WO2022211001A1 - 焼鈍分離剤用酸化マグネシウム及び方向性電磁鋼板 - Google Patents

焼鈍分離剤用酸化マグネシウム及び方向性電磁鋼板 Download PDF

Info

Publication number
WO2022211001A1
WO2022211001A1 PCT/JP2022/016406 JP2022016406W WO2022211001A1 WO 2022211001 A1 WO2022211001 A1 WO 2022211001A1 JP 2022016406 W JP2022016406 W JP 2022016406W WO 2022211001 A1 WO2022211001 A1 WO 2022211001A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnesium oxide
steel sheet
coating
less
annealing
Prior art date
Application number
PCT/JP2022/016406
Other languages
English (en)
French (fr)
Inventor
晴大 小川
宙宜 芝田
啓祐 塘
Original Assignee
タテホ化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by タテホ化学工業株式会社 filed Critical タテホ化学工業株式会社
Priority to CN202280025229.3A priority Critical patent/CN117083396A/zh
Priority to JP2022542043A priority patent/JP7181441B1/ja
Priority to KR1020237034051A priority patent/KR20230163429A/ko
Publication of WO2022211001A1 publication Critical patent/WO2022211001A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/68Temporary coatings or embedding materials applied before or during heat treatment
    • C21D1/72Temporary coatings or embedding materials applied before or during heat treatment during chemical change of surfaces
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1272Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1277Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a particular surface treatment
    • C21D8/1283Application of a separating or insulating coating
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur

Definitions

  • the present invention relates to magnesium oxide (MgO) and grain-oriented electrical steel sheets for annealing separators.
  • Grain-oriented electrical steel sheets used in transformers and generators are generally made from silicon steel containing about 3% silicon (Si) by hot rolling, then cold rolling to final thickness, and then decarburizing annealing. , finish annealed and manufactured.
  • decarburization annealing primary recrystallization annealing
  • a SiO2 coating is formed on the surface of the steel sheet, a slurry containing magnesium oxide for annealing separation is applied to the surface, dried, wound into a coil, and then finished annealing.
  • SiO 2 and MgO react to form a forsterite (Mg 2 SiO 4 ) film on the surface of the steel sheet.
  • This forsterite coating adds tension to the surface of the steel sheet, reduces core loss, improves magnetic properties, and also plays a role of imparting insulation to the steel sheet.
  • This forsterite coating determines the quality of the appearance and electrical insulation of the product, as well as its market value.
  • the formation process of the film influences the inhibitor decomposition behavior of the surface layer of the steel sheet, and consequently the secondary recrystallization.
  • the quality of the film influences the quality of the magnetic properties of the product.
  • the appearance of the coating affects the final appearance of the grain-oriented electrical steel sheet as a product. Therefore, the appearance of the coating affects the value of the product and also greatly affects the yield of the product. Therefore, improving the properties of such a coating is an important part of the technology for producing grain-oriented electrical steel sheets.
  • CAA citric acid activity
  • CAA is only an approximation of the reaction activity between MgO and subscales on the surface of the grain-oriented electrical steel sheet, and is an evaluation of one point at a certain final reaction rate, and does not reflect the spread of the activity distribution. Therefore, it is also well known that, for example, two types of magnesium oxide for annealing separators having similar CAA40% values may differ in film-forming ability.
  • Patent Literature 1 and Patent Literature 2 disclose inventions of magnesium oxide for annealing separators in which the activity, particle size, specific surface area, etc. of 40% CAA and 80% CAA are respectively limited to predetermined values.
  • Patent Document 3 discloses an invention of an annealing separator for grain-oriented electrical steel sheets in which 70% CAA, the ratio of 70% CAA to 40% CAA, the particle size, the specific surface area, etc. are each limited to predetermined values.
  • magnesium oxide for annealing separators cannot completely prevent the occurrence of film defects in grain-oriented electrical steel sheets, and it is impossible to stably obtain grain-oriented electrical steel sheets with excellent film properties. lacked credibility. In other words, magnesium oxide for annealing separation agents with sufficient performance has not yet been found.
  • an object of the present invention is to provide magnesium oxide for use as an annealing separator for obtaining a grain-oriented electrical steel sheet with excellent coating properties. Specifically, it is an object of the present invention to provide a magnesium oxide for an annealing separator that can form a forsterite coating excellent in coating appearance and coating adhesion on the surface of a steel sheet. Another object of the present invention is to propose a method for producing a grain-oriented electrical steel sheet using the above magnesium oxide for annealing separator.
  • the present inventors have made intensive research focusing on the so-called highly active portion of magnesium oxide powder for annealing separators, which has not been focused on until now.
  • the pH stat method which is a method that can strictly evaluate the highly active portion of , even among magnesium oxides with similar values of CAA 40%, which is an indicator of the so-called intermediate active region, suppression
  • the present inventors have found that the magnesium oxide having the initial reactivity as described above is more suitable for obtaining a grain-oriented electrical steel sheet having excellent coating appearance and coating adhesion, leading to the present invention.
  • the gist of the present invention is that CAA40% is 50 seconds or more and 170 seconds or less, and the time (T2) to reach a reaction rate of 20 mol% and the time to reach a reaction rate of 10 mol% in the pH stat method (T1 ) ratio (T2/T1) of 3.0 or more.
  • CAA40% is 50 seconds or more and 170 seconds or less, and the time (T2) to reach a reaction rate of 20 mol% and the time to reach a reaction rate of 10 mol% in the pH stat method (T1)
  • the ratio (T2/T1) of 3.0 or more and less than 11.0, magnesium oxide for annealing separators is also included.
  • the magnesium oxide for annealing separator of the present invention has a BET specific surface area of 12.0 m 2 /g or more and 30.0 m 2 /g or less, a Cl content of 500 ppm or less, and a volume-based cumulative 50% particle diameter (D 50 ) is preferably 0.5 ⁇ m or more and 7.0 ⁇ m or less.
  • BET specific surface area, Cl content, and D50 are within predetermined ranges, so that magnesium oxide for annealing separators can form a forsterite coating with excellent coating appearance and coating adhesion on the surface of a steel sheet. can be obtained more reliably.
  • the magnesium oxide for annealing separator of the present invention preferably has a total content of Zn, Zr, Ni, Co, and Mn of 200 ppm or more and 10000 ppm or less, and a Zn content of 200 ppm or more and 10000 ppm or less. is more preferred. Moreover, it is more preferable that the content of Zn is 200 ppm or more and 9000 ppm or less.
  • the initial reactivity of magnesium oxide can be suppressed by containing the above elements within a predetermined range. As a result, it is possible to obtain the magnesium oxide for the annealing separator, which is capable of forming a forsterite coating excellent in coating appearance and coating adhesion on the surface of the steel sheet.
  • the gist of the present invention resides in an annealing separator containing the above magnesium oxide for annealing separators.
  • an annealing separator of the present invention By using the annealing separator of the present invention, a grain-oriented electrical steel sheet having excellent magnetic properties and insulating properties can be produced.
  • the gist of the present invention is a step of forming a SiO 2 coating on the surface of the steel sheet, and a step of forming a forsterite coating on the surface of the steel sheet by applying the above-mentioned annealing separator to the surface of the SiO 2 coating and annealing it. and a method for manufacturing a grain-oriented electrical steel sheet.
  • a grain-oriented electrical steel sheet having excellent magnetic properties and insulating properties can be produced by the production method of the present invention.
  • magnesium oxide as an annealing separator for obtaining grain-oriented electrical steel sheets with excellent magnetic properties and insulating properties.
  • a magnesium oxide for an annealing separator that can form a forsterite coating excellent in coating appearance and coating adhesion on the surface of a steel sheet.
  • CAA40% is 50 seconds or more and 170 seconds or less, and the time (T2) to reach a reaction rate of 20 mol% and the time to reach a reaction rate of 10 mol% in the pH stat method
  • a ratio (T2/T1) of time (T1) is 3.0 or more. Also, the ratio (T2/T1) is preferably 3.0 or more and less than 11.0.
  • the initial reactivity of magnesium oxide for annealing separators of the present invention is measured by the following pH stat method.
  • pH-stat method is used, and the initial reactivity of magnesium oxide is more strictly measured and controlled.
  • the pH stat method In the pH stat method, during the reaction between alkali (magnesium oxide in the present invention) and acid (citric acid in the present invention), the amount of acid or alkaline solution input ( Consumption), elapsed time, etc. are recorded and measured, and can be carried out using a commercially available general pH stat device. Measurement by the pH stat method in the present invention is performed as follows. First, put 100 mL of deionized water in a 200 mL beaker, set it in a constant temperature bath, and keep it at 285K. A pH electrode is set, and while stirring at 800 rpm using a magnetic stirrer, 400 mg of weighed magnesium oxide powder is added, and immediately dropwise addition of 0.4 N citric acid aqueous solution is started.
  • the pH was maintained at 10, the consumption amount of the citric acid aqueous solution and the elapsed time were measured, the time to reach the reaction rate of 10 mol% (T1), the time to reach the reaction rate of 20 mol% (T2 ).
  • the time (T1) until the reaction rate reaches 10 mol% is the time required for dropping the aqueous citric acid solution necessary for the reaction with magnesium oxide in an amount corresponding to 10 mol% of the magnesium oxide used for measurement.
  • the time (T2) required to reach a reaction rate of 20 mol% is the time required for dropping the aqueous citric acid solution necessary for the reaction with magnesium oxide in an amount corresponding to 20 mol% of the magnesium oxide used for measurement. .
  • the ratio (T2/T1) of the time (T2) to reach a reaction rate of 20 mol% and the time (T1) to reach a reaction rate of 10 mol% in the pH stat method is 3.0 or more. Moreover, it is preferably 3.3 or more, and more preferably 3.5 or more. Also, the upper limit of the ratio (T2/T1) is, for example, less than 11.0, preferably less than 10.5, and more preferably less than 10.0. The range of the ratio (T2/T1) is, for example, 3.0 or more and less than 11.0, preferably 3.3 or more and less than 10.5, more preferably 3.5 or more and less than 10.0. .
