WO2022210864A1 - 無方向性電磁鋼板、無方向性電磁鋼板の製造方法、電動機および電動機の製造方法 - Google Patents

無方向性電磁鋼板、無方向性電磁鋼板の製造方法、電動機および電動機の製造方法 Download PDF

Info

Publication number
WO2022210864A1
WO2022210864A1 PCT/JP2022/015920 JP2022015920W WO2022210864A1 WO 2022210864 A1 WO2022210864 A1 WO 2022210864A1 JP 2022015920 W JP2022015920 W JP 2022015920W WO 2022210864 A1 WO2022210864 A1 WO 2022210864A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel sheet
hot
oriented electrical
less
content
Prior art date
Application number
PCT/JP2022/015920
Other languages
English (en)
French (fr)
Inventor
義顕 名取
裕義 屋鋪
美菜子 福地
和年 竹田
Original Assignee
日本製鉄株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本製鉄株式会社 filed Critical 日本製鉄株式会社
Priority to BR112023019274A priority Critical patent/BR112023019274A2/pt
Priority to US18/281,171 priority patent/US20240039347A1/en
Priority to KR1020237032178A priority patent/KR20230140602A/ko
Priority to CN202280024571.1A priority patent/CN117157420A/zh
Priority to EP22781074.4A priority patent/EP4317473A1/en
Priority to JP2022545038A priority patent/JP7231115B2/ja
Publication of WO2022210864A1 publication Critical patent/WO2022210864A1/ja

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/02Details of the magnetic circuit characterised by the magnetic material
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/004Very low carbon steels, i.e. having a carbon content of less than 0,01%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/22Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1222Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1233Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1261Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1272Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1277Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a particular surface treatment
    • C21D8/1283Application of a separating or insulating coating
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/0068Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for particular articles not mentioned below
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/008Ferrous alloys, e.g. steel alloys containing tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/20Ferrous alloys, e.g. steel alloys containing chromium with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/30Ferrous alloys, e.g. steel alloys containing chromium with cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/34Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/52Ferrous alloys, e.g. steel alloys containing chromium with nickel with cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/14766Fe-Si based alloys
    • H01F1/14775Fe-Si based alloys in the form of sheets
    • H01F1/14783Fe-Si based alloys in the form of sheets with insulating coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/16Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of sheets
    • H01F1/18Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of sheets with insulating coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0206Manufacturing of magnetic cores by mechanical means
    • H01F41/0233Manufacturing of magnetic circuits made from sheets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/02Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/12Impregnating, heating or drying of windings, stators, rotors or machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/22Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length
    • B21B2001/221Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length by cold-rolling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/22Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length
    • B21B2001/225Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length by hot-rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/74Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material
    • C21D1/76Adjusting the composition of the atmosphere

