WO2022215210A1 - モータの結線ミス検出装置 - Google Patents

モータの結線ミス検出装置 Download PDF

Info

Publication number
WO2022215210A1
WO2022215210A1 PCT/JP2021/014818 JP2021014818W WO2022215210A1 WO 2022215210 A1 WO2022215210 A1 WO 2022215210A1 JP 2021014818 W JP2021014818 W JP 2021014818W WO 2022215210 A1 WO2022215210 A1 WO 2022215210A1
Authority
WO
WIPO (PCT)
Prior art keywords
command
unit
motor
selection
servo
Prior art date
Application number
PCT/JP2021/014818
Other languages
English (en)
French (fr)
Inventor
玲於 長田
敬介 辻川
翔吾 篠田
Original Assignee
ファナック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ファナック株式会社 filed Critical ファナック株式会社
Priority to US18/552,359 priority Critical patent/US20240036546A1/en
Priority to PCT/JP2021/014818 priority patent/WO2022215210A1/ja
Priority to CN202180096617.6A priority patent/CN117099005A/zh
Priority to JP2023512588A priority patent/JPWO2022215210A1/ja
Priority to DE112021006895.4T priority patent/DE112021006895T5/de
Publication of WO2022215210A1 publication Critical patent/WO2022215210A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/406Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by monitoring or safety
    • G05B19/4062Monitoring servoloop, e.g. overload of servomotor, loss of feedback or reference
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/34Testing dynamo-electric machines
    • G01R31/346Testing of armature or field windings
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
    • G01R31/55Testing for incorrect line connections
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/16Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the circuit arrangement or by the kind of wiring
    • H02P25/22Multiple windings; Windings for more than three phases
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/02Providing protection against overload without automatic interruption of supply
    • H02P29/024Detecting a fault condition, e.g. short circuit, locked rotor, open circuit or loss of load
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/34Testing dynamo-electric machines
    • G01R31/343Testing dynamo-electric machines in operation
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/41Servomotor, servo controller till figures
    • G05B2219/41362Registration, display of servo error

