく、また、タブレット端末などであってもよい。
 プロセッサ502はCPU(Central Processing Unit)を含む。プロセッサ502はGPU(Graphics Processing Unit)を含んでもよい。プロセッサ502は、バス510を介してコンピュータ可読媒体504、通信インターフェース506及び入出力インターフェース508と接続される。入力装置512及びディスプレイ装置514は入出力インターフェース508を介してバス510に接続される。
 プロセッサ502は、階調補正データの生成に関連する処理を実施する第一プロセッサ、画像形成に関連する処理を実施する第二プロセッサ及び測定に関する処理を実施する第三プロセッサとして機能し得る。
 コンピュータ可読媒体504は、主記憶装置であるメモリ及び補助記憶装置であるストレージを含む。コンピュータ可読媒体504は、半導体メモリ、ハードディスク装置及びソリッドステートドライブ装置等を適用し得る。コンピュータ可読媒体504は、複数のデバイスの任意の組み合わせを適用し得る。
 なお、ハードディスク装置は、英語表記のHard Disk Driveの省略語であるHDDと称され得る。ソリッドステートドライブ装置は、英語表記のSolid State Driveの省略語であるSSDと称され得る。
 制御装置500は、通信インターフェース506を介してネットワークへ接続され、外部装置と通信可能に接続される。ネットワークは、LAN(Local Area Network)等を適用し得る。なお、ネットワークの図示を省略する。
 コンピュータ可読媒体504は、搬送制御プログラム520、印刷制御プログラム522、測定制御プログラム524、乾燥制御プログラム526及び階調補正データ生成プログラム528が記憶される。
 搬送制御プログラム520は、図10に示す搬送装置464へ適用される搬送制御に対応する。印刷制御プログラム522は、印刷装置406へ適用される印刷制御に対応する。印刷制御プログラム522は、図6に示す階調補正用チャート102を製造するプログラムが含まれる。
 測定制御プログラム524は、測定装置410へ適用される測定制御に対応する。乾燥制御プログラム526は、乾燥装置412へ適用される乾燥制御に対応する。階調補正データ生成プログラム528は、階調補正処理に適用される補正データの生成及び階調補正処理に対応する。
 コンピュータ可読媒体504へ記憶される各種のプログラムは、一つ以上の命令が含まれる。コンピュータ可読媒体504は、各種のデータ及び各種のパラメータ等が記憶される。なお、図10に示すメモリ474は、図11に示すコンピュータ可読媒体504に含まれる。
 コンピュータ可読媒体504は、階調補正データ生成プログラム528が記憶される第一記憶装置として機能し得る。コンピュータ可読媒体504は、搬送制御プログラム520、印刷制御プログラム522及び乾燥制御プログラム526が記憶される第二記憶装置として機能し得る。コンピュータ可読媒体504は、測定制御プログラム524が記憶される第三記憶装置として機能し得る。
 インクジェット印刷システム400は、プロセッサ502がコンピュータ可読媒体504へ記憶される各種のプログラムを実行し、インクジェット印刷システム400における各種の機能を実現する。なお、プログラムという用語はソフトウェアという用語と同義である。
 制御装置500は、通信インターフェース506を介して外部装置とのデータ通信を実施する。通信インターフェース506は、USB(Universal Serial Bus)などの各種の規格を適用し得る。通信インターフェース506の通信形態は、有線通信及び無線通信のいずれを適用してもよい。
 制御装置500は、入出力インターフェース508を介して、入力装置512及びディスプレイ装置514が接続される。入力装置512はキーボード及びマウス等の入力デバイスが適用される。ディスプレイ装置514は、制御装置500に適用される各種の情報が表示される。
 ディスプレイ装置514は、液晶ディスプレイ、有機ELディスプレイ及びプロジェクタ等を適用し得る。ディスプレイ装置514は、複数のデバイスの任意の組み合わせを適用し得る。なお、有機ELディスプレイのELは、Electro-Luminescenceの省略語である。図11に示すディスプレイ装置514は、図1に示すディスプレイ装置16に対応する。
 ここで、プロセッサ502のハードウェア的な構造例として、CPU、GPU、PLD(Programmable Logic Device)及びASIC(Application Specific Integrated Circuit)が挙げられる。CPUは、プログラムを実行して各種の機能部として作用する汎用的なプロセッサである。GPUは、画像処理に特化したプロセッサである。
 PLDは、デバイスを製造した後に電気回路の構成を変更可能なプロセッサである。PLDの例として、FPGA(Field Programmable Gate Array)が挙げられる。ASICは、特定の処理を実行させるために専用に設計された専用電気回路を備えるプロセッサである。
