WO2022213413A1 - 一种高温测量永磁材料磁性的装置与方法 - Google Patents

一种高温测量永磁材料磁性的装置与方法 Download PDF

Info

Publication number
WO2022213413A1
WO2022213413A1 PCT/CN2021/087637 CN2021087637W WO2022213413A1 WO 2022213413 A1 WO2022213413 A1 WO 2022213413A1 CN 2021087637 W CN2021087637 W CN 2021087637W WO 2022213413 A1 WO2022213413 A1 WO 2022213413A1
Authority
WO
WIPO (PCT)
Prior art keywords
sample
temperature
heat
measuring
permanent magnet
Prior art date
Application number
PCT/CN2021/087637
Other languages
English (en)
French (fr)
Inventor
吴琼
杨杭福
葛洪良
俞能君
泮敏翔
黄霞妮
王子生
Original Assignee
中国计量大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国计量大学 filed Critical 中国计量大学
Priority to US18/016,365 priority Critical patent/US11977133B2/en
Publication of WO2022213413A1 publication Critical patent/WO2022213413A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/007Environmental aspects, e.g. temperature variations, radiation, stray fields
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/12Measuring magnetic properties of articles or specimens of solids or fluids
    • G01R33/14Measuring or plotting hysteresis curves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/12Measuring magnetic properties of articles or specimens of solids or fluids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/12Measuring magnetic properties of articles or specimens of solids or fluids
    • G01R33/1215Measuring magnetisation; Particular magnetometers therefor

