WO2022210777A1 - 機械学習器、換気制御装置、及び、換気制御方法 - Google Patents

機械学習器、換気制御装置、及び、換気制御方法 Download PDF

Info

Publication number
WO2022210777A1
WO2022210777A1 PCT/JP2022/015676 JP2022015676W WO2022210777A1 WO 2022210777 A1 WO2022210777 A1 WO 2022210777A1 JP 2022015676 W JP2022015676 W JP 2022015676W WO 2022210777 A1 WO2022210777 A1 WO 2022210777A1
Authority
WO
WIPO (PCT)
Prior art keywords
target space
carbon dioxide
dioxide concentration
information
unit
Prior art date
Application number
PCT/JP2022/015676
Other languages
English (en)
French (fr)
Inventor
祥太 鶴薗
朋義 足利
隆寛 大賀
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Priority to EP22780988.6A priority Critical patent/EP4317816A1/en
Publication of WO2022210777A1 publication Critical patent/WO2022210777A1/ja
Priority to US18/372,484 priority patent/US20240011658A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/46Improving electric energy efficiency or saving
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/0001Control or safety arrangements for ventilation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/64Electronic processing using pre-stored data
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B15/00Systems controlled by a computer
    • G05B15/02Systems controlled by a computer electric
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/50Air quality properties
    • F24F2110/65Concentration of specific substances or contaminants
    • F24F2110/70Carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2120/00Control inputs relating to users or occupants
    • F24F2120/10Occupancy
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/20Pc systems
    • G05B2219/26Pc applications
    • G05B2219/2614HVAC, heating, ventillation, climate control
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/20Pc systems
    • G05B2219/26Pc applications
    • G05B2219/2642Domotique, domestic, home control, automation, smart house

Definitions

  • Patent Document 1 Japanese Unexamined Patent Application Publication No. 2010-96382.
  • the machine learning device of the first aspect includes a first acquisition unit, a second acquisition unit, and a learning unit.
  • the first acquisition unit acquires environment information of the target space.
  • the second acquisition unit acquires number-of-people information regarding the number of people present in the target space.
  • the learning unit learns by associating the environment information acquired by the first acquisition unit with the number-of-people information acquired by the second acquisition unit.
  • Environmental information includes the actual carbon dioxide concentration within the target space.
  • the machine learning device of the second aspect is the machine learning device of the first aspect, and based on the learning result of the learning unit, the carbon dioxide concentration in the target space after a certain time is predicted from the environmental information and the number of people information. It further comprises a prediction unit that predicts as
  • this machine learning device predicts the carbon dioxide concentration after a certain period of time from the environmental information and the number of people in the target space. Even when it does, the carbon dioxide concentration peculiar to the target space can be estimated with high accuracy.
  • the machine learning device of the third aspect is the machine learning device of the second aspect, and the prediction unit predicts the amount of change in carbon dioxide concentration in the target space as a predicted value.
  • This machine learning device predicts the amount of change in carbon dioxide concentration from the environmental information of the target space and the number of people based on the learning results of the learning unit. Space-specific changes in carbon dioxide concentration can be estimated with high accuracy.
  • the machine learning device is the machine learning device according to any one of the first aspect to the third aspect, and the second acquisition unit further acquires information regarding the living body of a person existing in the target space.
  • the learning unit further associates and learns the information about the living body acquired by the second acquisition unit.
  • this machine learning device by using biological information related to a person existing in the target space as input information, it is possible to estimate with high accuracy the carbon dioxide concentration specific to the target space in which the person exists.
  • the machine learner of the fifth aspect is the machine learner of the fourth aspect, and the information about the living body includes the amount of conversation or body temperature of people present in the target space.
  • the amount of conversation or body temperature of a person in the target space is included in the biological information, so it is possible to estimate the carbon dioxide concentration specific to the target space in which the person is present with high accuracy.
  • the machine learner of the sixth aspect is the machine learner of the fourth or fifth aspect, and the information about the living body further includes the sex, age, physique or posture of the person present in the target space.
  • the biological information further includes the sex, age, physique, or posture of the person present in the target space, so that the carbon dioxide concentration specific to the target space where the person exists can be estimated with high accuracy. can be done.
  • the machine learning device of the seventh aspect is the machine learning device of any one of the first to sixth aspects, and the environmental information includes the carbon dioxide concentration in the outside air or the opening and closing of doors or windows in the target space.
  • the environment information includes the carbon dioxide concentration of the outside air, or the opening and closing of the door or window of the target space, so that even if the target space is ventilated by opening and closing the door or window, the target space A characteristic carbon dioxide concentration can be estimated with high accuracy.
  • the machine learner of the eighth aspect is the machine learner of the seventh aspect, wherein the environmental information further includes the ventilation volume of the target space or the volume of the target space.
  • the environment information further includes the ventilation volume of the target space or the volume of the target space, so that the carbon dioxide concentration specific to the target space can be estimated with high accuracy.
  • the ventilation control device of the ninth aspect includes the machine learning device of the second aspect and a control unit.
  • the control unit controls the ventilation equipment installed in the target space based on the predicted value of the carbon dioxide concentration in the target space after a certain period of time, which is the output of the prediction unit of the machine learning device.