Definitions

  • the present invention relates to a non-oriented electrical steel sheet, a method for manufacturing a non-oriented electrical steel sheet, an electric motor, and a method for manufacturing an electric motor.
  • the core of the electric motor is constructed by cutting out a circular member (plate piece) from a non-oriented electromagnetic steel sheet, and stacking and integrating the multiple plate pieces after cutting.
  • the core consists of a stator core and a rotor core. In recent years, in order to reduce the size and improve the performance of equipment, it has become important to reduce the core loss of the stator core and increase the strength of the rotor core so that it can withstand high-speed rotation.
  • a punching method that uses a punch and a die is mainly used when cutting out core pieces from non-oriented electrical steel sheets. It is known that the working strain introduced into the plate during punching deteriorates the iron loss of the core. In order to release this processing strain, heat treatment (strain relief annealing or core annealing) is performed on each plate piece or a core in which plate pieces are laminated. By carrying out the stress relief annealing, the working strain of the steel sheet is released, or the crystal grains are further coarsened, so that the iron loss of the motor core is also reduced.
  • the stress relief annealing may be applied to the entire core, it is possible to apply the stress relief annealing only to the stator core, so that a high-strength rotor and a low core loss stator can be produced separately from the same non-oriented electrical steel sheet.
  • a stator core for a motor that suppresses a decrease in iron loss and has excellent corrosion resistance is made of a non-oriented electrical steel sheet, the non-oriented electrical steel sheet containing C: 0 to 0.005%, Si : 1.5-5.0%, Mn: 0.1-3.0%, Al: 0-0.005%, P: 0.03-0.15%, S: 0-0.005%, N: 0 to 0.005%, Sn: 0 to 0.01%, the balance consisting of iron and impurities, Fe peak height Fe700 at 700 eV when the grain boundary is measured by Auger electron spectroscopy and the peak height P120 of P at 120 eV, the ratio P120/Fe700 is less than 0.020.
  • the present invention has been made in view of the above circumstances, and provides a non-oriented electrical steel sheet having high strength and excellent impact resistance, a method for manufacturing a non-oriented electrical steel sheet, an electric motor, and a method for manufacturing an electric motor.
  • the challenge is to
  • the present inventors diligently investigated the relationship between the increase in the strength of non-oriented electrical steel sheets and the decrease in impact resistance using impact tests on laminated blocks, which will be described later.
  • the P concentration at the grain boundaries is often high. It was found that there is a correlation between the decrease in sex. The reason why impact resistance is lowered when the strength of the non-oriented electrical steel sheet is increased is considered as follows.
  • Si which has a high solid-solution strengthening ability.
  • Si and P have a repulsive interaction, and as a result, grain boundary segregation of P is promoted.
  • the present inventors diligently studied a method for reducing the grain boundary segregation of P in a non-oriented electrical steel sheet with a tensile strength of 550 MPa or more. They also found that the grain boundary segregation of P can be reduced by appropriately controlling the chemical composition and manufacturing method of the non-oriented electrical steel sheet.
  • the present invention has been further studied, and the gist thereof is as follows.
  • the chemical composition of the base material is, in mass%, C: 0.0010 to 0.0040%, Si: 3.2 to 4.5%, sol. Al: 0.2 to 2.0%, Mn: 0.1-3.5%, P: more than 0%, 0.10% or less, S: 0 to 0.0030%, N: 0 to 0.0030%, Ti: 0 to 0.0030%, Mo: 0.0010 to 0.1000%, Cr: 0 to 0.10%, B: 0 to 0.0010%, Ni: 0 to 0.50%, Cu: 0-0.50%, Sn: 0 to 0.2000%, Sb: 0 to 0.2000%, Ca: 0 to 0.0050%, Zn: 0 to 0.0050%, La: 0 to 0.0050%, Ce: 0 to 0.0050%, O: 0 to 0.1000%, V: 0 to 0.1000%, W: 0 to 0.1000%, Zr: 0 to 0.1000%,
  • the non-oriented electrical steel sheet of (1) or (2) above may have an insulating coating on the surface of the base material.
  • a method for manufacturing a non-oriented electrical steel sheet according to a second embodiment of the present invention is a method for manufacturing the non-oriented electrical steel sheet described in (1) or (2) above, wherein A hot-rolling step of hot-rolling a steel slab having the chemical composition according to (2) to obtain a hot-rolled steel sheet, a coiling step of winding and cooling the hot-rolled steel sheet, and a cold-rolling of the hot-rolled steel sheet after cooling. A cold-rolling step of rolling to obtain a cold-rolled steel sheet, and a finish-annealing step of finish-annealing the cold-rolled steel sheet.
  • Lengthen the residence time in the temperature range of ⁇ 200°C Lengthen the residence time in the temperature range of ⁇ 200°C, set the residence time in the temperature range of 500 to 200°C to 100 seconds or more, set the maximum temperature to less than 900°C in the finish annealing step, and set the temperature to 700 to 500°C in the cooling process.
  • the average cooling rate in the °C region is set to 20°C/sec or higher.
  • a method for manufacturing a non-oriented electrical steel sheet according to a third embodiment of the present invention is a method for manufacturing the non-oriented electrical steel sheet described in (1) or (2) above, (2) A method for producing a non-oriented electrical steel sheet, comprising a step of hot-rolling a steel slab having the chemical composition described in (1) or (2) to obtain a hot-rolled steel sheet; A coiling step of winding and cooling, a hot-rolled sheet annealing step of heating and cooling the hot-rolled steel sheet after cooling, and cold-rolling the hot-rolled steel sheet after the hot-rolled sheet annealing process to obtain a cold-rolled steel sheet.
  • a process comprising a finish annealing step of finish annealing the cold-rolled steel sheet, and in cooling the hot-rolled steel sheet in the hot-rolled sheet annealing step, the temperature range is 500 to 200 ° C. than the residence time in the temperature range of 700 to 500 ° C. and the residence time in the temperature range of 500 to 200 ° C. is set to 10 seconds or more, the maximum temperature in the finish annealing step is less than 900 ° C., and the average cooling in the cooling process is in the range of 700 to 500 ° C.
  • the speed is set to 20° C./sec or more.
  • An electric motor is an electric motor including a stator core,
  • the chemical composition of the stator core is, in mass %, C: 0.0010 to 0.0040%, Si: 3.2 to 4.5%, sol. Al: 0.2 to 2.0%, Mn: 0.1-3.5%, P: more than 0%, 0.10% or less, S: 0 to 0.0030%, N: 0 to 0.0030%, Ti: 0 to 0.0030%, Mo: 0.0010 to 0.1000%, Cr: 0 to 0.10%, B: 0 to 0.0010%, Ni: 0 to 0.50%, Cu: 0-0.50%, Sn: 0 to 0.2000%, Sb: 0 to 0.2000%, Ca: 0 to 0.0050%, Zn: 0 to 0.0050%, La: 0 to 0.0050%, Ce: 0 to 0.0050%, O: 0 to 0.1000%, V: 0 to 0.1000%, W: 0 to 0.1000%, Z
  • a method for manufacturing an electric motor according to a fifth embodiment of the present invention is a method for manufacturing an electric motor having a stator core, wherein the non-oriented electrical steel sheet of (1) or (2) is processed into a stator core shape. and an annealing step of heat-treating the stator core material to obtain a stator core.
  • the average cooling rate is 5°C/min or less.
  • the non-oriented electrical steel sheet (hereinafter also referred to as "steel sheet”) according to the present embodiment has high strength and excellent impact resistance, and is therefore suitable for both stators and rotors. In particular, it is suitable for stators.
  • the non-oriented electrical steel sheet according to the present embodiment preferably has an insulating coating on the surface of the base material (silicon steel sheet) described below.
  • C 0.0010 to 0.0040%
  • C (carbon) is an element that causes iron loss deterioration of non-oriented electrical steel sheets. If the C content exceeds 0.0040%, the iron loss of the non-oriented electrical steel sheet deteriorates, making it impossible to obtain good magnetic properties. Therefore, the C content should be 0.0040% or less.
  • the C content is preferably 0.0035% or less, more preferably 0.0030% or less, even more preferably 0.0025% or less.
  • the C content may be 0%, but since it is difficult to make the C content 0% in a practical steel sheet in terms of purification technology, the C content may be more than 0%.
  • C is also an element that increases the hardness of the steel sheet. From the viewpoint of this effect and prevention of an increase in iron loss as described above, the content is set to 0.0010 to 0.0040%.
  • the lower limit of the C content is preferably 0.0015% or more, more preferably 0.0020% or more.
  • Si 3.2-4.5%
  • Si is an element that increases the strength of the steel sheet.
  • Si is an element that increases the resistivity, and is included to reduce iron loss.
  • the Si content should be 3.2% or more.
  • the Si content is preferably greater than 3.25%, more preferably greater than or equal to 3.3%.
  • the Si content should be 3.2 to 4.5%.
  • the upper limit is preferably 4.0% or less, more preferably 3.5% or less.
  • sol. Al 0.2-2.0% sol.
  • Al (aluminum), like Si, is an element that increases specific resistance, and is contained to reduce iron loss. Also sol. Al is also an element that increases the strength of the steel sheet. In order to obtain these effects, sol. Al content shall be 0.2% or more. sol. The Al content is preferably 0.3% or more, more preferably 0.5% or more. On the other hand, sol. Excessive Al content may lead to a decrease in saturation magnetic flux density. From these points of view, sol. Al content is 0.2 to 2.0%. The upper limit is preferably 1.5% or less, more preferably 1.2% or less. In addition, in this embodiment, sol. Al means acid-soluble Al, and indicates solid-solution Al present in steel in a solid-solution state.
  • Mn 0.1-3.5%
  • Mn manganese
  • Si Si, sol. Since it has the effect of increasing the specific resistance like Al, it is contained in order to reduce iron loss. Mn is also an element that increases the strength of the steel sheet. Therefore, the Mn content is set to 0.1% or more.
  • the Mn content is preferably 0.2% or more, more preferably 0.3% or more, and even more preferably 0.5% or more.
  • the Mn content is excessive, the decrease in magnetic flux density and embrittlement of the non-oriented electrical steel sheet become significant. Furthermore, Mn has an attractive interaction with C.
  • the content should be 0.1 to 3.5%.
  • the upper limit is preferably 2.5% or less, more preferably 1.5% or less.
  • P more than 0%, 0.10% P (phosphorus) is contained as an impurity.
  • P has the effect of increasing the strength without lowering the magnetic flux density of the steel.
  • an excessive P content impairs the toughness of the steel and makes the steel plate more likely to break, so the P content is made 0.10% or less.
  • the P content is preferably 0.07% or less, more preferably 0.05% or less, still more preferably 0.03% or less.
  • P is not an essential element, and the lower limit of the P content is 0%. However, considering manufacturing costs, the P content is preferably more than 0%, more preferably 0.01% or more. The lower limit of the P content may be 0.02% or more.
  • S 0-0.0030% S (sulfur) is contained as an impurity.
  • the S content should be reduced in order to reduce iron loss. Furthermore, S itself undergoes grain boundary segregation and competes with the grain boundary segregation of C, thereby promoting the grain boundary segregation of P. Therefore, the S content should be 0.0030% or less.
  • the upper limit of the S content is preferably 0.0020% or less, more preferably 0.0010% or less.
  • S is not an essential element, and the lower limit of the S content is 0%. However, considering the manufacturing cost, the lower limit of the S content may be 0.0001% or more.
  • the lower limit of the S content is preferably 0.0003% or more.
  • N 0 to 0.0030%
  • N nitrogen
  • N is contained as an impurity.
  • N combines with Al to form fine nitrides such as AlN. Such nitrides impede the growth of crystal grains during annealing and degrade the magnetic properties. Therefore, the N content is set to 0.0030% or less.
  • the upper limit of the N content is preferably 0.0020% or less, more preferably 0.0010% or less.
  • N is not an essential element, and the lower limit of the N content is 0%. However, considering the manufacturing cost, the lower limit of the N content may be 0.0001% or more.
  • the lower limit of the N content is preferably 0.0003% or more.
  • Ti is an element contained as an impurity. Ti combines with C, N, O, etc. in the base iron to form fine precipitates such as TiN, TiC, Ti oxides. Such fine precipitates impede the growth of crystal grains during annealing and degrade the magnetic properties. Therefore, the Ti content should be 0.0030% or less.
  • the upper limit of the Ti content is preferably 0.0020% or less, more preferably 0.0010% or less. Since Ti need not be contained, the lower limit of the content is 0%. However, considering the refining cost, the lower limit of the Ti content is preferably 0.0003% or more, more preferably 0.0005% or more.
  • Mo 0.0010-0.1000%
  • Mo mobdenum
  • Mo is an element that suppresses the diffusion of P and suppresses the grain boundary segregation of P. Therefore, it is preferable to positively contain Mo in the present embodiment. However, even if the Mo content is excessively increased, the effect of suppressing grain boundary segregation of P is saturated. Therefore, considering the aforementioned effect and the fact that the effect saturates even if the Mo content is too high, the Mo content is set to 0.0010 to 0.1000%.
  • the lower limit of Mo content is preferably 0.0100% or more, more preferably 0.0200% or more.
  • the upper limit of Mo content is preferably 0.0900% or less, more preferably 0.0800% or less.
  • Cr 0-0.10% Cr (chromium) is an element that improves corrosion resistance and high frequency characteristics. Cr does not need to be contained and the lower limit of the content is 0%. Although the effect of containing Cr can be obtained even in a very small amount, the Cr content is preferably 0.01% or more, more preferably 0.03% or more, in order to reliably obtain the effect of containing Cr. preferable. On the other hand, if the Cr content is too high, the grain boundary segregation of C is suppressed and the grain boundary segregation of P is promoted, thereby lowering the impact resistance of the steel sheet. Therefore, the upper limit of the Cr content is made 0.10% or less. The upper limit of the C content is preferably 0.08% or less, more preferably 0.06% or less.
  • B 0 to 0.0010%
  • B has the effect of improving grain growth by forming coarse BN and preventing the formation of fine nitrides, so it may be contained as necessary.
  • B does not need to be contained, and the lower limit of the B content is 0%.
  • the B content is preferably 0.0002% or more, more preferably 0.0003% or more.
  • B itself segregates at the grain boundary and competes with the grain boundary segregation of C, thereby promoting the grain boundary segregation of P. Therefore, it is necessary to limit the B content, and the B content should be 0 to 0.0010%.
  • the upper limit of the B content is preferably 0.0008% or less, more preferably 0.0005% or less.
  • the rest of the chemical composition of the base material (silicon steel sheet) of the non-oriented electrical steel sheet according to this embodiment is Fe and impurities.
  • Impurities are components that are included in raw materials (ore, scrap, etc.) when steel is manufactured industrially, or components that are mixed in during the manufacturing process and are not intentionally included in the steel plate. Alternatively, it means a component that is allowed within a range that does not adversely affect the properties of the non-oriented electrical steel sheet according to this embodiment.
  • Ni, Cu, Sn, Sb, Ca, Zn, La, Ce, O, V, W, Zr, Nb, Mg, Bi, Nd, and Y You may contain 1 or more types of elements among.
  • Ni 0-0.50%
  • Ni nickel
  • the lower limit of the content is 0%.
  • the content is preferably 0.01% or more, more preferably 0.02% or more, in order to reliably obtain the effect of containing Ni.
  • the upper limit of the content is 0.50%, preferably 0.40%.
  • Cu 0-0.50%
  • Cu (copper) is an element that increases the electrical resistance of the steel sheet and reduces iron loss.
  • Cu does not need to be contained, and the lower limit of the content is 0%.
  • the Cu content is preferably 0.01% or more, more preferably 0.02% or more. preferable.
  • the upper limit of the content is 0.5000% or less, preferably 0.4000% or less.
  • Sn 0-0.2000%
  • Sb 0-0.2000%
  • Sn (tin) and Sb (antimony) are elements that develop crystal orientations favorable for magnetic properties. Therefore, at least one of Sn and Sb may be contained as necessary. However, Sn and Sb do not need to be contained, and the lower limit of each content is 0%. The effect of containing Sn and Sb can be obtained even if the amount is very small. % or more is more preferable. From the viewpoint of preventing deterioration of magnetic properties, the upper limit of each content of Sn and Sb is 0.2000% or less, preferably 0.1000% or less.
  • Ca 0-0.0050%
  • Ca (calcium) is an element that coarsens sulfides to improve the growth of crystal grains in the heat treatment process and contributes to low iron loss. Ca does not need to be contained and the lower limit of the content is 0%. Although the effect of containing Ca can be obtained even in a very small amount, in order to obtain the effect of containing reliably, the Ca content is preferably 0.0005% or more, preferably 0.0010% or more. . From the viewpoint of preventing deterioration of magnetic properties, the upper limit of the Ca content is preferably 0.0050% or less, more preferably 0.0030% or less.
  • Zn 0-0.0050%
  • Zn (zinc) is an element contained as an impurity. Zn combines with O in the base iron to form Zn oxide. Such inclusions impede the growth of crystal grains during annealing and degrade the magnetic properties. Therefore, the upper limit of the Zn content is made 0.0050% or less.
  • the upper limit of the Zn content is preferably 0.0020% or less, more preferably 0.0010% or less. Since Zn need not be contained, the lower limit of the content is 0%. However, considering the refining cost, the lower limit of the Zn content is preferably 0.0003% or more, more preferably 0.0005% or more.
  • La 0 to 0.0050%
  • La is an element that coarsens sulfides to improve the growth of crystal grains in the heat treatment process and contributes to low iron loss.
  • La does not need to be contained, and the lower limit of the content is 0%.
  • the La content is preferably 0.0005% or more, preferably 0.0010% or more.
  • the upper limit of the La content is preferably 0.0050% or less, more preferably 0.0030% or less.
  • Ce 0 to 0.0050%
  • Ce is an element that coarsens sulfide to improve the growth of crystal grains in the heat treatment process and contributes to low core loss. Ce does not need to be contained and the lower limit of the content is 0%.
  • the Ce content is preferably 0.0005% or more, more preferably 0.0010% or more, in order to reliably obtain the effect of containing Ce. preferable.
  • the upper limit of the Ce content is preferably 0.0050% or less, more preferably 0.0030% or less.
  • O oxygen
  • oxygen is also an impurity element, but it is contained in a range of 0.1000% or less and does not affect the properties of the non-oriented electrical steel sheet according to this embodiment. Since O may be mixed into the steel during the annealing process, even if the content in the slab stage is 0.01% or less, the characteristics of the non-oriented electrical steel sheet according to the present embodiment will not be affected. No particular impact. However, considering the refining cost, the lower limit of the O content may preferably be 0.0020% or more.
  • V 0-0.1000%
  • V vanadium
  • the V content is preferably 0.0050% or less, more preferably 0.0100% or less.
  • the V content is more preferably less than the measurement limit, and more preferably less than 0.0001%. Since the lower the V content is, the better, the V content may be 0%. However, considering the refining cost, the lower limit of the V content may preferably be 0.0010% or more.
  • W 0-0.1000%
  • W tungsten
  • the W content is preferably 0.0050% or less, more preferably 0.0010% or less.
  • the W content is more preferably less than the measurement limit, and more preferably less than 0.0001%. Since the W content is preferably as low as possible, the W content may be 0%. However, considering the refining cost, the lower limit of the W content may preferably be 0.0010% or more.
  • Zr 0 to 0.1000%
  • Zr zirconium
  • the Zr content is preferably 0.0050% or less, more preferably 0.0010% or less.
  • the Zr content is more preferably less than the measurement limit, and more preferably less than 0.0001%. Since the Zr content is preferably as low as possible, the Zr content may be 0%. However, considering the refining cost, the lower limit of the Zr content may preferably be 0.0010% or more.
  • Nb 0 to 0.1000%
  • Nb niobium
  • the Nb content is preferably 0.0050% or less, more preferably 0.0010% or less.
  • the Nb content is more preferably not more than the measurement limit, and specifically, more preferably not more than 0.0001%. Since the lower the Nb content, the better, the Nb content may be 0%. However, considering the refining cost, the lower limit of the Nb content may preferably be 0.0010% or more.
  • Mg 0-0.1000%
  • Mg magnesium
  • Mg is an element that fixes S as sulfide or oxysulfide, suppresses fine precipitation of MnS and the like, and promotes recrystallization and grain growth during final annealing. If the Mg content exceeds 0.10%, sulfides or oxysulfides are excessively formed, and recrystallization and grain growth during final annealing are inhibited. Preferably, it is 0.0020% or less, more preferably 0.0010% or less.