  • T2/T1 A large value of the ratio of T2 to T1 indicates that the time from the time when the reaction rate reaches 10 mol% to the time when the reaction rate reaches 20 mol% is long. It shows that the initial reactivity is suppressed.
  • Magnesium oxide with (T2/T1) of 3.0 or more has sufficiently suppressed initial reactivity, and forms a forsterite coating with excellent coating appearance and coating adhesion on the surface of the steel sheet. be able to.
  • Magnesium oxide having a (T2/T1) of less than 3.0 does not sufficiently suppress the initial reactivity, and forms a forsterite coating with excellent coating appearance and coating adhesion on the surface of the steel sheet. Can not do it.
  • magnesium oxide with (T2/T1) of 11.0 or more has excessively suppressed initial reactivity, and forms a forsterite coating with excellent coating appearance and coating adhesion on the surface of the steel sheet. Can not do it.
  • the (T2/T1) ratio can be adjusted by various methods, for example, adjustment of the secondary particle size of the precursor magnesium hydroxide, There are, but are not limited to, adjusting the firing conditions, adding a metal element, or adjusting the (T2/T1) ratio by mixing a plurality of magnesium oxide powders.
  • the magnesium oxide for the annealing separator can be adjusted by containing Zn, Zr, Ni, Co, and Mn as metal elements within a predetermined range. , Co, and Mn can be adjusted to increase the value of (T2/T1).
  • the (T2/T1) ratio can be stably adjusted, and typically by adding a certain amount of Zn, the (T2/T1) value increases. can be adjusted to
  • the total content of Zn, Zr, Ni, Co and Mn is preferably 200 ppm to 10000 ppm.
  • examples of preferred contents include the following. Preferably it is 250 ppm to 9500 ppm, more preferably 300 ppm to 9000 ppm. Further, it is preferably 250 ppm to 8000 ppm, more preferably 300 ppm to 6000 ppm. If the total content is less than 200 ppm, the initial reactivity is not sufficiently reduced, and magnesium oxide with (T2/T1) of 3.0 or more cannot be obtained. If the total content exceeds 10,000 ppm, the sinterability of magnesium oxide, the film formation, and the effect on the film properties will increase, causing film defects.
  • Zn, Zr, Ni, Co and Mn can be controlled by a known method, for example, by the method of controlling the amount of trace contents described later.
  • Zn, Zr, Ni, Co and Mn are added in the form of their oxides, hydroxides, chlorides, sulfides, carbonates, sulfates, etc. to the magnesium oxide precursor for the annealing separator. can be done.
  • Zn is added, it is preferable to use zinc chloride and/or zinc oxide.
  • ppm in the specification means mass ppm unless otherwise specified.
  • the value of T1 is preferably 850 seconds or longer, more preferably 870 seconds or longer, and even more preferably 890 seconds or longer. Also, it is preferably 5000 seconds or less, more preferably 4800 seconds or less, and even more preferably 4500 seconds or less. The range is preferably 850 to 5000 seconds, more preferably 870 to 4800 seconds, even more preferably 890 to 4500 seconds. If the value of T1 is less than 850 seconds, the initial reactivity is too high to form a forsterite coating excellent in coating appearance and coating adhesion on the surface of the steel sheet. On the other hand, when the value of T1 is more than 5000 seconds, the initial reactivity is too low to form a forsterite coating excellent in coating appearance and coating adhesion on the surface of the steel sheet.
  • CAA empirically simulates the reactivity of the solid-solid phase reaction between silicon dioxide and magnesium oxide that occurs on the surface of an actual electrical steel sheet by solid-liquid phase reaction. It measures the reactivity of magnesium particles. Among them, as described above, CAA 40% is used as an indicator of the medium active region. If the CAA40% of magnesium oxide is greater than 170 seconds, the reactivity of the magnesium oxide particles is poor and the forsterite film formation speed is slowed, so that a sufficient film is not formed, resulting in iron loss and magnetic flux density of the grain-oriented electrical steel sheet. characteristics deteriorate.
  • CAA 40% of magnesium oxide is less than 50 seconds, the reactivity of the magnesium oxide particles becomes too fast, a uniform forsterite coating cannot be formed, and the appearance and adhesion of the coating of the grain-oriented electrical steel sheet are poor.
  • CAA40% is 50 seconds or more and 170 seconds or less, preferably in the range of 50 to 150 seconds, more preferably in the range of 60 to 130 seconds.
  • the BET specific surface area of the magnesium oxide of the present invention is preferably 12.0 m 2 /g or more and 30.0 m 2 /g or less, more preferably 12.0 m 2 /g or more and 23.0 m 2 /g or less. .
  • the BET specific surface area of magnesium oxide is less than 12.0 m 2 /g, the primary particle size of magnesium oxide becomes coarse, the reactivity of magnesium oxide particles deteriorates, the forsterite film formation rate decreases, and oxidation Since the particles of magnesium are coarse, they tend to leave residue when removed with acid.
  • the volume-based cumulative 50% particle diameter (D 50 ) is preferably 0.5 ⁇ m or more and 7.0 ⁇ m or less.
  • D50 volume-based cumulative 50% particle diameter
  • the activity is high, and it tends to be difficult to suppress the initial reactivity of the powder.
  • the volume-based cumulative 50% particle diameter (D 50 ) exceeds 7.0 ⁇ m, the primary particle diameter of magnesium oxide becomes coarse, and the reactivity of the magnesium oxide particles deteriorates, resulting in a slow forsterite film formation rate. , it becomes difficult to form a sufficient coating.
  • D50 is more preferably 0.7 ⁇ m or more and 6.0 ⁇ m or less, and still more preferably 1.0 ⁇ m or more and 5.0 ⁇ m or less.
  • Magnesium oxide of the present invention includes zinc (Zn), zirconium (Zr), nickel (Ni), cobalt (Co), manganese (Mn), as well as calcium (Ca), silicon (Si), aluminum ( Al), iron (Fe), phosphorus (P), boron (B), sulfur (S), fluorine (F), and chlorine (Cl).
  • the magnesium oxide of the present invention contains calcium (Ca), the calcium content is preferably 0.2 to 2.0% by mass in terms of CaO.
  • the magnesium oxide of the present invention contains silicon (Si), the content of silicon is preferably 0.05 to 0.5% by mass.
  • the magnesium oxide of the present invention contains aluminum (Al), the content of aluminum is preferably 0.01 to 0.5% by mass.
  • the magnesium oxide of the present invention contains iron (Fe), the iron content is preferably 0.01 to 0.5% by mass.
  • the magnesium oxide of the present invention contains phosphorus (P), the phosphorus content is preferably 0.01 to 0.15% by mass in terms of P 2 O 3 .
  • the magnesium oxide of the present invention contains boron (B), the content of boron is preferably 0.04 to 0.15% by mass.
  • the sulfur content is preferably 0.01 to 1.5% by mass in terms of SO 3 .
  • fluorine the content of fluorine is preferably 0.05% by mass or less.
  • chlorine the chlorine content is preferably 500 ppm or less, more preferably 400 ppm or less, and even more preferably 300 ppm or less.
  • magnesium hydroxide is used as a raw material, and calcium hydroxide is added in the form of slurry to this aqueous solution and reacted to form magnesium hydroxide.
  • the magnesium hydroxide is then filtered, washed with water, dried, calcined in a heating furnace to form magnesium oxide, and then pulverized to a desired particle size.
  • an alkaline compound having a hydroxyl group such as sodium hydroxide or potassium hydroxide can be used instead of calcium hydroxide.
  • an aqueous solution containing magnesium chloride such as seawater, sprinkling water, bittern, etc. is introduced into the reactor, and magnesium oxide is produced by the Aman process in which magnesium oxide and hydrochloric acid are directly produced at 1773-2273K. Magnesium oxide can be produced by grinding to a particle size of .
  • magnesium oxide can also be produced by hydrating magnesium oxide obtained by firing the mineral magnesite, firing the resulting magnesium hydroxide, and pulverizing it to a desired particle size.
  • the amount of trace contents in MgO can be controlled by a known method.
  • a method for controlling the amount of trace contents in MgO for example, during the production process of the crude product or the obtained crude product so that the amount of trace contents in MgO is within a predetermined range can be achieved by controlling the amount of trace content in before the final firing.
  • the control in the manufacturing process of the crude product is, for example, analyzing the amount of trace inclusions contained in the raw material, and based on the results, wet or dry so that the trace content to be controlled is a predetermined amount. It can be controlled by adding at low temperature or removing by wet process. Addition of a trace content can be carried out by, for example, mixing the elements to be added and drying.
  • the removal of trace inclusions can be carried out by, for example, wet-type physical washing of excess inclusions or chemical separation.
  • Chemical separation is performed, for example, by forming a soluble hydrate, dissolving, filtering, washing and separating, or forming an insoluble compound, precipitating, and adsorbing and separating the precipitate. It can be done by Control of the amount of trace elements in the crude product before the final calcination can be achieved, for example, by combining and mixing crude products having different compositions, thereby increasing the amount of trace elements so that the trace elements are within a predetermined range. The deficit can be adjusted and controlled by the final firing.