  • the ventilation equipment is controlled based on the predicted value of the carbon dioxide concentration after a certain period of time in the target space. Therefore, appropriate ventilation control can be performed for the target space.
  • the ventilation control device of the tenth aspect includes a first prediction section, a second prediction section, and a control section.
  • a first predicting unit, for the first target space, based on the learning result of the learning unit of the machine learning device of the first aspect, after a certain time in the first target space from the environment information and the number of people information is predicted as a predicted value.
  • the second prediction unit predicts the second target space after a certain time in the second target space based on the environment information and the number of people information based on the learning result of the learning unit of the machine learning device of the first aspect. is predicted as a predicted value.
  • the control unit adjusts the ventilation equipment installed in the first target space based on the predicted value of the carbon dioxide concentration in the first target space after a certain period of time, which is the output of the first prediction unit. control.
  • the control unit adjusts the ventilation equipment installed in the second target space based on the predicted value of the carbon dioxide concentration in the second target space after a certain period of time, which is the output of the second prediction unit. control.
  • each target space is provided with an individual prediction unit that predicts the carbon dioxide concentration after a certain period of time in each target space. Predictably, appropriate ventilation control can be performed for each target space.
  • the ventilation control method of the eleventh aspect includes a prediction step and a control step.
  • the prediction step predicts the carbon dioxide concentration in the target space after a certain period of time as a predicted value from the environment information and the number of people information based on the learning result of the learning unit of the machine learning device of the first aspect.
  • the control step controls the ventilation equipment installed in the target space based on the predicted value of the carbon dioxide concentration in the target space after a certain period of time, which is the output of the prediction step.
  • the ventilation equipment is controlled based on the predicted value of the carbon dioxide concentration after a certain period of time in the target space. Therefore, appropriate ventilation control can be performed for the target space.
  • the ventilation control method of the twelfth aspect comprises a first prediction step, a second prediction step, and a control step.
  • first prediction step for the first target space, based on the learning result of the learning unit of the machine learning device of the first aspect, after a certain time in the first target space from the environment information and the number of people information is predicted as a predicted value.
  • second prediction step for the second target space, based on the learning result of the learning unit of the machine learning device of the first aspect, based on the environment information and the number of people information, after a certain time in the second target space is predicted as a predicted value.
  • the control step is the output of the first prediction step, based on the predicted value of the carbon dioxide concentration in the first target space after a certain period of time, the ventilation equipment installed in the first target space control.
  • the control unit determines the number of ventilators installed in the second target space based on the predicted value of the carbon dioxide concentration in the second target space after a certain period of time, which is the output of the second prediction step. control.
  • each target space is provided with an individual prediction step for predicting the carbon dioxide concentration in each target space after a certain period of time.
  • appropriate ventilation control can be performed for each target space.
  • FIG. 1 is a schematic diagram of a model of a neuron of a neural network;
  • FIG. It is a figure which shows an example of learning data.
  • FIG. 4 shows an example of the time-series change of the measured value of a carbon dioxide concentration, and a predicted value.
  • 4 is a flow chart of the ventilation control system;
  • It is a functional block diagram of a machine learning device.
  • 4 is a flow chart of the ventilation control system;
  • FIG. 4 is a diagram showing an example of time-series changes in predicted values of carbon dioxide concentration;
  • FIG. 5 is a diagram showing an example of time-series changes in the number of people in a room; It is a figure which shows an example of the time-series change of time to reach a threshold value. It is a functional block diagram of a machine learning device. It is a functional block diagram of a ventilation control system. 4 is a flow chart of the ventilation control system;
  • the ventilation control system 1 of the present embodiment is a system provided to control the ventilation of the rooms R1 to R3, which are the target spaces.
  • the ventilation control system 1, as shown in FIG. 2, mainly includes dampers 80a to 80c, a duct pipe 81, a fan 82, carbon dioxide sensors 60a to 60d, cameras 70a to 70c, a ventilation control device 200, have.
  • the ventilation control device 200 is implemented by a computer.
  • the ventilation control device 200 includes a machine learning device 100 and a control section 50 .
  • the machine learning device 100 includes a first acquisition unit 10, a second acquisition unit 20, a learning unit 30, and a prediction unit 40, as shown in FIG.
  • the first acquisition unit 10 acquires environment information of the target spaces R1 to R3.
  • the second acquisition unit 20 acquires number-of-people information regarding the number of people present in the target spaces R1 to R3.
  • the learning unit 30 learns by associating the environment information and the number-of-persons information. Based on the learning result of the learning section 30, the prediction section 40 predicts the concentration of carbon dioxide in the target spaces R1 to R3 after a certain period of time as a prediction value from the environmental information and the number of people information.
  • the ventilation control device 200 controls the dampers 80a-80c based on the predicted value of the carbon dioxide concentration in the rooms R1-R3 after a certain period of time, which is the output of the prediction unit 40 of the machine learning device 100.