Definitions

  • the present invention relates to a device that detects motor wiring errors.
  • CNC Computerized Numerical Control
  • a servo amplifier is installed between the CNC device and the servo motor of the machine, and the servo amplifier drives the servo motor after receiving an operation command from the CNC device. , are known to control feedback.
  • Japanese Patent Application Laid-Open No. 2002-200000 discloses that in a control system having a plurality of servomotors and a plurality of servoamplifiers, when a wiring mistake occurs between the servomotor and the servoamplifier, the wiring mistake is automatically corrected.
  • a misconnection detection device that can effectively detect misconnections. The connection error detection device detects a connection error by comparing the feedback value of the current position of the servomotor and the position command value.
  • Servo motors that require large torque include servo motors that have multiple independent windings and are driven and controlled by multiple servo amplifiers connected to each winding. Regarding such a servomotor, there is a problem that the connection error cannot be detected by the technique disclosed in Patent Document 1.
  • An object of the present invention is to provide a connection error detection device capable of detecting connection errors in a motor controlled by a plurality of amplifiers.
  • a connection error detection device is a connection error detection device for detecting a connection error of a motor controlled by a plurality of amplifiers, the motor being controlled by a part of the plurality of amplifiers.
  • a control amplifier selection unit for selecting and combining the amplifiers used for control to determine two or more selection patterns; and for each selection pattern determined by the control amplifier selection unit, causing the motor to perform a predetermined operation.
  • connection between the amplifier and the motor in the system includes power lines, feedback cables, amplifier power cables, and the like.
  • a connection error detection device is a connection error detection device for detecting a connection error of a motor in a machine control system in which a plurality of motors control the same motion of one controlled object,
  • a control amplifier selection unit that selects and combines the amplifiers used for control to determine two or more selection patterns in order to control all or part of the plurality of motors using some of the plurality of amplifiers that drive the plurality of motors.
  • a command generation unit for generating a command for causing the controlled object to perform a predetermined operation for each selection pattern determined by the control amplifier selection unit; and the selection pattern and the command from the command generation unit.
  • a servo control unit that calculates a torque command value for controlling the motor based on, and between two or more of the selection patterns, the torque command value or the current feedback value of the motor corresponding to each of the selection patterns, a connection check confirmation unit that determines whether or not there is a connection error in the system of the amplifier and the motor by comparing them with each other.
  • connection errors in the system of the motor of industrial machines such as machine tools and robots and the amplifiers that control the motors, and to prevent unexpected behavior on the machine side due to connection errors. can be prevented from occurring.
  • FIG. 1 is a schematic diagram showing a machine control system for an industrial machine equipped with a connection error detection device according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram showing the configuration of a connection error detection device in the machine control system of FIG. 1
  • FIG. FIG. 10 is a schematic diagram showing another machine control system including a connection error detection device according to one embodiment of the present invention
  • FIG. 1 is a schematic diagram showing a machine control system 100 for an industrial machine equipped with a connection error detection device according to one embodiment of the present invention.
  • the industrial machine is described as a machine tool, but the present invention is applicable to any machine having a motor whose drive is automatically controlled by an amplifier, such as an industrial robot.
  • a machine control system 100 includes a servomotor 103 of a machine tool such as an NC lathe or a machining center, a servo amplifier 102 (102a, 102b, 102c and 102d) for driving and controlling the servomotor 103, A CNC device (computer numerical control device) 101 that controls the entire machine control system 100 above the servo amplifier 102 is provided.
  • the CNC device 101 has a connection error detection device 110 .
  • the connection error detection device 110 is incorporated in the CNC device 101, but may be provided separately.
  • the servomotor 103 has four independent windings.
  • the machine control system 100 has four servo amplifiers 102, called “first servo amplifier 102a”, “second servo amplifier 102b", “third servo amplifier 102c” and “fourth servo amplifier 102d", respectively.
  • first servo amplifier 102a the term "servo amplifier 102" may be used.
  • the four servo amplifiers 102 are connected to each winding of the servo motor 103 by power lines 104 respectively.
  • the four servo amplifiers 102 receive commands from the wiring error detection device 110 of the CNC device 101 through the signal line 105, and jointly control the servo motors 103 based on the commands. Specifically, in this embodiment, as shown in FIG. 1, a command from the connection error detection device 110 is first transmitted to the first servo amplifier 102a through the signal line 105, and then transmitted to the signal line between the servo amplifiers. 105 to the second servo amplifier 102b, the third servo amplifier 102c and the fourth servo amplifier 102d.
  • the four servo amplifiers 102 feed back the current value in each power line 104 of the servo motor 103 to the connection error detection device 110 through the signal line 105 .
  • the four servo amplifiers 102 may feed back current feedback values through separately provided feedback lines.
  • the servomotor 103 feeds back the current position of the servomotor 103 to the connection error detection device 110 through the feedback line 108 .
  • connection error detection device 110 of the present embodiment detects a connection error. It is explained as an example that there is
  • FIG. 2 is a schematic diagram showing the configuration of the connection error detection device 110 in the machine control system 100 of FIG.
  • the connection error detection device 110 is a device for detecting connection errors in the system of the servo amplifier 102 and the servo motor 103 .
  • the connection error detection device 110 includes a startup mode confirmation unit 111, an operation command unit 112, a connection check command unit 113, a first storage unit 114, a second storage unit 115, an abnormality detection unit 116, and a servo control unit. It includes a unit 117 , a display unit 118 , an alarm unit 119 , and a connection check operation unit 120 .
  • the start-up mode confirmation unit 111 detects the start-up operation of the machine, and also confirms and specifies whether it is in the normal operation mode or the start-up mode. For example, the start-up mode confirmation unit 111 identifies whether the normal operation mode or the start-up mode is in accordance with the input content of an operator or the like. When the assembly of the machine control system 100 is completed and the necessary wiring connections are completed, the start-up mode confirmation unit 111 receives a signal indicating that the drive power is first turned on to the machine control system 100, indicating that the machine control system 100 is in the start-up mode. may be specified.
  • the switches S1 and S2 are automatically connected to the a-contacts, so that the connection error detector 110 is ready to detect the connection error. Become.
  • the switches S1 and S2 are automatically switched to the b contacts, so the machine control system 100 can perform normal operation.
  • the operation command unit 112 outputs an operation command to the servo motor 103 via the servo control unit 117 and the servo amplifier 102 when the normal operation mode is confirmed by the startup mode confirmation unit 111 .
  • the operation command unit 112 receives the detection result from the abnormality detection unit 116 when no connection error is detected by the abnormality detection unit 116, which will be described in detail later, and instructs the servomotor 103 to operate according to the command value from the CNC device 101. Output commands.
  • the connection check command section 113 includes a control amplifier selection section 131 and a command generation section 132 .
  • the control amplifier selection unit 131 controls the servo motors 103 using some of the plurality of servo amplifiers 102.
  • the servo amplifiers 102 used for control are selected and combined to determine two or more selection patterns.
  • the control amplifier selector 131 determines a selection pattern based on the number of servo amplifiers 102 connected to the servo motors 103 .
  • the control amplifier selector 131 determines four selection patterns.
  • selection pattern 1 is a pattern in which the servo motor 103 is controlled and driven using the other three servo amplifiers without using the first servo amplifier 102a.
  • Selection pattern 2 is a pattern in which the servomotor 103 is controlled and driven using the other three servo amplifiers without using the second servo amplifier 102b.
  • Selection pattern 3 is a pattern in which the servo motor 103 is controlled and driven using the other three servo amplifiers without using the third servo amplifier 102c.
  • Selection pattern 4 is a pattern in which the servo motor 103 is controlled and driven using the other three servo amplifiers without using the fourth servo amplifier 102d.
  • the command generation unit 132 generates a command for causing the servo motor 103 to perform a predetermined operation for each selection pattern determined by the control amplifier selection unit 131, and outputs the command to the servo control unit as a command for performing a connection check. 117 and the abnormality detection unit 116 .
  • the command generated by the command generator 132 may be a position command, a speed command, or a torque command. This embodiment will be described with an example of a position command.
  • the command generator 132 may generate the same position command as a command for causing the servomotor 103 to perform the same operation in all selection patterns.
  • the servo control unit 117 calculates a torque command value for controlling the servo motor 103 based on the selected pattern, the position command from the command generation unit 132, and the feedback value of the current position of the servo motor 103,
  • the data is output to the servo amplifier 102 and fed back to the abnormality detection section 116 .
  • the servo amplifier 102 drives and controls the servomotor 103 through the power line 104 based on commands from the servo control unit 117 .
  • the servo control unit 117 can also acquire the current value of the power line 104 of the servo motor 103 from the servo amplifier 102 through the signal line 105 and use it as a current feedback value. In this case, the servo control section 117 feeds back the acquired current feedback value to the abnormality detection section 116 .
  • the abnormality detection unit 116 is for confirming the presence or absence of a connection error in the system of the servo amplifier 102 and the servo motor 103 and specifying it.
  • the abnormality detection unit 116 includes a command value acquisition unit 121 , a feedback value acquisition unit 122 , a selection unit 123 and a connection check confirmation unit 124 .
  • the command value acquisition unit 121 receives a connection check command from the connection check command unit 113 and acquires information on the selected pattern.
  • the command value acquisition unit 121 may further acquire various command values from the CNC device 101 (for example, a rotational speed command value for the servomotor 103, etc.).
  • the feedback value acquisition unit 122 acquires a torque command value for controlling the servomotor 103 from the servo control unit 117 .
  • the feedback value acquisition section 122 can also acquire the current feedback value from the servo control section 117 .
  • the feedback value acquisition unit 122 has, for example, a timer, and operates at a time after a preset fixed dead time has elapsed since the drive of the servomotor 103 was started (time after a fixed time has elapsed). is configured to obtain a stable constant time feedback value. Note that the feedback value acquisition unit 122 acquires a plurality of times in an arbitrary time period after a predetermined fixed dead time has passed since the drive of the servomotor 103 was started ( may be configured to obtain feedback values at a plurality of times).