  • the lower limit of Mg is not particularly limited, and may be 0%. In order to preferably obtain the above effects, the Mg content should be 0.0005% or more. Preferably, the Mg content is 0.0010% or more.
  • the chemical composition of the base material of the non-oriented electrical steel sheet according to the present embodiment includes selective elements such as Bi (bismuth), Nd (neodymium), Y (yttrium), and As (arsenic). , Ga (gallium), Ge (germanium), Co (cobalt), Se (selenium), and Pb (lead).
  • selective elements such as Bi (bismuth), Nd (neodymium), Y (yttrium), and As (arsenic).
  • Ga gallium
  • Ge germanium
  • Co cobalt
  • Se se
  • Pb lead
  • Bi 0 to 0.1000% Nd: 0-0.1000% Y: 0 to 0.1000% As: 0-0.1000% Ga: 0-0.1000% Ge: 0-0.1000% Co: 0 to 0.1000% Se: 0-0.1000% Pb: 0-0.1000%
  • the Bi content is preferably 0.0100% or less, more preferably 0.005% or less.
  • the Nd content is preferably 0.0100% or less, preferably 0.0020% or less.
  • Y content is preferably 0.0010% or less.
  • the contents of As, Ga, Ge, Co, Se and Pb are each preferably 0.0100% or less, more preferably 0.005% or less. However, considering the refining cost, the content of each of Bi, Nd, Y, As, Ga, Ge, Co, Se, and Pb may be 0.0010% or more.
  • the chemical composition of the base material of the non-oriented electrical steel sheet according to this embodiment may be measured using ICP-AES (Inductively Coupled Plasma-Atomic Emission Spectrometry). Also, C and S may be measured using the combustion-infrared absorption method, N using the inert gas combustion-thermal conductivity method, and O using the inert gas fusion-nondispersive infrared absorption method.
  • ICP-AES Inductively Coupled Plasma-Atomic Emission Spectrometry
  • the steel sheet to be measured has an insulating coating on its surface
  • the chemical composition is measured after removing these. Examples of methods for removing the insulating coating and the like from the non-oriented electrical steel sheet include the following methods.
  • a non-oriented electrical steel sheet having an insulating coating or the like is immersed in an aqueous sodium hydroxide solution and then washed. Finally, it is dried with warm air. As a result, a silicon steel sheet from which the later-described insulating coating has been removed can be obtained.
  • the non-oriented electrical steel sheet of the present embodiment contains P as an impurity or intentionally added in the range of 0.10% or less.
  • P segregates at grain boundaries
  • the impact resistance of the steel sheet decreases. Therefore, in the non-oriented electrical steel sheet of the present embodiment, P is prevented from segregating at grain boundaries.
  • the ratio of the Fe peak-to-peak height Fe700B at 700 eV to the P peak-to-peak height P120B at 120 eV when the grain boundaries were measured by Auger electron spectroscopy ( P120B / Fe700B ) B is the ratio of the peak-to-peak height Fe 700i of Fe at 700 eV and the height between P peaks P 120i at 120 eV when the inside of the crystal grain is measured by Auger electron spectroscopy (P 120i /Fe 700i ) i 2.0 times or less.
  • P 120B and Fe 700B at grain boundaries and P 120i and Fe 700i in grains are measured by the following method. be done.
  • a non-oriented electrical steel sheet is cut in a cross section perpendicular to the sheet surface, and a plurality of coarse specimens of 18 mmL ⁇ 4 mmW (L means the length in the rolling direction and W means the width of the sheet) are taken.
  • a test piece for Auger electron spectroscopy peak measurement is prepared by notching the coarse sample piece at the center in the longitudinal direction of the sample piece. The prepared test piece for Auger electron spectroscopy peak measurement is placed in an Auger electron spectrometer, the sample is cooled with liquid nitrogen, and the sample is fractured. Among the fracture surfaces, find the fracture surface (grain boundary) where the grain boundary fracture of the sample occurs, and use the amount of P and Fe at the grain boundary as a guideline. .
  • the ratio (P 120B /Fe 700B ) B of the inter-peak height of P at 120 eV "P 120B " to the inter-peak height of Fe at 700 eV "Fe 700B” is obtained. , to calculate the average value.
  • the "height between peaks” here means the difference between two peaks, a maximum value (maximum peak) and a minimum value (minimum peak) formed at 120 eV.
  • Having high strength in the non-oriented electrical steel sheet of the present embodiment means that the tensile strength in the rolling direction is 550 MPa or more. Preferably, the tensile strength is 580 MPa or more.
  • the tensile strength is measured using JIS Z2241 (2011) No. 13B tensile test piece.
  • a Charpy impact test as specified in JIS Z2242, but non-oriented electrical steel sheets cannot be tested as they are due to their thin plate thickness.
  • a plurality of strip-shaped test pieces (10 mm ⁇ 55 mm, with a V notch with a depth of 2 mm at an angle of 45 ° in the center) are cut out from a non-oriented electrical steel sheet, and these are laminated to a height of 10 mm ⁇ 0
  • a laminated block (laminate) having a thickness of 0.2 mm is produced and subjected to an impact test.
  • a strip-shaped test piece is cut so that its longitudinal direction is in the rolling direction.
  • the direction of the weakest impact resistance may differ depending on the material, in that case, the longitudinal direction of the test piece should be the weakest direction.
  • the direction in which the impact resistance is the weakest is the rolling direction, so the test piece is taken so that the longitudinal direction (55 mm) of the test piece is in the rolling direction.
  • an anaerobic adhesive was applied to a position 10 mm from both ends of the strip-shaped veneers to bond them together.
  • As a method for evaluating impact resistance it is considered that impact absorption energy at room temperature can be represented, and evaluation is performed by this method.
  • the non-oriented electrical steel sheet according to this embodiment preferably has an insulating coating on the surface of the base material (silicon steel sheet).
  • a non-oriented electrical steel sheet is used after being laminated after punching a core. Therefore, by providing an insulating coating on the surface of the base material, the eddy current between the plates can be reduced, and the eddy current loss of the core can be reduced.
  • the type of insulation coating is not particularly limited, and it is possible to use known insulation coatings used as insulation coatings for non-oriented electrical steel sheets.
  • an insulating coating for example, a composite insulating coating containing an inorganic substance as a main component and an organic substance can be cited.
  • the composite insulating coating is mainly composed of, for example, at least one of metal salts such as metal chromates and metal phosphates, or inorganic substances such as colloidal silica, Zr compounds, and Ti compounds. It is an insulating coating in which resin particles are dispersed.
  • an insulating coating using a metal phosphate, Zr or Ti coupling agent as a starting material, or a metal phosphate, Zr or Ti An insulating film using a carbonate or ammonium salt of the coupling agent as a starting material is preferably used.
  • the amount of the insulating coating is not particularly limited, it is preferably about 200 to 1500 mg/m 2 per side, more preferably 300 to 1200 mg/m 2 per side. Excellent uniformity can be maintained by forming the insulating coating so that the coating amount is within the above range.
  • various known measurement methods for example, a method of measuring the difference in mass before and after immersion in an aqueous sodium hydroxide solution, A fluorescent X-ray method using a ray method may be used as appropriate.
  • the average grain size of the non-oriented electrical steel sheet according to the present embodiment is not particularly limited. However, if the crystal grains do not coarsen and the average crystal grain size is too small, there is a concern that iron loss will increase. On the other hand, if the crystal grains are excessively coarsened and the average crystal grain size is too large, not only workability is deteriorated but also eddy current loss may be deteriorated. Therefore, the average grain size of the non-oriented electrical steel sheet is preferably 10 ⁇ m to 60 ⁇ m. The average grain size can be measured, for example, in any cross section by the cutting method of JIS G0551 (2020).
  • the thickness of the non-oriented electrical steel sheet according to the present embodiment is not particularly limited. Generally, the thinner the plate, the lower the iron loss, but the lower the magnetic flux density. Considering this point, if the sheet thickness is 0.15 mm or more, the core loss becomes lower and the magnetic flux density becomes higher. Also, if the plate thickness is 0.27 mm or less, a low core loss can be maintained. Therefore, the preferred thickness of the non-oriented electrical steel sheet according to this embodiment is 0.15 to 0.27 mm. More preferably, it is 0.20 to 0.25 mm.
  • the non-oriented electrical steel sheet of the present embodiment is obtained by heating a slab having the above chemical composition and then performing hot rolling to obtain a hot-rolled steel sheet, winding the obtained hot-rolled steel sheet, and cooling the hot-rolled steel sheet after cooling. is cold-rolled, and the cold-rolled steel sheet is finish-annealed.
  • the method for manufacturing a non-oriented electrical steel sheet according to the present embodiment includes a hot rolling step of hot rolling a steel slab having the above chemical composition to obtain a hot rolled steel sheet, and winding and cooling the hot rolled steel sheet.
  • Hot-rolled sheet annealing may be omitted.
  • the residence time in the temperature range of 500 to 200 ° C. (low temperature side) is longer than the residence time in the temperature range of 700 ° C. to 500 ° C. (high temperature side). and the residence time in the temperature range of 500 to 200° C. is 100 seconds or longer.
  • the upper limit of the staying time is not set.
  • the upper limit may be, for example, about 10000 seconds.
  • the residence time in each temperature range will be described in detail later.
  • the maximum temperature is set to less than 900° C.
  • the average cooling rate in the region of 700 to 500° C. in the cooling process is set to 20° C./second or more.
  • another method for manufacturing the non-oriented electrical steel sheet of the present embodiment may include annealing of a hot-rolled steel sheet (hot-rolled sheet annealing). That is, the slab having the above chemical composition is heated and then hot-rolled to form a hot-rolled steel sheet.
  • the hot-rolled steel sheet after annealing may be cold-rolled, and the cold-rolled steel sheet may be finish-annealed.
  • another method for producing a non-oriented electrical steel sheet includes a hot-rolling step of hot-rolling a steel slab having the above chemical composition to obtain a hot-rolled steel sheet, winding the hot-rolled steel sheet, A coiling process for cooling, a hot-rolled sheet annealing process for heating and cooling the hot-rolled steel sheet after cooling, a cold-rolling process for cold-rolling the hot-rolled steel sheet after the hot-rolled sheet annealing process to obtain a cold-rolled steel sheet, and a finish annealing step of finish annealing the cold-rolled steel sheet.
  • the residence time in the temperature range of 500 to 200 ° C. (low temperature side) is longer than the residence time in the temperature range of 700 ° C. to 500 ° C. (high temperature side).
  • the time is lengthened, and the residence time in the temperature range of 500 to 200° C. is set to 10 seconds or more.
  • the upper limit of the residence time in the above-mentioned temperature range in the case of hot-rolled sheet annealing is not defined. However, from an operational point of view, it is not necessary to stay for a very long time, and the upper limit may be, for example, about 10000 seconds.
  • the residence time in each temperature range will be described in detail later.
  • the maximum temperature is set to less than 900° C.
  • the average cooling rate in the region of 700 to 500° C. in the cooling process is set to 20° C./second or more.
  • a slab can be obtained from steel having the above chemical composition by a general method such as a continuous casting method or a method of blooming a steel ingot.
  • the slab is charged into a heating furnace, heated, and hot rolled to obtain a hot rolled steel sheet.
  • hot rolling may be performed without charging the slab into the heating furnace.
  • a hot-rolled steel sheet is obtained by this step.
  • the slab heating temperature is not particularly limited, it is preferably 1000 to 1300° C. from the viewpoint of cost and hot rolling properties.
  • the steel slab After manufacturing the steel slab, the steel slab is reheated and hot rolled to obtain a hot rolled steel sheet.
  • the hot rolling conditions are not particularly limited.
  • the final rolling temperature during finish rolling can be 700 to 1050°C.
  • the thickness of the hot-rolled steel sheet after hot rolling is not particularly specified, but considering the efficiency of hot rolling and subsequent processes, for example, it is about 1.5 to 3.0 mm. preferably.
  • the hot-rolled steel sheet after hot rolling is wound up and cooled.
  • the winding temperature can be, for example, 700-1000.degree.
  • the cooling in the coiling process of the hot-rolled steel sheet is performed in a temperature range of 500 to 200 ° C.
  • the upper limit of the residence time at 700°C to 500°C is 200 seconds or less, and the difference between the residence times on the high temperature side and the low temperature side is 10% or more of the residence time on the high temperature side.
  • the lower limit of the residence time at 700° C. to 500° C. is not particularly limited, it may be 80 seconds or more from the viewpoint of operation.
  • the hot-rolled sheet may be annealed.
  • the hot-rolled sheet annealing can be carried out, for example, by continuous annealing held at 950° C. or higher and 1050° C. or lower for 10 seconds or more and 3 minutes or less.
  • hot-rolled sheet annealing may be performed by batch annealing in which the temperature is maintained at 750° C. or higher and 900° C. or lower for 1 hour or longer.
  • the residence time in the temperature range of 500 to 200 ° C. (low temperature side) is longer than the residence time in the temperature range of 700 to 500 ° C.
  • the residence time in the temperature range of 500 to 200°C shall be 10 seconds or longer. If the residence time on the low temperature side is too short, P tends to segregate at grain boundaries. There is no upper limit for the residence time in the cooling process when hot-rolled sheet annealing is performed. However, from an operational point of view, it is not necessary to stay for too long, for example, there is little need to stay longer than about 10000 seconds. It should be noted that after hot-rolled sheet annealing, grain size regulation is progressing due to recrystallization, compared to hot rolling, in which many segregation sites other than grain boundaries exist due to recovery at high temperatures and remaining unrecrystallized parts. Precipitation sites are limited.
  • the upper limit of the residence time at 700°C to 500°C is 20 seconds or less, and the difference between the residence times on the high temperature side and the low temperature side is 10% or more of the residence time on the high temperature side.
  • the lower limit of the residence time at 700° C. to 500° C. (high temperature side) is not particularly limited, but from the operational point of view, it may be 5 seconds or more.
  • the hot-rolled steel sheet is cold-rolled.
  • Cold rolling can be carried out, for example, at a temperature range of room temperature to 300° C. with a total rolling reduction of 70 to 90%.
  • the total rolling reduction can be 80% or more.
  • the total rolling reduction in cold rolling is preferably 90% or less, considering the capacity of the rolling mill and production control such as plate thickness accuracy.
  • the hot-rolled steel sheet may be pickled and then cold-rolled.
  • the reduction in cold rolling is not particularly limited.
  • the steel sheet After cold rolling, the steel sheet is subjected to finish annealing to obtain a non-oriented electrical steel sheet.
  • the maximum temperature is set to less than 900°C, and the average cooling rate in the region of 700 to 500°C in the cooling process is set to 20°C/second or more. This prevents P from diffusing and segregating at grain boundaries. If the maximum temperature exceeds 900° C., the segregated C diffuses and becomes homogenous, possibly promoting the grain boundary segregation of P. Therefore, the maximum temperature in the finish annealing step is preferably 880°C or less, more preferably less than 850°C. Although the lower limit of the maximum temperature is not particularly limited, it is preferably 700° C.
  • the temperature range of 700 to 500° C. in the cooling process of the finish annealing process is an important temperature range for controlling the diffusion behavior of P. That is, in order to suppress the diffusion of P and grain boundary segregation of P, it is effective to increase the average cooling rate in the temperature range of 700 to 500° C. during the cooling process. Therefore, the average cooling rate in the region of 700 to 500° C. in the cooling process is set to 20° C./second or more. The average cooling rate in the 700 to 500° C.
  • the region during the cooling process is preferably 25° C./second or higher, more preferably 30° C./second or higher.
  • the average heating rate during heating in the final annealing is not particularly limited, but from the viewpoint of obtaining a good magnetic flux density, it may be 20 to 1000° C./sec.
  • the annealing atmosphere in the finish annealing step is not particularly limited, but from the viewpoint of suppressing grain boundary segregation of P, a reducing atmosphere is preferable. Specifically, it is preferable to use a dry nitrogen-hydrogen mixed atmosphere, and it is preferable to set PH 2 O/PH 2 to 0.1 or less as a water vapor partial pressure.
  • the annealing atmosphere is an oxidizing atmosphere, decarburization occurs, and the grain boundary segregation of C, which suppresses the grain boundary segregation of P, is reduced. As a result, P promotes grain boundary segregation.
  • the non-oriented electrical steel sheet of this embodiment manufactured as described above has a high tensile strength of 550 MPa or more and high impact resistance.
  • a motor can be manufactured using the non-oriented electrical steel sheet of the present embodiment.
  • the non-oriented electrical steel sheet of the present embodiment having the chemical composition described above is processed into a core shape to produce a core plate, and a plurality of core plates are laminated to form a core material.
  • the rotor core may be used without annealing the core material.
  • the stator core is used by subjecting the core material (stator core material) to stress relief annealing (core annealing) of heating and cooling, so that a motor with even lower iron loss can be obtained.
  • the heating temperature is set to 750 to 850° C.
  • the average cooling rate in the region of 700 to 500° C. in the cooling process is set to 5° C./min or less.
  • the ratio of the Fe peak-to-peak height Fe700SB at 700 eV and the P peak-to-peak height P120SB at 120 eV when the grain boundaries of the stator core were measured by Auger electron spectroscopy ( P120SB / Fe700SB ) SB is the ratio of the Fe peak-to-peak height Fe700Si at 700 eV and the P peak-to-peak height P120Si at 120 eV when the inside of the crystal grain is measured by Auger electron spectroscopy ( P120Si / Fe700Si ). It can be 4.0 times or more. Furthermore, a high-strength stator core having a tensile strength of 500 MPa or more can be obtained.
  • the lower limit of the average cooling rate in the region of 700 to 500° C. in the cooling process of strain relief annealing is not particularly limited, but it may be 1° C./min or more because even an excessively long time impairs productivity.
  • the present disclosure will be specifically described by exemplifying Examples.
  • the conditions of the example are examples adopted to confirm the feasibility and effect of the present disclosure, and the present disclosure is not limited to the conditions of the example.
  • the present disclosure can adopt various conditions as long as it achieves its purpose without departing from its gist.
  • the slabs having the components shown in Tables 1A and 1B were subjected to hot rolling (thickness of hot-rolled sheet: 2.0 mm), hot-rolled sheet annealing, cold rolling (total rolling reduction: 87.5%), and finish annealing. was applied to produce a non-oriented electrical steel sheet having a thickness of 0.25 mm.
  • the obtained non-oriented electrical steel sheet was processed into a stator core shape to prepare a stator core material, and subjected to strain relief annealing (core annealing) by heating and cooling.
  • the heating temperature in the strain relief annealing was 800°C, and the average cooling rate in the region of 700 to 500°C was 3°C/min.
  • the hysteresis loss (Wh10/400) at 400 Hz was determined for the processed product after strain relief annealing. Table 2 shows the results. If Wh10/400 was less than 5.6 W/kg, it was determined that the magnetic properties were excellent. Hysteresis loss was measured by the following method.
  • the iron loss (Wh10/400) of the processed product after strain relief annealing was Wh10/1 measured in accordance with JIS C 2550 DC measurement, which was multiplied by 400.
  • the underlines in Table 2 indicate that they are out of the scope of the present invention or that the target properties are not obtained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Electromagnetism (AREA)
  • Power Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Soft Magnetic Materials (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)