  • the machine learning device 100 acquires the actual carbon dioxide concentrations of the rooms R1 to R3 from the carbon dioxide sensors 60a to 60c installed in the rooms R1 to R3 via the network 90. In addition, the machine learning device 100 acquires the external carbon dioxide concentration via the network 90 from the carbon dioxide sensor 60d installed outside. The machine learning device 100 also acquires the number of people information in the rooms R1 to R3 from the cameras 70a to 70c installed in the rooms R1 to R3 via the network 90. FIG.
  • the first acquisition unit 10 acquires environment information of rooms R1 to R3, which are target spaces.
  • the environmental information includes the actual carbon dioxide concentrations within the target spaces R1-R3.
  • the environmental information of the target spaces R1-R3 is the carbon dioxide concentration of the outside air, the ventilation volume of the target spaces R1-R2, or the volume of the target spaces R1-R3.
  • the ventilation volumes of the target spaces R1 to R3 are the ventilation volumes of dampers 80a to 80c, which are ventilation devices.
  • the first acquisition unit 10 acquires the actual carbon dioxide concentrations in the target spaces R1 to R3 using the carbon dioxide concentration sensors 60a to 60c. Also, the first acquisition unit 10 acquires the carbon dioxide concentration of the outside air using the external carbon dioxide sensor 60d. In addition, the first acquisition unit 10 acquires the ventilation volumes of the dampers 80a to 80c, which are ventilation devices, from catalogs or the like of the ventilation devices. Also, the first acquisition unit 10 acquires the volumes of the target spaces R1 to R3 using the drawings.
  • the second acquisition unit 20 acquires number-of-people information regarding the number of people present in the rooms R1 to R3, which are the target spaces.
  • the second acquisition unit 20 acquires the number of people information regarding the number of people present in the rooms R1 to R3 using the cameras 70a to 70c installed in the rooms R1 to R3.
  • the number of people in room R1 is two.
  • the number of people in room R2 is zero.
  • the number of people in room R3 is five.
  • the learning unit 30 associates the environment information acquired by the first acquisition unit 10 with the number of people information acquired by the second acquisition unit 20 and learns them.
  • the learning unit 30 performs machine learning using the environmental information and the number of people information that differ for each target space as information, and creates a carbon dioxide concentration estimation model shown in Equation 1 below.
  • C indoor carbon dioxide concentration (ppm)
  • C o Carbon dioxide concentration in outside air (ppm)
  • Q m Ventilation volume of ventilation equipment (m 3 /h)
  • V Room volume (m 3 )
  • M h carbon dioxide emissions of a general person (m 3 /h person)
  • n number of people
  • FIG. 3 shows a schematic diagram of a neuron model of a neural network.
  • a neuron outputs an output y for a plurality of inputs (inputs x 1 and x 2 in FIG. 3).
  • Each input (inputs x 1 , x 2 in FIG. 3) is multiplied by a corresponding weight.
  • the weight corresponding to input x1 is a .
  • the weight corresponding to input x2 is b .
  • the input x 1 indicates (C o ⁇ C)*Q m /V, which is the change in carbon dioxide concentration due to the ventilator.
  • the input x2 indicates M h * n /V, which is the change in carbon dioxide concentration due to humans.
  • the output y indicates ⁇ C/ ⁇ t (slope).
  • the weights (coefficients) a and b are learned by comparing ⁇ C/ ⁇ t (slope) and the measured carbon dioxide concentration using the steepest descent method.
  • the values of the weights a and b are determined for each of the object spaces R1 to R3.
  • the prediction unit 40 calculates the concentration of carbon dioxide in the target spaces R1 to R3 after a certain period of time from the environment information and the number of people information of the target spaces R1 to R3 based on the learning result of the learning unit 30. is predicted as the predicted value.
  • the prediction unit 40 uses the carbon dioxide concentration estimation model (learned model) of Equation 1 created by learning in the learning unit 30 using the environment information and the number of people information of the target space R1 as input information, The carbon dioxide concentration after a certain period of time is predicted as a predicted value.
  • the prediction unit 40 uses the carbon dioxide concentration estimation model of Equation 1 created by learning in the learning unit 30 using the environment information and the number of people information of the target space R2 as input information, The future carbon dioxide concentration is predicted as the predicted value.
  • the prediction unit 40 uses the carbon dioxide concentration estimation model of formula 1 created by learning in the learning unit 30 using the environment information and the number of people information of the target space R3 as input information, The future carbon dioxide concentration is predicted as the predicted value.
  • the prediction unit 40 can predict the carbon dioxide concentration after a certain period of time ⁇ t has elapsed.
  • control unit 50 is the output of the prediction unit 40 of the machine learning device 100, based on the predicted value of the concentration of carbon dioxide in the target spaces R1 to R3 after a certain period of time, the target spaces R1 to It controls the dampers 80a to 80c installed for R3.
  • the control unit 50 is implemented by a computer.
  • the control unit 50 includes a control arithmetic device and a storage device (not shown).
  • a processor such as a CPU or a GPU, can be used for the control computing unit.
  • the control arithmetic device reads a program stored in the storage device and performs predetermined image processing and arithmetic processing according to the program. Furthermore, the control arithmetic unit can write the arithmetic result to the storage device and read the information stored in the storage device according to the program.
  • a storage device can be used as a database.
  • the learning unit 30 learns the environment information, the number of people information, and changes in the carbon dioxide concentration in minute time as a learning data set.