  • connection check confirmation unit 124 compares the torque command value or the current feedback value corresponding to each selection pattern acquired by the feedback value acquisition unit 122 among the four selection patterns, thereby checking the servo amplifier 102 and the servo motor 103. Determines whether or not there is a connection error in the system.
  • the command generation unit 132 generates the same position command and outputs it to the servo control unit 117 in order to cause the servomotor 103 to perform the same operation in the four selection patterns shown in Table 1.
  • the three servo amplifiers used to drive the servo motor 103 include the fourth servo amplifier 102d with a wiring error. Since the fourth servo amplifier 102d with the wiring error does not contribute to the operation of the servo motor 103 requested by the command of the command generation unit 132, it does not contribute to the operation of the servo motor 103 requested by the command of the command generation unit 132. are only the remaining two servo amplifiers.
  • the torque command value calculated by the servo control unit 117 becomes larger than in the case of driving with three servoamplifiers. Since selection patterns 1 to 3 are in almost the same situation, the torque command values corresponding to each selection pattern are the same or close values.
  • the three servo amplifiers used to drive the servo motor 103 do not include the fourth servo amplifier 102d with a connection error. Therefore, all three servo amplifiers can contribute to the operation of the servomotor 103 required by the command from the command generator 132 . As a result, the torque command value calculated by the servo control unit 117 to drive the servomotor 103 is smaller than when two servo amplifiers are used.
  • connection check confirmation unit 124 compares the torque command values corresponding to the four selection patterns. Selection patterns 1 to 3 indicate the same or similar torque command values, whereas selection pattern 4 indicates a small torque command value that is significantly different from selection patterns 1 to 3. If there is an abnormality in the difference between the torque command values, the connection check confirmation unit 124 determines that there is a connection error in the system of the fourth servo amplifier 102d and the servomotor 103. FIG.
  • the torque command values corresponding to the four selection patterns all indicate the same or similar torque command values, so there is almost no difference between the torque command values.
  • the alarm unit 119 issues an alarm based on the result, and the display unit 118 displays the occurrence of a connection error to notify the operator or the like. do.
  • a warning sound may be emitted or a warning light may be turned on. Control is performed so that the servomotor 103 does not perform unexpected dangerous/abnormal operations due to connection errors. For example, control is performed so as not to shift to the normal operation mode.
  • the display unit 118 displays the normal state and informs the operator of this.
  • the switches S1 and S2 automatically switch to the b contacts to end the start-up mode. In that case, the operation command unit 112 issues a command to the servo control unit 117 to perform normal operation according to the command value of the CNC device 101 .
  • the abnormality detection unit 116 can not only determine a connection error as described above, but also detect an abnormality of the motor by comparing the positional deviation of the servo motor 103 with the alarm detection threshold.
  • positional deviation refers to the difference between the position command value and the feedback value of the current position of the servomotor 103 .
  • the first storage unit 114 and the second storage unit 115 store alarm detection thresholds for preventing the servomotor 103 from unexpectedly dangerous operation.
  • the first storage unit 114 stores an alarm detection threshold value for the startup mode
  • the second storage unit 115 stores an alarm detection threshold value for the normal operation mode.
  • the position deviation limit value during driving may be set to 10 as the alarm detection threshold for the startup mode
  • the position deviation limit value during driving may be set to 160000 as the alarm detection threshold for the normal operation mode. good.
  • the selection unit 123 of the abnormality detection unit 116 selectively acquires the alarm detection threshold for the startup mode and the alarm detection threshold for normal operation from the first storage unit 114 and the second storage unit 115 .
  • the switch S2 is automatically connected to the a-contact. Get the alarm detection threshold.
  • the switch S2 is automatically switched to the b contact. Get the threshold.
  • the alarm detection threshold for the start-up mode is automatically set even if the user side (operator side) of the machine does not change the setting. Also, during normal operation, the alarm threshold automatically becomes the alarm detection threshold for normal operation.
  • the alarm unit 119 issues an alarm based on the result, and the display unit 118 displays the content of the alarm to notify the operator or the like. . This can prevent the servomotor 103 from unexpectedly dangerous operation.
  • the switch S2 is automatically switched to the b contact, so the selection unit 123 sets the alarm detection threshold for normal operation to the second storage unit. 115 to replace the startup alarm detection threshold with the normal operation alarm detection threshold.
  • connection check operation unit 120 is provided in the connection error detection device 110 . Regardless of whether the machine is in startup mode or normal operation mode, by operating the connection check operation unit 120, the connection check command unit 113 issues a command, and the same connection check as described above can be performed. .
  • connection check operation unit 120 can be operated at any desired timing, such as when only part of the system connection work has been completed or when maintenance parts have been replaced. You can check the connection by
  • connection error detection device of the present embodiment can detect connection errors in the system of servo-ups and servo motors in a machine control system including servo motors controlled by a plurality of servo-ups.
  • the servo amplifier associated with the miss can be identified.
  • FIG. 3 is a schematic diagram showing another machine control system 200 that includes a connection error detection device according to one embodiment of the present invention.
  • the machine control system 200 of this embodiment is a modification of the machine control system 100 of the first embodiment.
  • parts, members, portions, elements, and elements having the same or similar functions as those of the first embodiment are denoted by the same reference numerals as those of the first embodiment, and description thereof will be omitted.
  • the biggest difference between the machine control system 200 and the machine control system 100 of the first embodiment is that the same motion of one controlled object is controlled by a plurality of motors. Specifically, four servo amplifiers drive and control four servo motors, and the four servo motors jointly drive one table 202 to move leftward or rightward in FIG. Let Large torque can be obtained by driving four servo motors.
  • the four servomotors are respectively called “first servomotor 103a”, “second servomotor 103b", “third servomotor 103c” and “fourth servomotor 103d”. However, when there is no need to distinguish between the servomotors, or when all four servoamplifiers are referred to, they may be referred to as "servomotors 103". In the example shown in FIG. 3, all four servo motors are servo motors driven by one servo amplifier, but all or some of the four servo motors are servo motors driven by multiple servo amplifiers.
  • the first servomotor 103a and the fourth servomotor 103d are servomotors driven by a plurality of servoamplifiers, and the second servomotor 103b and the third servomotor 103c are servomotors driven by one servoamplifier. There may be.
  • connection error detection device 110 included in the machine control system 200 has the same configuration as the connection error detection device of the machine control system 100 . However, since there are some differences in the functions of each part and the signals handled, these will be explained below.
  • the control amplifier selection unit 131 selects all of the four servo motors (when the four servo motors include servo motors driven by a plurality of servo amplifiers) or In order to control a part, drive the table 202, and detect connection errors, the servo amplifiers 102 used for controlling the servo motors 103 are selected and combined to determine two or more selection patterns. For example, also in this embodiment, as shown in Table 1, four selection patterns can be determined. The control amplifier selector 131 determines a selection pattern based on the number of servo amplifiers 102 or servo motors 103 .
  • the command generation unit 132 generates a command for causing the table 202 to perform a predetermined operation for each selection pattern determined by the control amplifier selection unit 131, and outputs the command to the servo control unit 117 as a command for performing a connection check. and output to the abnormality detection unit 116 .
  • the command generated by the command generator 132 may be a position command, a speed command, or a torque command. This embodiment will be described with an example of a position command of the table 202. FIG. For example, the command generator 132 may generate the same position command as a command for causing the table 202 to perform the same operation in all selection patterns.
  • the table 202 feeds back the current position of the table 202 to the servo control unit 117 through the feedback line 108 .
  • the servo control unit 117 calculates a torque command value for controlling the servo motor 103 based on the selected pattern, the position command from the command generation unit 132, and the feedback value of the current position of the table 202, and outputs each servo through the signal line 105. It is output to the amplifier 102 and fed back to the abnormality detection section 116 .
  • the servo amplifier 102 drives and controls the servomotor 103 through the power line 104 based on commands from the servo control unit 117 .
  • the servo control unit 117 can also acquire the current value of the power line 104 of the servo motor 103 from the servo amplifier 102 through the signal line 105 and use it as a current feedback value. In this case, the servo control section 117 feeds back the acquired current feedback value to the abnormality detection section 116 .
  • connection check confirmation unit 124 compares the torque command value or the current feedback value corresponding to each selection pattern acquired by the feedback value acquisition unit 122 among the four selection patterns, thereby checking the servo amplifier 102 and the servo motor 103. Determines whether or not there is a connection error in the system.
  • the command generation unit 132 generates the same position command and outputs it to the servo control unit 117 in order to cause the table 202 to perform the same operation in the four selection patterns shown in Table 1.
  • the three servo amplifiers used to drive the table 202 include the fourth servo amplifier 102d with a wiring error.
  • the torque command value calculated by the servo control unit 117 becomes larger than in the case of driving with three servomotors. Since selection patterns 1 to 3 are in almost the same situation, the torque command values corresponding to each selection pattern are the same or close values.
  • the three servo amplifiers used to drive the table 202 do not include the fourth servo amplifier 102d with a connection error. Therefore, all of the three servo amplifiers and the three corresponding servo motors can contribute to the operation of the table 202 required by the command of the command generator 132 . As a result, the torque command value calculated by the servo control unit 117 to drive the table 202 is smaller than when two servo motors are used.
  • connection check confirmation unit 124 compares the torque command values corresponding to the four selection patterns. Selection patterns 1 to 3 indicate the same or similar torque command values, whereas selection pattern 4 indicates a small torque command value that is significantly different from selection patterns 1 to 3. If there is an abnormality in the difference between the torque command values, the connection check confirmation unit 124 determines that there is a connection error in the system of the fourth servo amplifier 102d and the fourth servomotor 103d.
  • connection error detection device of the present embodiment detects connection errors in a system of servo amplifiers and servo motors in a machine control system in which a single controlled object is driven by a plurality of servo motors controlled by a plurality of servo amplifiers. can be detected and the servo amplifier associated with the misconnection can be identified.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Human Computer Interaction (AREA)
  • Manufacturing & Machinery (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Electric Motors In General (AREA)