 一つの処理部は、これら各種のプロセッサのうちの一つで構成されていてもよいし、同種又は異種の二つ以上のプロセッサで構成されてもよい。各種のプロセッサの組み合わせの例として、一以上のFPGAと一以上のCPUとの組み合わせ、一以上のFPGAと一以上のGPUとの組み合わせが挙げられる。各種のプロセッサの組み合わせの他の例として、一以上のCPUと一以上のGPUとの組み合わせが挙げられる。
 一つのプロセッサを用いて、複数の機能部を構成してもよい。一つのプロセッサを用いて、複数の機能部を構成する例として、クライアント又はサーバ等のコンピュータに代表される、SoC(System On a Chip)などの一つ以上のCPUとソフトウェアの組合せを適用して一つのプロセッサを構成し、このプロセッサを複数の機能部として作用させる態様が挙げられる。
 一つのプロセッサを用いて、複数の機能部を構成する他の例として、一つのICチップを用いて、複数の機能部を含むシステム全体の機能を実現するプロセッサを使用する態様が挙げられる。なお、ICはIntegrated Circuitの省略語である。
 このように、各種の機能部は、ハードウェア的な構造として、上記した各種のプロセッサを一つ以上用いて構成される。更に、上記した各種のプロセッサのハードウェア的な構造は、より具体的には、半導体素子等の回路素子を組み合わせた電気回路(circuitry)である。
 コンピュータ可読媒体504は、ROM(Read Only Memory)及びRAM(Random Access Memory)等の半導体素子を含み得る。コンピュータ可読媒体504は、ハードディスク等の磁気記憶媒体を含み得る。コンピュータ可読媒体504は、複数の種類の記憶媒体を具備し得る。
 [第一実施形態に係るチャート製造方法]
 図12は第一実施形態に係るチャート製造方法の手順を示すフローチャートである。図12には、図3に示す階調補正用チャート印刷工程S12に適用される各工程及び手順を示す。図12には、図1に示すプリンタ14として図9に示すインクジェット印刷システム400が適用される場合の手順を示す。
 チャートデータ取得工程S100では、図10に示す印刷制御部466は、図5に示す階調補正用チャート102を印刷する際に適用される階調補正用チャートデータを取得する。チャートデータ取得工程S100の後に色変換工程S102へ進む。
 色変換工程S102では、印刷制御部466は階調補正用チャートデータをインク色を用いて表される階調補正用チャートデータへ変換する。階調補正用チャートデータがインク色を用いて表される場合、色変換工程S102は省略される。色変換工程S102の後に色分解工程S104へ進む。
 色分解工程S104では、印刷制御部466はインク色を用いて表される階調補正用チャートデータを色分解して、インク色ごとの階調補正用チャートデータを生成する。色分解工程S104の後にハーフトーン処理工程S106へ進む。
 ハーフトーン処理工程S106では、印刷制御部466はインク色ごとの階調補正用チャートデータのそれぞれに対してハーフトーン処理を施し、インク色ごとの階調補正用チャートのハーフトーン画像を生成する。ハーフトーン処理工程S106の後に、駆動電圧生成工程S107へ進む。
 駆動電圧生成工程S107では、印刷制御部466はインク色ごとの階調補正用チャートのハーフトーン画像に基づき、インク色ごとの駆動電圧を生成する。換言すると、駆動電圧生成工程S107は、インクジェットヘッドごとの駆動電圧を生成する。駆動電圧生成工程S109の後にCMYパッチ印刷工程S108へ進む。
 CMYパッチ印刷工程S108では、印刷制御部466は図9に示すインクジェットヘッド420Cを用いてシアンパッチ群112Cを印刷する。また、同工程では、印刷制御部466はインクジェットヘッド420Mを用いてマゼンタパッチ群112Mを印刷し、インクジェットヘッド420Yを用いてイエローパッチ群112Yを印刷する。
 ブラック印刷工程S110では、印刷制御部466はインクジェットヘッド420Kを用いて、第一測定開始位置マーク106、プロセスカラーパッチ群112及び黒色測定背景画像130を印刷する。
 ホワイトパッチ印刷工程S112では、印刷制御部466はインクジェットヘッド420Wを用いて、第二測定開始位置マーク108、第一ホワイトパッチ群120及び第二ホワイトパッチ群122を印刷する。
 CMYパッチ印刷工程S108、ブラック印刷工程S110及びホワイトパッチ印刷工程S112は、基材401が各色のインクジェットヘッドを通過するタイミングにおいて実施される。図12に示す各工程を経て図5に示す階調補正用チャート102が印刷されると、図3に示す階調補正データ生成方法は、階調補正用チャート印刷工程S12から階調補正用チャート測定工程S14へ遷移する。
 なお、各色のインクジェットヘッドの配置に応じてCMYパッチ印刷工程S108とブラック印刷工程S110との順序が入れ替えられてもよい。例えば、基材搬送方向の上流側からブラック、シアン、マゼンタ、イエロー及びホワイトの順に各色のインクジェットヘッドが配置される場合、ブラック印刷工程S110の後にCMYパッチ印刷工程S108が実施される。
 [階調補正用チャートの具体例]