Definitions

  • the invention belongs to the field of magnetic measurement, in particular to a device and method for measuring the magnetic properties of permanent magnet materials at high temperature.
  • the measurement methods of high-temperature magnets mainly include open-circuit measurement and closed-circuit measurement.
  • Open-circuit measurement mainly uses measurement equipment such as VSM and PPMS, which requires higher experimental equipment; the other is to use BH tester.
  • a heating plate is installed on the top of the electromagnet pole head, the sample is heated by the heating plate, and the magnetic properties of the permanent magnet material at high temperature are measured in a closed circuit, but this heating method has the following defects.
  • the heating temperature usually does not exceed 200°C.
  • the heating current used in the heating plate will generate stray magnetic fields, which will affect the measurement results.
  • Third, the heating efficiency is low and the time required is long.
  • the purpose of the present invention is to provide a device and method for measuring the magnetic properties of permanent magnet materials at high temperature, so as to solve the technical problems of slow heating speed of magnets, low energy and affecting the measurement results.
  • the specific technical scheme of a device and method for measuring the magnetism of a permanent magnet material at a high temperature of the present invention is as follows:
  • a device for measuring the magnetic properties of permanent magnet materials at high temperature comprising a laser, a power controller, a beam controller, a temperature controller, a magnetic measurement unit, a temperature sensor, and an electromagnet pole, wherein the electromagnet pole is divided into upper and lower parts, The upper and lower sides of the sample are respectively clamped, and the front and rear surfaces of the sample are respectively fixed with endothermic sheets;
  • the temperature sensor is arranged on the heat absorbing sheet for measuring the temperature of the heat absorbing sheet
  • the magnetic measurement unit is respectively connected with a magnetic field measurement probe and a magnetic induction intensity measurement coil for recording and calculating the magnetic properties of the sample, the magnetic field measurement probe is arranged on the side of the sample, and the magnetic induction intensity measurement coil is arranged at the bottom of the sample;
  • the laser emits a laser beam, which is divided into two laser beams by the beam controller and irradiated on the front and rear surfaces of the sample for heating the sample;
  • the temperature controller is respectively connected with the beam controller, the power controller and the heat sink, and the temperature of the heat sink is adjusted by adjusting the proportion of the light beam that the beam controller and the power controller irradiate on the heat sink on the front and rear surfaces of the sample. .
  • the heat-absorbing sheet is a high-temperature-resistant thermally conductive material with a thickness of 1 mm to 5 mm.
  • a layer of heat-absorbing film consistent with the laser wavelength is plated on the surface of the heat-absorbing sheet, and the heat-absorbing sheet is fixed on the sample by a clamp. front and rear surfaces.
  • the heat absorbing sheet is fixed on the surface of the sample by high temperature thermal conductive glue.
  • the power controller is an adjustable motorized filter, and its filtering efficiency is 0.1% to 100%, preferably a motorized filter wheel, and the beam controller is an adjustable beam controller, which is reflected by It is composed of a mirror and a filter, and the reflected light beam is adjustable at 1% to 100%.
  • the temperature sensor has a working temperature of 0°C to 900°C, and the temperature sensor is arranged inside or on the surface of the heat absorbing sheet.
  • the length, width and height of the sample are respectively a, b and c, wherein the value of height c is 5mm ⁇ c ⁇ 20mm, the value of length and width is 5mm ⁇ a ⁇ 10mm, and 5mm ⁇ b ⁇ 10mm.
  • the invention also discloses a method for measuring the magnetism of the permanent magnet material, comprising the following steps:
  • Step 1 magnetize the square block permanent magnet sample to a saturation state
  • Step 2 Fix the heat absorbing sheet on the front and back surfaces of the sample respectively, and place it between the two electromagnet poles, and adjust the distance between the electromagnet poles so that the two electromagnet poles compress the sample;
  • Step 3 The laser emits a laser beam, which is divided into two laser beams by the power controller and the beam controller, which are respectively irradiated on the heat absorbing sheet on the front and rear surfaces of the sample, and the front and rear surfaces of the sample are measured and obtained through the temperature sensor on the heat absorbing sheet.
  • the temperature of the heat sink is T 1 and T 2 ;
  • Step 5 Pass the magnetizing current into the electromagnet to make the sample magnetize to the saturation state, reduce the magnetizing current, change the direction of the magnetizing current, increase the magnetizing current so that the demagnetization curve passes through the coercivity or intrinsic coercivity point, and is measured by the magnetic field
  • the probe measures the magnetic field intensity of the electromagnet in the whole process, and the magnetic induction intensity of the sample during the whole process is measured through the magnetic induction intensity measuring coil;
  • Step 6 Record and calculate the demagnetization curve, maximum magnetic energy product, remanence, coercivity and intrinsic coercivity of the sample at T 0 temperature through the magnetic measurement unit.
  • the magnetic field for magnetizing the sample in step 1 is 1 to 5 times the height c of the sample.
  • step 3 adopts a femtosecond pulsed laser or a continuous laser.
  • the temperature control of T1 and T2 in step 4 should be T0 ⁇ 2 °C, the temperature range of T0 is 50° C ⁇ T0 ⁇ 700 °C, and the waiting time is 15min ⁇ 60min.
  • the device and method for measuring the magnetism of permanent magnet materials at high temperature of the present invention have the following advantages: the present invention adopts a laser heating method, has fast heating speed and high energy, can effectively measure the magnetism of permanent magnet materials under high temperature conditions, and does not affect the measurement results.
  • FIG. 1 is a schematic diagram of a device for measuring the magnetic properties of permanent magnet materials at high temperature according to the present invention.
  • Figure 2 is a schematic diagram of the fixture for the sample.
  • Figure 3 is a graph of the magnetic properties of the NdFeB permanent magnet at 22°C.
  • Figure 4 is a graph of the magnetic properties of the NdFeB permanent magnet at 100°C.
  • Figure 5 is a graph of the magnetic properties of the NdFeB permanent magnet at 130°C.