Abstract

この無方向性電磁鋼板は、母材の化学組成が、質量%で、Si:3.2~4.5%を含み、引張強さが550MPa以上であり、結晶粒界をオージェ電子分光法で測定した際の700eVにおけるFeのピーク間高さFe700Bと、120eVにおけるPのピーク間高さP120Bとの比(P120B/Fe700Bが、結晶内をオージェ電子分光法で測定した際の700eVにおけるFeのピーク間高さFe700iと、120eVにおけるPのピーク間高さP120iとの比(P120i/Fe700iの2.0倍以下である。

Description

無方向性電磁鋼板、無方向性電磁鋼板の製造方法、電動機および電動機の製造方法
 本発明は、無方向性電磁鋼板、無方向性電磁鋼板の製造方法、電動機および電動機の製造方法に関する。
 本願は、2021年3月31日に、日本に出願された特願2021-061782号に基づき優先権を主張し、その内容をここに援用する。
 近年、地球環境問題に対する取り組みへの高まりから、自動車や家電製品の分野では、消費エネルギーの少ない製品の普及が進んでいる。これらの製品には、高速回転する高効率な電動機が使用されており、電動機のコア(モータコア)の材料として無方向性電磁鋼板が使用されている。
 電動機のコアは、無方向性電磁鋼板から環状の部材(板片)に切り出し、切り出し後の複数の板片を積層して一体化することで構成される。コアはステータコアとロータコアからなる。近年は機器の小型化や高性能化のために、ステータコアではより低鉄損化が、ロータコアでは高速回転化に耐えられるようにより高強度化が重要となってきている。
 無方向性電磁鋼板からコア用の板片を切り出す際は、主に、パンチとダイを用いた打ち抜き法が適用される。打ち抜き時に板片に導入される加工ひずみは、コアの鉄損を劣化させることが知られている。この加工ひずみを解放するため、各板片もしくは板片を積層したコアに対し、熱処理(歪取り焼鈍もしくはコア焼鈍)が実施される。歪取り焼鈍の実施により、鋼板の加工歪が解放され、あるいは、さらに結晶粒が粗大化されるので、モータコアの低鉄損化も実現される。歪取り焼鈍はコア全体に施してもよいが、ステータコアだけに施すことで、高強度のロータと低鉄損のステータを同じ無方向性電磁鋼板から作り分けることも可能である。
 特許文献1には、鉄損の低下が抑制され、耐食性にも優れたモータ用のステータコアとして、無方向性電磁鋼板からなり、無方向性電磁鋼板が、C:0~0.005%、Si:1.5~5.0%、Mn:0.1~3.0%、Al:0~0.005%、P:0.03~0.15%、S:0~0.005%、N:0~0.005%、Sn:0~0.01%を含有し、残部が鉄及び不純物からなり、結晶粒界をオージェ電子分光法で測定した際の700eVにおけるFeのピーク高さFe700と、120eVにおけるPのピーク高さP120との比P120/Fe700が0.020未満であるステータコアが開示されている。
日本国特開2019-183231号公報
 無方向性電磁鋼板の強度が高くなると、回転機の高速回転化が可能となる。しかし、回転機の急停止等の際には高速化に応じてコアに加わる撃力が増加することになる。この際に撃力によって脆性破壊が生じるとコアが破損してしまう。本実施形態では耐衝撃性の評価手法として後述する積層ブロックでのシャルピー試験を考案し、耐衝撃性を評価した。その結果、無方向性電磁鋼板を高強度化するほど、耐衝撃性が低下する傾向があることが分かった。回転機の安全性をより高めるためには高強度化と耐衝撃性を両立する必要がある。
 本発明は上記事情に鑑みてなされたものであり、高強度であり、耐衝撃性に優れた無方向性電磁鋼板、無方向性電磁鋼板の製造方法、電動機、ならびに電動機の製造方法を提供することを課題とする。
 本発明者らは、後述する積層ブロックでの衝撃試験を用いて、無方向性電磁鋼板の高強度化と耐衝撃性の低下との関係を鋭意調査した。その結果、高強度化を意図した製品(例えば、無方向性電磁鋼板を用いたモータコア)では、結晶粒界のP濃度が高くなっている場合が多く、さらに結晶粒界のP濃度と耐衝撃性の低下との間に相関があることを見出した。無方向性電磁鋼板の強度が高くなると、耐衝撃性が低下する原因は以下のとおりと考えられる。
 無方向性電磁鋼板を高強度化するためには固溶強化能の高いSiの含有量を高くする必要がある。Siの含有量が高くなると、SiとPは斥力相互作用をもつため、結果としてPの粒界偏析が促進される。
 また、MnやCrが含有される場合、Mn及びCrはCと引力相互作用をもつため、Cの粒界偏析が抑制される。すると、結晶粒界のC濃度が減少するため、その結果として、Pの粒界偏析が促進される。
 Pの偏析による結晶粒界の脆化、耐衝撃性の低下は、特に無方向性電磁鋼板の引張強さが550MPaを超えると顕在化する。
 本発明者らは、引張強さが550MPa以上の無方向性電磁鋼板においてPの粒界偏析を低減する方法を鋭意検討した。そして、無方向性電磁鋼板の化学成分、製造方法を適切に制御することにより、Pの粒界偏析を低減できることを見出した。本発明は、さらに検討をすすめなされたものであって、その要旨は以下のとおりである。
(1)本発明の第1の実施形態に係る無方向性電磁鋼板は、母材の化学組成が、質量%で、
  C :0.0010~0.0040%、
  Si:3.2~4.5%、
  sоl.Al:0.2~2.0%、
  Mn:0.1~3.5%、
  P :0%超、0.10%以下、
  S :0~0.0030%、
  N :0~0.0030%、
  Ti:0~0.0030%、
  Mo:0.0010~0.1000%、
  Cr:0~0.10%、
  B :0~0.0010%、
  Ni:0~0.50%、
  Cu:0~0.50%、
  Sn:0~0.2000%、
  Sb:0~0.2000%、
  Ca:0~0.0050%、
  Zn:0~0.0050%、
  La:0~0.0050%、
  Ce:0~0.0050%、
  O :0~0.1000%、
  V :0~0.1000%、
  W :0~0.1000%、
  Zr:0~0.1000%、
  Nb:0~0.1000%、
  Mg:0~0.1000%、
  Bi:0~0.1000%、
  Nd:0~0.1000%、
  Y :0~0.1000%、
  As:0~0.1000%、
  Ga:0~0.1000%、
  Ge:0~0.1000%、
  Co:0~0.1000%、
  Se:0~0.1000%、
  Pb;0~0.1000%、及び
  残部:Fe及び不純物
であり、
 引張強さが550MPa以上であり、
 結晶粒界をオージェ電子分光法で測定した際の700eVにおけるFeのピーク間高さFe700Bと、120eVにおけるPのピーク間高さP120Bとの比(P120B/Fe700Bが、結晶内をオージェ電子分光法で測定した際の700eVにおけるFeのピーク間高さFe700iと、120eVにおけるPのピーク間高さP120iとの比(P120i/Fe700iの2.0倍以下である。
(2)上記(1)に記載の無方向性電磁鋼板は、
  Ni:0.01~0.50%、
  Cu:0.01~0.50%、
  Sn:0.01~0.2000%、
  Sb:0.01~0.2000%、
  Ca:0.0005~0.0050%、
  Zn:0.0003~0.0050%、
  La:0.0005~0.0050%、
  Ce:0.0005~0.0050%、
  O :0.0020~0.1000%、
  V :0.0010~0.0100%、
  W :0.0010~0.0100%、
  Zr:0.0010~0.0100%、
  Nb:0.0010~0.0100%、
  Mg:0.0010~0.0100%、
  Bi:0.0010~0.0100%、
  Nd:0.0010~0.0100%、
  Y :0.0010~0.0100%、
  As:0.0010~0.0100%、
  Ga:0.0010~0.0100%、
  Ge:0.0010~0.0100%、
  Co:0.0010~0.0100%、
  Se:0.0010~0.0100%、
  Pb;0.0010~0.0100%、
からなる群から選択される1種以上を含有してもよい。
(3)上記(1)又は(2)の無方向性電磁鋼板は、前記母材の表面に絶縁被膜を有してもよい。
(4)本発明の第2の実施形態に係る無方向性電磁鋼板の製造方法は、上記(1)又は(2)の無方向性電磁鋼板を製造する方法であって、上記(1)又は(2)に記載の化学成分を有する鋼スラブを熱間圧延し熱延鋼板を得る熱延工程、前記熱延鋼板を巻き取り、冷却する巻取工程、冷却後の前記熱延鋼板を冷間圧延し冷延鋼板を得る冷延工程、前記冷延鋼板を仕上げ焼鈍する仕上げ焼鈍工程を備え、前記熱延鋼板の巻取工程における冷却において、700~500℃の温度域の滞在時間よりも500~200℃の温度域の滞在時間を長くし、かつ前記500~200℃の温度域の滞在時間を100秒以上とし、前記仕上げ焼鈍工程において、最高温度を900℃未満、冷却過程における700~500℃の領域の平均冷却速度を20℃/秒以上とする。
(5)本発明の第3の実施形態に係る無方向性電磁鋼板の製造方法は、上記(1)又は(2)の無方向性電磁鋼板を製造する方法であって、上記(1)又は(2)の無方向性電磁鋼板を製造する方法であって、前記(1)又は(2)に記載の化学成分を有する鋼スラブを熱間圧延し熱延鋼板を得る工程、前記熱延鋼板を巻き取り、冷却する巻取工程、冷却後の前記熱延鋼板を加熱、冷却する熱延板焼鈍工程、熱延板焼鈍工程後の熱延鋼板を冷間圧延し冷延鋼板を得る冷延工程、前記冷延鋼板を仕上げ焼鈍する仕上げ焼鈍工程を備え、前記熱延鋼板の前記熱延板焼鈍工程における冷却において、700~500℃の温度域の滞在時間よりも500~200℃の温度域の滞在時間を長くし、かつ前記500~200℃の温度域の滞在時間を10秒以上とし、前記仕上げ焼鈍工程において、最高温度を900℃未満、冷却過程における700~500℃の領域の平均冷却速度を20℃/秒以上とする。
(6)本発明の第4の実施形態に係る電動機は、ステータコアを備える電動機であって、
 前記ステータコアの化学組成が、質量%で、
  C :0.0010~0.0040%、
  Si:3.2~4.5%、
  sоl.Al:0.2~2.0%、
  Mn:0.1~3.5%、
  P :0%超、0.10%以下、
  S :0~0.0030%、
  N :0~0.0030%、
  Ti:0~0.0030%、
  Mo:0.0010~0.1000%、
  Cr:0~0.10%、
  B :0~0.0010%、
  Ni:0~0.50%、
  Cu:0~0.50%、
  Sn:0~0.2000%、
  Sb:0~0.2000%、
  Ca:0~0.0050%、
  Zn:0~0.0050%、
  La:0~0.0050%、
  Ce:0~0.0050%、
  O :0~0.1000%、
  V :0~0.1000%、
  W :0~0.1000%、
  Zr:0~0.1000%、
  Nb:0~0.1000%、
  Mg:0~0.1000%、
  Bi:0~0.1000%、
  Nd:0~0.1000%、
  Y :0~0.1000%、
  As:0~0.1000%、
  Ga:0~0.1000%、
  Ge:0~0.1000%、
  Co:0~0.1000%、
  Se:0~0.1000%、
  Pb;0~0.1000%、及び
  残部:Fe及び不純物
であり、
 引張強さが500MPa以上であり、
 前記ステータコアの結晶粒界をオージェ電子分光法で測定した際の700eVにおけるFeのピーク間高さFe700SBと、120eVにおけるPのピーク間高さP120SBとの比(P120SB/Fe700SBSBが、結晶内をオージェ電子分光法で測定した際の700eVにおけるFeのピーク間高さFe700Siと、120eVにおけるPのピーク間高さP120Siとの比(P120Si/Fe700SiSiの4.0倍以上である。
(7)本発明の第5の実施形態に係る電動機の製造方法は、ステータコアを備える電動機の製造方法であって、上記(1)又は(2)の無方向性電磁鋼板をステータコア形状に加工してステータコア素材とする工程と、前記ステータコア素材を熱処理してステータコアを得る焼鈍工程を備え、前記ステータコア素材の前記焼鈍工程において、加熱温度を750~850℃、冷却過程における700~500℃の領域の平均冷却速度を5℃/分以下とする。
 本発明に係る上記実施形態によれば、高強度であり、耐衝撃性に優れた無方向性電磁鋼板、無方向性電磁鋼板の製造方法、電動機および電動機の製造方法を提供することができる。
 以下、本発明の一実施形態について、詳細に説明する。ただし、本発明は本実施形態に開示の構成のみに制限されることなく、本発明の趣旨を逸脱しない範囲で種々の変更が可能である。また、下記する数値限定範囲には、下限値及び上限値がその範囲に含まれる。「超」または「未満」と示す数値は、その値が数値範囲に含まれない。各元素の含有量に関する「%」は、「質量%」を意味する。
 本実施形態に係る無方向性電磁鋼板(以下、「鋼板」とも称す。)は、高い強度および優れた耐衝撃性を有するため、ステータおよびロータの双方に好適である。特に、ステータに好適である。また、本実施形態に係る無方向性電磁鋼板は、以下に説明する母材(珪素鋼板)の表面に絶縁被膜を備えていることが好ましい。
[母材の化学組成]
 本実施形態の無方向性電磁鋼板の母材(珪素鋼板)の化学成分について説明する。以下、化学成分についての「%」は「質量%」を意味する。「~」を挟んで記載する数値限定範囲には、下限値および上限値がその範囲に含まれる。
 C:0.0010~0.0040%
 C(炭素)は、無方向性電磁鋼板の鉄損劣化を引き起こす元素である。C含有量が0.0040%を超えると、無方向性電磁鋼板の鉄損が劣化し、良好な磁気特性を得ることができない。したがって、C含有量は0.0040%以下とする。C含有量は0.0035%以下であるのが好ましく、0.0030%以下であるのがより好ましく、0.0025%以下であるのがさらに好ましい。C含有量は0%であってもよいが、実用鋼板においてC含有量を0%とすることは、純化技術上困難であるため、C含有量は0%超としてもよい。なお、Cは鋼板の硬度を高める元素でもある。この効果と、上述したような鉄損の増加を防ぐ観点から、含有量は0.0010~0.0040%とする。C含有量の下限は好ましくは0.0015%以上、より好ましくは0.0020%以上である。
 Si:3.2~4.5%
 Si(ケイ素)は鋼板の強度を高める元素である。また、Siは、比抵抗を増加させる元素であり、鉄損低減のために含有させる。これらの効果を得るために、Si含有量は3.2%以上とする。Si含有量は3.25%超であるのが好ましく、3.3%以上であるのがより好ましい。一方、Si含有量が過剰であると、鋼の脆化による加工性の劣化、および飽和磁束密度の低下を招く場合がある。これらの観点から、Si含有量は3.2~4.5%とする。上限は好ましくは4.0%以下、より好ましくは3.5%以下である。
 sоl.Al:0.2~2.0%
 sоl.Al(アルミニウム)はSiと同様に比抵抗を増加させる元素であり、鉄損低減のために含有させる。またsоl.Alは鋼板の強度を高める元素でもある。これらの効果を得るために、sоl.Al含有量は0.2%以上とする。sоl.Al含有量は好ましくは0.3%以上であり、より好ましくは0.5%以上である。一方、sоl.Al含有量が過剰であると、飽和磁束密度の低下を招く場合がある。これらの観点から、sоl.Al含有量は0.2~2.0%とする。上限は好ましくは1.5%以下、より好ましくは1.2%以下である。
 なお、本実施形態においてsol.Alとは、酸可溶性Alを意味し、固溶状態で鋼中に存在する固溶Alのことを示す。
 Mn:0.1~3.5%
 Mn(マンガン)は、Si、sol.Alと同様に比抵抗を増加させる作用を有しているので、鉄損低減のために含有させる。また、Mnは鋼板の強度を高める元素でもある。そのため、Mn含有量は0.1%以上とする。Mn含有量は0.2%以上であるのが好ましく、0.3%以上であるのがより好ましく、0.5%以上であるのがさらに好ましい。一方、Mn含有量が過剰であると、無方向性電磁鋼板の磁束密度の低下や脆化が顕著となる。さらに、MnはCと引力相互作用をもつ。そのため、Mn含有量が過剰であると、Cの粒界偏析が抑制されることで結晶粒界のC濃度が減少し、結果、Pの粒界偏析が促進されてしまう。これらの観点から、含有量は0.1~3.5%とする。上限は好ましくは2.5%以下、より好ましくは1.5%以下である。
 P:0%超、0.10%
 P(リン)は不純物として、含有される。Pは、鋼の磁束密度を低下させることなく強度を高める作用がある。しかし、Pを過剰に含有させると鋼の靱性を損ない、鋼板に破断が生じやすくなるので、Pの含有量は0.10%以下とする。P含有量は好ましくは0.07%以下、より好ましくは0.05%以下、さらに好ましくは0.03%以下である。Pは必須の元素ではなく、P含有量の下限は0%である。ただし、製造コストを考慮し、P含有量は0%超とすることが好ましく、0.01%以上とするのがより好ましい。P含有量の下限は0.02%以上であってもよい。
 S:0~0.0030%
