WO2022213678A1 - Procédé de recyclage d'aluminium dans une feuille d'électrode positive usée par lixiviation sélective et son application - Google Patents

Procédé de recyclage d'aluminium dans une feuille d'électrode positive usée par lixiviation sélective et son application Download PDF

Info

Publication number
WO2022213678A1
WO2022213678A1 PCT/CN2021/142546 CN2021142546W WO2022213678A1 WO 2022213678 A1 WO2022213678 A1 WO 2022213678A1 CN 2021142546 W CN2021142546 W CN 2021142546W WO 2022213678 A1 WO2022213678 A1 WO 2022213678A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
leaching
electrode sheet
aluminum
waste positive
Prior art date
Application number
PCT/CN2021/142546
Other languages
English (en)
Chinese (zh)
Inventor
余海军
钟应声
谢英豪
李长东
张学梅
Original Assignee
广东邦普循环科技有限公司
湖南邦普循环科技有限公司
湖南邦普汽车循环有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东邦普循环科技有限公司, 湖南邦普循环科技有限公司, 湖南邦普汽车循环有限公司 filed Critical 广东邦普循环科技有限公司
Priority to HU2200331A priority Critical patent/HUP2200331A1/hu
Publication of WO2022213678A1 publication Critical patent/WO2022213678A1/fr