  • the amount of trace elements in each case the crude product MgO is produced and after analysis of the MgO obtained, depending on the individual results regarding the amount of trace elements, the above procedure can be repeated and combined. Also, the amount of trace inclusions in MgO can be controlled by a method of mixing target trace inclusions into MgO after final firing.
  • the D 50 , BET specific surface area and CAA40% of magnesium oxide can be adjusted by known methods, for example, the following methods. That is, by adjusting the reaction temperature and the concentration of the alkali source during the production process of magnesium hydroxide, the primary particle size and secondary particle size of magnesium hydroxide are controlled, and the D 50 , BET specific surface area and CAA40 of magnesium oxide % can be adjusted. Also, the D 50 , BET specific surface area and CAA 40% of magnesium oxide can be adjusted by controlling the firing temperature and time of magnesium hydroxide whose particle size is controlled.
  • the D 50 , BET specific surface area and CAA40% after pulverization are measured, and the powder can be calcined multiple times. Furthermore, the calcined magnesium oxide is processed into jaw crushers, gyratory crushers, cone crushers, impact crushers, roll crushers, cutter mills, stamp mills, ring mills, roller mills, jet mills, hammer mills, pin mills, rotary mills, vibration mills,
  • the D 50 , BET specific surface area and CAA 40% after pulverization of magnesium oxide can also be adjusted by pulverizing using a pulverizer such as a planetary mill or a ball mill.
  • the D 50 , BET specific surface area and CAA40% after pulverization can be measured and pulverized multiple times.
  • the D 50 , BET specific surface area and CAA 40% of magnesium oxide can be adjusted by using a pulverizer with a built-in classifier.
  • D 50 , BET specific surface area and CAA 40% can be adjusted.
  • the grain-oriented electrical steel sheet of the present invention can be produced, for example, by the following method.
  • the grain-oriented electrical steel sheet is obtained by hot-rolling a silicon steel slab containing 2.5 to 4.5% Si, pickling it, and then cold-rolling it, or cold-rolling it twice with intermediate annealing in between. Adjust to the desired plate thickness.
  • the cold-rolled coil is subjected to recrystallization annealing, which also serves as decarburization, in a wet hydrogen atmosphere of 923 to 1173K, and at this time, an oxide film mainly composed of silica (SiO 2 ) is formed on the surface of the steel sheet. .
  • the annealing separator containing magnesium oxide for the annealing separator of the present invention is uniformly dispersed in water to obtain a water slurry, and the water slurry is continuously applied on the steel plate using roll coating or spraying, Dry at about 573K.
  • the steel sheet coil thus treated is subjected to final finish annealing, for example, at 1473 K for 20 hours to form a forsterite coating (Mg 2 SiO 4 ) on the surface of the steel sheet.
  • the forsterite coating is an insulating coating and can apply tension to the surface of the steel sheet to improve the iron loss value of the grain-oriented electrical steel sheet.
  • ⁇ Measurement method/test method> (1) Method for measuring the content of metal elements After completely dissolving the measurement sample in acid, dilute it with ultrapure water and use an ICP emission spectrometer (PS3520 VDD manufactured by Hitachi High-Tech Science Co., Ltd.) to measure The content of metal elements in was measured.
  • ICP emission spectrometer PS3520 VDD manufactured by Hitachi High-Tech Science Co., Ltd.
  • BET specific surface area was measured by the gas adsorption method (BET method) using a specific surface area measuring device (trade name: Macsorb, manufactured by Mounttech Co., Ltd.).
  • volume-based cumulative 50% particle diameter (D 50 ) A measurement sample is dispersed in methanol, and a laser diffraction scattering particle size distribution analyzer (manufactured by MT3300EX-II LEEDS & NORTHRUP) is used to measure the sample. The volume-based cumulative 50% particle size ( D50 ) was measured. At that time, ultrasonic waves with an output of 40 W were dispersed for 180 seconds.
  • CAA40% measurement method 100 mL of 0.4 N citric acid solution and an appropriate amount (2 mL) of 1% phenolphthalein solution as an indicator are placed in a 200 mL beaker, the liquid temperature is adjusted to 303 K, and a magnetic stirrer is used. 40% final reaction equivalent of magnesium oxide (2.0 g) was added into the citric acid solution while stirring at 700 rpm using was measured.
  • the time (seconds) required for the amount of the citric acid aqueous solution to reach a reaction rate of 10 mol % and 20 mol % was measured.
  • the amount of 0.4N citric acid aqueous solution with a reaction rate of 10 mol% is 5 mL with respect to 400 mg (about 0.1 mol) of the sample powder, and the amount of 0.4N citric acid aqueous solution with a reaction rate of 20 mol% is 10 mL.
  • a silicon steel slab for a grain-oriented electrical steel plate is hot-rolled and cold-rolled by a known method to obtain a final thickness of 0.28 mm. , decarburized and annealed in a wet atmosphere of 25% nitrogen and 75% hydrogen.
  • the composition of the steel sheet before decarburization annealing is, in mass %, C: 0.01%, Si: 3.29%, Mn: 0.09%, Al: 0.03%, S: 0.07%, N : 0.0053%, the balance being unavoidable impurities and Fe.
  • Magnesium oxide was applied onto this steel plate to investigate the coating properties of the forsterite coating.
  • the magnesium oxide of the present invention or the magnesium oxide of the comparative example is made into a slurry, applied to a steel plate so that the weight after drying is 14 g / m 2 , and after drying, it is dried at 1473 K for 20.0 hours.
  • a final finish annealing was performed. After the final annealing was completed, the steel sheet was cooled, washed with water, acid washed with an aqueous solution of hydrochloric acid, washed again with water, and dried to form a forsterite coating on the steel sheet.
  • Example 1 A calcium hydroxide slurry was added to bittern containing magnesium ions at a concentration of 2.0 mol/L so that the concentration of magnesium hydroxide after the reaction was 1.2 mol/L to obtain a mixed solution. The mixture was stirred at 600 rpm and reacted at 323 K for 7.0 hours. Then, it was filtered with a filter press, washed with water, and dried to obtain magnesium hydroxide. This magnesium hydroxide is mixed with zinc chloride (manufactured by Kanto Kagaku, reagent special grade) so that the Zn in the magnesium oxide after firing is 720 ppm, then fired at 1173 K for 0.5 hours in a rotary kiln and then pulverized. A magnesium oxide powder of Example 1 was obtained. The firing was performed under the condition that the CAA of magnesium oxide was 40% in the range of 70 to 90 seconds.
  • Example 2 Magnesium oxide powder was obtained in the same manner as in Example 1, except that zinc chloride (special grade) was mixed so that Zn in the magnesium oxide after firing was 2250 ppm.
  • Example 3 Magnesium oxide powder was obtained in the same manner as in Example 1, except that zinc chloride (special grade) was mixed so that Zn in the magnesium oxide after firing was 4300 ppm.
  • Example 1 Regarding the obtained magnesium oxide powders of Examples 1 to 3 and Comparative Example 1, the components and the like were measured as described above, and the grain-oriented electrical steel sheets obtained using these magnesium oxide powders were evaluated. . Table 1 shows the results. The contents of metal elements other than those shown in the table were at normal impurity levels.
  • the forsterite coating formed using magnesium oxide (Examples 1 to 3) having a value of (T2/T1) of 3.0 or more determined by the pH stat method is (a) coating and (b) the adhesion of the film.
  • the forsterite coating formed using magnesium oxide (Comparative Example 1) having a (T2/T1) value of less than 3.0 determined by the pH stat method has (a) the appearance of the coating, (b) the coating Both adhesiveness was inferior.
  • Example 4 A calcium hydroxide slurry was added to bittern containing magnesium ions at a concentration of 2.0 mol/L so that the concentration of magnesium hydroxide after the reaction was 1.2 mol/L to obtain a mixed solution.
  • Zinc chloride manufactured by Kanto Kagaku, special reagent grade
  • Zinc chloride was mixed with this mixed solution so that the Zn in the magnesium oxide after firing was 8800 ppm, and then the mixed solution was stirred at 600 rpm and reacted at 323 K for 7.0 hours. , then filtered with a filter press, washed with water and dried to obtain magnesium hydroxide.
  • This magnesium hydroxide was calcined in a rotary kiln at 1173 K for 0.5 hour and then pulverized to obtain a magnesium oxide powder of Example 4.
  • the firing was carried out under the condition that the CAA of magnesium oxide was 40% within the range of 70 to 95 seconds.
  • Example 5 Magnesium oxide powder was obtained in the same manner as in Example 4, except that zinc oxide (manufactured by Wako Pure Chemical Industries, reagent special grade) was mixed in place of zinc chloride so that Zn in the magnesium oxide after firing was 5250 ppm. Obtained.
  • Example 6 Magnesium oxide powder was obtained in the same manner as in Example 4, except that zinc chloride was not mixed. , to obtain the desired magnesium oxide powder.
  • Example 2 A magnesium oxide powder was obtained in the same manner as in Example 4, except that zinc chloride (special grade) was mixed so that Zn in the magnesium oxide after firing was 10300 ppm.
  • the magnesium oxide for annealing separator of the present invention can produce a grain-oriented electrical steel sheet having an excellent forsterite coating.
  • magnesium oxide for an annealing separator that can provide grain-oriented electrical steel sheets with excellent coating properties.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Dispersion Chemistry (AREA)
  • Power Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Chemical Treatment Of Metals (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)