  • Figure 6 is a graph of the magnetic properties of the NdFeB permanent magnet at 150°C.
  • Fig. 7 is a graph showing the magnetic properties of the samarium cobalt permanent magnet at 500°C.
  • a device for measuring the magnetism of permanent magnet materials at high temperature includes a laser 1, a power controller 2, a beam controller 3, a temperature controller 4, a magnetic measurement unit 5, a temperature sensor 6 and an electromagnet Pole 7.
  • the pole head of the electromagnet is divided into two upper and lower parts, which are used to clamp the upper and lower sides of the sample 13, and the sample 13 can be magnetized by passing a magnetizing current into the electromagnet.
  • a heat shield 9 is arranged between the electromagnet pole 7 and the sample 13 to isolate the temperature between the electromagnet pole and the sample 13 .
  • the front and rear surfaces of the sample 13 are respectively fixed with a heat-absorbing sheet 10, and the heat-absorbing sheet 10 is a high-temperature-resistant heat-conducting material with a thickness of 1 mm to 5 mm.
  • the heat absorbing sheets 10 on the front and rear surfaces of the sample 13 are fixed by the clamp 8 , and can also be fixed on the surface of the sample 13 by a high temperature thermally conductive adhesive.
  • the temperature sensor 6 is arranged inside or on the surface of the heat-absorbing sheet 10 ; it is used to measure the temperature of the heat-absorbing sheet 10 on the front and rear surfaces of the sample 13 .
  • the magnetic measurement unit 5 is used to record and calculate the magnetic properties of the sample 13 .
  • the magnetic measurement unit 5 is respectively connected to the magnetic field measurement probe 11 and the magnetic induction intensity measurement coil 12 .
  • the laser 1 emits a laser beam, which is divided into two laser beams by the beam controller 3 to irradiate the front and rear surfaces of the sample to heat the sample 13.
  • the power controller 2 is an adjustable electric filter, and its filter efficiency is 0.1% to 100%, preferably an electric filter wheel;
  • the beam controller 3 is an adjustable beam controller, which is composed of a reflector and a filter. The reflected beam is adjustable from 1% to 100%;
  • the temperature controller 4 is connected to the beam controller 3, the power controller 2 and the heat sink 10 respectively, and the beam controller 3 and the power controller 2 are irradiated by adjusting the beam controller 3 and the power controller 2.
  • the ratio of the light beams on the heat absorbing sheet 10 on the front and rear surfaces of the sample 13 is used to adjust the temperature of the heat absorbing sheet 10 .
  • the length, width and height are respectively a, b and c, wherein the value of height c is 5mm ⁇ c ⁇ 20mm, and the value of length and width is 5mm ⁇ a ⁇ 10mm,
  • the block permanent magnet of 5mm ⁇ b ⁇ 10mm is the sample 13, and the sample 13 is magnetized to saturation by a magnetizing machine, and the magnetizing magnetic field is 1 to 5 times the height c of the sample 13;
  • the two heat-absorbing sheets 10 are respectively fixed on the front and rear surfaces of the sample 13;
  • the power of the laser 1 is 1-100W, and the laser beam is adjusted so that the two laser beams are irradiated on the front and rear surfaces of the sample 13.
  • the temperature sensor 6 on the heat-absorbing sheet 10 is used to measure the temperature of the heat-absorbing sheet 10 on the front and back of the sample 13. T 1 and T 2 ; the working temperature of the temperature sensor 6 is 0°C to 900°C;
  • the waiting time is 5min ⁇ 60min, and the temperature range of T 0 is 50°C ⁇ T 0 ⁇ 700°C.
  • the magnetizing current in the electromagnet is controlled by a DC current source.
  • the magnetizing current is passed into the electromagnet to make the sample 13 magnetized to the saturation state, the magnetizing current is reduced, the direction of the magnetizing current is changed, and the magnetizing current is increased to make the demagnetization curve pass through the coercive force (H cB ) or the intrinsic coercive force (H cj ) point, the magnetic field intensity of the electromagnet in the whole process is measured by the magnetic field measuring probe 11, and the magnetic induction intensity of the sample 13 in the whole process is measured by the magnetic induction intensity measuring coil 12;
  • the demagnetization curve (demagnetization curve), the maximum magnetic energy product (maximum BH product), the remanence (B r ), the coercive force (H cB ) and the intrinsic magnetism of the sample 13 at the T 0 temperature were recorded and calculated by the magnetic measurement unit 5 Coercivity (H cj ).
  • NdFeB permanent magnet Take NdFeB permanent magnet as sample 13, measure the magnetic properties of NdFeB permanent magnet at 22°C (room temperature), 100°C, 130°C and 150°C: first cut sample 13 into 5 ⁇ 5 ⁇ 5mm The size of the block magnet; the specific measurement steps are as follows:
  • a femtosecond pulsed laser with a wavelength of 800-850nm and a frequency of 76MHz. Adjust the laser beam so that two laser beams are irradiated on the front and rear surfaces of the sample 13, the spot diameter is 4mm, and the laser intensity is 50mW.
  • the temperature sensor 6 on the 10 measured the temperature of the front and rear sides of the sample 13 to be 24.5°C and 24.3°C;
  • Adjust the beam controller 3 so that the temperature of the front and rear sides of the sample 13 is the same. After adjustment, the temperature of the front and rear sides of the sample 13 is 24.4 °C.
  • the power controller 2 is roughly adjusted so that the temperature of the front and rear sides of the sample 13 gradually approaches 90 °C, and the power is finely adjusted.
  • the controller 2 and the beam controller 3 make the surface of the sample 13 reach 100°C, and then within 15 minutes, finely adjust the power controller 2 and the beam controller 3 so that the temperature of the heat sink 10 on the sample 13 is maintained at 100°C;
  • the continuous laser is preferably used, and the laser beam is adjusted so that two laser beams are irradiated on the front and rear surfaces of the sample 13, the spot diameter is 4mm, and the laser intensity is 100mW, and the temperature sensor 6 on the heat absorbing sheet 10 is used to measure the front and rear surfaces of the sample 13.
  • the temperature is 27°C and 32°C;
  • the beam controller 3 is composed of a mirror and a filter. After adjustment, the temperature of the front and rear sides of the sample 13 is 28.3 °C.
  • the filter wheel is used as the power controller 2, so that the temperature of the front and rear sides of the sample 13 gradually approaches 380°C, and the power controller 2 and the beam controller 3 are finely adjusted so that the surface of the sample reaches 500°C, and the power controller is finely adjusted within 30 minutes. 2 and the beam controller 3, so that the temperature of the heat sink 10 on the sample 13 is maintained at 500°C;