 図13は第一実施形態に係るチャート製造方法を適用して製造される階調補正用チャートを模式的に示す断面図である。同図には、図5に示す階調補正用チャート102における第二ホワイトパッチ群122及び黒色測定背景画像130が印刷される位置における断面図を示す。なお、図13には、階調補正用チャート102の測定方向を図示する。
 図13に示す階調補正用チャート102は、基材401の印刷面401Aに黒色測定背景画像130が印刷され、黒色測定背景画像130に重ねて第二ホワイトパッチ群122が印刷される。
 [第一実施形態に係るチャート製造装置及びチャート製造方法の作用効果]
 第一実施形態に係るチャート製造装置及びチャート製造方法は、以下の作用効果を得ることが可能である。
 〔1〕
 第一ホワイトパッチ群120及び第二ホワイトパッチ群122が印刷される階調補正用チャート102において、第二ホワイトパッチ群122の背景となる黒色測定背景画像130が印刷される。これにより白色背景202から黒色背景への切り替えをせずに、白色背景202のみを用いて、互いに色が異なる二種類の背景を用いる第一ホワイトパッチ群120及び第二ホワイトパッチ群122を測定し得る。
 〔2〕
 階調補正用チャート102は白色背景202を用いて測定される。これにより、第一ホワイトパッチ群120及び第二ホワイトパッチ群122と白色背景202との高精度の位置合わせが不要となる。
 [第二実施形態に係るチャート製造装置]
 図14は第二実施形態に係るチャート製造装置に適用される印刷装置の構成例を示す構成図である。同図に示す印刷装置406Aは、図9に示す印刷装置406に対して、インクジェットヘッド420CLが追加される。
 インクジェットヘッド420CLは、インクジェットヘッド420Kとインクジェットヘッド420Wとの間に配置される。インクジェットヘッド420CLはクリアインクが適用される。
 クリアインクの例として、プロセスインクから色材に関連する成分が除去されるインクが挙げられる。クリアインクは、透明インクと称される場合があり得る。ここでいう透明は、可視光光線の透過率が100パーセント未満であってもよい。クリアインクの透過率は重ねて印刷されるホワイトインク及びブラックインクの視認性を一定以上低下させないものであればよい。
 図15は第二実施形態に係るチャート製造装置を適用して製造されるチャートを模式的に示す断面図である。同図に示す階調補正用チャート102Aは、黒色測定背景画像130に重ねてクリアインク画像140が印刷され、更に、クリアインク画像140に重ねて第二ホワイトパッチ群122が印刷される。
 クリアインク画像140は、黒色測定背景画像130の全面に重ねて印刷されてもよいし、黒色測定背景画像130と第二ホワイトパッチ群122との間のみに印刷されてもよい。
 [第二実施形態に係るチャート製造方法]
 図15は第二実施形態に係るチャート製造方法は、図12に示すブラック印刷工程S110の後にクリアインク画像を印刷するクリアインク画像印刷工程が実施される。また、クリアインク画像印刷工程の後にホワイトパッチ印刷工程S112が実施される。
 [第二実施形態に係るチャート製造装置及びチャート製造方法の作用効果]
 第二実施形態に係るチャート製造装置及びチャート製造方法は、第一実施形態と同様の作用効果を得ることができる。また、ホワイトインクが適用される第二ホワイトパッチ群122と、ブラックインクが適用される黒色測定背景画像130との間にクリアインクが適用されるクリアインク画像140が印刷される。
 これにより、ホワイトインクとブラックインクとの混色が抑制され、ホワイトインクとブラックインクとの境界面におけるホワイトインクとブラックインクとの混在に起因して発生する光散乱が抑制され、相対的にコントラストが高い階調補正用チャート102Aを印刷し得る。
 なお、実施形態に記載のクリアインクは透明着色材の一例である。実施形態に記載のクリアインク画像140は透明画像の一例である。
 [第三実施形態に係るチャート製造装置]
 図16は第三実施形態に係るチャート製造装置及びチャート製造方法を適用して製造されるチャートを模式的に示す断面図である。同図に示す階調補正用チャート102Bは、基材401の一方の面である印刷面401Aに第二ホワイトパッチ群122が印刷される。
 また、基材401の他方の面である裏面401Bへ黒色測定背景画像130が印刷される。黒色測定背景画像130は、基材401の印刷面401Aにおける第二ホワイトパッチ群122が印刷される領域に対応する、裏面401Bにおける領域へ印刷される。
 第三実施形態に係るチャート製造装置は、基材401の両面に印刷をする両面印刷装置が適用される。両面印刷装置は、基材401の印刷面401Aと裏面401Bとを反転させる基材反転機構を備える。
 [第三実施形態に係るチャート製造方法]
 第三実施形態に係るチャート製造方法では、図12に示すCMYパッチ印刷工程S108に代わり、シアンパッチ群112C、マゼンタパッチ群112M、イエローパッチ群112Y及びブラックパッチ群112Kが印刷される工程が実施される。
 ブラック印刷工程S110は省略され、ホワイトパッチ印刷工程S112が実施される。その後、基材反転工程が実施され、基材反転工程が実施された後に、黒色測定背景画像130が印刷される工程が実施される。