  • the environmental information is the actual indoor carbon dioxide concentration, the outdoor air carbon dioxide concentration, and the ventilation rate of the ventilation equipment.
  • the number-of-people information is information about the number of people present in the target space.
  • FIG. 4 shows an example of learning data in room R1.
  • room R1 has a room volume of V1.
  • the ventilator is a damper 80a.
  • the indoor carbon dioxide concentration C 1 , the outside air carbon dioxide concentration Co1 , the ventilation amount Q m1 of the ventilation equipment, and the number of people n 1 in the room R1 are input, and the carbon dioxide concentration ⁇ C Learning is performed using a learning data set whose output is 1 / ⁇ t 1 .
  • the indoor carbon dioxide concentration C 2 , the outdoor air carbon dioxide concentration Co2 , the ventilation amount Q m2 of the ventilation equipment, and the number of people n 2 in the room R1 are input, and the minute time carbon dioxide concentration ⁇ C 2 / ⁇ t 2 is calculated.
  • Fig. 5 shows an example of chronological changes in the measured and predicted values of the carbon dioxide concentration in the target space R1.
  • the solid line indicates the measured value of carbon dioxide concentration
  • the dotted line indicates the predicted value of carbon dioxide concentration.
  • the predicted value is obtained using a carbon dioxide concentration estimation model obtained by learning with a learning data set in the target space R1.
  • the predicted value is assumed to be the carbon dioxide concentration 10 minutes after a certain point.
  • the average error of the measured value and the predicted value of the carbon dioxide concentration in the target space R1 is 9.3 ppm, and the standard deviation is 8.0 ppm.
  • the average error of the carbon dioxide concentration in the target space R1 is 12.2 ppm
  • the standard deviation is 8.5 ppm
  • the accuracy of the predicted value of the carbon dioxide concentration decreases. Therefore, it is preferable to create a carbon dioxide concentration estimation model using environment information and number information, which are data of the target space.
  • FIG. 1 A flowchart of the ventilation control system 1 is shown in FIG.
  • step S1 the environment information of the target spaces R1 to R3 is acquired (step S1). Information about the number of people present in the target spaces R1 to R3 is acquired (step S2).
  • step S3 the carbon dioxide concentrations in the target spaces R1 to R3 after a certain period of time are predicted.
  • step S3 the carbon dioxide concentration in the target space R1 after 10 minutes is predicted based on the results of learning by the learning unit 30 using the environment information and the number of people information of the target space R1 as input information. Also, the carbon dioxide concentration in the target space R2 after 10 minutes is predicted based on the result of learning by the learning unit 30 using the environmental information and the number of people information of the target space R2 as input information. Also, the carbon dioxide concentration in the target space R3 after 10 minutes is predicted based on the result of learning by the learning unit 30 using the environment information and the number of people information of the target space R3 as input information.
  • step S4 the dampers 80a to 80c are controlled based on the carbon dioxide concentration predicted in step S3 (step S4).
  • the machine learning device 100 of this embodiment includes a first acquisition unit 10 , a second acquisition unit 20 and a learning unit 30 .
  • the first acquisition unit 10 acquires environment information of the target spaces R1 to R3.
  • the second acquisition unit 20 acquires number-of-people information regarding the number of people present in the target spaces R1 to R3.
  • the learning unit 30 learns by associating the environment information acquired by the first acquisition unit 10 with the number-of-people information acquired by the second acquisition unit 20 .
  • the environmental information includes the actual carbon dioxide concentrations within the target spaces R1-R3.
  • the startup time and data communication time of the ventilation equipment vary depending on the property, so the ventilation volume set by the ventilation equipment
  • the carbon dioxide concentration may increase due to a rapid increase in the number of people in the room or an increase in the amount of speech before reaching it.
  • the detection of the increase in the carbon dioxide concentration may be delayed.
  • this machine learning device 100 it is possible to create a carbon dioxide concentration estimation model unique to the target spaces R1 to R3, which can be used for appropriate ventilation control in the target spaces R1 to R3. Therefore, with the machine learning device 100 of the present embodiment, it is possible to grasp the characteristics of changes in the carbon dioxide concentration that differ depending on the target space, and to estimate the carbon dioxide concentration with high accuracy.
  • the machine learning device 100 of the present embodiment has a prediction unit 40 that predicts the carbon dioxide concentration after a certain time in the target spaces R1 to R3 from the environment information and the number of people information as a prediction value based on the learning result of the learning unit 30. , is further provided.
  • this machine learning device 100 based on the learning result of the learning unit 30, by predicting the carbon dioxide concentration after a certain time from the environmental information and the number of people information of the target spaces R1 to R3, the target space R1 within a certain time. Even if the environment and the number of people in R1 to R3 change, the carbon dioxide concentration specific to the target spaces R1 to R3 can be estimated with high accuracy.
  • the environmental information further includes the ventilation volumes of the target spaces R1 to R3 or the volumes of the target spaces.
  • the environment information further includes the ventilation volume of the target spaces R1 to R3 or the volume of the target spaces R1 to R3, so that the carbon dioxide concentration specific to the target spaces R1 to R3 is estimated with high accuracy. be able to.