Abstract

本発明の目的は、被膜特性に優れた方向性電磁鋼板を得るための焼鈍分離剤用酸化マグネシウムの提供である。 本発明は、CAA40%が50秒以上170秒以下であり、pHスタット法において反応率20mol%に到達するまでの時間(T2)と反応率10mol%に到達するまでの時間(T1)の比(T2/T1)が3.0以上である、焼鈍分離剤用酸化マグネシウムである。

Description

焼鈍分離剤用酸化マグネシウム及び方向性電磁鋼板
 本発明は、焼鈍分離剤用の酸化マグネシウム(MgO)及び方向性電磁鋼板に関する。
 変圧器や発電機に使用される方向性電磁鋼板は、一般に、ケイ素(Si)を約3%含有する珪素鋼を、熱間圧延し、次いで最終板厚に冷間圧延し、次いで脱炭焼鈍、仕上げ焼鈍して、製造される。脱炭焼鈍(一次再結晶焼鈍)では、鋼板表面にSiO被膜を形成し、その表面に焼鈍分離剤用酸化マグネシウムを含むスラリーを塗布して乾燥させ、コイル状に巻取った後、仕上げ焼鈍することにより、SiOとMgOが反応してフォルステライト(MgSiO)被膜が鋼板表面に形成される。このフォルステライト被膜は、鋼板表面に張力を付加し、鉄損を低減して磁気特性を向上させ、また鋼板に絶縁性を付与する役割を果たす。
 このフォルステライト被膜が製品の外観や電気絶縁性の良否を決定し、さらには市場価値を左右する。被膜の生成過程は鋼板表層のインヒビター分解挙動、ひいては2次再結晶に影響する結果として、被膜の良否が製品の磁気特性の良否に影響を与える。さらに、被膜の外観は、方向性電磁鋼板の製品としての最終的な外観を左右する。そのため、被膜の外観は製品価値にも影響を与え、製品歩留まりに及ぼす影響も大きく、被膜が不均一な場合は製品の製造歩止りを低下させる。したがって、かかる被膜の特性を向上させることは方向性電磁鋼板の製造技術において重要な位置をしめている。
 従来、方向性電磁鋼板の特性を向上するために、焼鈍分離剤用酸化マグネシウムについての研究が行われ、品質改善のために、様々な工夫がなされている。
 例えば、フォルステライト被膜は最終仕上げ焼鈍時に形成されることから、このときの被膜形成反応の活性を調節することが重要である。そこで、焼鈍分離剤用酸化マグネシウムの活性度に着目した研究がなされている。従来、酸化マグネシウムの活性度を表す指標のひとつとして、クエン酸活性度(CAA:Citric Acid Activity)を用いた評価が一般的に用いられてきた。CAAは、所定温度(例えば303K)の0.4規定のクエン酸水溶液中に、指示薬フェノールフタレインを混合し、最終反応当量の酸化マグネシウムを投入して攪拌したときの、クエン酸水溶液が中性になるまでの時間で表わされる。このCAAは、方向性電磁鋼板用焼鈍分離剤として使用される酸化マグネシウムの評価指標になり得ることが経験的に知られている。他方、CAAはあくまでMgOと方向性電磁鋼板表面のサブスケールとの反応活性を近似的に表すものであって、ある最終反応率における1点の評価であり、活性度分布の広がりは反映されないことから、例えばCAA40%の値が近しい2種の焼鈍分離剤用酸化マグネシウムであってもその被膜形成能が異なってくる場合があることもよく知られている。
 このため、CAAの活性度分布の広がりも考慮した焼鈍分離剤用酸化マグネシウムが提案されている。例えば、特許文献1及び特許文献2には、CAA40%及びCAA80%の活性度、粒子径又は比表面積などをそれぞれ所定値に限定した焼鈍分離剤用酸化マグネシウムの発明が開示されている。また、更に、特許文献3には、CAA70%、CAA70%とCAA40%との比、粒子径、比表面積などを、それぞれ所定値に限定した方向性電磁鋼板用焼鈍分離剤の発明が開示されている。
特開平06-033138号公報 特開平11-158558号公報 特開平11-269555号公報
 しかしながら、前述した従来の焼鈍分離剤用酸化マグネシウムでは方向性電磁鋼板の被膜不良の発生を完全には防止できておらず、被膜特性に優れた方向性電磁鋼板を安定して得ることができないことから信頼性を欠いていた。すなわち、十分な性能を有する焼鈍分離剤用酸化マグネシウムは未だ見出されていない。
 そこで本発明は、被膜特性に優れた方向性電磁鋼板を得るための焼鈍分離剤用酸化マグネシウムを提供することを目的とする。具体的には、鋼板の表面に被膜の外観、被膜の密着性に優れたフォルステライト被膜を形成することができる焼鈍分離剤用酸化マグネシウムを提供することを目的とする。また、本発明は、上記の焼鈍分離剤用酸化マグネシウムを用いた方向性電磁鋼板の製造方法を提案することを目的とする。
 本発明者らは、上記課題を解決するために、これまで着目されてこなかった焼鈍分離剤用酸化マグネシウム粉末のいわゆる高活性部分に着目して鋭意研究を行うこととし、とくにCAAよりも酸化マグネシウムの高活性部分を厳密に評価可能な方法であるpHスタット法を用いて詳細な検討を行った結果、いわゆる中活性領域の指標とされるCAA40%の値が同程度の酸化マグネシウムの中でも、抑制された初期反応性を有する酸化マグネシウムが、被膜の外観、被膜の密着性に優れた方向性電磁鋼板を得るのにより適した酸化マグネシウムであることを見出し、本発明に至った。
 すなわち、本発明の要旨は、CAA40%が50秒以上170秒以下であり、pHスタット法において反応率20mol%に到達するまでの時間(T2)と反応率10mol%に到達するまでの時間(T1)の比(T2/T1)が3.0以上である、焼鈍分離剤用酸化マグネシウムにある。
 また、本発明には、CAA40%が50秒以上170秒以下であり、pHスタット法において反応率20mol%に到達するまでの時間(T2)と反応率10mol%に到達するまでの時間(T1)の比(T2/T1)が3.0以上11.0未満である、焼鈍分離剤用酸化マグネシウムも含まれる。
 さらに、本発明の焼鈍分離剤用酸化マグネシウムは、BET比表面積が12.0m/g以上30.0m/g以下、Clの含有量が500ppm以下、体積基準の累積50%粒子径(D50)が0.5μm以上7.0μm以下であることが好ましい。BET比表面積、Cl含有量、D50が所定の範囲であることにより、鋼板の表面に被膜の外観、被膜の密着性に優れたフォルステライト被膜を形成することができる焼鈍分離剤用酸化マグネシウムをより確実に得ることができる。
 さらに、本発明の焼鈍分離剤用酸化マグネシウムは、Zn、Zr、Ni、Co、及びMnの合計含有量が200ppm以上10000ppm以下であることが好ましく、Znの含有量が200ppm以上10000ppm以下であることがより好ましい。また、Znの含有量が200ppm以上9000ppm以下であることもより好ましい。上記元素を所定の範囲で含有させることにより、酸化マグネシウムの初期反応性を抑制することができる。これにより、鋼板の表面に被膜の外観、被膜の密着性に優れたフォルステライト被膜を形成することができる焼鈍分離剤用酸化マグネシウムを得ることができる。
 また、本発明の要旨は、上述の焼鈍分離剤用酸化マグネシウムを含む焼鈍分離剤にある。本発明の焼鈍分離剤を用いることにより、磁気特性及び絶縁特性に優れた方向性電磁鋼板を製造することができる。
 また、本発明の要旨は、鋼板表面にSiO被膜を形成する工程と、上述の焼鈍分離剤をSiO被膜の表面に塗布し、焼鈍することにより、鋼板表面にフォルステライト被膜を形成する工程とを含む、方向性電磁鋼板の製造方法にある。本発明の製造方法により、磁気特性及び絶縁特性に優れた方向性電磁鋼板を製造することができる。
 本発明によれば、磁気特性及び絶縁特性に優れた方向性電磁鋼板を得るための焼鈍分離剤用酸化マグネシウムを提供することができる。具体的には、本発明によれば、鋼板の表面に、被膜の外観、被膜の密着性に優れたフォルステライト被膜を形成することができる焼鈍分離剤用酸化マグネシウムを提供することができる。
 本発明の焼鈍分離剤用酸化マグネシウムは、CAA40%が50秒以上170秒以下であり、pHスタット法において反応率20mol%に到達するまでの時間(T2)と反応率10mol%に到達するまでの時間(T1)の比(T2/T1)が3.0以上である。また、比(T2/T1)は、3.0以上11.0未満であることが好ましい。
 本発明の焼鈍分離剤用酸化マグネシウムの初期反応性は、以下のpHスタット法により測定される。従来のCAAによる測定では、活性度の高い領域の測定を精度よく行うことが困難であった。本発明では、pHスタット法を用いており、酸化マグネシウムの初期反応性がより厳密に測定され、制御されている。
 pHスタット法は、アルカリ(本発明において、酸化マグネシウム)と酸(本発明において、クエン酸)との反応の際、pHを所定の値に維持するようにして、酸またはアルカリ溶液の投入量(消費量)、経過時間等を記録・測定するものであり、市販の一般的なpHスタット装置を使用して実施することができる。本発明におけるpHスタット法による測定は以下の通り行う。まず、200mLビーカーに100mLの脱イオン水を入れ、恒温槽にセットし、285Kに保持する。pH電極をセットし、マグネチックスターラーを用いて800rpmで攪拌しながら、秤量した酸化マグネシウム粉末400mgを投入し、すぐに0.4N・クエン酸水溶液の滴下を開始する。滴下開始後、pHを10に維持し、クエン酸水溶液の消費量と経過時間を測定し、反応率10mol%に到達するまでの時間(T1)、反応率20mol%に到達するまでの時間(T2)を求める。ここで、反応率10mol%に到達するまでの時間(T1)は、測定に供した酸化マグネシウムの10mol%に相当する量の酸化マグネシウムとの反応に必要なクエン酸水溶液の滴下に要した時間をいい、反応率20mol%に到達するまでの時間(T2)は、測定に供した酸化マグネシウムの20mol%に相当する量の酸化マグネシウムとの反応に必要なクエン酸水溶液の滴下に要した時間をいう。
 本発明の焼鈍分離剤用酸化マグネシウムは、pHスタット法において反応率20mol%に到達するまでの時間(T2)と反応率10mol%に到達するまでの時間(T1)の比(T2/T1)が3.0以上である。また、好ましくは、3.3以上であり、より好ましくは3.5以上である。また、比(T2/T1)の上限は、例えば、11.0未満であり、好ましくは10.5未満であり、より好ましくは10.0未満である。比(T2/T1)の範囲は、例えば、3.0以上11.0未満であり、好ましくは、3.3以上10.5未満であり、より好ましくは3.5以上10.0未満である。
 T2とT1の比(T2/T1)の値が大きいことは、反応率が10mol%に達した時点から反応率が20mol%に達する時点に至るまでの時間が長いことをあらわし、すなわち酸化マグネシウムの初期反応性が抑制されていることを示す。