Abstract

複数のアンプによって制御されるモータの結線ミスを検出できる結線ミス検出装置を提供する。 複数のアンプによって制御されるモータの結線ミスを検出する結線ミス検出装置であって、複数の前記アンプの一部によって前記モータを制御するために、制御に用いる前記アンプを選択し組み合わせて2以上の選択パターンを決定する制御アンプ選択部と、制御アンプ選択部によって決定された選択パターン毎に、モータに予め定められた動作をさせるための指令を生成する指令生成部と、前記選択パターン及び指令生成部からの指令に基づいて、モータを制御するトルク指令値を算出するサーボ制御部と、2以上の前記選択パターンの間で、各前記選択パターンに対応する前記トルク指令値又は前記モータの電流フィードバック値を、互いに比較することによって、前記アンプと前記モータの系内の結線ミスの有無を判定する結線チェック確認部と、を備える。

Description

モータの結線ミス検出装置
 本発明は、モータの結線ミスを検出する装置に関する。
 機械工作の分野では、CNC(コンピュータ数値制御:Computerized Numerical Control)技術を適用し、工具の移動量や移動速度などをコンピュータで数値制御することにより、同一加工手順の繰り返し、複雑な形状の加工などを高度に自動化している。
 また、工作機械やロボットなどの産業用機械の制御システムには、CNC装置と機械のサーボモータとの間にサーボアンプを設け、CNC装置からの動作指令を受けたサーボアンプでサーボモータを駆動し、フィードバック制御するものが知られている。
 一方、CNC装置、サーボアンプ、サーボモータの間で結線ミスがあると、機械の立ち上げ時に予期せぬ動作が発生し、事故をもたらすおそれがある。そのような事態を防ぐ技術として、特許文献1は、複数のサーボモータと複数のサーボアンプを備える制御システムにおいて、サーボモータとサーボアンプとの間に結線ミスが生じた場合、その結線ミスを自動的に検出できる結線ミス検出装置を開示している。当該結線ミス検出装置は、サーボモータの現在位置のフィードバック値と位置指令値を比較して、結線ミスを検出する。
特開2020-154772号公報
 大きなトルクを必要とするサーボモータには、複数の独立した巻線を備え、それぞれの巻線に接続された複数のサーボアンプによって駆動及び制御が行われるサーボモータが存在する。このようなサーボモータについて、特許文献1に開示された技術によっては結線ミスが検出できない問題がある。
 例えば、独立した4つの巻線を備えたサーボモータに対して、4つのサーボアンプが、それぞれ各巻線に接続され、CNC装置からの位置指令に基づいて共同で当該サーボモータを制御するシステムを考える。この場合、4つの巻線のうち、たとえ巻線4と動力線の接続に結線ミスがあったとしても、正常の3つのアンプによってモータを動かすことができ、位置指令と位置のフィードバック値が一致するので、特許文献1に開示された技術によっては結線ミスが検出できない。
 本発明は、複数のアンプによって制御されるモータの結線ミスを検出できる結線ミス検出装置を提供することを目的とする。
 本発明の一実施形態に係る結線ミス検出装置は、複数のアンプによって制御されるモータの結線ミスを検出する結線ミス検出装置であって、複数の前記アンプの一部によって前記モータを制御するために、制御に用いる前記アンプを選択し組み合わせて2以上の選択パターンを決定する制御アンプ選択部と、前記制御アンプ選択部によって決定された選択パターン毎に、前記モータに予め定められた動作をさせるための指令を生成する指令生成部と、前記選択パターン及び前記指令生成部からの前記指令に基づいて、前記モータを制御するトルク指令値を算出するサーボ制御部と、2以上の前記選択パターンの間で、各前記選択パターンに対応する前記トルク指令値又は前記モータの電流フィードバック値を、互いに比較することによって、前記アンプと前記モータの系内の結線ミスの有無を判定する結線チェック確認部と、を備える。
 本明細書でいう「アンプとモータの系内の結線」は、動力線、フィードバックケーブル、アンプの電源ケーブルなどを含む。
 本発明の他の実施形態に係る結線ミス検出装置は、1つの制御対象の同一運動を複数のモータによって制御する機械制御システムにおける前記モータの結線ミスを検出する結線ミス検出装置であって、前記複数のモータを駆動する複数のアンプの一部によって前記複数のモータの全部又は一部を制御するために、制御に用いる前記アンプを選択し組み合わせて2以上の選択パターンを決定する制御アンプ選択部と、前記制御アンプ選択部によって決定された選択パターン毎に、前記制御対象に予め定められた動作をさせるための指令を生成する指令生成部と、前記選択パターン及び前記指令生成部からの前記指令に基づいて、前記モータを制御するトルク指令値を算出するサーボ制御部と、2以上の前記選択パターンの間で、各前記選択パターンに対応する前記トルク指令値又は前記モータの電流フィードバック値を、互いに比較することによって、前記アンプと前記モータの系内の結線ミスの有無を判定する結線チェック確認部と、を備える。
 上記の実施形態によれば、工作機械やロボットなどの産業用機械のモータとそれを制御するアンプの系内の結線ミスを検出することができ、結線ミスに伴って機械側に予期せぬ動作が発生することを防止することが可能になる。
本発明の一実施形態の結線ミス検出装置を備える産業用機械の機械制御システムを示す模式図である。 図1の機械制御システムにおける結線ミス検出装置の構成を示す模式図である。 本発明の一実施形態の結線ミス検出装置を備える他の機械制御システムを示す模式図である。
 以下、図面を参照して、本発明の実施形態について説明する。
 <第1実施形態>
 図1は、本発明の一実施形態の結線ミス検出装置を備える産業用機械の機械制御システム100を示す模式図である。本実施形態では、産業用機械が工作機械であるものとして説明を行うが、本発明は、産業用ロボットなど、アンプによってその駆動が自動制御されるモータを有するあらゆる機械に適用可能である。
 図1に示すように、機械制御システム100は、NC旋盤やマシニングセンタなどの工作機械のサーボモータ103と、サーボモータ103の駆動及び制御を行うサーボアンプ102(102a、102b、102c及び102d)と、サーボアンプ102の上位で機械制御システム100全体を制御するCNC装置(コンピュータ数値制御装置)101とを備えている。CNC装置101は、結線ミス検出装置110を備える。本実施形態において、結線ミス検出装置110は、CNC装置101に組み込まれているが、別途設けられてもよい。
 機械制御システム100において、サーボモータ103は、独立した4つの巻線を備える。機械制御システム100は、4つのサーボアンプ102を有し、それぞれ「第1サーボアンプ102a」、「第2サーボアンプ102b」、「第3サーボアンプ102c」、「第4サーボアンプ102d」と称する。但し、何れのサーボアンプであるかを区別する必要がない場合、又は全ての4つのサーボアンプを指す場合には、「サーボアンプ102」と称することもある。
 4つのサーボアンプ102は、動力線104によってそれぞれサーボモータ103の各巻線に接続されている。4つのサーボアンプ102は、信号線105を通じてCNC装置101の結線ミス検出装置110から指令を受け取り、その指令に基づいて共同でサーボモータ103を制御する。本実施形態では、具体的に、図1に示したように、結線ミス検出装置110からの指令は、まず信号線105を通じて第1サーボアンプ102aに伝達され、次にサーボアンプの間の信号線105を通じて順次第2サーボアンプ102b、第3サーボアンプ102c及び第4サーボアンプ102dに伝達される。なお、4つのサーボアンプ102は、信号線105を通じてサーボモータ103の各動力線104における電流値を結線ミス検出装置110にフィードバックする。4つのサーボアンプ102は、別途設けられたフィードバック線によって電流フィードバック値をフィードバックしてもよい。また、サーボモータ103は、フィードバック線108を通じて、サーボモータ103の現在位置を結線ミス検出装置110にフィードバックする。
 以下、本実施形態の結線ミス検出装置110がどのように結線ミスを検出するかについて、サーボモータ103の4つの巻線にうち、巻線4と第4サーボアンプ102dの間の接続に結線ミスがあることを例として説明する。
 図2は、図1の機械制御システム100における結線ミス検出装置110の構成を示す模式図である。結線ミス検出装置110は、サーボアンプ102とサーボモータ103の系内の結線ミスを検出する装置である。結線ミス検出装置110は、立ち上げモード確認部111と、運転指令部112と、結線チェック指令部113と、第1記憶部114と、第2記憶部115と、異常検出部116と、サーボ制御部117と、表示部118と、警報部119と、結線チェック操作部120とを備える。
 立ち上げモード確認部111は、機械の立ち上げ操作を検知するとともに、通常運転モードであるか立ち上げモードであるかを確認し、特定する。例えば、立ち上げモード確認部111は、オペレーターなどの入力内容によって、通常運転モードであるか立ち上げモードであるかを特定する。なお、機械制御システム100の組み立てが完了し、必要な配線の接続が終了した場合、立ち上げモード確認部111は、機械制御システム100に最初に駆動電源を投入した信号をもって、立ち上げモードであると特定してもよい。
 立ち上げモード確認部111によって立ち上げモードであると確認された場合、スイッチS1とS2が自動的にa接点に接続されるので、結線ミス検出装置110は結線ミス検出を行うことができる状態になる。立ち上げモード確認部111によって通常運転モードであると確認された場合、スイッチS1とS2が自動的にb接点に切り替えられるので、機械制御システム100は、通常の運転を行うことができる。