  • a ventilation control device 200 of this embodiment includes a machine learning device 100 and a control unit 50 .
  • the control unit 50 is the output of the prediction unit 40 of the machine learning device 100, based on the predicted value of the carbon dioxide concentration in the target spaces R1 to R3 after a certain period of time. control the ventilation equipment 80a to 80c.
  • the ventilators 80a to 80c are controlled based on the predicted value of the carbon dioxide concentration in the target spaces R1 to R3 after a certain period of time. It is possible to predict in advance the carbon dioxide concentration after a certain period of time, and perform appropriate ventilation control for the target spaces R1 to R3. Further, in this ventilation control device 200, safety can be enhanced by interlocking ventilation in a feedforward manner using the predicted value of the carbon dioxide concentration after a certain period of time in the target spaces R1 to R3. Therefore, it is possible to achieve both safety and energy saving by performing necessary and sufficient ventilation while maintaining the carbon dioxide concentration below a certain set value.
  • the ventilation control method by the ventilation control device 200 of this embodiment includes a prediction step and a control step.
  • the prediction step based on the learning result of the learning unit 30 of the machine learning device 100, the concentration of carbon dioxide in the target spaces R1 to R3 after a certain period of time is predicted as a predicted value from the environmental information and the number of people information.
  • the control step controls the ventilation equipment installed in the target spaces R1 to R3 based on the predicted value of the carbon dioxide concentration in the target spaces R1 to R3 after a certain period of time, which is the output of the prediction step. .
  • the ventilation equipment is controlled based on the predicted value of the carbon dioxide concentration in the target spaces R1 to R3 after a certain period of time.
  • Appropriate ventilation control can be performed for the target spaces R1 to R3 by predicting in advance the carbon dioxide concentration after a certain period of time.
  • the prediction unit predicts the amount of change in the carbon dioxide concentration from the environmental information and the number of people information of the target spaces R1 to R3 based on the learning result of the learning unit, so that the environment and the number of people in the target spaces R1 to R3 have changed. Even in this case, it is possible to estimate with high accuracy the amount of change in carbon dioxide concentration specific to the target spaces R1 to R3.
  • the environmental information includes the opening and closing of the doors or windows of the target spaces R1 to R3, even if ventilation is performed by opening and closing the doors or windows in the target spaces R1 to R3, carbon dioxide specific to the target spaces R1 to R3 Concentration can be predicted with high accuracy.
  • the present invention is not limited to this.
  • a value of 420 ppm which is the concentration of carbon dioxide generally contained in the atmosphere, may be used as the value of the carbon dioxide concentration of the outside air.
  • FIG. 1 A functional block diagram of the machine learning device 110 of Modification 1D is shown in FIG.
  • the machine learning device 110 includes a first acquisition unit 10, a second acquisition unit 21, a learning unit 30, and a prediction unit 40, as shown in FIG.
  • the first acquisition unit 10 acquires environment information of the target spaces R1 to R3.
  • the second acquisition unit 21 acquires information on the number of persons present in the target spaces R1 to R3 and information on the biometrics of the persons present in the target spaces R1 to R3.
  • the learning unit 30 learns by associating the environment information, the number-of-persons information, and the information about the living body. Based on the learning result of the learning section 30, the prediction section 40 predicts the concentration of carbon dioxide in the target spaces R1 to R3 after a certain period of time as a prediction value from the environmental information, the information on the number of people, and the information on the living body.
  • the information about the living body may include the amount of conversation or body temperature of people present in the target spaces R1 to R3.
  • the information about the living body may further include the sex, age, physique, or posture of the people present in the target spaces R1 to R3.
  • the second acquisition unit 21 acquires the amount of human conversation using, for example, a sound sensor. Also, the second acquisition unit 21 acquires the body temperature of a person using a thermosensor. The second acquisition unit 21 also acquires the gender, age, physique, or posture of a person using a camera.
  • FIG. 1 A flowchart of the ventilation control system of Modification 1D is shown in FIG.
  • step S1 the environment information of the target spaces R1 to R3 is acquired (step S11).
  • step S12 The number of persons information regarding the number of persons existing in the target spaces R1 to R3 is obtained (step S12).
  • step S13 information about the living bodies of people existing in the target spaces R1 to R3 is obtained (step S13).
  • step S14 the carbon dioxide concentrations in the target spaces R1 to R3 after a certain period of time are predicted (step S14).
  • the dampers 80a to 80c are controlled based on the carbon dioxide concentration predicted in step S14 (step S15).
  • the carbon dioxide concentration specific to the target spaces R1 to R3 where the person is present can be estimated with high accuracy. can do.
  • the amount of conversation or the body temperature of the person present in the target space is included in the information about the living body, so that the amount of conversation of the person present in the target spaces R1 to R3 increases, thereby increasing the carbon dioxide concentration. Even in such a case, it is possible to estimate with high accuracy the carbon dioxide concentration peculiar to the target spaces R1 to R3 in which the person exists.
  • the information about the living body further includes the gender, age, physique, or posture of the person present in the target spaces R1 to R3. Concentration can be estimated with high accuracy.