 第三実施形態に係るチャート製造方法において、黒色測定背景画像130が印刷される工程が実施された後に基材反転工程が実施され、基材反転工程が実施された後にCMYパッチ印刷工程S108及びホワイトパッチ印刷工程S112が実施されてもよい。
 [第三実施形態に係るチャート製造装置及びチャート製造方法の作用効果]
 第三実施形態に係るチャート製造装置及びチャート製造方法は、第一実施形態及び第二実施形態と同様の作用効果を得ることができる。また、第二ホワイトパッチ群122のコントラストの低下が抑制される。更に、第二ホワイトパッチ群122に適用されるホワイトインクのインク量及び黒色測定背景画像130に適用されるブラックインクのインク量を相対的に増量し得る。
 [第四実施形態に係るチャート製造装置及びチャート製造方法]
 図17は第四実施形態に係るチャート製造装置を適用して製造されるチャートを模式的に示す断面図である。第四実施形態に係るチャート製造装置は、図9及び図10に示すインクジェット印刷システム400が適用される。また、第四実施形態に係るチャート製造方法は、図12に示すフローチャートが適用される。
 図17に示す階調補正用チャート102Cは、基材401の印刷面401Aにおいて、折り返し線401Cを挟んで第二ホワイトパッチ群122の反対の側の領域401Dへ黒色測定背景画像130が印刷される。黒色測定背景画像130は基材401の裏面401Bへ印刷されてもよい。
 図18は図17に示すチャートの測定状態を示す模式図である。図18に示すように黒色測定背景画像130は、折り返し線401Cにおいて基材401を折り返した場合に、第二ホワイトパッチ群122と重なる位置に印刷される。
 [第四実施形態に係るチャート製造装置及びチャート製造方法の作用効果]
 第四実施形態に係るチャート製造装置及びチャート製造方法は、基材401の印刷面401Aのみに印刷が可能な装置であり、黒色測定背景画像130と第二ホワイトパッチ群122とを重ねて印刷できない場合であっても、基材401の印刷面401Aに第二ホワイトパッチ群122及び黒色測定背景画像130を印刷し得る。
 [階調補正用チャートの変形例]
 階調補正用チャート102等は、第一ホワイトパッチ群120が非印刷とされてもよい。かかる態様は、黒色背景のみを用いてホワイトインクのパッチが測定され、ホワイト以外のインクのパッチが白色背景を用いて測定される場合に適用される。
 また、階調補正用チャート102等は、シアンパッチ群112C等の第一ホワイトパッチ群120及び第二ホワイトパッチ群122以外の色のパッチ群が非印刷とされてもよい。
 階調補正用チャート102等は、白色背景として機能する白色測定背景画像が印刷されてもよい。例えば、基材100の全面、基材100の黒色測定背景画像130の非印刷領域及び第一ホワイトパッチ群120の印刷領域等にホワイトインクを用いて、黒色測定背景画像130と色違いの白色測定背景画像が印刷される。
 かかる態様によれば、階調補正用チャート102を支持するステージ201に白色背景202を形成する必要がない。また、白色背景202の汚れ及び破損等が発生した場合であっても、白色背景202の汚れ等の影響が抑制される測定を実施し得る。なお、実施形態に記載の白色測定背景画像は第二測定背景画像の一例である。
 [背景の変形例]
 インクの管理に適用される隠ぺい率は、インクを用いて基材を覆う場合に、インクの下の層及び基材の地がどのくらい透けずに印刷ができているかを表す指標である。隠ぺい率を導出する際の測定に適用される互いに異なる色が適用される二種類の背景は、白色背景及び黒色背景に限定されない。
 白色背景は、白色に代わり各インクの色と同系色を適用し得る。黒色背景は、黒色に代わり、基材の色又は基材を支持する支持面の色を適用し得る。
 透明基材へ印刷されるホワイトインクの隠ぺい率を導出する場合、図5に示す第一ホワイトパッチ群120に適用されるホワイトインクと同系色を背景として、第一ホワイトパッチ群120を測定する。また、第二ホワイトパッチ群122に適用されるホワイトインクが背景色の透かしの影響を受けやすい黒色背景を適用して、第二ホワイトパッチ群122を測定する。第一ホワイトパッチ群120の測定結果及び第二ホワイトパッチ群122の測定結果に基づき、ホワイトインクが背景色をどのくらい遮断しているかが導出される。
 背景色をどのくらい遮断するかが確認されるインクの例として、表面色が赤色の基材にシアンインクを用いてロゴ文字等の画像を印刷する場合のシアンインクが挙げられる。他の例として、透明基材にシアンインクを用いてロゴ文字等の画像を印刷した印刷物を、表面色が赤色の支持板へ張り付ける場合のシアンインクが挙げられる。
 上記の例において、背景の色が透けない濃さでロゴ文字の色が印刷されていない場合、ロゴ文字の視認性が低下し、印刷物の品質を低下させる。上記の例では、シアンインクの背景又はシアンインクと同系色の背景を適用して、シアンインクのパッチが測定され、基材の色である赤色の背景又は赤色と同系色の背景を適用してシアンインクのパッチが測定される。