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Toxicology (AREA)
  • Measuring Magnetic Variables (AREA)

Abstract

一种高温测量永磁材料磁性的装置与方法,包括激光器(1)、功率控制器(2)、光束控制器(3)、温度控制器(4)、磁性测量单元(5)、温度传感器(6)以及电磁铁极头(7),电磁铁极头(7)分上下两块,分别用来夹住样品(13)的上下两面,样品(13)前后表面分别固定有吸热片(10),利用温度传感器(6)对吸热片(10)的温度进行测量,利用激光器(1)对样品(13)进行加热,并利用温度控制器(4),通过调节功率控制器(2)和光束控制器(3)照射到样品(13)前后表面的吸热片(10)上的光束比例,从而来调节吸热片(10)的温度,利用磁性测量单元(5)对样品(13)的磁性进行检测。

Description

一种高温测量永磁材料磁性的装置与方法 技术领域
本发明属于磁性测量领域,具体是一种高温测量永磁材料磁性的装置与方法。
背景技术
随着科技的发展,对永磁体的工作性能要求越来越高,尤其是在太空领域和高性能动力的设备上,要求永磁体能在高温条件下工作,并且具有良好的磁性能,然而目前对永磁材料在高温条件下磁性能的测量仍然存在一定不足。
目前高温磁体的测量方法主要有开路测量和闭路测量两种方法,开路测量主要利用VSM和PPMS等测量设备,对实验设备要求较高;另一种是利用BH测试仪,通过在BH测试仪的电磁铁极头顶部加装加热片,通过加热片加热样品,并闭路测量永磁材料在高温下的磁性能,但该加热方法存在以下缺陷,一是受限于电阻丝或加热片加热限制,其加热温度通常不会超过200℃,二是加热片中使用加热电流会产生杂散磁场,影响测量结果,三是加热效率低,所需时间较长。
发明内容
本发明目的在于提供一种高温测量永磁材料磁性的装置与方法,以解决磁体加热速度慢,能量低、影响测量结果的技术问题。
为解决上述技术问题,本发明的一种高温测量永磁材料磁性的装置与方法的具体技术方案如下:
一种高温测量永磁材料磁性的装置,包括激光器、功率控制器、光束控制器、温度控制器、磁性测量单元、温度传感器、以及电磁铁极头,所述电磁铁极头分上下两块,分别夹住样品的上下两面,所述样品前后表面分别固定有吸热片;
所述温度传感器设置在吸热片上,用于测量吸热片的温度;
所述磁性测量单元分别连接磁场测量探头和磁感应强度测量线圈,用于记录并计算样品的磁性,磁场测量探头设置在样品侧面,磁感应强度测量线圈设置在样品底部;
所述激光器出射激光束,通过光束控制器分成两束激光照射在样品的前后表面,用于对样品进行加热;
所述温度控制器分别和光束控制器、功率控制器及吸热片连接,通过调节光束控制器和功率控制器照射到样品前后表面的吸热片上的光束比例,从而来调节吸热片的温度。
进一步地,所述吸热片为耐高温导热材料,厚度为1mm至5mm,优选的在吸热片表 面镀一层与激光波长相一致的吸热薄膜,所述吸热片通过夹具固定在样品的前后表面。
进一步地,所述吸热片通过高温导热胶固定在样品表面。
进一步地,所述电磁铁极头和样品之间有隔热片。
进一步地,所述功率控制器为可调电动滤光片,其滤光效率为0.1%~100%,优选为电动滤光片转轮,所述光束控制器为可调光束控制器,由反射镜和滤光片组成,通过反射的光束在1%~100%可调,所述温度传感器的工作温度为0℃~900℃,温度传感器设置在吸热片的内部或表面。
进一步地,样品的长宽高分别为a,b和c,其中高度c的值为5mm≤c≤20mm,长和宽的值为5mm≤a≤10mm,5mm≤b≤10mm。
本发明还公开了一种测量永磁材料磁性的方法,包括如下步骤:
步骤一:将方形块状永磁样品磁化到饱和状态;
步骤二:将吸热片分别固定在样品前后表面,并置于两电磁铁极头之间,调节电磁铁极头之间的距离,使得两电磁铁极头压紧样品;
步骤三:激光器发射激光光束,通过功率控制器和光束控制器,分成两束激光光束,分别照射在样品前后表面的吸热片之上,通过吸热片上的温度传感器,测量并获得样品前后表面的吸热片温度为T 1和T 2
步骤四:根据步骤3所得的吸热片的温度,利用温度控制器,通过调节功率控制器和光束控制器,使得吸热片上的温度T 1和T 2逐渐接近T 0,并最终使得T 1=T 2=T 0,等待稳定一段时间后开始测量样品的磁性;