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09BDISPOSAL OF SOLID WASTE NOT OTHERWISE PROVIDED FOR
    • B09B3/00Destroying solid waste or transforming solid waste into something useful or harmless
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/006Wet processes
    • C22B7/008Wet processes by an alkaline or ammoniacal leaching
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B21/00Obtaining aluminium
    • C22B21/0015Obtaining aluminium by wet processes
    • C22B21/0023Obtaining aluminium by wet processes from waste materials
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B23/00Obtaining nickel or cobalt
    • C22B23/04Obtaining nickel or cobalt by wet processes
    • C22B23/0407Leaching processes
    • C22B23/0446Leaching processes with an ammoniacal liquor or with a hydroxide of an alkali or alkaline-earth metal
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B26/00Obtaining alkali, alkaline earth metals or magnesium
    • C22B26/10Obtaining alkali metals
    • C22B26/12Obtaining lithium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the invention belongs to the technical field of recycling battery metals, and in particular relates to a method for recycling aluminum in waste positive electrode sheets by selective leaching and application thereof.
  • the scrap of the positive electrode sheet of the battery contains various metal elements such as Ni, Mn, Co, Li, Cu, Al, etc., and has potential utilization value.
  • metal elements such as Ni, Mn, Co, Li, Cu, Al, etc.
  • the recycling and processing of scraps from the corners of battery cathode sheets includes mechanical disassembly and pulverization of waste cathode sheets, electromagnetic sorting, and a series of preparations into waste cathode sheet powder.
  • aluminum removal can be done from the source, which avoids the difficulty of subsequent aluminum removal.
  • the aluminum removal methods with good development prospects mainly include alkali leaching, selective leaching, electrolysis, and organic solvent separation. method and heat treatment method.
  • the selective leaching method uses a leaching agent to leaching specific elements in the battery powder to separate Al from other elements, and the process has a targeted recovery of Ni, Co, Li. It has the advantages of high quality metal, better recovery operating conditions, and less interference. It has been widely used in the recovery process.
  • the recovery rate of impurity aluminum is between 80-90%, while the rest of impurity aluminum will enter the subsequent Ni and Co acid leaching extraction process with the cathode material in the leaching process section. middle.
  • the entry of Al into the subsequent Ni and Co acid leaching extraction process will firstly affect the purity of the cathode material, and secondly, the escape of hydrogen during the extraction process may lead to explosion.
  • the present invention aims to solve at least one of the technical problems existing in the above-mentioned prior art.
  • the present invention provides a method for recycling aluminum in waste positive electrode sheets by selective leaching and its application.
  • the method utilizes the synergistic effect between NH3 and HCO3- to selectively inhibit the leaching of Al, and the selective When the Al in the impurities is difficult to be leached out, the small particles of aluminum aggregate into large particles of aluminum, and at the same time, the large particles of Al-containing impurities in the waste cathode material are continuously generated.
  • Most of the aluminum slag is retained in the screen, thereby improving the recovery of Al.
  • the present invention adopts the following technical solutions:
  • a method for recycling aluminum in waste positive electrode sheets by selective leaching comprising the following steps:
  • waste positive electrode sheet powder grinding, sieving, washing and pulverizing the waste positive electrode sheet to obtain waste positive electrode sheet powder containing impurities
  • Ammonia leaching mixing, reacting, and filtering the waste positive electrode sheet powder, leaching agent and reducing agent to obtain filtrate and aluminum slag; the leaching agent is ammonia water and a bicarbonate-containing substance.
  • the process further includes: adsorbing Li + in the filtrate with a lithium ion sieve, obtaining a leachate after adsorption, distilling the leachate, and separating to obtain ammonia gas and a mixture containing Ni 2+ , Co 2+ , Mn 2+ stock solution.
  • the above filtrate is Li + -Ni 2+ -Co 2+ -Mn 2+ -NH 4 + leaching solution, and Ni 2+ -Co 2+ -Mn 2+ -NH 4 + leaching solution is obtained after adsorption.
  • the temperature of the adsorption is 20°C to 50°C.
  • the temperature of the distillation is 120°C to 180°C, and the absolute pressure of the distillation is 4-5 bar.
  • the ammonia gas is further synthesized into ammonia water and ammonium bicarbonate; the ammonia water and ammonium bicarbonate can be used as leaching agents in step (2).
  • an acid solution is added to the original solution containing Ni 2+ , Co 2+ , and Mn 2+ for leaching to obtain a leaching solution containing Ni 2+ , Co 2+ , and Mn 2+ .
  • the reducing agent is at least one of hydrogen peroxide, sodium sulfite, sodium bisulfite, sodium thiosulfate, potassium sulfite or potassium bisulfite.
  • the bicarbonate-containing substance is ammonium bicarbonate.
  • the mass ratio of the ammonia water and ammonium bicarbonate is (200-350): (80-160).
  • the temperature of the reaction is 40°C-80°C, and the reaction time is 4h-8h.
  • the pH during the reaction is controlled to be 8-10.5.
  • the mass ratio of the waste positive electrode sheet powder, leaching agent and reducing agent is (50-150):(280-510):30-80.
  • step (2) shaking is performed during the reaction, and the shaking is performed using a shaker with a rotational speed of 180 rpm to 300 rpm.
  • Solution A exists NH 4 OH, NH 4 HCO 3 ionization, and Co 3+ and Mn 4+ are reduced to Co 2+ and Mn 2+ , the positive active material is LiNi a Co b Mn c O 2 , the reaction formula is as follows:
  • the invention also provides the application of the method in recovering valuable metals.
  • NH 4 OH-NH 4 HCO 3 is used as a leaching agent
  • H 2 O 2 is used as a reducing agent. Because the complexing ability of Ni, Co, Li and ammonia is stronger than that of Al, considering the complexing effect of ammonia, adding H 2 O 2 can accelerate the oxidation of Ni, Co and Li metals in the waste cathode powder to form Li + , Ni 2+ and Co ions , which promote the leaching of Ni, Co, and Li, respectively. Therefore, by controlling the temperature and pH during the ammonia leaching process, the synergistic effect between NH 3 and HCO 3- can be used to selectively inhibit the leaching of Al, selectively leaching Ni, Co, and Li.