 シアンインク等の背景を適用した測定結果Yと、赤色等の背景を適用した測定結果Yとから、隠ぺい率としてY/Yが導出され、隠ぺい率Y/Yが一定以上の値となるようにシアンインクの濃度が管理される。
 ここでは、シアンインク及び赤色を例に挙げて説明をしたが、マゼンタインク等のプロセスインク及びグリーンインク等の特色インクについても、同様である。
すなわち、任意のインク色について、黒色背景に対応する第一背景色として、基材の地の色、基材の地の色の同系色、基材を支持する支持面の色又は基材を支持する支持面の色の同系色がされ、白色背景に対応する第二背景色としてインク色又はインク色と同系色が適用され得る。
 [測定背景画像の被覆率]
 測定背景画像のインク被覆率が相対的に低い場合、背景色に相当する効果が弱まるので、測定背景画像は相対的に高いインク被覆率が必要となる。インクジェット方式の印刷の場合、ドット形成位置の微妙なズレに起因してインク被覆率が100パーセントにならない。
 そこで、測定背景画像は100パーセント未満であり、一定以上のインク被覆率が許容される。例えば、測定背景画像のインク被覆率は85パーセント以上とし得る。なお、測定背景画像は黒色測定背景画像130及び白色測定背景画像の総称である。
 [画像形成システムへの適用例]
 本実施形態では、画像形成システムの一例として、インクジェット方式の印刷装置406を備えるインクジェット印刷システム400を例示したが、実施形態に係る階調補正データは電子写真方式の画像形成装置を備える画像形成システムなど、インクジェット方式以外の画像形成方式への適用も可能である。
 [画像について]
 画像は広義に解釈するものとし、カラー画像、白黒画像、単一色画像、グラデーション画像、均一濃度及びベタ画像なども含まれ得る。画像は、写真画像に限らず、図柄、文字、記号、線画、モザイクパターン、色の塗り分け模様、及びその他の各種パターンを含む包括的な用語として用いる。画像は、上記の適宜の組み合わせを含み得る。
 [画像の印刷]
 画像の印刷は、画像の形成、記録、印字、描画及びプリントなどの用語の概念を含み得る。
 以上説明した本発明の実施形態は、本発明の趣旨を逸脱しない範囲で、適宜構成要件を変更、追加、又は削除することが可能である。本発明は以上説明した実施形態に限定されるものではなく、本発明の技術的思想内で当該分野の通常の知識を有するものにより、多くの変形が可能である。
10 階調補正データ生成装置
12 測定器
14 プリンタ
16 ディスプレイ装置
16A プリンタ操作画面
20 画像データ格納部
22 プリンタ制御部
24 測定器制御部
26 階調補正LUT生成部
28 LUT格納部
30 補正処理部
31 階調補正処理部
52 面内ムラ補正処理部
54 不吐補正処理部
60 直線
62 曲線
64 曲線
66 曲線
100 基材
102 階調補正用チャート
102A 階調補正用チャート
102B 階調補正用チャート
102C 階調補正用チャート
106 第一測定開始位置マーク
108 第二測定開始位置マーク
110 パッチ
110C シアンパッチ
110K ブラックパッチ
110M マゼンタパッチ
110Y イエローパッチ
112 プロセスカラーパッチ群
112C シアンパッチ群
112K ブラックパッチ群
112M マゼンタパッチ群
112Y イエローパッチ群
114 特色パッチ
114G グリーンパッチ
114O オレンジパッチ
114V バイオレットパッチ
120 第一ホワイトパッチ群
122 第二ホワイトパッチ群
124 第一ホワイトパッチ
126 第二ホワイトパッチ
130 黒色測定背景画像
140 クリアインク画像
201 ステージ
201A 基材支持面
202 白色背景
300 駆動波形
302 吐出駆動パルス
304 吐出駆動パルス
306 吐出駆動パルス
308 吐出駆動パルス
310 吐出駆動パルス
312 吐出駆動パルス
314 残響抑制波形要素
400 インクジェット印刷システム
401 基材
401A 印刷面
401B 裏面
401C 折り返し線
401D 領域
402 基材供給装置
404 第一中間搬送装置
406 印刷装置
406A 印刷装置
408 第二中間搬送装置
410 測定装置
412 乾燥装置
414 集積装置
420C インクジェットヘッド
420CL インクジェットヘッド
420K インクジェットヘッド
420M インクジェットヘッド
420W インクジェットヘッド
420Y インクジェットヘッド
422 印刷ドラム
430 濃度測定器
432 読取搬送ローラ
434 ステージ
460 システム制御部
462 搬送制御部
464 搬送装置
466 印刷制御部
468 測定制御部
470 乾燥制御部
472 情報取得部
474 メモリ
476 センサ
500 制御装置
502 プロセッサ
504 コンピュータ可読媒体
506 通信インターフェース
508 入出力インターフェース
510 バス
512 入力装置
514 ディスプレイ装置
520 搬送制御プログラム
522 印刷制御プログラム
524 測定制御プログラム
526 乾燥制御プログラム
528 階調補正データ生成プログラム
S10~S18 階調補正LUT生成方法の各ステップ
S100~S112 階調補正用チャート印刷工程の各ステップ