 (T2/T1)が、3.0以上である酸化マグネシウムは、初期反応性が十分に抑制されており、鋼板の表面に、被膜の外観、被膜の密着性に優れたフォルステライト被膜を形成することができる。(T2/T1)が、3.0未満である酸化マグネシウムは、初期反応性が十分に抑制されておらず、鋼板の表面に、被膜の外観、被膜の密着性に優れたフォルステライト被膜を形成することができない。一方、(T2/T1)が、11.0以上である酸化マグネシウムは、初期反応性が抑制されすぎており、鋼板の表面に、被膜の外観、被膜の密着性に優れたフォルステライト被膜を形成することができない。
 本発明の焼鈍分離剤用酸化マグネシウムにおいて、(T2/T1)の比は、種々の方法で調整することができ、例えば前駆体水酸化マグネシウムの二次粒子径の調整、前駆体水酸化マグネシウムの焼成条件の調整、金属元素の添加、または複数の酸化マグネシウム粉末を混合することにより(T2/T1)の比を調整するなどの方法があるが、これらに限定されない。例えば、焼鈍分離剤用酸化マグネシウムに金属元素としてZn、Zr、Ni、Co、Mnを所定の範囲で含有させることによって調整を行うことができ、典型的には、一定量のZn、Zr、Ni、Co、Mnを添加することによって(T2/T1)の値が増加するように調整できる。中でも、Znを好ましく用いることで(T2/T1)の比の調整を安定的に行うことができ、典型的には一定量のZnを添加することによって(T2/T1)の値が増加するように調整できる。
 また、上記Zn、Zr、Ni、CoおよびMnの合計含有量は、200ppm~10000ppmであることが望ましい。好ましい含有量としては、例えば、以下が例示できる。好ましくは、250ppm~9500ppmであり、より好ましくは300ppm~9000ppmである。また、好ましくは、250ppm~8000ppmであり、より好ましくは300ppm~6000ppmである。合計含有量が200ppm未満であると、初期反応性は十分に低減せず、(T2/T1)が3.0以上となるような酸化マグネシウムが得られない。合計含有量が10000ppmを超えると、酸化マグネシウムの焼結性や被膜形成、さらには被膜性状に与える影響が大きくなり、被膜不良の原因となる。Zn、Zr、Ni、CoおよびMnの含有量は、公知の方法によって制御可能であり、例えば、後述する微量含有物の量を制御する方法によって制御できる。上記Zn、Zr、Ni、CoおよびMnは、これらの酸化物、水酸化物、塩化物、硫化物、炭酸塩、硫酸塩等の形態で、焼鈍分離剤用酸化マグネシウムの前駆体に添加することができる。とくにZnを添加する場合、塩化亜鉛及び/又は酸化亜鉛を使用することが好ましい。なお、明細書中ppmとは、特に断りのない限り、質量ppmを意味する。
 なお、T1の値は、850秒以上が好ましく、870秒以上がより好ましく、890秒以上がさらに好ましい。また、5000秒以下が好ましく、4800秒以下がより好ましく、4500秒以下がさらに好ましい。範囲としては、850~5000秒が好ましく、870~4800秒がより好ましく、890~4500秒がさらに好ましい。T1の値が850秒より小さいと、ごく初期の反応性が高すぎて鋼板の表面に、被膜の外観、被膜の密着性に優れたフォルステライト被膜を形成することができない。一方で、T1の値が5000秒より大きいと、ごく初期の反応性が低すぎて、鋼板の表面に、被膜の外観、被膜の密着性に優れたフォルステライト被膜を形成することができない。
 CAAは固相-液相反応により、実際の電磁鋼板の表面で起こる二酸化ケイ素と酸化マグネシウムとの固相-固相反応の反応性を、経験的にシミュレートしており、一次粒子を含む酸化マグネシウム粒子の反応性を測定するものである。なかでも、前述のとおり、CAA40%は中活性領域の指標として用いられている。酸化マグネシウムのCAA40%が170秒より大きければ、酸化マグネシウム粒子の反応性が悪く、フォルステライト被膜形成速度が遅くなることから、十分な被膜が形成されず、方向性電磁鋼板の鉄損及び磁束密度の特性が悪くなる。他方、酸化マグネシウムのCAA40%が50秒未満であれば、酸化マグネシウム粒子の反応性が速くなりすぎ、均一なフォルステライト被膜ができなくなり、方向性電磁鋼板の被膜の外観、被膜の密着性が悪くなる。すなわち、CAA40%は50秒未満では水和量が大きくなりすぎ、一方170秒を超えると反応性が低すぎて、いずれの場合も良好な被膜特性が得られない。よって、本発明においてCAA40%は、50秒以上170秒以下であり、好ましくは50~150秒の範囲、より好ましくは60~130秒の範囲とする。
 本発明の酸化マグネシウムのBET比表面積は12.0m/g以上30.0m/g以下であることが好ましく、12.0m/g以上23.0m/g以下であることがより好ましい。酸化マグネシウムのBET比表面積が12.0m/g未満の場合、酸化マグネシウムの一次粒子径が粗大になり、酸化マグネシウム粒子の反応性が悪くなって、フォルステライト被膜生成率が低下し、また酸化マグネシウムの粒子が粗大なため、酸で除去した際の残留物が残りやすくなる。酸化マグネシウムのBET比表面積が30.0m/gより大きくなると、酸化マグネシウムの一次粒子径が小さくなり、酸化マグネシウム粒子の反応性が速くなりすぎて、均一なフォルステライト被膜ができにくくなる傾向がある。
 体積基準の累積50%粒子径(D50)は0.5μm以上7.0μm以下が好ましい。体積基準の累積50%粒子径(D50)が0.5μmより小さいと、活性が高く、粉体の初期反応性を抑制することが困難となりやすい。体積基準の累積50%粒子径(D50)が7.0μmを超えると、酸化マグネシウムの一次粒子径が粗大になり、酸化マグネシウム粒子の反応性が悪くなるため、フォルステライト被膜形成速度が遅くなり、十分な被膜が形成されにくくなる。より好ましいD50は0.7μm以上6.0μm以下であり、さらに好ましくは1.0μm以上5.0μm以下である。
 本発明の酸化マグネシウムは、前述の亜鉛(Zn)、ジルコニウム(Zr)、ニッケル(Ni)、コバルト(Co)、マンガン(Mn)の他、例えば、カルシウム(Ca)、珪素(Si)、アルミニウム(Al)、鉄(Fe)、リン(P)、ホウ素(B)、硫黄(S)、フッ素(F)、及び塩素(Cl)等の微量含有物を含むことができる。
 本発明の酸化マグネシウムがカルシウム(Ca)を含む場合、カルシウムの含有量は、CaO換算で0.2~2.0質量%であることが好ましい。本発明の酸化マグネシウムが珪素(Si)を含む場合、珪素の含有量は、0.05~0.5質量%であることが好ましい。本発明の酸化マグネシウムがアルミニウム(Al)を含む場合、アルミニウムの含有量は、0.01~0.5質量%であることが好ましい。本発明の酸化マグネシウムが鉄(Fe)を含む場合、鉄の含有量は、0.01~0.5質量%であることが好ましい。本発明の酸化マグネシウムがリン(P)を含む場合、リンの含有量は、P換算で0.01~0.15質量%であることが好ましい。本発明の酸化マグネシウムがホウ素(B)を含む場合、ホウ素の含有量は、0.04~0.15質量%であることが好ましい。本発明の酸化マグネシウムが硫黄(S)を含む場合、硫黄の含有量は、SO換算で0.01~1.5質量%であることが好ましい。本発明の酸化マグネシウムがフッ素(F)を含む場合、フッ素の含有量は、0.05質量%以下であることが好ましい。本発明の酸化マグネシウムが塩素(Cl)を含む場合、塩素の含有量は、500ppm以下であることが好ましく、400ppm以下がより好ましく、300ppm以下がさらに好ましい。
 本発明において、酸化マグネシウムの製造方法は公知の方法を用いることができる。例えば、原料として塩化マグネシウムを用い、この水溶液に水酸化カルシウムをスラリーの状態で添加し反応させ、水酸化マグネシウムを形成する。次いで、この水酸化マグネシウムを、ろ過、水洗、乾燥させた後、加熱炉で焼成し、酸化マグネシウムを形成し、これを所望の粒径まで粉砕して、製造することができる。
 また、水酸化カルシウムの代わりに、水酸化ナトリウム、水酸化カリウム等の水酸基を有するアルカリ性化合物を用いることもできる。また、海水、潅水、苦汁等のような塩化マグネシウム含有水溶液を反応器に導入し、1773~2273Kで直接酸化マグネシウムと塩酸を生成させるアマン法(Aman process)により酸化マグネシウムを生成させ、これを所望の粒径まで粉砕して、酸化マグネシウムを製造することができる。
 更に、鉱物マグネサイトを焼成して得た酸化マグネシウムを、水和させ、得られた水酸化マグネシウムを焼成し、これを所望の粒径まで粉砕して、酸化マグネシウムを製造することもできる。
 MgO中の微量含有物の量は、公知の方法により制御できる。MgO中の微量含有物の量を制御する方法としては、例えば、MgO中の微量含有物の量が所定の範囲となるように、粗生成物の製造工程中に、又は得られた粗生成物の微量含有物量を最終焼成前に制御することにより行うことができる。粗生成物の製造工程中での制御は、例えば、原料に含まれる微量含有物の量を分析し、その結果を踏まえ、制御する対象の微量含有物が所定量となるように、湿式又は乾式で添加するか、湿式で除去することにより制御することができる。微量含有物の添加は、例えば、添加する元素を混合し、乾燥させることにより行うことができる。また、微量含有物の除去は、例えば、湿式で過剰な含有物を物理的に洗浄するか、化学的に分離することにより行うことができる。化学的な分離は、例えば、可溶性の水和物を形成させて、溶解させ、ろ過し、洗浄して分離するか、又は不溶性の化合物を形成させて、析出させ、析出物を吸着して分離することにより行うことができる。最終焼成前での粗生成物の微量含有物量の制御は、例えば、異なる組成を有する粗生成物を組み合わせて混合することで、微量含有物が所定の範囲となるように微量元素の量の過不足を調整し、これを最終焼成することにより制御できる。更に、微量含有元素の量を制御するため、いずれの場合も、粗生成物MgOを製造し、得られたMgOを分析した後、微量含有元素の量に関する個々の結果に応じて、上記の手順を繰り返し、組み合わせることができる。また、最終焼成後のMgOに対象の微量含有物を混合する方法によっても、MgO中の微量含有物の量を制御できる。
 酸化マグネシウムのD50、BET比表面積及びCAA40%は、公知の方法により調整でき、例えば、次のような方法により行うことができる。すなわち、水酸化マグネシウムの製造工程中の反応温度及びアルカリ源の濃度を調整することにより、水酸化マグネシウムの一次粒子径及び二次粒子径を制御し、酸化マグネシウムのD50、BET比表面積及びCAA40%を調整することができる。また、粒子径を制御した水酸化マグネシウムの焼成温度及び時間を制御することによっても、酸化マグネシウムのD50、BET比表面積及びCAA40%を調整することができる。また、D50、BET比表面積及びCAA40%の調整方法として、粉砕後のD50、BET比表面積及びCAA40%を測定し、複数回焼成を行うことでも調整することができる。更に、焼成した酸化マグネシウムを、ジョークラッシャー、ジャイレトリークラッシャー、コーンクラッシャー、インパクトクラッシャー、ロールクラッシャー、カッターミル、スタンプミル、リングミル、ローラーミル、ジェットミル、ハンマーミル、ピンミル、回転ミル、振動ミル、遊星ミル、ボールミル等の粉砕機を使用して粉砕することによっても、酸化マグネシウムの粉砕後のD50、BET比表面積及びCAA40%を調整することができる。また、D50、BET比表面積及びCAA40%の調整方法として、粉砕後のD50、BET比表面積及びCAA40%を測定し、複数回粉砕を行うことでも調整することができる。また、分級機を内蔵した粉砕機を用いても酸化マグネシウムのD50、BET比表面積及びCAA40%を調整することができる。また、複数の酸化マグネシウム粉末を組み合わせて、それらを混合することによっても、D50、BET比表面積及びCAA40%の調整することができる。