  • the present invention utilizes the synergistic effect between NH 3 and HCO 3 - to selectively inhibit the leaching of Al, and selectively leaches Ni, Co and Li, when Al in impurities is difficult to be leached, small particles of aluminum aggregate into large particles of aluminum, which is the key point to control the formation of large particles of aluminum slag, so as to effectively filter out most of the impurity aluminum slag and reduce the subsequent acid leaching. Influence of risk factors of small-particle aluminum slag in the recovery process of metal elements such as Ni, Mn, and Co.
  • the present invention utilizes the heating generated by adding reducing agent to carry out exothermic reaction in ammonia leaching of waste positive electrode sheet powder to replace the conventional heating during pretreatment of leaching waste positive electrode sheet powder with conventional inorganic acids such as sulfuric acid and phosphoric acid, which not only eliminates waste Graphite and organic residues in the cathode sheet powder, and LiNi a Co b Mn c O 2 in the waste cathode sheet powder is converted into Li, Ni, Co compounds, avoiding reducing agents in the subsequent Ni, Co, Li extraction process usage of.
  • the NH 3 obtained by distillation and separation in the present invention can be recycled into NH 4 OH and NH 4 HCO 3 prepared in the ammonia leaching process, and the utilization efficiency of NH 3 can be improved.
  • the applicability is very wide, so it has practical significance for the improvement of Li, Ni, Co, Al separation and enrichment processes in waste cathode materials.
  • FIG. 1 is a flow chart of a method for recycling aluminum in waste positive electrode sheets by selective leaching according to Embodiment 1 of the present invention.
  • waste positive electrode sheet powder The waste positive electrode sheet powder containing impurities is obtained after grinding, sieving, washing, removing binder and pulverizing the waste positive electrode sheet recovered after the power battery production process;
  • solution A is filtered to obtain filtrate B and filter residue C
  • filtrate B is Li + -Ni 2+ -Co 2+ -NH 4 + leaching solution
  • filter residue C is mainly aluminum residue containing Al
  • waste positive electrode sheet powder The waste positive electrode sheet powder containing impurities is obtained after grinding, sieving, washing, removing binder and pulverizing the waste positive electrode sheet recovered after the power battery production process;
  • solution A is filtered to obtain filtrate B and filter residue C
  • filtrate B is Li + -Ni 2+ -Co 2+ -NH 4 + leaching solution
  • filter residue C is mainly aluminum residue containing Al
  • waste positive electrode sheet powder The waste positive electrode sheet powder containing impurities is obtained after grinding, sieving, washing, removing binder and pulverizing the waste positive electrode sheet recovered after the power battery production process;
  • solution A is filtered to obtain filtrate B and filter residue C
  • filtrate B is Li + -Ni 2+ -Co 2+ -NH 4 + leaching solution
  • filter residue C is mainly aluminum residue containing Al
  • a method for recycling aluminum in waste positive electrode sheets comprising the following specific steps:
  • waste positive electrode sheet powder The waste positive electrode sheet powder containing impurities is obtained after grinding, sieving, washing, removing binder and pulverizing the waste positive electrode sheet recovered after the power battery production process;
  • Alkaline solution (OH - ) is added to the waste positive electrode sheet powder to completely dissolve the aluminum slag, filtered, and the pH is adjusted to 8.5-9.5 with acid to obtain Al(OH) 3 .
  • Aluminum is an amphoteric metal and can be dissolved in acid and alkali solutions, while the metal of the cathode active material does not react with alkali, so alkali can be used before acid leaching.
  • the immersion method dissolves the aluminum slag.
  • waste positive electrode sheet powder The waste positive electrode sheet powder containing impurities is obtained after grinding, sieving, washing, removing binder and pulverizing the waste positive electrode sheet recovered after the power battery production process;
  • solution A is filtered to obtain filtrate B and filter residue C
  • filtrate B is Li + -Ni 2+ -Co 2+ -NH 4 + leaching solution
  • filter residue C is mainly aluminum residue containing Al
  • Comparative Example 1 is to leach aluminum from the waste positive electrode sheet powder according to the conventional alkaline leaching method
  • Comparative Example 2 is to replace ammonium bicarbonate in the leaching agent component with ammonium bisulphate.
  • the aluminum obtained from the aluminum slag and the aluminum in the waste positive electrode sheet powder were detected by ICP-AES equipment.
  • 1 is the distribution percentage of aluminum slag recovery rate and aluminum slag particle size in 5 intervals of 0 ⁇ m ⁇ 20 ⁇ m, 20 ⁇ m ⁇ 100 ⁇ m, 100 ⁇ m ⁇ 500 ⁇ m, 500 ⁇ m ⁇ 1000 ⁇ m, >1000 ⁇ m, among which:
  • Aluminum recovery rate the mass of aluminum in the filter residue C in step (3)/the mass of aluminum in the positive electrode powder*100%.
  • the recovery rate of aluminum prepared in Examples 1, 2, and 3 all exceeded 98%, especially in Example 1, the aluminum recovery rate reached 98.85%, respectively, compared with Comparative Example 1, Comparative Example 2, and comparative group aluminum.
  • the recovery rate of aluminum slag was 31.53% and 9.51% higher; in Examples 1, 2, and 3, the percentage of particle size distribution of aluminum slag from 0 ⁇ m to 100 ⁇ m only accounted for 3.23%, 2.31%, and 8.43%, respectively.
  • the 100 ⁇ m aluminum slag reaches 23.19% and 16.30%, respectively; while in Examples 1, 2, and 3, the percentage distribution of aluminum slag particle size ranges from 500 to 1000 ⁇ m and >1000 ⁇ m is significantly higher than that of Comparative Example 1 and Comparative Example 2, which is 500 to 1000 ⁇ m.
  • the percentage of aluminum slag particle size range of 1000 ⁇ m and >1000 ⁇ m especially the percentage of aluminum slag particle size range of >1000 ⁇ m in Examples 1, 2 and 3, respectively, compared with the aluminum slag particle size range of >1000 ⁇ m in Comparative Example 1 and Comparative Example 2
  • the average values of the percentages are 13.73%, 16.86%, and 9.02% higher, indicating that the proportion of large-particle aluminum slag in Examples 1, 2, and 3 of the present invention is high, which increases the proportion of large-particle aluminum slag, thereby indirectly improving the recovery rate of aluminum. .
  • Table 1 Aluminum slag recovery rate, aluminum slag particle size distribution percentage
  • Fig. 1 is the flow chart of the method for recycling aluminum in waste positive electrode sheet by selective leaching according to Embodiment 1 of the present invention; as can be seen from the figure, after the waste positive electrode sheet is pretreated, ammonia water and sodium bicarbonate hydrogen peroxide are added for mixed reaction After that, the aluminum slag and the stock solution containing Ni 2+ , Co 2+ and Mn 2+ can be obtained by filtration.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Manufacturing & Machinery (AREA)
  • Environmental & Geological Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