 S(硫黄)は不純物として含有する。S含有量は鉄損の低減のため、減らす必要がある。さらに、Sは、自身が粒界偏析してCの粒界偏析と競合し、結果としてPの粒界偏析を促進する。したがって、S含有量は0.0030%以下とする。S含有量の上限は好ましくは0.0020%以下、より好ましくは0.0010%以下である。Sは必須の元素ではなく、S含有量の下限は0%である。ただし、製造コストを考慮し、S含有量の下限は0.0001%以上であってもよい。S含有量の下限は好ましくは0.0003%以上である。
 N:0~0.0030%
 N(窒素)は不純物として含有する。NはAlと結合することで微細なAlNなどの窒化物を形成させる。このような窒化物は、焼鈍時の結晶粒の成長を阻害し、磁気特性を劣化させる。このため、N含有量は0.0030%以下とする。N含有量の上限は好ましくは0.0020%以下、より好ましくは0.0010%以下である。Nは必須の元素ではなく、N含有量の下限は0%である。ただし、製造コストを考慮し、N含有量の下限は0.0001%以上であってもよい。N含有量の下限は好ましくは0.0003%以上である。
 Ti:0~0.0030%
 Ti(チタン)は不純物として含まれる元素である。Tiは、地鉄中のC、N、Oなどと結合してTiN、TiC、Ti酸化物などの微小析出物を形成させる。このような微小析出物は、焼鈍中の結晶粒の成長を阻害して磁気特性を劣化させる。したがって、Ti含有量は0.0030%以下とする。Ti含有量の上限は好ましくは0.0020%以下、さらに好ましくは0.0010%以下である。Tiは含有される必要はないので、含有量の下限は0%である。ただし、精錬コストを考慮し、好ましくはTi含有量の下限を0.0003%以上とし、より好ましくは0.0005%以上とする。
 Mo:0.0010~0.1000%
 Mo(モリブデン)はPの拡散を抑制し、Pの粒界偏析を抑制する元素である。そのため、本実施形態においてMoは、積極的に含有させることが好ましい。ただし、Mo含有量を過度に高めても、Pの粒界偏析を抑制する効果は飽和する。したがって、前述の効果と、Mo含有量が多すぎても効果が飽和することを考慮して、含有量は0.0010~0.1000%とする。Mo含有量の下限は好ましくは0.0100%以上、より好ましくは0.0200%以上である。Mo含有量の上限は好ましくは0.0900%以下、より好ましくは0.0800%以下である。
 Cr:0~0.10%
 Cr(クロム)は耐食性や高周波特性を向上する元素である。Crは含有される必要はなく含有量の下限は0%である。Cr含有の効果は微量であっても得られるが、含有の効果を確実に得るためには、Cr含有量は0.01%以上とするのが好ましく、0.03%以上とするのがより好ましい。一方、Cr量が高すぎると、Cの粒界偏析が抑制され、Pの粒界偏析が促進されることにより、鋼板の耐衝撃性が低下する。したがって、Cr含有量の上限は0.10%以下とする。C含有量の上限は好ましくは0.08%以下であり、より好ましくは0.06%以下である。
 B:0~0.0010%
 B(ホウ素)は粗大なBNを形成して微細な窒化物が形成されるのを防ぐことで粒成長性を改善する効果があることから、必要に応じて含有させてもよい。Bは含有される必要はなく、B含有量の下限は0%である。前述の効果を得る場合には、B含有量は0.0002%以上とするのが好ましく、0.0003%以上とするのがより好ましい。一方、Bは自身が粒界偏析し、Cの粒界偏析と競合し、結果としてPの粒界偏析を促進する。したがってB含有量を制限する必要があり、B含有量は0~0.0010%とする。B含有量の上限は好ましくは0.0008%以下であり、より好ましくは0.0005%以下である。
 本実施形態に係る無方向性電磁鋼板の母材(珪素鋼板)の化学組成の残部はFe及び不純物である。不純物とは、鋼を工業的に製造する際に、原材料(鉱石、スクラップ等)に含まれる成分、又は製造の過程で混入する成分であって、意図的に鋼板に含有させたものではない成分もしくは本実施形態に係る無方向性電磁鋼板の特性に悪影響を与えない範囲で許容される成分をいう。
 なお、上述した元素以外に、Feの一部に代えて、Ni、Cu、Sn、Sb、Ca、Zn、La、Ce、O、V、W、Zr、Nb、Mg、Bi、Nd、およびYのうち1種以上の元素を含有させてもよい。
 Ni:0~0.50%
 Ni(ニッケル)は鋼板の電気抵抗を高め、鉄損を低減する元素である。Niは含有される必要はなく含有量の下限は0%である。Ni含有の効果は微量であっても得られるが、含有の効果を確実に得るためには、含有量は0.01%以上とするのが好ましく、0.02%以上とするのがより好ましい。製品コストの観点から、含有量の上限は0.50%し、0.40%とすることが好ましい。
 Cu:0~0.50%
 Cu(銅)は鋼板の電気抵抗を高め、鉄損を低減する元素である。Cuは含有される必要はなく含有量の下限は0%である。Cu含有の効果は微量であっても得られるが、含有の効果を確実に得るためには、Cu含有量は0.01%以上とするのが好ましく、0.02%以上とするのがより好ましい。製品コストの観点、鋼の脆化を防ぐ観点から、含有量の上限は0.5000%以下とし、0.4000%以下とすることが好ましい。
 Sn:0~0.2000%
 Sb:0~0.2000%
 Sn(スズ)およびSb(アンチモン)は磁気特性にとって好ましい結晶方位を発達させる元素である。そのため、必要に応じてSnおよびSbの少なくとも一方を含有させてもよい。ただし、SnおよびSbは含有される必要はなく各含有量の下限は0%である。SnおよびSbの含有の効果は微量であっても得られるが、含有の効果を確実に得るためには、SnおよびSbの各含有量は0.01%以上とするのが好ましく、0.02%以上とするのがより好ましい。磁気特性の劣化を防ぐ観点から、SnおよびSbの各含有量の上限は0.2000%以下とし、0.1000%以下とすることが好ましい。
 Ca:0~0.0050%
 Ca(カルシウム)は硫化物を粗大化させることで熱処理工程での結晶粒の成長性を改善し、低鉄損化に寄与する元素である。Caは含有される必要はなく含有量の下限は0%である。Ca含有の効果は微量であっても得られるが、含有の効果を確実に得るためには、Ca含有量は0.0005%以上とするのが好ましく、0.0010%以上とするのが好ましい。磁気特性の劣化を防ぐ観点から、Ca含有量の上限は0.0050%以下とすることが好ましく、0.0030%以下とすることがより好ましい。
 Zn:0~0.0050%
 Zn(亜鉛)は、不純物として含まれる元素である。Znは、地鉄中のOなどと結合してZn酸化物を形成させる。このような介在物は、焼鈍中の結晶粒の成長を阻害して磁気特性を劣化させる。したがって、Zn含有量の上限は0.0050%以下とする。Zn含有量の上限は好ましくは0.0020%以下、さらに好ましくは0.0010%以下である。Znは含有される必要はないので、含有量の下限は0%である。ただし、精錬コストを考慮し、好ましくはZn含有量の下限を0.0003%以上とし、より好ましくは0.0005%以上とする。
 La:0~0.0050%
 La(ランタン)は硫化物を粗大化させることで熱処理工程での結晶粒の成長性を改善し、低鉄損化に寄与する元素である。Laは含有される必要はなく含有量の下限は0%である。La含有の効果は微量であっても得られるが、含有の効果を確実に得るためには、La含有量は0.0005%以上とするのが好ましく、0.0010%以上とするのが好ましい。磁気特性の劣化を防ぐ観点から、La含有量の上限は0.0050%以下とすることが好ましく、0.0030%以下とすることがより好ましい。
 Ce:0~0.0050%
 Ce(セリウム)は硫化物を粗大化させることで、熱処理工程での結晶粒の成長性を改善し、低鉄損化に寄与する元素である。Ceは含有される必要はなく含有量の下限は0%である。Ce含有の効果は微量であっても得られるが、含有の効果を確実に得るためには、Ce含有量は0.0005%以上とするのが好ましく、0.0010%以上とするのがより好ましい。磁気特性の劣化を防ぐ観点から、Ce含有量の上限は0.0050%以下とすることが好ましく、0.0030%以下とすることがより好ましい。
 O:0~0.1000%
 O(酸素)も不純物元素であるが、0.1000%以下の範囲で含有されて、本実施形態に係る無方向性電磁鋼板の特性に影響はない。Oは、焼鈍工程において鋼中に混入することもあるため、スラブ段階の含有量においては、0.01%以下の範囲で含有しても、本実施形態に係る無方向性電磁鋼板の特性に特に影響はない。ただし、精錬コストを考慮し、好ましくはO含有量の下限を0.0020%以上としてもよい。
 V:0~0.1000%
 V(バナジウム)は、炭素または窒素と結合して析出物(炭化物、窒化物)を形成することで高強度化に寄与する元素であるが、これらの析出物そのものが無方向性電磁鋼板の磁気特性を劣化させる。したがって、V含有量は0.1000%以下とする。V含有量は0.0050%以下であるのが好ましく、0.0100%以下であるのがより好ましい。V含有量は測定限界以下であるのがさらに好ましく、具体的には、0.0001%以下であるのがさらに好ましい。V含有量は低ければ低いほど好ましいため、V含有量は0%としてもよい。ただし、精錬コストを考慮し、好ましくはV含有量の下限を0.0010%以上としてもよい。
 W:0~0.1000%
 W(タングステン)は、炭素と結合して析出物(炭化物)を形成することで高強度化に寄与する元素である。しかし、これらの析出物そのものが無方向性電磁鋼板の磁気特性を劣化させる。したがって、W含有量は0.1000%以下とする。W含有量は0.0050%以下であるのが好ましく、0.0010%以下であるのがより好ましい。W含有量は測定限界以下であるのがさらに好ましく、具体的には、0.0001%以下であるのがさらに好ましい。W含有量は低ければ低いほど好ましいため、W含有量は0%としてもよい。ただし、精錬コストを考慮し、好ましくはW含有量の下限を0.0010%以上としてもよい。
 Zr:0~0.1000%
 Zr(ジルコニウム)は、炭素または窒素と結合して析出物(炭化物、窒化物)を形成することで高強度化に寄与する元素であるが、これらの析出物そのものが無方向性電磁鋼板の磁気特性を劣化させる。したがって、Zr含有量は0.1000%以下とする。Zr含有量は0.0050%以下であるのが好ましく、0.0010%以下であるのがより好ましい。また、Zr含有量は測定限界以下であるのがさらに好ましく、具体的には、0.0001%以下であることがさらに好ましい。Zr含有量は低ければ低いほど好ましいため、Zr含有量は0%としてもよい。ただし、精錬コストを考慮し、好ましくはZr含有量の下限を0.0010%以上としてもよい。
 Nb:0~0.1000%
 Nb(ニオブ)は、炭素または窒素と結合して析出物(炭化物、窒化物)を形成することで高強度化に寄与する元素であるが、これらの析出物そのものが無方向性電磁鋼板の磁気特性を劣化させる。したがって、Nb含有量は0.1000%以下とする。Nb含有量は0.0050%以下であるのが好ましく、0.0010%以下であるのがより好ましい。また、Nb含有量は、測定限界以下であるのがさらに好ましく、具体的には、0.0001%以下であることがさらに好ましい。Nb含有量は低ければ低いほど好ましいため、Nb含有量は0%としてもよい。ただし、精錬コストを考慮し、好ましくはNb含有量の下限を0.0010%以上としてもよい。
 Mg:0~0.1000%
 Mg(マグネシウム)は、Sを硫化物又は酸硫化物として固定し、MnS等の微細析出を抑制し、仕上げ焼鈍時の再結晶及び結晶粒成長を促進する作用をなす元素である。Mgが0.10%を超えると、硫化物又は酸硫化物が過剰に生成し、仕上げ焼鈍時の再結晶及び結晶粒成長が阻害されるので、Mg含有量は0.1000%以下とする。好ましくは、0.0020%以下、より好ましくは0.0010%以下である。Mgの下限は、特に制限されず、0%でもよい。上記効果を好ましく得るためには、Mg含有量は0.0005%以上とすればよい。好ましくは、Mg含有量は0.0010%以上である。
 本実施形態に係る無方向性電磁鋼板の母材の化学組成は、上記の元素に加えて、選択元素として、例えば、Bi(ビスマス)、Nd(ネオジム)、Y(イットリウム)、As(ヒ素)、Ga(ガリウム)、Ge(ゲルマニウム)、Co(コバルト)、Se(セレン)、Pb(鉛)を含有してもよい。これらの選択元素の含有量は、公知の知見に基づいて制御すればよい。例えば、これらの選択元素の含有量は、以下とすればよい。
  Bi:0~0.1000%
  Nd:0~0.1000%
  Y :0~0.1000%
  As:0~0.1000%
  Ga:0~0.1000%
  Ge:0~0.1000%
  Co:0~0.1000%
  Se:0~0.1000%
  Pb:0~0.1000%
 Bi含有量は0.0100%以下であることが好ましく、0.005%以下であることがより好ましい。Nd含有量は0.0100%以下であることが好ましく、0.0020%以下であることが好ましい。Y含有量は0.0010%以下であることが好ましい。As、Ga、Ge、Co、Se、Pbの含有量はそれぞれ0.0100%以下であることが好ましく、0.005%以下であることがより好ましい。ただし、精錬コストを考慮し、Bi、Nd、Y、As、Ga、Ge、Co、Se、Pbのそれぞれの含有量は、0.0010%以上としてもよい。
 本実施形態に係る無方向性電磁鋼板の母材の化学組成は、ICP-AES(Inductively Coupled Plasma-Atomic Emission Spectrometry)を用いて測定すればよい。また、CおよびSは燃焼-赤外線吸収法を用い、Nは不活性ガス燃焼-熱伝導度法を用い、Oは不活性ガス融解-非分散型赤外線吸収法を用いて測定すればよい。
 なお、測定対象となる鋼板が、その表面に絶縁被膜等を有している場合は、これらを除去してから化学組成を測定する。無方向性電磁鋼板の絶縁被膜等を除去する方法としては、例えば、次の方法が挙げられる。
 まず、絶縁被膜等を有する無方向性電磁鋼板を、水酸化ナトリウム水溶液に浸漬後、洗浄する。最後に、温風で乾燥させる。これにより、後述の絶縁被膜が除去された珪素鋼板を得ることができる。
 次に、本実施形態の無方向性電磁鋼板におけるPの偏析について説明する。
 本実施形態の無方向性電磁鋼板は、Pが不純物として、又は意図的に添加して0.10%以下の範囲で含有される。Pが結晶粒界に偏析すると鋼板の耐衝撃性が低下する。そのため、本実施形態の無方向性電磁鋼板では、Pを結晶粒界に偏析させないようにする。
 具体的には、結晶粒界をオージェ電子分光法で測定した際の700eVにおけるFeのピーク間高さFe700Bと、120eVにおけるPのピーク間高さP120Bとの比(P120B/Fe700Bが、結晶粒内をオージェ電子分光法で測定した際の700eVにおけるFeのピーク間高さFe700iと、120eVにおけるPのピーク間高さP120iとの比(P120i/Fe700iの2.0倍以下とする。(P120B/Fe700Bが(P120i/Fe700iの2.0倍以下であれば、結晶粒界へのPの偏析が少なくなり、鋼板の耐衝撃性を向上させることが可能になる。結晶粒界へのPの偏析を抑制するには、前述のとおり化学成分を調整するとともに、後述するように無方向性電磁鋼板を製造する際の条件を最適化する。
 オージェ電子分光法によるPのピーク間高さおよびFeのピーク間高さの測定において、粒界におけるP120B、とFe700B、ならびに、結晶粒内におけるP120i、とFe700iは次の方法で測定される。
 無方向性電磁鋼板を板面に垂直な断面で切断し、18mmL×4mmW(Lは圧延方向長さ、Wは板幅を意味する)の粗試料片を複数採取する。粗試料片に対して試料片の長さ方向中央に切り欠き加工してオージェ電子分光ピーク測定用試験片を作製する。作製されたオージェ電子分光ピーク測定用試験片をオージェ電子分光装置内に入れて液体窒素にて試料を冷却し、試料を破断させる。破断面のうち試料の粒界破壊した破面(粒界面)を探し出し、その粒界面におけるP量及びFe量を目安として、結晶粒界、結晶粒内それぞれ10か所オージェ電子分光法で分析する。そして、結晶粒界に対応する測定箇所において、120eVにおけるPのピーク間高さ「P120B」の、700eVにおけるFeのピーク間高さ「Fe700B」に対する比(P120B/Fe700Bを求め、平均値を算出する。なおここでいう「ピーク間高さ」とは、例えばPの場合、120eVにおいて形成される極大値(最大ピーク)と極小値(最小ピーク)の2つのピークの差分を意味する。
 本実施形態の無方向性電磁鋼板において高い強度を有するとは、圧延方向の引張強さが550MPa以上であることを意味する。引張強さは580MPa以上であるのが好ましい。ここで、引張強さはJIS Z2241(2011)の13B号引張試験片を用いて測定する。
 次に、本実施形態の無方向性電磁鋼板の衝撃試験の方法について説明する。
 一般にJIS Z2242に規定されるようなシャルピー衝撃試験があるが、無方向性電磁鋼板は板厚が薄いためそのままでは衝撃試験ができない。本実施形態では、無方向性電磁鋼板から複数の短冊型試験片(10mm×55mm、中央に45°の角度で深さ2mmのVノッチ入り)を切り出し、これらを積層して高さ10mm±0.2mmとなる積層ブロック(積層体)を作製し、衝撃試験を行う。短冊型試験片は、その長手方向が圧延方向となるよう切り出す。ただし、素材によって耐衝撃性が最弱となる方向が異なる場合があるため、その場合は試験片の長手方向が最弱方向となるように採取すればよい。なお本実施形態の範囲内では、耐衝撃性が最弱となる方向が圧延方向であるため、試験片の長手方向(55mm)が圧延方向となるように試験片を採取する。積層体における試験片同士の固定方法は、短冊状の単板の両端から10mm位置に嫌気性接着剤を塗布して接着する方法とした。耐衝撃性の評価方法としては、常温での衝撃吸収エネルギーで代表できると考えて、これによって評価する。