步骤五:在电磁铁内通入磁化电流,使得样品磁化到饱和状态,减小磁化电流,再改变磁化电流方向,增加磁化电流使得退磁曲线通过矫顽力或内禀矫顽力点,通过磁场测量探头测量整个过程的电磁铁的磁场强度,通过磁感应强度测量线圈测量整个过程中样品的磁感应强度;
步骤六:通过磁性测量单元记录并计算得到样品在T 0温度下的退磁曲线,最大磁能积,剩磁,矫顽力和内禀矫顽力。
进一步地,步骤一中磁化样品的磁场为样品高度c的1~5倍。
进一步地,步骤三所述的激光器采用飞秒脉冲激光器或者连续激光器。
进一步地,步骤四所述的T 1和T 2的温度控制应在T 0±2℃,T 0的温度范围为50℃≤T 0≤700℃,所述的等待时间为15min~60min。
本发明的一种高温测量永磁材料磁性的装置与方法具有以下优点:本发明采用激光 加热方式,加热速度快、能量高,能够有效的测量永磁材料在高温条件下的磁性,并且不会对测量结果产生影响。
附图说明
图1是本发明的高温测量永磁材料磁性的装置示意图。
图2是样品的夹具示意图。
图3是钕铁硼永磁体在22℃时的磁性能曲线图。
图4是钕铁硼永磁体在100℃时的磁性能曲线图。
图5是钕铁硼永磁体在130℃时的磁性能曲线图。
图6是钕铁硼永磁体在150℃时的磁性能曲线图。
图7是钐钴永磁体在500℃时的磁性能曲线图。
图中标记说明:1、激光器;2、功率控制器;3、光束控制器;4、温度控制器;5、磁性测量单元;6、温度传感器;7、电磁铁极头;8、夹具;9、隔热片;10、吸热片;11、磁场测量探头;12、磁感应强度测量线圈;13、样品。
具体实施方式
为了更好地了解本发明的目的、结构及功能,下面结合附图,对本发明一种高温测量永磁材料磁性的装置与方法做进一步详细的描述。
如图1所示,本发明的一种高温测量永磁材料磁性的装置,包括激光器1、功率控制器2、光束控制器3、温度控制器4、磁性测量单元5、温度传感器6以及电磁铁极头7。
电磁铁极头7分上下两块,用来夹住样品13的上下两面,在电磁铁内通入磁化电流可使样品13磁化。电磁铁极头7和样品13之间设置隔热片9,用于隔离电磁铁极头和样品13之间的温度。
样品13前后表面分别固定有吸热片10,吸热片10为耐高温导热材料,厚度为1mm至5mm,优选的在吸热片10表面镀一层与激光波长相一致的吸热薄膜,如图2所示,样品13前后表面的吸热片10利用夹具8固定,也可通过高温导热胶固定在样品13表面。
温度传感器6设置在吸热片10内部或表面;用于测量样品13前后表面上的吸热片10的温度。
磁性测量单元5用于记录并计算样品13的磁性。磁性测量单元5分别连接磁场测量探头11和磁感应强度测量线圈12,磁场测量探头11设置在样品13侧面,磁感应强度测量线圈12设置在样品13底部。
激光器1出射激光束,通过光束控制器3分成两束激光照射在样品的前后表面,用 于对样品13进行加热。
功率控制器2为可调电动滤光片,其滤光效率为0.1%~100%,优选为电动滤光片转轮;光束控制器3为可调光束控制器,由反射镜和滤光片组成,通过反射的光束在1%~100%可调;温度控制器4分别和光束控制器3、功率控制器2及吸热片10连接,通过调节光束控制器3和功率控制器2照射到样品13前后表面的吸热片10上的光束比例,从而来调节吸热片10的温度。
本发明的高温测量永磁材料磁性的装置使用时,取长宽高分别为a,b和c,其中高度c的值为5mm≤c≤20mm,长和宽的值为5mm≤a≤10mm,5mm≤b≤10mm的块状永磁体为样品13,利用冲磁机将样品13冲磁到饱和,磁化磁场为样品13高度c的1~5倍;
将两块吸热片10分别固定在样品13前后表面;
将样品13置于两个电磁铁极头7之间,样品13和两个电磁铁极头7之间放置隔热片9,调节电磁铁极头7之间的距离,利用电磁铁极头7压紧样品13;
激光器1的功率为1~100W,调节激光光束,使得两束激光照射在样品13的前后表面,利用吸热片10上的温度传感器6测得样品13前后两面的吸热片10的温度分别为T 1和T 2;温度传感器6的工作温度为0℃~900℃;
通过光束控制器3调节照射到样品13前后两束激光的比例,使得T 1=T 2,调节功率控制器2使得T 1=T 2=T 0,T 1和T 2的温度应控制在T 0±2℃,等待稳定一段时间后开始测量样品13的磁性。等待时间为5min~60min,T 0的温度范围为50℃≤T 0≤700℃。
电磁铁内磁化电流通过直流电流源控制。在电磁铁内通入磁化电流,使得样品13磁化到饱和状态,减小磁化电流,再改变磁化电流方向,增加磁化电流使得退磁曲线通过矫顽力(H cB)或内禀矫顽力(H cj)点,通过磁场测量探头11测量整个过程的电磁铁的磁场强度,通过磁感应强度测量线圈12测量整个过程中样品13的磁感应强度;