Claims (20)

  1.  互いに色が異なる第一背景色及び第二背景色を適用して測定されるチャートを透明基材へ形成する画像形成装置と、
     プロセッサと、
     前記プロセッサを用いて実行されるプログラムが記憶される記憶装置と、
     を備えるチャート製造装置であって、
     前記プロセッサは、前記プログラムの命令を実行して、
     前記第一背景色に対応する着色材を用いて前記透明基材へ第一測定背景画像を形成し、
     前記透明基材における前記第一測定背景画像に対応する位置へ、第一色の着色材を用いて一つ以上の第一パッチが含まれる第一パッチ群を形成し、
     前記透明基材における前記第一測定背景画像が非形成の位置へ、一つ以上の第二パッチが含まれる第二パッチ群を形成するチャート製造装置。
  2.  前記プロセッサは、
     前記透明基材の一方の面へ前記第一測定背景画像を形成し、
     前記第一パッチ群を前記第一測定背景画像へ重ねて形成する請求項1に記載のチャート製造装置。
  3.  前記プロセッサは、
     透明着色材が適用される透明画像を前記第一測定背景画像へ重ねて形成し、
     前記第一パッチ群を前記透明画像へ重ねて形成する請求項2に記載のチャート製造装置。
  4.  前記プロセッサは、
     前記透明基材の一方の面へ前記第一パッチ群を形成し、
     前記第一パッチ群の位置に対応する前記透明基材の他方の面の位置へ前記第一測定背景画像を形成する請求項1に記載のチャート製造装置。
  5.  前記プロセッサは、
     前記透明基材の一方の面へ前記第一パッチ群を形成し、
     前記透明基材を折り返し線に沿って折り返した際に前記第一パッチ群と重なる位置へ前記第一測定背景画像を形成する請求項1に記載のチャート製造装置。
  6.  前記プロセッサは、前記第一色の着色材を用いて前記第二パッチを形成する請求項1から5のいずれか一項に記載のチャート製造装置。
  7.  前記プロセッサは、
     前記第一色の着色材として白色の着色材を用いて前記第一パッチ及び前記第二パッチを形成し、
     前記第一背景色に対応する着色材として黒色の着色材を用いて前記第一測定背景画像を形成する請求項6に記載のチャート製造装置。
  8.  前記プロセッサは、前記第一色の着色材と異なる第二色の着色材を用いて前記第二パッチを形成する請求項1から5のいずれか一項に記載のチャート製造装置。
  9.  前記プロセッサは、
     前記第一色の着色材として白色の着色材を用いて、前記第一パッチを形成し、
     前記第二色として少なくとも一色のプロセスカラーの着色材を用いて、前記第二パッチを形成し、
     前記第一背景色に対応する着色材として黒色の着色材を用いて前記第一測定背景画像を形成する請求項8に記載のチャート製造装置。
  10.  前記プロセッサは、第二背景色に対応する着色材を用いて前記第二パッチ群の位置に対応する位置へ、第二測定背景画像を形成する請求項1から9のいずれか一項に記載のチャート製造装置。
  11.  前記プロセッサは、前記第二背景色に対応する着色材として白色の着色材を用いて前記第二測定背景画像を形成する請求項10に記載のチャート製造装置。
  12.  前記プロセッサは、85パーセント以上の被覆率を有する前記第二測定背景画像を形成する請求項10又は11に記載のチャート製造装置。
  13.  前記プロセッサは、
     前記第一色の着色材として白色の着色材を用いて前記第一パッチを形成し、
     前記第一背景色に対応する着色材として黒色の着色材を用いて前記第一測定背景画像を形成する請求項1から12のいずれか一項に記載のチャート製造装置。
  14.  前記プロセッサは、85パーセント以上の被覆率を有する前記第一測定背景画像を形成する請求項1から13のいずれか一項に記載のチャート製造装置。