 運転指令部112は、立ち上げモード確認部111で通常運転モードであることが確認された場合に、サーボ制御部117及びサーボアンプ102を介してサーボモータ103に運転指令を出力する。運転指令部112は、詳細を後述する異常検出部116で結線ミスが検出されなかった場合に、異常検出部116からこの検出結果を受け、CNC装置101からの指令値に従って、サーボモータ103に運転指令を出力する。
 結線チェック指令部113は、制御アンプ選択部131と、指令生成部132を含む。結線チェック指令部113が、立ち上げモード確認部111から機械の立ち上げモードである確認信号を受けると、制御アンプ選択部131は、複数のサーボアンプ102の一部によってサーボモータ103を制御して結線ミスの検出を行うために、制御に用いるサーボアンプ102を選択し組み合わせて2以上の選択パターンを決定する。制御アンプ選択部131は、サーボモータ103に接続されているサーボアンプ102の数に基づいて、選択パターンを決定する。
 例えば、表1のように、制御アンプ選択部131は4つの選択パターンを決定する。4つの選択パターンのうち、選択パターン1は、第1サーボアンプ102aを使用しないで、他の3つのサーボアンプを使用してサーボモータ103の制御及び駆動を行うパターンである。選択パターン2は、第2サーボアンプ102bを使用しないで、他の3つのサーボアンプを使用してサーボモータ103の制御及び駆動を行うパターンである。選択パターン3は、第3サーボアンプ102cを使用しないで、他の3つのサーボアンプを使用してサーボモータ103の制御及び駆動を行うパターンである。選択パターン4は、第4サーボアンプ102dを使用しないで、他の3つのサーボアンプを使用してサーボモータ103の制御及び駆動を行うパターンである。
Figure JPOXMLDOC01-appb-T000001
 指令生成部132は、制御アンプ選択部131によって決定された選択パターン毎に、サーボモータ103に予め定められた動作をさせるための指令を生成し、それを結線チェックを行う指令として、サーボ制御部117と異常検出部116に出力する。指令生成部132が生成する指令は、位置指令、速度指令又はトルク指令であってよい。本実施形態は、位置指令の例をもって説明する。例えば、指令生成部132は、全ての選択パターンにおいて、サーボモータ103に同じ動作をさせるための指令として、同じ位置指令を生成してよい。
 サーボ制御部117は、選択パターン、指令生成部132からの位置指令及びサーボモータ103の現在位置のフィードバック値に基づいて、サーボモータ103を制御するトルク指令値を算出して、信号線105を通じて各サーボアンプ102に出力すると共に、異常検出部116にフィードバックする。サーボアンプ102は、サーボ制御部117の指令に基づいて、動力線104を通じてサーボモータ103の駆動及び制御を行う。
 サーボ制御部117は、信号線105を通じて、サーボアンプ102からサーボモータ103の動力線104の電流値を取得して、電流フィードバック値とすることもできる。この場合、サーボ制御部117は、取得した電流フィードバック値を異常検出部116にフィードバックする。
 異常検出部116は、サーボアンプ102とサーボモータ103の系内の結線ミスの有無を確認し、特定するためのものである。異常検出部116は、指令値取得部121と、フィードバック値取得部122と、選択部123と、結線チェック確認部124とを備えている。
 指令値取得部121は、結線チェック指令部113から結線チェックの指令を受けるとともに、選択パターンの情報を取得する。指令値取得部121は、更にCNC装置101からの各種指令値(例えば、サーボモータ103の回転速度指令値など)を取得してもよい。
 フィードバック値取得部122は、サーボ制御部117からサーボモータ103を制御するトルク指令値を取得する。フィードバック値取得部122は、サーボ制御部117から電流フィードバック値を取得することもできる。
 このとき、フィードバック値取得部122は、例えば、タイマーを備え、サーボモータ103の駆動が開始されてから予め設定した一定の不感時間が経過した後の時刻(一定時間経過後の時刻)で、運転が安定した一定の時間のフィードバック値を取得するように構成されている。
 なお、フィードバック値取得部122は、サーボモータ103の駆動が開始されてから予め設定した一定の不感時間が経過した後の任意の時間帯の複数の時刻(一定時間経過後の任意の時間帯の複数の時刻)でそれぞれフィードバック値を取得するように構成されてもよい。
 結線チェック確認部124は、フィードバック値取得部122が取得した各選択パターンに対応するトルク指令値又は電流フィードバック値を、4つの選択パターンの間で互いに比較することによって、サーボアンプ102とサーボモータ103の系内の結線ミスの有無を判定する。
 例えば、表1に示した4つの選択パターンにおいて、サーボモータ103に同じ動作をさせるために、指令生成部132は、同じ位置指令を生成してサーボ制御部117に出力したとする。選択パターン1から3は、サーボモータ103を駆動するために使用する3つのサーボアンプに、結線ミスのある第4サーボアンプ102dを含む。結線ミスのある第4サーボアンプ102dは、指令生成部132の指令が求めているサーボモータ103の動作に寄与しないので、指令生成部132の指令が求めているサーボモータ103の動作に寄与するのは、残りの2つのサーボアンプだけである。
 その結果、残りの2つのサーボアンプでサーボモータ103を駆動するために、サーボ制御部117が算出するトルク指令値は、3つのサーボアンプで駆動する場合に比べて大きくなる。選択パターン1から3は、状況がほぼ同じなので、各選択パターンに対応するトルク指令値が同じか近い値になる。
 一方、選択パターン4は、サーボモータ103を駆動するために使用する3つのサーボアンプに、結線ミスのある第4サーボアンプ102dを含まない。したがって、3つのサーボアンプとも指令生成部132の指令が求めているサーボモータ103の動作に寄与できる。その結果、サーボモータ103を駆動するために、サーボ制御部117が算出するトルク指令値は、2つのサーボアンプで駆動する場合に比べて小さくなる。
 結線チェック確認部124は、4つの選択パターンに対応するトルク指令値を比較する。選択パターン1から3は、同じ若しくは近いトルク指令値を示すのに対して、選択パターン4は、選択パターン1から3と大きく異なる小さいトルク指令値を示すことになる。トルク指令値の差に異常があれば、結線チェック確認部124は、第4サーボアンプ102dとサーボモータ103の系内に結線ミスが生じていると判定する。
 結線ミスがない場合には、4つの選択パターンに対応するトルク指令値は、全て同じ若しくは近いトルク指令値を示すので、互いのトルク指令値の差はほとんど生じない。
 異常検出部116によって結線ミスが生じていると判定された場合、警報部119はその結果に基づいて警報を出し、表示部118は結線ミスが生じていることを表示して、オペレーター等に報知する。警報として、警告音を発してもよく、警告灯を点灯させてもよい。なお、結線ミスによってサーボモータ103に予期せぬ危険な動作/異常な動作が生じないように制御が行われる。例えば、通常運転モードに移行させない制御が行われる。
 異常検出部116によって結線ミスが生じていないと判定された場合には、正常な状態であることを表示部118で表示し、これをオペレーター等に報知する。
 異常検出部116によって結線ミスが生じていないと判定された場合には、スイッチS1とS2が、自動的にb接点に切り替えて、立ち上げモードを終了させる。その場合、運転指令部112は、CNC装置101の指令値に従った通常の運転を行うようにサーボ制御部117に指令を出す。
 異常検出部116は、上述したように結線ミスを判定するだけでなく、サーボモータ103の位置偏差をアラーム検出閾値と対比して、そのモータの異常を検出することもできる。ここでいう「位置偏差」とは、位置指令値とサーボモータ103の現在位置のフィードバック値との差分をいう。
 第1記憶部114及び第2記憶部115は、サーボモータ103が予期せぬ危険な動作をすることを防止するためのアラーム検出閾値を記憶している。第1記憶部114は、立ち上げモード用のアラーム検出閾値を記憶しており、第2記憶部115は、通常運転モード用のアラーム検出閾値を記憶している。例えば、立ち上げモード用のアラーム検出閾値として、駆動時の位置偏差限界値を10と設定してよく、通常運転モード用のアラーム検出閾値として、駆動時の位置偏差限界値を160000と設定してよい。
 異常検出部116の選択部123は、立ち上げモード用のアラーム検出閾値と通常運転用のアラーム検出閾値を選択的に第1記憶部114と第2記憶部115から取得する。例えば、立ち上げモード確認部111によって立ち上げモードであると確認された場合、スイッチS2が自動的にa接点に接続されるので、選択部123は、第1記憶部114から立ち上げモード用のアラーム検出閾値を取得する。なお、立ち上げモード確認部111によって通常運転モードであると確認された場合、スイッチS2が自動的にb接点に切り替えられるので、選択部123は、第2記憶部115から通常運転用のアラーム検出閾値を取得する。これにより、立ち上げモードの際には、機械のユーザ側(オペレーター側)が設定を変更しなくても、自動的に立ち上げモード用のアラーム検出閾値になる。また、通常運転時には、やはり、自動的にアラームの閾値が通常運転用のアラーム検出閾値になる。