 本実施形態に係る無方向性電磁鋼板においては、母材(珪素鋼板)の表面に絶縁被膜を有することが好ましい。無方向性電磁鋼板は、コアを打ち抜いた後に積層されてから使用される。そのため、母材の表面に絶縁被膜を設けることで、板間の渦電流を低減することができ、コアとして渦電流損を低減することが可能となる。
 本実施形態では、絶縁被膜の種類については特に限定されず、無方向性電磁鋼板の絶縁被膜として用いられる公知の絶縁被膜を用いることが可能である。このような絶縁被膜として、例えば、無機物を主体とし、さらに有機物を含んだ複合絶縁被膜を挙げることができる。
 ここで、複合絶縁被膜とは、例えば、クロム酸金属塩、リン酸金属塩等の金属塩、または、コロイダルシリカ、Zr化合物、Ti化合物等の無機物の少なくともいずれか一方を主体とし、微細な有機樹脂の粒子が分散している絶縁被膜である。特に、近年ニーズの高まっている製造時の環境負荷低減の観点からは、リン酸金属塩、ZrもしくはTiのカップリング剤を出発物質として用いた絶縁被膜、または、リン酸金属塩、ZrもしくはTiのカップリング剤の炭酸塩もしくはアンモニウム塩を出発物質として用いた絶縁被膜が好ましく用いられる。
 絶縁被膜の付着量は、特に限定するものではないが、例えば、片面あたり200~1500mg/m程度とすることが好ましく、片面あたり300~1200mg/mとすることがより好ましい。上記範囲内の付着量となるように絶縁被膜を形成することで、優れた均一性を保持することが可能となる。なお、絶縁被膜の付着量を、事後的に測定する場合には、公知の各種測定法を利用することが可能であり、例えば、水酸化ナトリウム水溶液浸漬前後の質量差を測定する方法、または検量線法を用いた蛍光X線法等を適宜利用すればよい。
 以上、本実施形態に係る無方向性電磁鋼板について説明してきたが、本実施形態の無方向性電磁鋼板の平均結晶粒径は特に限定されない。ただし、結晶粒が粗大化せずに平均結晶粒径が小さすぎると、鉄損が悪化することが懸念される。一方、結晶粒が過度に粗大化して平均結晶粒径が大きすぎると、加工性が悪化するだけではなく、渦電流損が悪化する場合がある。そのため、無方向性電磁鋼板の平均結晶粒径は10μm~60μmとすることが好ましい。
 平均結晶粒径は、例えば任意の断面においてJIS G0551(2020)の切断法にて測定することができる。
 また、本実施形態に係る無方向性電磁鋼板の板厚は特に限定されない。通常、板厚が薄くなれば、鉄損は低くなるものの、磁束密度が低くなる。この点を踏まえると、板厚が0.15mm以上であれば、鉄損がより低く、かつ、磁束密度がより高くなる。また、板厚が0.27mm以下であれば、低い鉄損を維持できる。そのため、本実施形態に係る無方向性電磁鋼板の好ましい板厚は、0.15~0.27mmである。より好ましくは、0.20~0.25mmである。
 次に、本実施形態の無方向性電磁鋼板の好ましい製造方法、及び得られた無方向性電磁鋼板を素材としたステータコアを備える電動機を製造する方法について説明する。
 本実施形態の無方向性電磁鋼板は、上記の化学組成のスラブを加熱した後熱間圧延を施し熱延鋼板とし、得られた熱延鋼板を巻き取り、冷却し、冷却後の熱延鋼板を冷間圧延し、冷間圧延後の鋼板を仕上げ焼鈍することで製造される。具体的に、本実施形態の無方向性電磁鋼板の製造方法は、上記の化学成分を有する鋼スラブを熱間圧延し熱延鋼板を得る熱延工程と、熱延鋼板を巻き取り、冷却する巻取工程と、冷却後の熱延鋼板を冷間圧延し冷延鋼板を得る冷延工程と、冷延鋼板を仕上げ焼鈍する仕上げ焼鈍工程とを備える。熱延板焼鈍は省略してよい。この場合、熱延鋼板の巻取工程における冷却においては、700℃~500℃(高温側)の温度域の滞在時間に比べて500~200℃(低温側)の温度域の滞在時間を長くし、かつ500~200℃の温度域の滞在時間を100秒以上とする。なお、滞在時間の上限については定めるものではない。ただし、操業上の観点からあまりに長時間滞在させる必要性もなく、例えば10000秒程度を上限としてもよい。巻取工程における冷却に関し、各温度域での滞在時間は後に詳述する。また、仕上げ焼鈍工程において、最高温度を900℃未満以下、冷却過程における700~500℃の領域の平均冷却速度を20℃/秒以上とする。
 また、本実施形態の無方向性電磁鋼板の他の製造方法は、熱延鋼板の焼鈍(熱延板焼鈍)を含んでもよい。すなわち、上記の化学組成のスラブを加熱した後熱間圧延を施し熱延鋼板とし、得られた熱延鋼板を巻き取り、冷却し、冷却後の熱延鋼板を加熱、冷却する焼鈍を施し、焼鈍後の熱延鋼板を冷間圧延し、冷間圧延後の鋼板を仕上げ焼鈍することで製造してもよい。具体的に、本実施形態の無方向性電磁鋼板の他の製造方法は、上記の化学成分を有する鋼スラブを熱間圧延し熱延鋼板を得る熱延工程と、熱延鋼板を巻き取り、冷却する巻取工程と、冷却後の熱延鋼板を加熱、冷却する熱延板焼鈍工程と、熱延板焼鈍工程後の熱延鋼板を冷間圧延し冷延鋼板を得る冷延工程と、冷延鋼板を仕上げ焼鈍する仕上げ焼鈍工程とを備える。この場合は、熱延鋼板の焼鈍(熱延板焼鈍)における冷却において、700℃~500℃(高温側)の温度域の滞在時間に比べて500~200℃(低温側)の温度域の滞在時間を長くし、かつ500~200℃の温度域の滞在時間を10秒以上とする。なお、熱延板焼鈍を行う場合の前述の温度域の滞在時間の上限については定めるものではない。ただし、操業上の観点からあまりに長時間滞在させる必要もなく、例えば10000秒程度を上限としてもよい。巻取工程における冷却に関し、各温度域での滞在時間は後に詳述する。また、仕上げ焼鈍において、最高温度を900℃未満、冷却過程における700~500℃の領域の平均冷却速度を20℃/秒以上とする。
 スラブは、上記の化学組成を有する鋼を、連続鋳造法又は鋼塊を分塊圧延する方法等の一般的な方法により得ることができる。次いで、スラブを加熱炉に装入して加熱した後、熱間圧延を施し熱延鋼板を得る。ただし、スラブ温度が高い場合には加熱炉に装入しないで熱間圧延を施してもよい。この工程によって、熱延鋼板が得られる。スラブ加熱温度は特に限定されるものではないが、コスト及び熱間圧延性の観点から1000~1300℃とすることが好ましい。
 鋼スラブを製造後、鋼スラブを再加熱し、熱間圧延を施し、熱延鋼板とする。熱間圧延の条件は特に限定されない。例えば、仕上げ圧延時の最終圧延温度は700~1050℃とすることができる。また、熱間圧延後の熱延鋼板の板厚についても、特に規定するものではないが、熱間圧延とそれ以降の工程の能率を考慮して、例えば、1.5~3.0mm程度とすることが好ましい。
 続いて熱間圧延後の熱延鋼板を、巻き取り、冷却する。巻取り温度は、例えば、700~1000℃とすることができる。後述する熱延板焼鈍を省略する場合は、熱延鋼板の巻取工程における冷却においては、700℃~500℃(高温側)の滞在時間に比べて500~200℃(低温側)の温度域の滞在時間を長くし、かつ500~200℃の温度域の滞在時間を100秒以上とする。700~500℃(高温側)の滞在時間で粒界にPが一部偏析する。しかし、500℃~200℃(低温側)の滞在時間を十分に長くすることで、500℃~200℃の滞在時間の間に結晶粒界へCが偏析することが促進され、結果、仕上げ焼鈍時に再びPの粒界偏析することを抑制できる。逆に500℃~200℃の滞在時間が短すぎると、Cの偏析が少なくなることでPが粒界に偏析しやすくなる。また、低温側での滞在時間が長くでも、その滞在時間が高温側での滞在時間よりも短ければ、高温側でのPの偏析を十分に回避することが困難となる。この観点から、700℃~500℃(高温側)の滞在時間の上限は、200秒以下とし、かつ、高温側と低温側の各滞在時間の差分が、高温側の滞在時間の10%以上であることが好ましい。700℃~500℃(高温側)の滞在時間の下限は特に限定しないが、操業上の観点から、80秒以上としてよい。
 冷却後、熱延板焼鈍を施してもよい。熱延板焼鈍は、例えば、950℃以上1050℃以下で10秒間以上3分間以下保持する連続焼鈍にて実施することができる。あるいは、熱延板焼鈍は、750℃以上900℃以下で1時間以上保持するバッチ焼鈍で行ってもよい。
 熱延板焼鈍を行う場合は、その後の冷却において、700~500℃(高温側)の温度域の滞在時間に比べて500~200℃(低温側)の温度域の滞在時間を長くし、かつ500~200℃の温度域の滞在時間を10秒以上とする。低温側の滞在時間が短すぎると、Pが粒界に偏析しやすくなる。熱延板焼鈍を実施する場合の冷却過程における滞在時間の上限は定めるものではない。ただし、操業上の観点から、あまりに長時間滞在させる必要はなく、例えば、10000秒程度を超えて滞在させる必要性は乏しい。なお、高温での回復や未再結晶部の残存によって結晶粒界以外の多くの偏析サイトが存在する熱間圧延後に比べて、熱延板焼鈍後では再結晶で整粒化が進んでいるため析出サイトが限定されている。さらに熱延板焼鈍後では粒成長時のドラッグ効果によって粒界付近への偏析度も高い。そのため、熱延板焼鈍時の方が、滞在時間が短時間でもPの偏析を少なくできると考えられる。また、熱延板焼鈍を省略した場合(上記参照)を同様に、低温側での滞在時間が長くでも、その滞在時間が高温側での滞在時間よりも短ければ、高温側でのPの偏析を十分に回避することが困難となる。この観点から、700℃~500℃(高温側)の滞在時間の上限は、20秒以下とし、かつ、高温側と低温側の各滞在時間の差分が、高温側の滞在時間の10%以上であることが好ましい。700℃~500℃(高温側)の滞在時間の下限は特に限定しないが、操業上の観点から、5秒以上としてよい
 続いて、熱延鋼板を冷間圧延する。冷間圧延は、例えば室温~300℃の温度範囲で、合計の圧下率を70~90%として行うことができる。特に薄手の電磁鋼板とするのであれば、合計の圧下率は80%以上とすることができる。冷延の全圧下率は、圧延機の能力や板厚精度など製造管理を考慮すれば、90%以下であることが好ましい。なお、必要に応じて、熱延鋼板に酸洗を施した上で、冷間圧延してもよい。冷延の圧下率は特に限定されない。
 冷間圧延の後、鋼板に仕上げ焼鈍を施し、無方向性電磁鋼板を得る。仕上げ焼鈍工程においては、最高温度を900℃未満、冷却過程における700~500℃の領域の平均冷却速度を20℃/秒以上とする。これにより、Pが拡散し、粒界に偏析することを防止する。最高温度が900℃を超えると、偏析していたCが拡散して均質化してしまい、Pの粒界偏析が促進されるおそれがある。そのため、仕上げ焼鈍工程における最高温度は、好ましくは880℃以下、より好ましくは850℃未満である。なお、最高温度の下限は特に限定されないが、磁気特性の観点から、700℃以上とすることが好ましい。最高温度が700℃未満の場合は、再結晶及び結晶粒成長が不十分となり鉄損が劣位となる。
 また、仕上げ焼鈍工程の冷却過程における700~500℃の領域は、Pの拡散挙動を制御する上で重要な温度域である。すなわち、Pの拡散を抑えてPの粒界偏析を抑制するためには、冷却過程における700~500℃の温度域における平均冷却速度を高めることが効果的である。したがって、冷却過程における700~500℃の領域の平均冷却速度を20℃/秒以上とする。冷却過程における700~500℃の領域の平均冷却速度は、好ましくは、25℃/秒以上であり、より好ましくは30℃/秒以上である。
 なお、仕上げ焼鈍の加熱時の平均昇温速度は特に限定されないが、良好な磁束密度を得る観点から、20~1000℃/秒としてよい。
 また、仕上げ焼鈍工程における焼鈍雰囲気は、特に限定されないが、Pの粒界偏析を抑制する観点からは、還元性雰囲気とすることが好ましい。具体的には、乾窒素水素混合雰囲気とすることが好ましく、水蒸気分圧としてPHO/PHを0.1以下とすることが好ましい。焼鈍雰囲気が酸化性雰囲気の場合は、脱炭が生じてしまい、Pの粒界偏析を抑制するCの粒界偏析が減少してしまう。その結果、Pが粒界偏析することを促進してしまう。
 以上のように製造された本実施形態の無方向性電磁鋼板は、550MPa以上の高い引張強さとともに、高い耐衝撃性を有する。
 本実施形態の無方向性電磁鋼板を用いて、電動機を製造することができる。電動機のコアは、上記化学組成を有する本実施形態の無方向性電磁鋼板をコア形状に加工してコア原板を作製し、複数のコア原板を積層してコア素材とする。コアの内、ロータコアはコア素材を焼鈍せずに用いられてもよい。一方、ステータコアは、コア素材(ステータコア素材)に対し、加熱、冷却する歪取り焼鈍(コア焼鈍)を施して用いられることにより、さらに低鉄損な電動機を得ることができる。
 このとき、上記ステータコア素材の歪取り焼鈍において、加熱温度を750~850℃、冷却過程における700~500℃の領域の平均冷却速度を5℃/分以下とする。これにより、ステータコアの結晶粒界をオージェ電子分光法で測定した際の700eVにおけるFeのピーク間高さFe700SBと、120eVにおけるPのピーク間高さP120SBとの比(P120SB/Fe700SBSBが、結晶粒内をオージェ電子分光法で測定した際の700eVにおけるFeのピーク間高さFe700Siと、120eVにおけるPのピーク間高さP120Siとの比(P120Si/Fe700SiSiの4.0倍以上とすることができる。さらに、引張強度が500MPa以上である高強度のステータコアを得ることができる。歪取り焼鈍の冷却過程における700~500℃の領域の平均冷却速度の下限は特に限定されないが、過剰に長時間としても生産性を阻害してしまうため、1℃/分以上としてよい。
 すなわち、部材(コア)として加工する際に無方向性電磁鋼板に導入される加工歪を除去するための歪取り焼鈍後には、上述した無方向性電磁鋼板の場合とは異なり、Pを粒界に偏析させることが好ましい。その理由は、Pを結晶粒界へ偏析させることにより、結晶粒界にTiCなどの炭化物が析出することを抑制することができ、鉄損を改善することができるためである。さらに、この歪取り焼鈍により、Si、Mn量が高いことによるPの粒界偏析の促進効果が得られ、無方向性電磁鋼板の製造の場合とは異なり、よい効果がもたらされる。
 以下、実施例を例示して、本開示を具体的に説明する。なお、実施例の条件は、本開示の実施可能性および効果を確認するために採用した一例であり、本開示は実施例の条件に限定されるものではない。本開示は、その要旨を逸脱せず、その目的を達成する限りにおいて、種々の条件を採用し得るものである。
 表1A、表1Bに示す成分を有するスラブに、熱間圧延(熱延板の板厚:2.0mm)、熱延板焼鈍、冷間圧延(合計圧下率:87.5%)、仕上げ焼鈍を施し、板厚0.25mmの無方向性電磁鋼板を作製した。仕上げ焼鈍において、表1に示す最高温度までの平均昇温速度は50℃/秒とし、焼鈍雰囲気は20%H+80%N(PHO/PH=0.03)とした。なお、表1A、表1Bの化学組成における下線は、本発明の範囲外の組成であることを示し、“-”は、対応する元素含有量が、実施形態に規定の有効数字(最小桁までの数値)において、0%であることを意味する。また、表1のB量における「<0.0001」は、検出限界値(0.0001%)未満であることを意味する。
 熱延板焼鈍の冷却における700~500℃(高温側)および500~200℃(低温側)それぞれの滞在時間、仕上げ焼鈍の最高温度、平均冷却速度は表2に示す条件とした。なお、No.4、7では熱延板焼鈍は省略した。No.4、7の「滞在時間」は、熱延鋼板の巻き取り後の冷却における700~500℃、500~200℃それぞれの滞在時間を示す。
 得られた無方向性電磁鋼板の引張強さ、衝撃吸収エネルギー、結晶粒界、結晶粒内のP120/Fe700の比率を、前述の方法で測定した。結果を表2に示す。
 なお、表2の「仕上げ焼鈍後」の「粒界/粒内」は、{(P120B/Fe700B/(P120i/Fe700i}を意味し、「コア焼鈍後」の「粒界/粒内」は、{(P120SB/Fe700SBSB/(P120Si/Fe700SiSi}を意味する。
 衝撃吸収エネルギーは、200J/cm以上であれば、耐衝撃性に優れていると判断した。
 さらに、得られた無方向性電磁鋼板をステータコア形状に加工してステータコア素材を作製し、加熱、冷却する歪取り焼鈍(コア焼鈍)を施した。歪取り焼鈍における加熱温度は800℃、700~500℃の領域の平均冷却速度は3℃/分とした。歪取り焼鈍後の加工品について、400Hzでのヒステリシス損(Wh10/400)を求めた。結果を表2に示す。Wh10/400が、5.6W/kg未満であれば、磁気特性に優れていると判断した。
 なお、ヒステリシス損は、次の方法で測定した。歪取り焼鈍後の加工品の鉄損(Wh10/400)を、JIS C 2550の直流測定に準拠して測定したWh10/1を400倍とした。
 表2における下線は、本発明の範囲外、または、目標とする特性が得られていないことを示す。
 本発明によれば、高強度であり、耐衝撃性に優れた無方向性電磁鋼板が得られることが確認できた。また、本発明の無方向性電磁鋼板を素材としたステータコアは、優れた磁気特性を有することが確認できた。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003