La présente invention appartient au domaine technique du recyclage du métal de batterie, et l'invention concerne un procédé de recyclage d'aluminium dans une feuille d'électrode positive usée par lixiviation sélective et une application de celui-ci, le procédé comprenant les étapes suivantes : le broyage, le tamisage, le lavage et le concassage d'une feuille d'électrode positive usée pour obtenir une poudre de feuille d'électrode positive usée contenant des impuretés ; et le mélange de la poudre de feuille d'électrode positive usée, d'un agent de lixiviation et d'un agent réducteur, et la mise en réaction ainsi que le filtrage de celui-ci pour obtenir du filtrat et du laitier d'aluminium, l'agent de lixiviation étant de l'ammoniac et du bicarbonate d'ammonium. Dans la présente invention, la lixiviation de Al est sélectivement inhibée en utilisant un effet synergique entre NH3 et HCO3-, et Ni, Co et Li sont lixiviés sélectivement. Lorsque le Al dans les impuretés est difficile à lixivier, la collecte d'aluminium à petites particules en aluminium à grosses particules est un point clé pour commander la génération de laitier d'aluminium à grosses particules. Par conséquent, la majeure partie du laitier d'aluminium d'impuretés est efficacement filtrée, et l'impact de facteurs dangereux de laitier d'aluminium à petites particules dans le processus de recyclage du recyclage subséquent de lixiviation acide d'éléments métalliques tels que Ni, Mn et Co est réduit.
PCT/CN2021/142546 2021-04-07 2021-12-29 Procédé de recyclage d'aluminium dans une feuille d'électrode positive usée par lixiviation sélective et son application WO2022213678A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
HU2200331A HUP2200331A1 (hu) 2021-04-07 2021-12-29 Eljárás alumínium kinyerésére elhasznált pozitív elektród-lapból szelektív áztatással, és ennek alkalmazása