 異常検出部116は、位置偏差がアラーム検出閾値を超えたことを検出すると、警報部119はその結果に基づいて警報を出し、表示部118は警報の内容を表示して、オペレーター等に報知する。これによって、サーボモータ103が予期せぬ危険な動作をすることを防止できる。
 なお、立ち上げモードで異常検出部116によって結線ミスが生じていないと判定された場合、スイッチS2が自動的にb接点に切り替えるので、選択部123は通常運転用アラーム検出閾値を第2記憶部115から取得して、立ち上げ用アラーム検出閾値を通常運転用アラーム検出閾値に替える。
 更に、図2に示すように、結線ミス検出装置110に、結線チェック操作部120が設けられている。機械が立ち上げモードか通常運転モードかに関わらず、結線チェック操作部120を操作することで、結線チェック指令部113が指令を出し、上述したことと同様の結線チェックが行えるようになっている。
 これにより、例えば、システムの一部の結線作業のみが完了しているときや、保守部品の交換作業を行ったときなどの結線チェックを行いたい任意のタイミングで、結線チェック操作部120を操作して結線チェックが行える。
 上述したように、本実施形態の結線ミス検出装置は、複数のサーボアップによって制御されるサーボモータを含む機械制御システムにおけるサーボアップとサーボモータの系内の結線ミスを検出することができ、結線ミスに関連するサーボアンプを特定することができる。
 <第2実施形態>
 図3は、本発明の一実施形態の結線ミス検出装置を備える他の機械制御システム200を示す模式図である。本実施形態の機械制御システム200は、第1実施形態の機械制御システム100の変形である。本実施形態において、第1実施形態と同じ又は類似の機能を有する部品、部材、部分、素子、要素については、第1の実施形態と同じ符号を付しており、且つその説明を省略することがある。
 機械制御システム200が第1実施形態の機械制御システム100との最大の違いは、1つの制御対象の同一運動を複数のモータによって制御することである。具体的に言うと、4つのサーボアンプによってそれぞれ4つのサーボモータの駆動及び制御を行い、その4つのサーボモータによって1つのテーブル202を共同で駆動して、図3における左方向又は右方向に移動させる。4つのサーボモータの駆動によって、大きなトルクを得ることができる。
 4つのサーボモータは、それぞれ「第1サーボモータ103a」、「第2サーボモータ103b」、「第3サーボモータ103c」、「第4サーボモータ103d」と称する。但し、何れのサーボモータであるかを区別する必要がない場合、又は全ての4つのサーボアンプを指す場合には、「サーボモータ103」と称することもある。
 図3に示した例では、4つのサーボモータの全ては、1つのサーボアンプによって駆動されるサーボモータであるが、4つのサーボモータの全て又は一部が、複数サーボアンプによって駆動されるサーボモータであってもよい。例えば、第1サーボモータ103aと第4サーボモータ103dが複数サーボアンプによって駆動されるサーボモータであって、第2サーボモータ103bと第3サーボモータ103cが1つのサーボアンプによって駆動されるサーボモータであってもよい。
 機械制御システム200が備える結線ミス検出装置110は、機械制御システム100の結線ミス検出装置と同じ構成を有する。しかし、各部分の機能及び扱う信号などにおいて少し異なる点があるので、以下それを説明する。
 制御アンプ選択部131は、4つのサーボモータ103を駆動する複数のサーボアンプの一部によって4つのサーボモータの全部(4つのサーボモータに複数サーボアンプによって駆動されるサーボモータが含まれる場合)又は一部を制御し、テーブル202を駆動して結線ミスの検出を行うために、サーボモータ103の制御に用いるサーボアンプ102を選択し組み合わせて2以上の選択パターンを決定する。例えば、本実施形態においても、表1のように、4つの選択パターンを決定することができる。制御アンプ選択部131は、サーボアンプ102又はサーボモータ103数に基づいて、選択パターンを決定する。
 指令生成部132は、制御アンプ選択部131によって決定された選択パターン毎に、テーブル202に予め定められた動作をさせるための指令を生成し、それを結線チェックを行う指令として、サーボ制御部117と異常検出部116に出力する。指令生成部132が生成する指令は、位置指令、速度指令又はトルク指令であってよい。本実施形態は、テーブル202の位置指令の例をもって説明する。例えば、指令生成部132は、全ての選択パターンにおいて、テーブル202に同じ動作をさせるための指令として、同じ位置指令を生成してよい。
 一方、テーブル202は、フィードバック線108を通じて、サーボ制御部117にテーブル202の現在位置をフィードバックする。
 サーボ制御部117は、選択パターン、指令生成部132からの位置指令及びテーブル202の現在位置のフィードバック値に基づいて、サーボモータ103を制御するトルク指令値を算出して、信号線105を通じて各サーボアンプ102に出力すると共に、異常検出部116にフィードバックする。サーボアンプ102は、サーボ制御部117の指令に基づいて、動力線104を通じてサーボモータ103の駆動及び制御を行う。
 サーボ制御部117は、信号線105を通じて、サーボアンプ102からサーボモータ103の動力線104の電流値を取得して、電流フィードバック値とすることもできる。この場合、サーボ制御部117は、取得した電流フィードバック値を異常検出部116にフィードバックする。
 結線チェック確認部124は、フィードバック値取得部122が取得した各選択パターンに対応するトルク指令値又は電流フィードバック値を、4つの選択パターンの間で互いに比較することによって、サーボアンプ102とサーボモータ103の系内の結線ミスの有無を判定する。
 例えば、第4サーボアンプ102dと第4サーボモータ103dの間の接続に結線ミスがあるとする。なお、表1に示した4つの選択パターンにおいて、テーブル202に同じ動作をさせるために、指令生成部132は、同じ位置指令を生成してサーボ制御部117に出力したとする。選択パターン1から3は、テーブル202を駆動するために使用する3つのサーボアンプに、結線ミスのある第4サーボアンプ102dを含む。結線ミスのある第4サーボアンプ102dと第4サーボモータ103dは、指令生成部132の指令が求めているテーブル202の動作に寄与しないので、指令生成部132の指令が求めているテーブル202の動作に寄与するのは、残りの2つのサーボアンプとそれに対応する2つのサーボモータだけである。
 その結果、残りの2つのサーボモータでテーブル202を駆動するために、サーボ制御部117が算出するトルク指令値は、3つのサーボモータで駆動する場合に比べて大きくなる。選択パターン1から3は、状況がほぼ同じなので、各選択パターンに対応するトルク指令値が同じか近い値になる。
 一方、選択パターン4は、テーブル202を駆動するために使用する3つのサーボアンプに、結線ミスのある第4サーボアンプ102dを含まない。したがって、3つのサーボアンプ及び対応する3つのサーボモータとも指令生成部132の指令が求めているテーブル202の動作に寄与できる。その結果、テーブル202を駆動するために、サーボ制御部117が算出するトルク指令値は、2つのサーボモータで駆動する場合に比べて小さくなる。
 結線チェック確認部124は、4つの選択パターンに対応するトルク指令値を比較する。選択パターン1から3は、同じ若しくは近いトルク指令値を示すのに対して、選択パターン4は、選択パターン1から3と大きく異なる小さいトルク指令値を示すことになる。トルク指令値の差に異常があれば、結線チェック確認部124は、第4サーボアンプ102dと第4サーボモータ103dの系内に結線ミスが生じていると判定する。
 上述したように、本実施形態の結線ミス検出装置は、複数のサーボアンプが制御する複数のサーボモータによって1つの制御対象を駆動する機械制御システムにおけるサーボアンプとサーボモータの系内の結線ミスを検出することができ、結線ミスに関連するサーボアンプを特定することができる。
 以上、実施形態を用いて本発明を説明したが、本発明の技術的範囲は上記実施形態の記載の範囲に限定されるものではない。上記実施形態に、多様な変更又は改良を加えることができることは当業者にとって明らかである。そのような変更又は改良を加えた形態も本発明の技術的範囲に含まれ得ることは、特許請求の範囲の記載から明らかである。例えば、上記実施形態は本発明を分かりやすく説明するために詳細に説明したものであるが、本発明は必ずしも説明した全ての構成を備えるものに限定されるものではない。なお、各実施形態の構成の一部について、他の構成によって置換することも可能であり、それを削除することも可能である。
100 機械制御システム
101 CNC装置
102 サーボアンプ
102a 第1サーボアンプ
102b 第2サーボアンプ
102c 第3サーボアンプ
102d 第4サーボアンプ
103 サーボモータ
103a 第1サーボモータ
103b 第2サーボモータ
103c 第3サーボモータ
103d 第4サーボモータ
104 動力線
105 信号線
108 フィードバック線
110 結線ミス検出装置
111 立ち上げモード確認部
112 運転指令部
113 結線チェック指令部
114 第1記憶部
115 第2記憶部
116 異常検出部
117 サーボ制御部
118 表示部
119 警報部
120 結線チェック操作部
121 指令値取得部
122 フィードバック値取得部
123 選択部
124 結線チェック確認部
131 制御アンプ選択部
132 指令生成部
200 機械制御システム
202 テーブル
S1、S2 スイッチ
 