Claims (7)

  1.  母材の化学組成が、質量%で、
      C :0.0010~0.0040%、
      Si:3.2~4.5%、
      sоl.Al:0.2~2.0%、
      Mn:0.1~3.5%、
      P :0%超、0.10%以下、
      S :0~0.0030%、
      N :0~0.0030%、
      Ti:0~0.0030%、
      Mo:0.0010~0.1000%、
      Cr:0~0.10%、
      B :0~0.0010%、
      Ni:0~0.50%、
      Cu:0~0.50%、
      Sn:0~0.2000%、
      Sb:0~0.2000%、
      Ca:0~0.0050%、
      Zn:0~0.0050%、
      La:0~0.0050%、
      Ce:0~0.0050%、
      O :0~0.1000%、
      V :0~0.1000%、
      W :0~0.1000%、
      Zr:0~0.1000%、
      Nb:0~0.1000%、
      Mg:0~0.1000%、
      Bi:0~0.1000%、
      Nd:0~0.1000%、
      Y :0~0.1000%、
      As:0~0.1000%、
      Ga:0~0.1000%、
      Ge:0~0.1000%、
      Co:0~0.1000%、
      Se:0~0.1000%、
      Pb;0~0.1000%、及び
      残部:Fe及び不純物
    であり、
     引張強さが550MPa以上であり、
     結晶粒界をオージェ電子分光法で測定した際の700eVにおけるFeのピーク間高さFe700Bと、120eVにおけるPのピーク間高さP120Bとの比(P120B/Fe700Bが、結晶内をオージェ電子分光法で測定した際の700eVにおけるFeのピーク間高さFe700iと、120eVにおけるPのピーク間高さP120iとの比(P120i/Fe700iの2.0倍以下である
    ことを特徴とする無方向性電磁鋼板。
  2.   Ni:0.01~0.50%、
      Cu:0.01~0.50%、
      Sn:0.01~0.2000%、
      Sb:0.01~0.2000%、
      Ca:0.0005~0.0050%、
      Zn:0.0003~0.0050%、
      La:0.0005~0.0050%、
      Ce:0.0005~0.0050%、
      O :0.0020~0.1000%、
      V :0.0010~0.0100%、
      W :0.0010~0.0100%、
      Zr:0.0010~0.0100%、
      Nb:0.0010~0.0100%、
      Mg:0.0010~0.0100%、
      Bi:0.0010~0.0100%、
      Nd:0.0010~0.0100%、
      Y :0.0010~0.0100%、
      As:0.0010~0.0100%、
      Ga:0.0010~0.0100%、
      Ge:0.0010~0.0100%、
      Co:0.0010~0.0100%、
      Se:0.0010~0.0100%、
      Pb;0.0010~0.0100%、
    からなる群から選択される1種以上を含有する
    ことを特徴とする請求項1に記載の無方向性電磁鋼板。
  3.  前記母材の表面に絶縁被膜を有する、
     請求項1または請求項2に記載の無方向性電磁鋼板。
  4.  請求項1又は2に記載の無方向性電磁鋼板を製造する方法であって、
     請求項1又は2に記載の化学成分を有する鋼スラブを熱間圧延し熱延鋼板を得る熱延工程、
     前記熱延鋼板を巻き取り、冷却する巻取工程、
     冷却後の前記熱延鋼板を冷間圧延し冷延鋼板を得る冷延工程、
     前記冷延鋼板を仕上げ焼鈍する仕上げ焼鈍工程
    を備え、
     前記熱延鋼板の巻取工程における冷却において、700~500℃の温度域の滞在時間よりも500~200℃の温度域の滞在時間を長くし、かつ前記500~200℃の温度域の滞在時間を100秒以上とし、
     前記仕上げ焼鈍工程において、最高温度を900℃未満、冷却過程における700~500℃の領域の平均冷却速度を20℃/秒以上とする
    ことを特徴とする無方向性電磁鋼板の製造方法。
  5.  請求項1又は2に記載の無方向性電磁鋼板を製造する方法であって、
     請求項1又は2に記載の化学成分を有する鋼スラブを熱間圧延し熱延鋼板を得る工程、
     前記熱延鋼板を巻き取り、冷却する巻取工程、
     冷却後の前記熱延鋼板を加熱、冷却する熱延板焼鈍工程、
     熱延板焼鈍工程後の熱延鋼板を冷間圧延し冷延鋼板を得る冷延工程、
     前記冷延鋼板を仕上げ焼鈍する仕上げ焼鈍工程
    を備え、
     前記熱延鋼板の前記熱延板焼鈍工程における冷却において、700~500℃の温度域の滞在時間よりも500~200℃の温度域の滞在時間を長くし、かつ前記500~200℃の温度域の滞在時間を10秒以上とし、
     前記仕上げ焼鈍工程において、最高温度を900℃未満、冷却過程における700~500℃の領域の平均冷却速度を20℃/秒以上とする
    ことを特徴とする無方向性電磁鋼板の製造方法。
  6.  ステータコアを備える電動機であって、
     前記ステータコアの化学組成が、質量%で、
      C :0.0010~0.0040%、
      Si:3.2~4.5%、
      sоl.Al:0.2~2.0%、
      Mn:0.1~3.5%、
      P :0%超、0.10%以下、
      S :0~0.0030%、
      N :0~0.0030%、
      Ti:0~0.0030%、
      Mo:0.0010~0.1000%、
      Cr:0~0.10%、
      B :0~0.0010%、
      Ni:0~0.50%、
      Cu:0~0.50%、
      Sn:0~0.2000%、
      Sb:0~0.2000%、
      Ca:0~0.0050%、
      Zn:0~0.0050%、
      La:0~0.0050%、
      Ce:0~0.0050%、
      O :0~0.1000%、
      V :0~0.1000%、
      W :0~0.1000%、
      Zr:0~0.1000%、
      Nb:0~0.1000%、
      Mg:0~0.1000%、
      Bi:0~0.1000%、
      Nd:0~0.1000%、
      Y :0~0.1000%、
      As:0~0.1000%、
      Ga:0~0.1000%、
      Ge:0~0.1000%、
      Co:0~0.1000%、
      Se:0~0.1000%、
      Pb;0~0.1000%、及び
      残部:Fe及び不純物
    であり、
     引張強さが500MPa以上であり、
     前記ステータコアの結晶粒界をオージェ電子分光法で測定した際の700eVにおけるFeのピーク間高さFe700SBと、120eVにおけるPのピーク間高さP120SBとの比(P120SB/Fe700SBSBが、結晶内をオージェ電子分光法で測定した際の700eVにおけるFeのピーク間高さFe700Siと、120eVにおけるPのピーク間高さP120Siとの比(P120Si/Fe700SiSiの4.0倍以上である
    ことを特徴とする電動機。
  7.  ステータコアを備える電動機の製造方法であって、
     請求項1又は2に記載の無方向性電磁鋼板をステータコア形状に加工してステータコア素材とする工程と、
     前記ステータコア素材を熱処理してステータコアを得る焼鈍工程
    を備え、
     前記ステータコア素材の前記焼鈍工程において、
     加熱温度を750~850℃、冷却過程における700~500℃の領域の平均冷却速度を5℃/分以下とする
    ことを特徴とする電動機の製造方法。
PCT/JP2022/015920 2021-03-31 2022-03-30 無方向性電磁鋼板、無方向性電磁鋼板の製造方法、電動機および電動機の製造方法 WO2022210864A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
BR112023019274A BR112023019274A2 (pt) 2021-03-31 2022-03-30 Chapa de aço elétrico não orientada, métodos para
US18/281,171 US20240039347A1 (en) 2021-03-31 2022-03-30 Non-oriented electrical steel sheet, production method for non-oriented electrical steel sheet, electric motor and production method for electric motor
KR1020237032178A KR20230140602A (ko) 2021-03-31 2022-03-30 무방향성 전자 강판, 무방향성 전자 강판의 제조 방법, 전동기 및 전동기의 제조 방법
CN202280024571.1A CN117157420A (zh) 2021-03-31 2022-03-30 无取向性电磁钢板、无取向性电磁钢板的制造方法、电动机及电动机的制造方法
EP22781074.4A EP4317473A1 (en) 2021-03-31 2022-03-30 Non-oriented electromagnetic steel sheet, production method for non-oriented electromagnetic steel sheet, electric motor, and production method for electric motor
JP2022545038A JP7231115B2 (ja) 2021-03-31 2022-03-30 無方向性電磁鋼板、無方向性電磁鋼板の製造方法、電動機および電動機の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021061782 2021-03-31
JP2021-061782 2021-03-31