  • the volume of the target space can also be estimated using information on the number of people in the target space, the indoor carbon dioxide concentration, the outdoor air carbon dioxide concentration, and the ventilation volume of the ventilation equipment.
  • the volume of the target space may be estimated from the attenuation of the carbon dioxide concentration in the target space at time t1 and time t2 different from t1.
  • Fig. 9A shows an example of the time-series change in the predicted value of the carbon dioxide concentration in the target space R1.
  • FIG. 9B shows an example of time-series changes in the number of people in the target space R1.
  • FIG. 9C shows an example of a time-series change in the time at which the carbon dioxide concentration reaches the threshold in the target space R1.
  • the threshold of carbon dioxide concentration be 1000 ppm. If the estimated steady-state carbon dioxide concentration is equal to or less than the threshold, the time required to reach the threshold is set to 20 minutes. Also, if the time required for the predicted value of the carbon dioxide concentration in the target space R1 to reach the threshold value is 5 minutes or less, ventilation control is performed.
  • the number of people in the target space R1 is 0 at 0 o'clock and 30 at 1 o'clock.
  • the measured carbon dioxide concentration in the target space R1 is approximately 820 ppm.
  • the predicted value of the carbon dioxide concentration in the target space R1 is approximately 958 ppm. Therefore, it is estimated that the carbon dioxide concentration in the target space R1 increases between 0:00 and 1:00.
  • FIG. 9C between 0:00 and 1:00, the time required for the predicted value of the carbon dioxide concentration in the target space R1 to reach the threshold becomes short, and at 1:00 the time required for the threshold is reached is 5. minute.
  • the predicted value of the carbon dioxide concentration in the target space R1 further increases and exceeds the threshold value of 1000 ppm until around 2:30.
  • the ventilation control of the target space R1 is performed from 1:00 to about 2:30.
  • the change in the carbon dioxide concentration in the target space is displayed on the display, and the user of the target space is notified of the change in the carbon dioxide concentration. may be made to recognize. For example, as the change in the carbon dioxide concentration in the target space, the time until the predicted value of the carbon dioxide concentration in the target space reaches a predetermined set value may be displayed on the display.
  • a change in the carbon dioxide concentration in the target space is not limited to an increase in the carbon dioxide concentration in the target space, and includes a decrease in the carbon dioxide concentration in the target space.
  • the ventilation control system 2 of this embodiment is a system provided to control the ventilation of the rooms R1 to R3. As shown in FIG. 11, the ventilation control system 2 mainly includes dampers 80a to 80c, a duct pipe 81, a fan 82, carbon dioxide sensors 60a to 60d, cameras 70a to 70c, and prediction units 41a to 41c. , a machine learner 120 and a ventilation controller 210 .
  • the ventilation control device 210 is implemented by a computer.
  • the ventilation control device 200 includes a control section 51 .
  • the machine learning device 120 includes a first acquisition unit 10, a second acquisition unit 20, and a learning unit 30, as shown in FIG.
  • the first acquisition unit 10 acquires environment information of the target spaces R1 to R3.
  • the second acquisition unit 20 acquires number-of-people information regarding the number of people present in the target spaces R1 to R3.
  • the learning unit 30 learns by associating the environment information and the number-of-persons information.
  • Prediction units 41a to 41c are provided in rooms R1 to R3.
  • the prediction units 41 a to 41 c have learned models learned by the machine learning device 120 .
  • the prediction sections 41a to 41c predict the carbon dioxide concentrations in the target spaces R1 to R3 after a certain period of time as prediction values from the environmental information and the number of people information.
  • the ventilation control device 210 controls the dampers 80a to 80c based on the predicted values of carbon dioxide concentration in the rooms R1 to R3 after a certain period of time, which are the outputs of the prediction units 41a to 41c.
  • the machine learning device 120 acquires the actual carbon dioxide concentration of the rooms R1 to R3 from the carbon dioxide sensors 60a to 60c installed in the rooms R1 to R3 via the network 90.
  • the machine learning device 100 acquires the external carbon dioxide concentration via the network 90 from the carbon dioxide sensor 60d installed outside.
  • the machine learning device 100 also acquires the number of people information in the rooms R1 to R3 from the cameras 70a to 70c installed in the rooms R1 to R3 via the network 90.
  • the machine learning device 120 includes a first acquisition unit 10, a second acquisition unit 20, and a learning unit 30, as shown in FIG. Since the configurations of the first acquisition unit 10, the second acquisition unit 20, and the learning unit 30 are the same as those of the first embodiment, detailed description thereof will be omitted.
  • the predictor 41a is installed in the target space R1. Based on the learning result of the learning unit 30 of the machine learning device 120, the prediction unit 41a predicts the carbon dioxide concentration in the target space R1 after a certain period of time from the environment information and the number of people information of the target space R1. is predicted as the predicted value.
  • the prediction unit 41b is installed in the target space R2. Based on the learning result of the learning unit 30 of the machine learning device 120, the prediction unit 41b predicts the carbon dioxide concentration in the target space R2 after a certain period of time from the environment information and the number of people information of the target space R2. is predicted as the predicted value.