Claims (8)

  1.  複数のアンプによって制御されるモータの結線ミスを検出する結線ミス検出装置であって、
     複数の前記アンプの一部によって前記モータを制御するために、制御に用いる前記アンプを選択し組み合わせて2以上の選択パターンを決定する制御アンプ選択部と、
     前記制御アンプ選択部によって決定された選択パターン毎に、前記モータに予め定められた動作をさせるための指令を生成する指令生成部と、
     前記選択パターン及び前記指令生成部からの前記指令に基づいて、前記モータを制御するトルク指令値を算出するサーボ制御部と、
     2以上の前記選択パターンの間で、各前記選択パターンに対応する前記トルク指令値又は前記モータの電流フィードバック値を、互いに比較することによって、前記アンプと前記モータの系内の結線ミスの有無を判定する結線チェック確認部と、
    を備える結線ミス検出装置。
  2.  前記指令生成部は、全ての前記選択パターンにおいて、前記モータに同じ動作をさせるために、前記指令として同じ位置指令または速度指令、トルク指令を生成する、
    請求項1に記載の結線ミス検出装置。
  3.  前記制御アンプ選択部は、前記モータに接続されている前記アンプの数に基づいて、前記選択パターンを決定する、
    請求項1又は2に記載の結線ミス検出装置。
  4.  通常運転モードであるか、若しくは立ち上げモードであるかを確認する立ち上げモード確認部を備え、
     立ち上げモードである場合に、結線ミスの検出を行う、
    請求項1から3の何れか1項に記載の結線ミス検出装置。
  5.  1つの制御対象の同一運動を複数のモータによって制御する機械制御システムにおける前記モータの結線ミスを検出する結線ミス検出装置であって、
     前記複数のモータを駆動する複数のアンプの一部によって前記複数のモータの全部又は一部を制御するために、制御に用いる前記アンプを選択し組み合わせて2以上の選択パターンを決定する制御アンプ選択部と、
     前記制御アンプ選択部によって決定された選択パターン毎に、前記制御対象に予め定められた動作をさせるための指令を生成する指令生成部と、
     前記選択パターン及び前記指令生成部からの前記指令に基づいて、前記モータを制御するトルク指令値を算出するサーボ制御部と、
     2以上の前記選択パターンの間で、各前記選択パターンに対応する前記トルク指令値又は前記モータの電流フィードバック値を、互いに比較することによって、前記アンプと前記モータの系内の結線ミスの有無を判定する結線チェック確認部と、
    を備える結線ミス検出装置。
  6.  前記指令生成部は、全ての前記選択パターンにおいて、前記制御対象に同じ動作をさせるために、前記指令として同じ位置指令または速度指令、トルク指令を生成する、
    請求項5に記載の結線ミス検出装置。
  7.  前記制御アンプ選択部は、前記アンプまたは前記モータの数に基づいて、前記選択パターンを決定する、
    請求項5又は6に記載の結線ミス検出装置。
  8.  通常運転モードであるか、若しくは立ち上げモードであるかを確認する立ち上げモード確認部を備え、
     立ち上げモードである場合に、結線ミスの検出を行う、
    請求項5から7の何れか1項に記載の結線ミス検出装置。
PCT/JP2021/014818 2021-04-07 2021-04-07 モータの結線ミス検出装置 WO2022215210A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US18/552,359 US20240036546A1 (en) 2021-04-07 2021-04-07 Wiring error detection device for motor
PCT/JP2021/014818 WO2022215210A1 (ja) 2021-04-07 2021-04-07 モータの結線ミス検出装置
CN202180096617.6A CN117099005A (zh) 2021-04-07 2021-04-07 电动机的接线错误检测装置
JP2023512588A JPWO2022215210A1 (ja) 2021-04-07 2021-04-07
DE112021006895.4T DE112021006895T5 (de) 2021-04-07 2021-04-07 Verdrahtungsfehler-Erfassungsvorrichtung für einen Motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/014818 WO2022215210A1 (ja) 2021-04-07 2021-04-07 モータの結線ミス検出装置