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110373860.X 2021-04-07
CN202110373860.XA CN113249574A (zh) 2021-04-07 2021-04-07 利用选择性浸出回收废正极片中铝的方法及其应用

Publications (1)

Publication Number Publication Date
WO2022213678A1 true WO2022213678A1 (fr) 2022-10-13

Family

ID=77220433

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/142546 WO2022213678A1 (fr) 2021-04-07 2021-12-29 Procédé de recyclage d'aluminium dans une feuille d'électrode positive usée par lixiviation sélective et son application

Country Status (3)

Country Link
CN (1) CN113249574A (fr)
HU (1) HUP2200331A1 (fr)
WO (1) WO2022213678A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115709977A (zh) * 2022-11-22 2023-02-24 株洲冶炼集团股份有限公司 一种退役磷酸铁锂极粉的预处理方法
CN115744864A (zh) * 2022-11-30 2023-03-07 江西理工大学 一种废旧磷酸铁锂电池正极材料高效回收及再生利用的方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113249574A (zh) * 2021-04-07 2021-08-13 广东邦普循环科技有限公司 利用选择性浸出回收废正极片中铝的方法及其应用
CN113789447B (zh) * 2021-08-31 2022-11-15 广东邦普循环科技有限公司 回收电池粉浸出所得铁铝渣中镍的方法
CN115821041B (zh) * 2022-09-01 2024-09-10 广东邦普循环科技有限公司 一种回收镍的方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104882645A (zh) * 2015-04-01 2015-09-02 长安大学 一种回收废旧LiCoO2电池中金属离子的方法
CN107230811A (zh) * 2016-03-25 2017-10-03 中国科学院过程工程研究所 一种正极材料中金属组分的选择性浸出剂及回收方法
CN109193057A (zh) * 2018-09-07 2019-01-11 昆明理工大学 一种利用废旧三元锂电池制备正极材料前驱体的方法
CN110028111A (zh) * 2019-03-25 2019-07-19 中南大学 三元正极材料前驱体及碳酸锂的制备方法
CN111463475A (zh) * 2020-03-11 2020-07-28 长沙有色冶金设计研究院有限公司 一种选择性回收废旧动力锂电池正极材料的方法
CN113249574A (zh) * 2021-04-07 2021-08-13 广东邦普循环科技有限公司 利用选择性浸出回收废正极片中铝的方法及其应用