  • the prediction unit 41c is installed in the target space R3. Based on the learning result of the learning unit 30 of the machine learning device 120, the prediction unit 41c predicts the carbon dioxide concentration in the target space R3 after a certain period of time from the environmental information and the number of people information of the target space R3. is predicted as the predicted value.
  • the control unit 51 controls the damper installed in the target space R1 based on the predicted value of the carbon dioxide concentration in the target space R1 after a certain period of time, which is the output of the prediction unit 41a. 80a is controlled. Further, the control unit 51 controls the damper 80b installed in the target space R2 based on the predicted value of the carbon dioxide concentration after a certain time in the target space R2, which is the output of the prediction unit 41b. . Further, the control unit 51 controls the damper 80c installed in the target space R3 based on the predicted value of the carbon dioxide concentration after a certain time in the target space R3, which is the output of the prediction unit 41c. .
  • the control unit 51 is implemented by a computer.
  • the control unit 51 includes a control arithmetic device and a storage device (not shown).
  • a processor such as a CPU or a GPU, can be used for the control computing unit.
  • the control arithmetic device reads a program stored in the storage device and performs predetermined image processing and arithmetic processing according to the program. Furthermore, the control arithmetic device can write the arithmetic result to the storage device and read the information stored in the storage device according to the program.
  • a storage device can be used as a database.
  • FIG. 3 A flowchart of the ventilation control system 2 is shown in FIG. Since the process is substantially the same as the process in the first embodiment shown in FIG. 6, detailed description is omitted.
  • the prediction unit 40 of the machine learning device 100 is used to predict the carbon dioxide concentration after a certain period of time in step S3.
  • the second embodiment differs from the first embodiment in that, in step S23, the carbon dioxide concentrations are predicted using the prediction units 41a to 41c provided in the respective target spaces R1 to R3.
  • the ventilation control device 210 of this embodiment includes a first prediction unit 41 a, a second prediction unit 41 b, a third prediction unit 41 c, and a control unit 50 .
  • the first prediction unit 41a predicts the first target space R1 from the environment information and the number of people information for a certain period of time in the first target space R1.
  • the future carbon dioxide concentration is predicted as the predicted value.
  • the second prediction unit 41b predicts the second target space R2 based on the environment information and the number of people information for a certain period of time in the second target space R2.
  • the future carbon dioxide concentration is predicted as the predicted value.
  • the third prediction unit 41c predicts the third target space R3 from the environmental information and the number of people information for a certain period of time in the third target space R3.
  • the future carbon dioxide concentration is predicted as the predicted value.
  • the control unit 51 is installed in the first target space R1 based on the predicted value of the carbon dioxide concentration in the first target space R1 after a certain period of time, which is the output of the first prediction unit 41a. control the ventilation equipment 80a.
  • the control unit 51 is installed in the second target space R2 based on the predicted value of the carbon dioxide concentration in the second target space R2 after a certain period of time, which is the output of the second prediction unit 41b. It controls the ventilation equipment 80b that is present.
  • the control unit 51 is installed in the third target space R3 based on the predicted value of the carbon dioxide concentration in the third target space R3 after a certain period of time, which is the output of the third prediction unit 41c. It controls the ventilation equipment 80c that is present.
  • each of the target spaces R1 to R3 is provided with individual prediction units 41a to 41c for predicting the carbon dioxide concentration in each of the target spaces R1 to R3 after a certain period of time. It is possible to predict in advance the concentration of carbon dioxide in ⁇ R3 after a certain period of time, and perform appropriate ventilation control for each of the target spaces R1 ⁇ R3.
  • the ventilation control method by the ventilation control device 210 of this embodiment includes a first prediction step, a second prediction step, a third prediction step, and a control step.
  • first prediction step for the first target space R1, based on the learning result of the learning unit 30 of the machine learning device 120, based on the environment information and the number of people information, is predicted as a predicted value.
  • second prediction step for the second target space R2, based on the learning result of the learning unit 30 of the machine learning device 120, based on the environment information and the number of people information, is predicted as a predicted value.
  • the control step is the output of the first prediction step, based on the predicted value of the carbon dioxide concentration in the first target space R1 after a certain time, the ventilation installed for the first target space R1 Control the equipment.
  • the control step is the output of the second prediction step, based on the predicted value of the carbon dioxide concentration in the second target space R2 after a certain time, the ventilation installed for the second target space R2 Control the equipment.
  • the control step is the output of the third prediction step, based on the predicted value of the carbon dioxide concentration in the third target space R3 after a certain period of time, the ventilation equipment installed in the third target space R3 control.