 本発明の方向性電磁鋼板は、例えば、下記のような方法で製造することができる。方向性電磁鋼板はSi 2.5~4.5%を含有するケイ素鋼スラブを熱間圧延し、酸洗後、冷間圧延を行うか、中間焼鈍をはさむ2回冷間圧延を行って、所定の板厚に調整する。次に、冷間圧延したコイルを923~1173Kの湿潤水素雰囲気中で、脱炭を兼ねた再結晶焼鈍を行い、このとき鋼板表面にシリカ(SiO)を主成分とする酸化被膜を形成させる。本発明の焼鈍分離剤用酸化マグネシウムを含む焼鈍分離剤を水に均一に分散させ、水スラリーを得て、この鋼板上に、水スラリーを、ロールコーティング又はスプレーを用いて連続的に塗布し、約573Kで乾燥させる。こうして処理された鋼板コイルを、例えば、1473Kで20時間の最終仕上げ焼鈍を行って、鋼板表面にフォルステライト被膜(MgSiO)を形成する。フォルステライト被膜は、絶縁被膜であるとともに、鋼板表面に張力を付与して、方向性電磁鋼板の鉄損値を向上させることができる。
 下記の実施例により本発明を詳細に説明するが、これらの実施例は本発明をいかなる意味においても制限するものではない。
<測定方法・試験方法>
(1)金属元素の含有量の測定方法
 測定試料を完全に酸溶解させた後、超純水で希釈し、ICP発光分光分析装置(PS3520 VDD 株式会社日立ハイテクサイエンス製)を用いて、試料中の金属元素の含有量を測定した。
(2)塩素(Cl)の含有量の測定方法
 測定試料を硝酸に溶解した後、超純水で希釈し、分光光度計(UV-2550 島津製作所製)を用いて質量を測定することで、試料中の塩素(Cl)濃度を算出した。
(3)BET比表面積の測定方法
 比表面積測定装置(商品名:Macsorb、Mountech Co., Ltd.製)を使用して、ガス吸着法(BET法)によりBET比表面積を測定した。
(4)体積基準の累積50%粒子径(D50)の測定方法
 測定試料をメタノールに分散し、レーザー回折散乱式粒子径分布測定装置(MT3300EX-II LEEDS & NORTHRUP製)を用いて、試料の体積基準の累積50%粒子径(D50)を測定した。その際、出力40Wの超音波で180秒間分散した。
(5)CAA40%の測定方法
 0.4Nのクエン酸溶液100mLと、指示薬として適量(2mL)の1%フェノールフタレイン液とを、200mLビーカーに入れ、液温を303Kに調整し、マグネチックスターラーを使用して700rpmで攪拌しながら、クエン酸溶液中に40%の最終反応当量の酸化マグネシウム(2.0g)を投入して、最終反応までの時間、つまりクエン酸が消費され溶液が中性となるまでの時間を測定した。
(6)初期反応性評価(pHスタット法)
 初期反応性は市販のpHスタット装置(東亜ディーケーケー株式会社製自動滴定装置:AUT-701)を用いて、pHスタット法で評価した。具体的には、まず、200mLビーカーに100mLの脱イオン水を入れ、恒温槽にセットし、285Kに保持した。pH電極をセットし、マグネチックスターラーを用いて800rpmで攪拌しながら、秤量した試料粉末400mgを投入し、すぐに0.4N・クエン酸水溶液の滴下を開始した。滴下開始後、pHを10に維持しつつ、反応率が10mol%及び20mol%となる量のクエン酸水溶液が消費されるのに要した時間(秒)を測定した。本測定条件の場合、試料粉末400mg(約0.1mol)に対して、反応率10mol%となる0.4N・クエン酸水溶液の量は5mL、反応率20mol%となる0.4N・クエン酸水溶液の量は10mLである。
(7)試験用鋼板の作成
 試験試料供試鋼として、方向性電磁鋼板用の珪素鋼スラブを、公知の方法で熱間圧延、冷間圧延を行って、最終板厚0.28mmとし、更に、窒素25%+水素75%の湿潤雰囲気中で脱炭焼鈍した鋼板を用いた。脱炭焼鈍前の鋼板の組成は、質量%で、C:0.01%、Si:3.29%、Mn:0.09%、Al:0.03%、S:0.07%、N:0.0053%、残部は不可避的な不純物とFeである。この鋼板上に酸化マグネシウムを塗布して、フォルステライト被膜の被膜特性を調査した。
 具体的には、本発明の酸化マグネシウム又は比較例の酸化マグネシウムをスラリー状にして、乾燥後の重量で14g/mになるように鋼板に塗布し、乾燥後、1473Kで20.0時間の最終仕上げ焼鈍を行った。最終仕上げ焼鈍が終了したのち冷却し、鋼板を水洗し、塩酸水溶液で酸洗浄した後、再度水洗して、乾燥させ、鋼板上にフォルステライト被膜を形成させた。
(8)フォルステライト被膜外観の評価
 フォルステライト被膜の外観は、洗浄後の被膜の外観から判断した。すなわち、灰色のフォルステライト被膜が、均一に厚く形成されている場合を◎、被膜が均一であるがやや薄く形成されている場合を○、被膜が不均一で薄いが、下地の鋼板が露出している部分がない場合、もしくは被膜が不均一で非常に薄く、下地の鋼板が明らかに露出した部分がある場合を×とした。
(9)フォルステライト被膜の密着性の評価
 フォルステライト被膜の密着性は、被膜状態から判断した。すなわち、被膜が均一に形成され、剥離部位が存在しない場合、もしくは被膜が僅かに不均一であるが、剥離部分が存在しない場合を○、被膜が不均一で、ピンホール状の剥離部位が存在する場合、もしくは被膜が不均一で、明確な剥離部位が存在する場合を×とした。
<実施例1>
 濃度2.0mol/Lのマグネシウムイオンを含む苦汁に、水酸化カルシウムスラリーを、反応後の水酸化マグネシウム濃度が1.2mol/Lになるように添加し、混合液を得た。混合液を600rpmで攪拌しながら323Kにて7.0時間反応させた。その後、フィルタープレスで濾過し、水洗し、乾燥して水酸化マグネシウムを得た。この水酸化マグネシウムに、塩化亜鉛(関東化学製、試薬特級)を焼成後の酸化マグネシウム中のZnが720ppmとなるように混合した後、ロータリーキルンにより1173Kで0.5時間焼成したのち粉砕し、実施例1の酸化マグネシウム粉末を得た。なお、焼成は、酸化マグネシウムのCAA40%が70~90秒の範囲となる条件で行った。
<実施例2>
 塩化亜鉛(特級)を焼成後の酸化マグネシウム中のZnが2250ppmとなるように混合した以外は、実施例1と同様にして、酸化マグネシウム粉末を得た。
<実施例3>
 塩化亜鉛(特級)を焼成後の酸化マグネシウム中のZnが4300ppmとなるように混合した以外は、実施例1と同様にして、酸化マグネシウム粉末を得た。
<比較例1>
 塩化亜鉛(特級)を混合しなかった以外は、実施例1と同様にして、酸化マグネシウム粉末を得た。
 得られた実施例1~3及び比較例1の酸化マグネシウム粉末について、上記のとおり、含有成分等の測定を行い、また、これら酸化マグネシウム粉末を用いて得た方向性電磁鋼板の評価を実施した。結果を表1に示す。なお、表に示す以外の金属元素については、通常の不純物レベルの含有量であった。
Figure JPOXMLDOC01-appb-T000001
 表1から明らかなように、pHスタット法により求めた(T2/T1)の値が3.0以上の酸化マグネシウム(実施例1~3)を用いて形成したフォルステライト被膜は、(a)被膜の外観、(b)被膜の密着性について優れていることが明らかとなった。一方、pHスタット法により求めた(T2/T1)の値が3.0未満の酸化マグネシウム(比較例1)を用いて形成したフォルステライト被膜は、(a)被膜の外観、(b)被膜の密着性ともに劣っていた。
<実施例4>
 濃度2.0mol/Lのマグネシウムイオンを含む苦汁に、水酸化カルシウムスラリーを、反応後の水酸化マグネシウム濃度が1.2mol/Lになるように添加し、混合液を得た。この混合液に塩化亜鉛(関東化学製、試薬特級)を焼成後の酸化マグネシウム中のZnが8800ppmとなるように混合した後、混合液を600rpmで攪拌しながら323Kにて7.0時間反応させ、その後フィルタープレスで濾過し、水洗し、乾燥して水酸化マグネシウムを得た。この水酸化マグネシウムをロータリーキルンにより1173Kで0.5時間焼成したのち粉砕し、実施例4の酸化マグネシウム粉末を得た。なお、焼成は、酸化マグネシウムのCAA40%が70~95秒の範囲となる条件で行った。
<実施例5>
 塩化亜鉛に代えて、酸化亜鉛(和光純薬製、試薬特級)を、焼成後の酸化マグネシウム中のZnが5250ppmとなるように混合した以外は、実施例4と同様にして、酸化マグネシウム粉末を得た。
<実施例6>
 塩化亜鉛を混合しなかった以外は、実施例4と同様にして、酸化マグネシウム粉末を得て、これにZnが5150ppmとなるように酸化亜鉛(和光純薬製、試薬特級)を混合することで、目的の酸化マグネシウム粉末を得た。
<比較例2>
 塩化亜鉛(特級)を焼成後の酸化マグネシウム中のZnが10300ppmとなるように混合した以外は、実施例4と同様にして、酸化マグネシウム粉末を得た。
 得られた実施例4~6及び比較例2の酸化マグネシウム粉末について、上記のとおり、含有成分等の測定を行い、また、これら酸化マグネシウム粉末を用いて得た方向性電磁鋼板の評価を実施した。結果を表2に示す。なお、表に示す以外の金属元素については、通常の不純物レベルの含有量であった。
Figure JPOXMLDOC01-appb-T000002
 表1および表2から明らかなように、pHスタット法により求めた(T2/T1)の値が3.0以上11.0未満の酸化マグネシウム(実施例1~6)を用いて形成したフォルステライト被膜は、(a)被膜の外観、(b)被膜の密着性について優れていることが明らかとなった。一方、pHスタット法により求めた(T2/T1)の値が3.0未満の酸化マグネシウム(比較例1)を用いて形成したフォルステライト被膜、及び(T2/T1)の値が11.0以上の酸化マグネシウム(比較例2)を用いて形成したフォルステライト被膜は、(a)被膜の外観、(b)被膜の密着性ともに劣っていた。
 以上のことから、本発明の焼鈍分離剤用酸化マグネシウムによれば、優れたフォルステライト被膜を有する方向性電磁鋼板を製造することができることが明らかとなった。
 本発明によれば、被膜特性に優れた方向性電磁鋼板を提供することができる焼鈍分離剤用酸化マグネシウムを提供できる。