Publications (1)

Publication Number Publication Date
WO2022210864A1 true WO2022210864A1 (ja) 2022-10-06

Family

ID=83459519

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/015920 WO2022210864A1 (ja) 2021-03-31 2022-03-30 無方向性電磁鋼板、無方向性電磁鋼板の製造方法、電動機および電動機の製造方法

Country Status (8)

Country Link
US (1) US20240039347A1 (ja)
EP (1) EP4317473A1 (ja)
JP (1) JP7231115B2 (ja)
KR (1) KR20230140602A (ja)
CN (1) CN117157420A (ja)
BR (1) BR112023019274A2 (ja)
TW (1) TWI799219B (ja)
WO (1) WO2022210864A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS64225A (en) * 1987-03-11 1989-01-05 Nippon Steel Corp Production of high tensile non-oriented electrical steel sheet
JPS64228A (en) * 1987-03-11 1989-01-05 Nippon Steel Corp Production of non-oriented electrical steel sheet having high tensile strength
JP2009068055A (ja) * 2007-09-12 2009-04-02 Jfe Steel Kk 無方向性電磁鋼板
US20140373340A1 (en) * 2011-09-16 2014-12-25 Voestalpine Stahl Gmbh Non-grain-oriented higher-strength electrical strip with high polarisation and method for the production thereof
JP2015040309A (ja) * 2013-08-20 2015-03-02 Jfeスチール株式会社 高磁束密度無方向性電磁鋼板およびモータ
JP2016151063A (ja) * 2015-02-19 2016-08-22 新日鐵住金株式会社 無方向性電磁鋼板およびその製造方法
JP2019183231A (ja) 2018-04-11 2019-10-24 日本製鉄株式会社 無方向性電磁鋼板、ステータコア、ロータコア及びこれらの製造方法
JP2021061782A (ja) 2019-10-11 2021-04-22 株式会社カネカ 養殖管理システム、学習装置、実行装置、及び端末装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005200756A (ja) * 2004-01-19 2005-07-28 Sumitomo Metal Ind Ltd 無方向性電磁鋼板の製造方法
CN102292462A (zh) * 2009-01-26 2011-12-21 新日本制铁株式会社 无方向性电磁钢板
KR101308723B1 (ko) * 2010-12-27 2013-09-13 주식회사 포스코 자성이 우수한 고강도 무방향성 전기강판 및 그 제조방법
CN106574334B (zh) * 2014-07-31 2018-06-12 杰富意钢铁株式会社 无方向性电磁钢板及其制造方法以及电机铁芯及其制造方法
JP6524438B2 (ja) * 2015-04-30 2019-06-05 日本製鉄株式会社 無方向性電磁鋼板用熱延板とその製造方法および磁気特性が優れた無方向性電磁鋼板とその製造方法
JP6638359B2 (ja) * 2015-12-08 2020-01-29 日本製鉄株式会社 無方向性電磁鋼板およびその製造方法
JP6658338B2 (ja) * 2016-06-28 2020-03-04 日本製鉄株式会社 占積率に優れる電磁鋼板およびその製造方法
TWI682039B (zh) * 2019-03-20 2020-01-11 日商日本製鐵股份有限公司 無方向性電磁鋼板及其製造方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS64225A (en) * 1987-03-11 1989-01-05 Nippon Steel Corp Production of high tensile non-oriented electrical steel sheet
JPS64228A (en) * 1987-03-11 1989-01-05 Nippon Steel Corp Production of non-oriented electrical steel sheet having high tensile strength
JP2009068055A (ja) * 2007-09-12 2009-04-02 Jfe Steel Kk 無方向性電磁鋼板
US20140373340A1 (en) * 2011-09-16 2014-12-25 Voestalpine Stahl Gmbh Non-grain-oriented higher-strength electrical strip with high polarisation and method for the production thereof
JP2015040309A (ja) * 2013-08-20 2015-03-02 Jfeスチール株式会社 高磁束密度無方向性電磁鋼板およびモータ
JP2016151063A (ja) * 2015-02-19 2016-08-22 新日鐵住金株式会社 無方向性電磁鋼板およびその製造方法
JP2019183231A (ja) 2018-04-11 2019-10-24 日本製鉄株式会社 無方向性電磁鋼板、ステータコア、ロータコア及びこれらの製造方法
JP2021061782A (ja) 2019-10-11 2021-04-22 株式会社カネカ 養殖管理システム、学習装置、実行装置、及び端末装置

Also Published As

Publication number Publication date
EP4317473A1 (en) 2024-02-07
JPWO2022210864A1 (ja) 2022-10-06
US20240039347A1 (en) 2024-02-01
TW202246544A (zh) 2022-12-01
BR112023019274A2 (pt) 2023-10-24
KR20230140602A (ko) 2023-10-06
CN117157420A (zh) 2023-12-01
JP7231115B2 (ja) 2023-03-01
TWI799219B (zh) 2023-04-11

Similar Documents

Publication Publication Date Title
US11279985B2 (en) Non-oriented electrical steel sheet
JP4586669B2 (ja) 回転子用無方向性電磁鋼板の製造方法
EP3533890B1 (en) Non-oriented electrical steel sheet and method for producing same
EP3572545B1 (en) Non-oriented electromagnetic steel sheet and production method therefor
WO2007007423A1 (ja) 無方向性電磁鋼板およびその製造方法
CN115315536B (zh) 无取向性电磁钢板、铁芯、冷轧钢板、无取向性电磁钢板的制造方法及冷轧钢板的制造方法
JP6870687B2 (ja) 無方向性電磁鋼板
JP2012149337A (ja) 高強度電磁鋼板およびその製造方法
TWI717201B (zh) 無方向性電磁鋼板及其製造方法
EP3358027B1 (en) Non-oriented electromagnetic steel sheet and manufacturing method of same
WO2014024222A1 (ja) 高強度電磁鋼板およびその製造方法
KR20210036948A (ko) 무방향성 전자기 강판
JP4710458B2 (ja) 回転子用無方向性電磁鋼板の製造方法
WO2020188812A1 (ja) 無方向性電磁鋼板
JP4506664B2 (ja) 回転子用無方向性電磁鋼板およびその製造方法
JP7231115B2 (ja) 無方向性電磁鋼板、無方向性電磁鋼板の製造方法、電動機および電動機の製造方法
TWI777498B (zh) 無方向性電磁鋼板及其製造方法
JP7328597B2 (ja) 無方向性電磁鋼板およびその製造方法
JP7444275B2 (ja) 無方向性電磁鋼板とその製造方法
CN111465709B (zh) 多层型电磁钢板
WO2024095666A1 (ja) 無方向性電磁鋼板の製造方法
KR20230129476A (ko) 무방향성 전자 강판 및 그 제조 방법
JP6852965B2 (ja) 電磁鋼板とその製造方法
US20230104017A1 (en) Non-oriented electrical steel sheet and method of manufacturing the same
KR20240027787A (ko) 무방향성 전자 강판과 그의 제조 방법

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022545038

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22781074

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18281171

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20237032178

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020237032178

Country of ref document: KR

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112023019274

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112023019274

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20230921

WWE Wipo information: entry into national phase

Ref document number: 2022781074

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022781074

Country of ref document: EP

Effective date: 20231031

NENP Non-entry into the national phase

Ref country code: DE