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108486376A (zh) * 2018-02-26 2018-09-04 中南大学 一种浸出废旧锂离子电池正极材料中金属的方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104882645A (zh) * 2015-04-01 2015-09-02 长安大学 一种回收废旧LiCoO2电池中金属离子的方法
CN107230811A (zh) * 2016-03-25 2017-10-03 中国科学院过程工程研究所 一种正极材料中金属组分的选择性浸出剂及回收方法
CN109193057A (zh) * 2018-09-07 2019-01-11 昆明理工大学 一种利用废旧三元锂电池制备正极材料前驱体的方法
CN110028111A (zh) * 2019-03-25 2019-07-19 中南大学 三元正极材料前驱体及碳酸锂的制备方法
CN111463475A (zh) * 2020-03-11 2020-07-28 长沙有色冶金设计研究院有限公司 一种选择性回收废旧动力锂电池正极材料的方法
CN113249574A (zh) * 2021-04-07 2021-08-13 广东邦普循环科技有限公司 利用选择性浸出回收废正极片中铝的方法及其应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
WANG HONGYAN, HUANG KAI, ZHANG YANG, CHEN XIN, JIN WEI, ZHENG SHILI, ZHANG YI, LI PING: "Recovery of Lithium, Nickel, and Cobalt from Spent Lithium-Ion Battery Powders by Selective Ammonia Leaching and an Adsorption Separation System", ACS SUSTAINABLE CHEMISTRY & ENGINEERING, AMERICAN CHEMICAL SOCIETY, US, vol. 5, no. 12, 4 December 2017 (2017-12-04), US , pages 11489 - 11495, XP055966179, ISSN: 2168-0485, DOI: 10.1021/acssuschemeng.7b02700 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115709977A (zh) * 2022-11-22 2023-02-24 株洲冶炼集团股份有限公司 一种退役磷酸铁锂极粉的预处理方法
CN115744864A (zh) * 2022-11-30 2023-03-07 江西理工大学 一种废旧磷酸铁锂电池正极材料高效回收及再生利用的方法

Also Published As

Publication number Publication date
CN113249574A (zh) 2021-08-13
HUP2200331A1 (hu) 2023-01-28

Similar Documents

Publication Publication Date Title
WO2022213678A1 (fr) Procédé de recyclage d'aluminium dans une feuille d'électrode positive usée par lixiviation sélective et son application
US11760655B2 (en) Method for recycling iron and aluminum in nickel-cobalt-manganese solution
TWI726033B (zh) 從具有高錳含量的廢棄鋰離子電池回收有價金屬的方法
CN102244309B (zh) 一种从电动汽车锂系动力电池中回收锂的方法
CN108384955A (zh) 一种从含锂电池废料中选择性提锂的方法
WO2019026978A1 (fr) Procédé de dissolution d'un composé de lithium, procédé de production de carbonate de lithium, et procédé de récupération de lithium à partir de déchets de piles secondaires au lithium-ion
CN109852807A (zh) 一种废旧锂离子电池的氧化处理方法
WO2020196046A1 (fr) Procédé de fabrication d'une solution contenant du nickel et du cobalt à partir d'hydroxyde contenant du nickel et du cobalt
CN111945002B (zh) 一种废旧锂电池回收湿法除铜的方法
WO2018072499A1 (fr) Procédé de récupération de chlorure de cuivre basique à partir de déchets liquides contenant du cuivre dans un système d'acide sulfurique
WO2023010969A1 (fr) Méthode de recyclage de batteries au lithium-ion usées
TW201315817A (zh) 自錳渣提取有價金屬之方法
CN111254276A (zh) 基于还原钠化焙烧物相转化的废锂离子电池粉末选择性提取有价金属方法
WO2017105551A1 (fr) Extraction électrolytique hydrométallurgique de plomb à partir de batteries au plomb-acide
KR20240049385A (ko) 블랙 매스로부터 금속을 회수하기 위한 방법 및 설비
JP2022182229A (ja) リチウムイオン電池からの金属回収方法
KR20170019246A (ko) Led 또는 전자제품 폐기물로부터 유가금속의 회수 방법
CN116553502A (zh) 一种有效回收废旧磷酸铁锂电池正极材料的方法
CN113122725A (zh) 一种提升废旧锂电池金属回收率及纯度的方法
JP4215547B2 (ja) コバルトの回収方法
JP2011129336A (ja) 電池からのマンガンの回収方法
WO2023193517A1 (fr) Procédé de traitement d'un alliage cuivre-cobalt de batterie au lithium usagée et son utilisation
CN112645387A (zh) 一种利用阳极渣制备电池级二氧化锰的方法
CN113845455B (zh) 一种福美渣的回收利用方法
CN113234941B (zh) 一种电解锰阳极泥高值化利用方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21935894

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21935894

Country of ref document: EP

Kind code of ref document: A1