Publications (1)

Publication Number Publication Date
WO2022215210A1 true WO2022215210A1 (ja) 2022-10-13

Family

ID=83545260

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/014818 WO2022215210A1 (ja) 2021-04-07 2021-04-07 モータの結線ミス検出装置

Country Status (5)

Country Link
US (1) US20240036546A1 (ja)
JP (1) JPWO2022215210A1 (ja)
CN (1) CN117099005A (ja)
DE (1) DE112021006895T5 (ja)
WO (1) WO2022215210A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10124131A (ja) * 1996-10-22 1998-05-15 Fanuc Ltd 制御装置に接続される機器の管理方法
JP2000181521A (ja) * 1998-10-05 2000-06-30 Fanuc Ltd 自動機械のための制御装置
JP2005149067A (ja) * 2003-11-14 2005-06-09 Kawasaki Heavy Ind Ltd 誤接続検出システム
JP2016018445A (ja) * 2014-07-09 2016-02-01 ファナック株式会社 複数軸を備えた機械を制御する制御装置を含む制御システム
EP3076540A2 (en) * 2015-03-30 2016-10-05 Tata Elxsi Limited System and method for the automatic validation of motor control firmware of an embedded system
JP2020125955A (ja) * 2019-02-04 2020-08-20 ファナック株式会社 システム
CN111722585A (zh) * 2019-03-20 2020-09-29 发那科株式会社 产业用机械的控制系统
JP2020195198A (ja) * 2019-05-28 2020-12-03 ファナック株式会社 制御装置、および結線判定方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10124131A (ja) * 1996-10-22 1998-05-15 Fanuc Ltd 制御装置に接続される機器の管理方法
JP2000181521A (ja) * 1998-10-05 2000-06-30 Fanuc Ltd 自動機械のための制御装置
JP2005149067A (ja) * 2003-11-14 2005-06-09 Kawasaki Heavy Ind Ltd 誤接続検出システム
JP2016018445A (ja) * 2014-07-09 2016-02-01 ファナック株式会社 複数軸を備えた機械を制御する制御装置を含む制御システム
EP3076540A2 (en) * 2015-03-30 2016-10-05 Tata Elxsi Limited System and method for the automatic validation of motor control firmware of an embedded system
JP2020125955A (ja) * 2019-02-04 2020-08-20 ファナック株式会社 システム
CN111722585A (zh) * 2019-03-20 2020-09-29 发那科株式会社 产业用机械的控制系统
JP2020195198A (ja) * 2019-05-28 2020-12-03 ファナック株式会社 制御装置、および結線判定方法

Also Published As

Publication number Publication date
DE112021006895T5 (de) 2023-11-16
US20240036546A1 (en) 2024-02-01
JPWO2022215210A1 (ja) 2022-10-13
CN117099005A (zh) 2023-11-21

Similar Documents

Publication Publication Date Title
JP3229875B2 (ja) サーボ制御装置
US20180294762A1 (en) Motor control system, motor controller, and method for setting safety function
US11193987B2 (en) Control system of industrial machine
WO1994026465A1 (en) Tool breakage prevention system
EP1591851B1 (en) Synchronous control device
JP4525593B2 (ja) シリアル通信による制御システム
JP2007283448A (ja) ロボット制御装置
WO2022215210A1 (ja) モータの結線ミス検出装置
JP2954615B2 (ja) モータ駆動制御装置
US20200026255A1 (en) Abnormality detection device of machine tool
JP6748153B2 (ja) 工作機械の異常検出装置
EP0919892B1 (en) Controller for industrial machine
EP0919894B1 (en) Controller for industrial machine
JP4565312B2 (ja) サーボ制御装置と非常停止方法
JP6464135B2 (ja) 数値制御装置
JP4233559B2 (ja) 数値制御工作機械
US7873484B2 (en) Method for reliable position monitoring
US20240088820A1 (en) Motor control device
JP2005176493A5 (ja)
KR20130069932A (ko) 자동 공구 교환 장치의 자동 복귀 방법
US10974385B2 (en) Redundant, diverse collision monitoring
JP4098748B2 (ja) 緊急停止指令を出力する機能を有する数値制御装置
US10802464B2 (en) Numerical controller
US20230259093A1 (en) Drive system
JP3065386B2 (ja) 産業用ロボットの制御方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21936014

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023512588

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 112021006895

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: 18552359

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 202180096617.6

Country of ref document: CN

122 Ep: pct application non-entry in european phase

Ref document number: 21936014

Country of ref document: EP

Kind code of ref document: A1