通过磁性测量单元5记录并计算得到样品13在T 0温度下的退磁曲线(demagnetization curve),最大磁能积(maximum BH product),剩磁(B r),矫顽力(H cB)和内禀矫顽力(H cj)。
实施例1
以钕铁硼永磁体作为样品13,测量样品13在22℃(室温),100℃,130℃和150℃时,钕铁硼永磁体的磁性能:先将样品13切成5×5×5mm大小的块状磁体;具体测量步骤如下:
1.利用冲磁机将样品13在9T下冲磁到饱和;
2.将两块吸热片10分别固定在样品13前后表面,利用夹具8固定,将样品13置于两个电磁铁极头7之间,调节电磁铁极头7之间的距离,利用电磁铁极头7压紧样品13;
3.优选的使用飞秒脉冲激光器,波长为800~850nm,频率为76MHz,调节激光光束,使得两束激光照射在样品13的前后表面,光斑直径为4mm,激光强度为50mW,利用吸热片10上的温度传感器6测得样品13前后两面的温度为24.5℃和24.3℃;
4.调节光束控制器3使得样品13前后两面的温度相同,调节后样品13前后两面的温度为24.4℃,粗调功率控制器2,使得样品13前后两面温度中逐渐接近90℃,细调功率控制器2和光束控制器3使得样品13表面达到100℃,之后15min内,细调功率控制器2和光束控制器3,使得样品13上的吸热片10的温度维持在100℃;
5.在电磁铁内通入磁化电流,使得样品13磁化到饱和状态,减小磁化电流,再改变磁化电流方向,增加磁化电流使得退磁曲线通过矫顽力(H cB)或内禀矫顽力(H cj)点,通过磁场测量探头11测量整个过程的电磁铁的磁场强度,通过磁感应强度测量线圈12测量整个过程中样品13的磁感应强度;
6.通过磁性测量单元5记录并计算得到样品13在100℃温度下的退磁曲线(demagnetization curve),最大磁能积(maximum BH product),剩磁(B r),矫顽力(H cB)和内禀矫顽力(H cj),测得的磁性能曲线如图4所示;
7.重复步骤3~6,测量样品13在130℃和150℃条件下得磁性能,具体磁性能如图5和6所示;
8.将样品13冷却至室温,此时不加激光加热,直接测量样品13在22℃的磁性能,测量结果如图3所示。
实施例2
以钐钴永磁体为作为样品13:测量样品13在500℃时,钐钴永磁体的磁性能:先将样品13切成5×5×10mm大小的块状磁体,具体测量步骤如下:
1.利用冲磁机将样品13在7T下冲磁到饱和;
2.将两块吸热片10分别固定在样品13前后表面,利用夹具8固定,将样品13置于两个电磁铁极头7之间,调节电磁铁极头7之间的距离,利用电磁铁极头7压紧样品13;
3.优选的使用连续激光器,调节激光光束,使得两束激光照射在样品13的前后表面,光斑直径为4mm,激光强度为100mW,利用吸热片10上的温度传感器6测得样品13前后两面的温度为27℃和32℃;
4.调节光束控制器3使得样品13前后两面的温度相同,光束控制器3由反射镜和滤光片组成,调节后样品13前后两面的温度为28.3℃,粗调功率控制器2,使用电动滤光片转轮作为功率控制器2,使得样品13前后两面温度中逐渐接近380℃,细调功率控制器2和光束控制器3使得样品表面达到500℃,之后30min内,细调功率控制器2和光束控制器3,使得样品13上的吸热片10的温度维持在500℃;
5.在电磁铁内通入磁化电流,使得样品13磁化到饱和状态,减小磁化电流,再改变磁化电流方向,增加磁化电流使得退磁曲线通过矫顽力(H cB)或内禀矫顽力(H cj)点,通过磁场测量探头11测量整个过程的电磁铁的磁场强度,通过磁感应强度测量线圈12测量整个过程中样品13的磁感应强度;
6.通过磁性测量单元5记录并计算得到样品13在500℃温度下的退磁曲线(demagnetization curve),最大磁能积(maximum BH product),剩磁(B r),矫顽力(H cB)和内禀矫顽力(H cj),磁性能如图7所示。
可以理解,本发明是通过一些实施例进行描述的,本领域技术人员知悉的,在不脱离本发明的精神和范围的情况下,可以对这些特征和实施例进行各种改变或等效替换。另外,在本发明的教导下,可以对这些特征和实施例进行修改以适应具体的情况及材料而不会脱离本发明的精神和范围。因此,本发明不受此处所公开的具体实施例的限制,所有落入本申请的权利要求范围内的实施例都属于本发明所保护的范围内。