  15.  前記プロセッサは、前記第一パッチと同一の階調値が適用される前記第二パッチを形成する請求項1から14のいずれか一項に記載のチャート製造装置。
  16.  前記プロセッサは、
     階調値が異なる複数の前記第一パッチが前記透明基材の搬送方向に沿って配置される前記第一パッチ群を形成し、
     階調値が異なる同一色の複数の第二パッチが前記透明基材の搬送方向に沿って配置される前記第二パッチ群を形成する請求項1から15のいずれか一項に記載のチャート製造装置。
  17.  互いに色が異なる第一背景色及び第二背景色を適用して測定されるチャートを透明基材へ形成するチャート製造方法であって、
     コンピュータが、
     前記第一背景色に対応する着色材を用いて前記透明基材へ第一測定背景画像を形成し、
     前記透明基材における前記第一測定背景画像に対応する位置へ、第一色の着色材を用いて一つ以上の第一パッチが含まれる第一パッチ群を形成し、
     前記透明基材における前記第一測定背景画像が非形成の位置へ、一つ以上の第二パッチが含まれる第二パッチ群を形成するチャート製造方法。
  18.  互いに色が異なる第一背景色及び第二背景色を適用して測定されるチャートを製造するプログラムであって、
     コンピュータに、
     前記第一背景色に対応する着色材を用いて透明基材へ第一測定背景画像を形成する機能、
     前記透明基材における前記第一測定背景画像に対応する位置へ、第一色の着色材を用いて一つ以上の第一パッチが含まれる第一パッチ群を形成する機能、及び
     前記透明基材における前記第一測定背景画像が非形成の位置へ、一つ以上の第二パッチが含まれる第二パッチ群を形成する機能を実現させるプログラム。
  19.  非一時的かつコンピュータ読取可能な記録媒体であって、請求項18に記載のプログラムが記録された記録媒体。
  20.  互いに色が異なる第一背景色及び第二背景色を適用して測定されるチャートを透明基材へ形成する画像形成装置と、
     プロセッサと、
     前記プロセッサを用いて実行されるプログラムが記憶される記憶装置と、
     を備え、
     前記プロセッサは、前記プログラムの命令を実行して、
     前記第一背景色に対応する着色材を用いて前記透明基材へ第一測定背景画像を形成し、
     前記透明基材における前記第一測定背景画像に対応する位置へ、第一色の着色材を用いて一つ以上の第一パッチが含まれる第一パッチ群を形成し、
     前記透明基材における前記第一測定背景画像が非形成の位置へ、一つ以上の第二パッチが含まれる第二パッチ群を形成する画像形成システム。
PCT/JP2022/012545 2021-04-05 2022-03-18 チャート製造装置、チャート製造方法、プログラム及び画像形成システム WO2022215491A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP22784476.8A EP4321343A1 (en) 2021-04-05 2022-03-18 Chart manufacturing device, chart manufacturing method, program, and image forming system
JP2023512902A JPWO2022215491A1 (ja) 2021-04-05 2022-03-18
US18/476,319 US20240020499A1 (en) 2021-04-05 2023-09-28 Chart manufacturing apparatus, chart manufacturing method, program, and image forming system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021064305 2021-04-05
JP2021-064305 2021-04-05