Claims (7)

  1.  CAA40%が50秒以上170秒以下であり、pHスタット法において反応率20mol%に到達するまでの時間(T2)と反応率10mol%に到達するまでの時間(T1)の比(T2/T1)が3.0以上である、焼鈍分離剤用酸化マグネシウム。
  2.  比(T2/T1)が3.0以上11.0未満である、請求項1に記載の焼鈍分離剤用酸化マグネシウム。
  3.  BET比表面積が12.0m/g以上30.0m/g以下、Clの含有量が500ppm以下、体積基準の累積50%粒子径(D50)が0.5μm以上7.0μm以下である、請求項1または2に記載の焼鈍分離剤用酸化マグネシウム。
  4.  Zn、Zr、Ni、Co、及びMnの合計含有量が200ppm以上10000ppm以下である、請求項1~3のいずれか一項に記載の焼鈍分離剤用酸化マグネシウム。
  5.  Znの含有量が200ppm以上10000ppm以下である、請求項1~3のいずれか一項に記載の焼鈍分離剤用酸化マグネシウム。
  6.  請求項1~5のいずれか一項に記載の焼鈍分離剤用酸化マグネシウムを含む焼鈍分離剤。
  7.  鋼板表面にSiO被膜を形成する工程と、
     請求項6に記載の焼鈍分離剤をSiO被膜の表面に塗布し、焼鈍することにより、鋼板表面にフォルステライト被膜を形成する工程と
    を含む、方向性電磁鋼板の製造方法。
PCT/JP2022/016406 2021-03-31 2022-03-31 焼鈍分離剤用酸化マグネシウム及び方向性電磁鋼板 WO2022211001A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202280025229.3A CN117083396A (zh) 2021-03-31 2022-03-31 退火分离剂用氧化镁和取向性电工钢
JP2022542043A JP7181441B1 (ja) 2021-03-31 2022-03-31 焼鈍分離剤用酸化マグネシウム及び方向性電磁鋼板
KR1020237034051A KR20230163429A (ko) 2021-03-31 2022-03-31 소둔 분리제용 산화마그네슘 및 방향성 전자강판

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021060801 2021-03-31
JP2021-060801 2021-03-31

Publications (1)

Publication Number Publication Date
WO2022211001A1 true WO2022211001A1 (ja) 2022-10-06

Family

ID=83456538

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/016406 WO2022211001A1 (ja) 2021-03-31 2022-03-31 焼鈍分離剤用酸化マグネシウム及び方向性電磁鋼板

Country Status (4)

Country Link
JP (1) JP7181441B1 (ja)
KR (1) KR20230163429A (ja)
CN (1) CN117083396A (ja)
WO (1) WO2022211001A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118086643A (zh) * 2023-11-29 2024-05-28 世拓拉斯控股公司 退火分离剂用的氧化镁、其制造方法和使用其的取向性电磁钢板的制造方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5315205A (en) * 1976-07-29 1978-02-10 Nippon Steel Corp Annealing separating agent and iron loss improving method in unidirectional silicon steel sheet
JPH06101059A (ja) * 1992-09-18 1994-04-12 Nippon Steel Corp 均一な高張力グラス被膜と優れた磁気特性を得るための方向性電磁鋼板用焼鈍分離剤
JP2002309378A (ja) * 2001-04-11 2002-10-23 Nippon Steel Corp 焼鈍分離剤、及び、グラス被膜の優れる方向性電磁鋼板の製造方法
JP2005171387A (ja) * 2004-12-22 2005-06-30 Jfe Steel Kk 焼鈍分離剤用のMgOの製造方法
WO2008047999A1 (en) * 2006-10-18 2008-04-24 Posco Annealing separating agent for grain oriented electrical steel sheet having uniform glass film and excellent magnetic properties and method of manufacturig the same
JP2008260668A (ja) * 2007-04-13 2008-10-30 Jfe Steel Kk 焼鈍分離剤用のマグネシアおよび方向性電磁鋼板の製造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2650817B2 (ja) 1992-07-20 1997-09-10 川崎製鉄株式会社 被膜特性及び磁気特性に優れた一方向性けい素鋼板の製造方法
JP4192282B2 (ja) 1997-12-01 2008-12-10 Jfeスチール株式会社 焼鈍分離剤用MgOの製造方法
JP3650525B2 (ja) 1998-03-25 2005-05-18 新日本製鐵株式会社 方向性電磁鋼板の焼鈍分離剤およびグラス被膜と磁気特性の優れた方向性電磁鋼板の製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5315205A (en) * 1976-07-29 1978-02-10 Nippon Steel Corp Annealing separating agent and iron loss improving method in unidirectional silicon steel sheet
JPH06101059A (ja) * 1992-09-18 1994-04-12 Nippon Steel Corp 均一な高張力グラス被膜と優れた磁気特性を得るための方向性電磁鋼板用焼鈍分離剤
JP2002309378A (ja) * 2001-04-11 2002-10-23 Nippon Steel Corp 焼鈍分離剤、及び、グラス被膜の優れる方向性電磁鋼板の製造方法
JP2005171387A (ja) * 2004-12-22 2005-06-30 Jfe Steel Kk 焼鈍分離剤用のMgOの製造方法
WO2008047999A1 (en) * 2006-10-18 2008-04-24 Posco Annealing separating agent for grain oriented electrical steel sheet having uniform glass film and excellent magnetic properties and method of manufacturig the same
JP2008260668A (ja) * 2007-04-13 2008-10-30 Jfe Steel Kk 焼鈍分離剤用のマグネシアおよび方向性電磁鋼板の製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118086643A (zh) * 2023-11-29 2024-05-28 世拓拉斯控股公司 退火分离剂用的氧化镁、其制造方法和使用其的取向性电磁钢板的制造方法

Also Published As

Publication number Publication date
JP7181441B1 (ja) 2022-11-30
CN117083396A (zh) 2023-11-17
KR20230163429A (ko) 2023-11-30
JPWO2022211001A1 (ja) 2022-10-06

Similar Documents

Publication Publication Date Title
JP7454334B2 (ja) 焼鈍分離剤用の酸化マグネシウム及び方向性電磁鋼板の製造方法
EP3438291B1 (en) Magnesium oxide for annealing separator, and grain-oriented electromagnetic steel sheet
US11591232B2 (en) Magnesium oxide for annealing separators, and grain-oriented magnetic steel sheet
JP6472767B2 (ja) 焼鈍分離剤用酸化マグネシウム及び方向性電磁鋼板
JP7181441B1 (ja) 焼鈍分離剤用酸化マグネシウム及び方向性電磁鋼板
JP2004238668A (ja) 焼鈍分離剤用酸化マグネシウム及び方向性電磁鋼板
JP7454335B2 (ja) 焼鈍分離剤用の酸化マグネシウム及び方向性電磁鋼板の製造方法
JP7328777B2 (ja) チタン酸マグネシウムを含有する焼鈍分離剤用酸化マグネシウム、その製造方法、焼鈍分離剤及び方向性電磁鋼板
US11001907B2 (en) Magnesium oxide for annealing separators, and grain-oriented magnetic steel sheet
JP7360572B1 (ja) 焼鈍分離剤用酸化マグネシウム及び方向性電磁鋼板

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022542043

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22781211

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280025229.3

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 20237034051

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22781211

Country of ref document: EP

Kind code of ref document: A1