Claims (10)

  1. 一种高温测量永磁材料磁性的装置,包括激光器(1)、功率控制器(2)、光束控制器(3)、温度控制器(4)、磁性测量单元(5)、温度传感器(6)、以及电磁铁极头(7),其特征在于,所述电磁铁极头(7)分上下两块,分别夹住样品(13)的上下两面,所述样品(13)前后表面分别固定有吸热片(10);
    所述温度传感器(6)设置在吸热片(10)上,用于测量吸热片(10)的温度;
    所述磁性测量单元(5)分别连接磁场测量探头(11)和磁感应强度测量线圈(12),用于记录并计算样品(13)的磁性,磁场测量探头(11)设置在样品(13)侧面,磁感应强度测量线圈(12)设置在样品(13)底部;
    所述激光器(1)出射激光束,通过光束控制器(3)分成两束激光照射在样品(13)的前后表面,用于对样品(13)进行加热;
    所述温度控制器(4)分别和光束控制器(3)、功率控制器(2)及吸热片(10)连接,通过调节光束控制器(3)和功率控制器(2)照射到样品(13)前后表面的吸热片(10)上的光束比例,从而来调节吸热片(10)的温度。
  2. 根据权利要求1所述的高温测量永磁材料磁性的装置,其特征在于,所述吸热片(10)为耐高温导热材料,厚度为1mm至5mm,优选的在吸热片(10)表面镀一层与激光波长相一致的吸热薄膜,所述吸热片(10)通过夹具(8)固定在样品(13)的前后表面。
  3. 根据权利要求1所述的高温测量永磁材料磁性的装置,其特征在于,所述吸热片(10)通过高温导热胶固定在样品表面。
  4. 根据权利要求1所述的高温测量永磁材料磁性的装置,其特征在于,所述电磁铁极头(7)和样品(13)之间有隔热片(9)。
  5. 根据权利要求1所述的高温测量永磁材料磁性的装置,其特征在于,所述功率控制器(2)为可调电动滤光片,其滤光效率为0.1%~100%,优选为电动滤光片转轮,所述光束控制器(3)为可调光束控制器,由反射镜和滤光片组成,通过反射的光束在1%~100%可调,所述温度传感器(4)的工作温度为0℃~900℃,温度传感器(4)设置在吸热片(10)的内部或表面。
  6. 根据权利要求1所述的高温测量永磁材料磁性的装置,其特征在于,样品(13)的长宽高分别为a,b和c,其中高度c的值为5mm≤c≤20mm,长和宽的值为5mm≤a≤10mm,5mm≤b≤10mm。
  7. 一种利用如权利要求1-6任一项所述的高温测量永磁材料磁性的装置测量永磁材料磁性的方法,其特征在于,包括如下步骤:
    步骤一:将方形块状永磁样品(13)磁化到饱和状态;
    步骤二:将两块吸热片(10)分别固定在样品(13)前后表面,并置于两电磁铁极头(7)之间,调节电磁铁极头(7)之间的距离,使得两电磁铁极头(7)压紧样品(13);
    步骤三:激光器(1)发射激光光束,通过功率控制器(2)和光束控制器(3),分成两束激光光束,分别照射在样品(13)前后表面的吸热片(10)之上,通过吸热片(10)上的温度传感器(6),测量并获得样品(13)前后表面的吸热片(10)温度为T 1和T 2
    步骤四:根据步骤3所得的吸热片(10)的温度,利用温度控制器(4),通过调节功率控制器(2)和光束控制器(3),使得吸热片(10)上的温度T 1和T 2逐渐接近T 0,并最终使得T 1=T 2=T 0,等待稳定一段时间后开始测量样品(13)的磁性;
    步骤五:在电磁铁内通入磁化电流,使得样品(13)磁化到饱和状态,减小磁化电流,再改变磁化电流方向,增加磁化电流使得退磁曲线通过矫顽力或内禀矫顽力点,通过磁场测量探头(11)测量整个过程的电磁铁的磁场强度,通过磁感应强度测量线圈(12)测量整个过程中样品(13)的磁感应强度;
    步骤六:通过磁性测量单元(5)记录并计算得到样品(13)在T 0温度下的退磁曲线,最大磁能积,剩磁,矫顽力和内禀矫顽力。
  8. 根据权利要求7所述的测量永磁材料磁性的方法,其特征在于,步骤一中磁化样品(13)的磁场为样品(13)高度c的1~5倍。
  9. 根据权利要求7所述的测量永磁材料磁性的方法,其特征在于,步骤三所述的激光器(1)采用飞秒脉冲激光器或者连续激光器。
  10. 根据权利要求7所述的测量永磁材料磁性的方法,其特征在于,步骤四所述的T 1和T 2的温度控制应在T 0±2℃,T 0的温度范围为50℃≤T 0≤700℃,所述的等待时间为15min~60min。
PCT/CN2021/087637 2021-04-09 2021-04-16 一种高温测量永磁材料磁性的装置与方法 WO2022213413A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/016,365 US11977133B2 (en) 2021-04-09 2021-04-16 Device and method for measuring magnetism of permanent magnet material at high temperature

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110384151.1 2021-04-09
CN202110384151.1A CN113093072B (zh) 2021-04-09 2021-04-09 一种高温测量永磁材料磁性的装置与方法

Publications (1)

Publication Number Publication Date
WO2022213413A1 true WO2022213413A1 (zh) 2022-10-13

Family

ID=76675909

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/087637 WO2022213413A1 (zh) 2021-04-09 2021-04-16 一种高温测量永磁材料磁性的装置与方法

Country Status (3)