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/476,319 Continuation US20240020499A1 (en) 2021-04-05 2023-09-28 Chart manufacturing apparatus, chart manufacturing method, program, and image forming system

Publications (1)

Publication Number Publication Date
WO2022215491A1 true WO2022215491A1 (ja) 2022-10-13

Family

ID=83546387

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/012545 WO2022215491A1 (ja) 2021-04-05 2022-03-18 チャート製造装置、チャート製造方法、プログラム及び画像形成システム

Country Status (4)

Country Link
US (1) US20240020499A1 (ja)
EP (1) EP4321343A1 (ja)
JP (1) JPWO2022215491A1 (ja)
WO (1) WO2022215491A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003187226A (ja) * 2001-12-17 2003-07-04 Brother Ind Ltd パッチ形成装置およびプログラム
JP2011073306A (ja) 2009-09-30 2011-04-14 Seiko Epson Corp 誤差取得方法および印刷装置
JP2012076412A (ja) * 2010-10-05 2012-04-19 Canon Inc 画像処理装置および画像処理方法
JP2012232499A (ja) 2011-05-02 2012-11-29 Seiko Epson Corp 不良ノズル検出装置、不良ノズル検出方法およびコンピュータプログラム
JP2014116667A (ja) * 2012-12-06 2014-06-26 Konica Minolta Inc 画像形成方法、および画像形成システム
JP2015058648A (ja) * 2013-09-19 2015-03-30 セイコーエプソン株式会社 印刷装置、印刷方法
JP2019220782A (ja) 2018-06-18 2019-12-26 コニカミノルタ株式会社 画像検査装置および画像形成装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003187226A (ja) * 2001-12-17 2003-07-04 Brother Ind Ltd パッチ形成装置およびプログラム
JP2011073306A (ja) 2009-09-30 2011-04-14 Seiko Epson Corp 誤差取得方法および印刷装置
JP2012076412A (ja) * 2010-10-05 2012-04-19 Canon Inc 画像処理装置および画像処理方法
JP2012232499A (ja) 2011-05-02 2012-11-29 Seiko Epson Corp 不良ノズル検出装置、不良ノズル検出方法およびコンピュータプログラム
JP2014116667A (ja) * 2012-12-06 2014-06-26 Konica Minolta Inc 画像形成方法、および画像形成システム
JP2015058648A (ja) * 2013-09-19 2015-03-30 セイコーエプソン株式会社 印刷装置、印刷方法
JP2019220782A (ja) 2018-06-18 2019-12-26 コニカミノルタ株式会社 画像検査装置および画像形成装置

Also Published As

Publication number Publication date
JPWO2022215491A1 (ja) 2022-10-13
EP4321343A1 (en) 2024-02-14
US20240020499A1 (en) 2024-01-18

Similar Documents

Publication Publication Date Title
US7484821B2 (en) Method of determining ink ejection method, printing apparatus, and method of manufacturing printing apparatus
US8851598B2 (en) Printing device and printing method
US7354126B2 (en) Image forming apparatus, image forming method, and image forming program
KR101990277B1 (ko) 잉크 제한 프린팅 시스템 및 방법
JP7216185B2 (ja) 画像処理方法及び装置、プログラム並びに画像形成装置
JP2012071559A (ja) 印刷装置
US8506033B2 (en) Printing device and printing method
JP2009172930A (ja) 色材記録装置、色材記録プログラム、及び画像形成装置
JP2010201638A (ja) 画像記録装置、画像処理装置、画像処理方法及びプログラム
JP2010082938A (ja) 画像形成装置、画像形成方法及び印刷装置
JP2013193300A (ja) 画像形成方法、画像形成装置およびプログラム
JP2009212831A (ja) テストチャート及びカラーキャリブレーション方法
WO2022215491A1 (ja) チャート製造装置、チャート製造方法、プログラム及び画像形成システム
JP7169895B2 (ja) 印刷装置及び読取方法
WO2022215490A1 (ja) 階調補正データ生成装置、階調補正データ生成方法、プログラム及び画像形成システム
JP5984463B2 (ja) 処理装置、処理方法及びそのプログラム
JP6838331B2 (ja) インクジェット記録装置及び画質調整方法
JP7126006B2 (ja) 印刷装置、読取方法、及びプログラム
WO2019163223A1 (ja) 印刷装置、印刷方法、隠蔽率補正用テーブルの作成方法
JP5469796B2 (ja) 画像形成装置
JP2009192463A (ja) テストチャート及びカラーキャリブレーション方法
JP2001113684A (ja) インクの乾燥程度についての指標を与える印刷システム
JP5104410B2 (ja) テストチャート、カラーキャリブレ―ション方法及びプリンタ。
US11399118B2 (en) Color pipeline
JP2021187110A (ja) 画像処理装置、画像処理方法及びプログラム、読取装置並びに印刷装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22784476

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023512902

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2022784476

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022784476

Country of ref document: EP

Effective date: 20231106