Country Link
US (1) US11977133B2 (zh)
CN (1) CN113093072B (zh)
WO (1) WO2022213413A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116625993A (zh) * 2023-07-25 2023-08-22 北京理工大学 一种热力耦合作用下的复合材料激光反射率测量方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005040842A1 (en) * 2003-10-07 2005-05-06 Institute Jozef Stefan Permeater for measuring magnetic properties at high temperatures
CN2800290Y (zh) * 2005-05-30 2006-07-26 沈阳工业大学 一种电机用烧结钕铁硼材料热稳定性的检测装置
JP2008039736A (ja) * 2006-08-10 2008-02-21 Fdk Corp 永久磁石の磁気特性評価方法
CN201051137Y (zh) * 2007-06-29 2008-04-23 内蒙古科技大学 稀土永磁体磁性参数测量装置
CN202362442U (zh) * 2011-12-08 2012-08-01 中国计量科学研究院 硬磁材料温度特性检测装置
CN105158328A (zh) * 2015-06-17 2015-12-16 浙江省计量科学研究院 一种基于嵌入线圈双积分法的磁瓦无损测量系统与方法
CN107044995A (zh) * 2017-01-12 2017-08-15 吉林大学 高压下物质居里温度的测量系统及测量方法
CN109782201A (zh) * 2019-02-12 2019-05-21 宴晶科技(北京)有限公司 一种微波材料电磁参数测量仪器及测量方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201281703Y (zh) * 2008-08-15 2009-07-29 比亚迪股份有限公司 磁性材料件的测试装置
CN202126494U (zh) * 2011-05-16 2012-01-25 张作州 一种永磁材料的性能测量装置
KR20150053488A (ko) * 2013-11-08 2015-05-18 한국전자통신연구원 열전 소자의 열전전도도 계측장치 및 그의 계측방법
CN103605089B (zh) * 2013-11-13 2016-04-13 北京科技大学 永磁材料室温和高温不合格产品的快速无损检测方法
US10928255B2 (en) * 2016-10-19 2021-02-23 Electronics And Telecommunications Research Institute Device for measuring thermoelectric performance
CN107123497B (zh) * 2017-04-14 2020-01-07 中国科学院宁波材料技术与工程研究所 高温度稳定性永磁材料及其应用
CN110610789B (zh) * 2018-06-14 2021-05-04 中国科学院宁波材料技术与工程研究所 永磁材料的稳磁处理方法
CN108872892A (zh) * 2018-06-27 2018-11-23 芜湖衡西微量计量科技有限公司 用于电机的永磁材料磁性能检测分析方法
CN110400691A (zh) * 2019-08-07 2019-11-01 泮敏翔 一种提高钕铁硼磁体矫顽力和耐高温性的制备方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005040842A1 (en) * 2003-10-07 2005-05-06 Institute Jozef Stefan Permeater for measuring magnetic properties at high temperatures
CN2800290Y (zh) * 2005-05-30 2006-07-26 沈阳工业大学 一种电机用烧结钕铁硼材料热稳定性的检测装置
JP2008039736A (ja) * 2006-08-10 2008-02-21 Fdk Corp 永久磁石の磁気特性評価方法
CN201051137Y (zh) * 2007-06-29 2008-04-23 内蒙古科技大学 稀土永磁体磁性参数测量装置
CN202362442U (zh) * 2011-12-08 2012-08-01 中国计量科学研究院 硬磁材料温度特性检测装置
CN105158328A (zh) * 2015-06-17 2015-12-16 浙江省计量科学研究院 一种基于嵌入线圈双积分法的磁瓦无损测量系统与方法
CN107044995A (zh) * 2017-01-12 2017-08-15 吉林大学 高压下物质居里温度的测量系统及测量方法
CN109782201A (zh) * 2019-02-12 2019-05-21 宴晶科技(北京)有限公司 一种微波材料电磁参数测量仪器及测量方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116625993A (zh) * 2023-07-25 2023-08-22 北京理工大学 一种热力耦合作用下的复合材料激光反射率测量方法
CN116625993B (zh) * 2023-07-25 2023-10-24 北京理工大学 一种热力耦合作用下的复合材料激光反射率测量方法

Also Published As

Publication number Publication date
US20230273274A1 (en) 2023-08-31
CN113093072B (zh) 2022-11-15
CN113093072A (zh) 2021-07-09
US11977133B2 (en) 2024-05-07

Similar Documents

Publication Publication Date Title
Shen et al. Loss characterization and calculation of nanocrystalline cores for high-frequency magnetics applications
WO2022213413A1 (zh) 一种高温测量永磁材料磁性的装置与方法
US7679205B1 (en) Method and apparatus for converting energy to electricity
Cano et al. An induction heater device for studies of magnetic hyperthermia and specific absorption ratio measurements
CN102830375A (zh) 在开路中测量永磁体和永磁材料温度特性的装置及方法
CA2006384A1 (en) Induction heating apparatus
Miyagi et al. Improvement of zone control induction heating equipment for high-speed processing of semiconductor devices
CN205069263U (zh) 一种铁磁性细长构件的退磁装置
Luo et al. Permeability-adjustable nanocrystalline flake ribbon in customized high-frequency magnetic components
CN111273117B (zh) 缩短干式变压器空载温升试验时间的方法及装置
US11846686B2 (en) Wireless flexible magnetic sensor based on magnetothermal effect, and preparation method and detection method thereof
CN201185408Y (zh) 一种高频热合机机头辐射骚扰抑制电路的改进
JP2016095264A (ja) 高磁界パルス励磁型磁気特性測定装置
CN109166599A (zh) 一种基于一阶旋向偏振涡旋光的旋向依赖全光磁反转方法
CN110983112B (zh) 一种精密电流检测用钴基非晶软磁合金及其制备方法
CN209979829U (zh) 一种一维及二维高低频磁特性测量系统
KR101605793B1 (ko) 방향성 전기강판 및 그 자구미세화 방법
Yue et al. Considerations of the magnetic field uniformity for 2-D rotational core loss measurement
CN220873340U (zh) 平行u型铁芯上平铺钕铁硼磁钢及带气隙导磁铁式磁盘
JP5622085B2 (ja) 高周波磁場を用いた磁性部材の加熱方法
CN218676643U (zh) 一种充退磁装置
JPH0346205A (ja) 交流ないしパルス電流による磁化特性改善方法
KR101746504B1 (ko) 고자기장 케비티 장치 및 이를 구비하는 rf 중성자 스핀 플리퍼 장치
WO2018094781A1 (zh) 一种中置柜及基于有限元分析的中置柜损耗优化方法
GB666381A (en) Method and apparatus for welding by means of electro-magnetic induction heating

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21935635

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21935635

Country of ref document: EP

Kind code of ref document: A1