  • each target space R1 to R3 is provided with an individual prediction step for predicting the carbon dioxide concentration in each target space R1 to R3 after a certain time. It is possible to predict in advance the concentration of carbon dioxide in R1 to R3 after a certain period of time, and perform appropriate ventilation control for each of the target spaces R1 to R3.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Automation & Control Theory (AREA)
  • General Physics & Mathematics (AREA)
  • Ventilation (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

機械学習器(100)は、第1取得部(10)と、第2取得部(20)と、学習部(30)と、を備える。第1取得部(10)は、対象空間(R1~R3)の環境情報を取得する。第2取得部(20)は、対象空間(R1~R3)に存在する人の数に関する人数情報を取得する。学習部(30)は、第1取得部(10)が取得した環境情報と、第2取得部(20)が取得した人数情報と、を関連付けて学習する。環境情報は、対象空間(R1~R3)内の実際の二酸化炭素濃度を含む。

Description

機械学習器、換気制御装置、及び、換気制御方法
 機械学習器、換気制御装置、及び、換気制御方法に関する。
 従来、二酸化炭素センサにより部屋の二酸化炭素量を測定し、測定結果により二酸化炭素量が所定値を超える場合は、換気風量を制御している。(特許文献1(特開2010-96382号公報)。
 二酸化炭素センサにより部屋の二酸化炭素量を測定した結果に基づいて換気風量を制御する場合、換気装置が設定した換気量に達するまでに二酸化炭素濃度がさらに上昇して、適切に換気風量を制御できない場合があるという課題がある。
 第1観点の機械学習器は、第1取得部と、第2取得部と、学習部と、を備える。第1取得部は、対象空間の環境情報を取得する。第2取得部は、対象空間に存在する人の数に関する人数情報を取得する。学習部は、第1取得部が取得した環境情報と、第2取得部が取得した人数情報と、を関連付けて学習する。環境情報は、対象空間内の実際の二酸化炭素濃度を含む。
 この機械学習器では、対象空間での適切な換気制御のために用いることができる、対象空間特有の二酸化炭素濃度推定モデルを作成することができる。
 第2観点の機械学習器は、第1観点の機械学習器であって、学習部の学習の結果に基づき、環境情報と人数情報とから対象空間内の一定時間後の二酸化炭素濃度を予測値として予測する予測部、をさらに備える。
 この機械学習器では、学習部の学習の結果に基づき、対象空間の環境情報と人数情報とから一定時間後の二酸化炭素濃度を予測することで、一定時間内に対象空間の環境や人数が変化した場合でも、対象空間特有の二酸化炭素濃度を高い精度で推定することができる。
 第3観点の機械学習器は、第2観点の機械学習器であって、予測部は、対象空間内の二酸化炭素濃度の変化量を予測値として予測する。
 この機械学習器では、学習部の学習の結果に基づき、対象空間の環境情報と人数情報とから二酸化炭素濃度の変化量を予測することで、対象空間の環境や人数が変化した場合でも、対象空間特有の二酸化炭素濃度の変化量を高い精度で推定することができる。
 第4観点の機械学習器は、第1観点から第3観点のいずれかの機械学習器であって、第2取得部は、対象空間に存在する人の生体に関する情報をさらに取得する。学習部は、第2取得部が取得した生体に関する情報を、さらに関連付けて学習する。
 この機械学習器では、入力情報として、対象空間に存在する人に関する生体に関する情報を用いることで、その人が存在する対象空間特有の二酸化炭素濃度を高い精度で推定することができる。
 第5観点の機械学習器は、第4観点の機械学習器であって、生体に関する情報は、対象空間に存在する人の会話量又は体温を含む。
 この機械学習器では、生体に関する情報が対象空間に存在する人の会話量又は体温を含むことで、その人が存在する対象空間特有の二酸化炭素濃度を高い精度で推定することができる。
 第6観点の機械学習器は、第4観点又は第5観点の機械学習器であって、生体に関する情報は、対象空間に存在する人の性別、年齢、体格又は姿勢をさらに含む。
 この機械学習器では、生体に関する情報が対象空間に存在する人の性別、年齢、体格、又は姿勢をさらに含むことで、その人が存在する対象空間特有の二酸化炭素濃度を高い精度で推定することができる。
 第7観点の機械学習器は、第1観点から第6観点のいずれかの機械学習器であって、環境情報が、外気の二酸化炭素濃度、又は対象空間が有する扉もしくは窓の開閉を含む。
 この機械学習器では、環境情報が、外気の二酸化炭素濃度、又は対象空間が有する扉もしくは窓の開閉を含むことで、対象空間で扉もしくは窓の開閉による換気が行われた場合でも、対象空間特有の二酸化炭素濃度を高い精度で推定することができる。
 第8観点の機械学習器は、第7観点の機械学習器であって、環境情報が、対象空間の換気量、又は対象空間の容積をさらに含む。
 この機械学習器では、環境情報が、対象空間の換気量、又は対象空間の容積をさらに含むことで、対象空間特有の二酸化炭素濃度を高い精度で推定することができる。
 第9観点の換気制御装置は、第2観点の機械学習器と、制御部と、を備える。制御部は、機械学習器の予測部の出力である、対象空間内の一定時間後の二酸化炭素濃度の予測値に基づいて、対象空間に対して設置されている換気機器の制御を行う。
 この換気制御装置では、対象空間内の一定時間後の二酸化炭素濃度の予測値に基づいて、換気機器の制御を行うようにしたので、対象空間内の一定時間後の二酸化炭素濃度をあらかじめ予測して、対象空間に対して適切な換気制御を行うことができる。
 第10観点の換気制御装置は、第1の予測部と、第2の予測部と、制御部と、を備える。第1の予測部は、第1の対象空間に対して、第1観点の機械学習器の学習部の学習の結果に基づき、環境情報と人数情報とから第1の対象空間内の一定時間後の二酸化炭素濃度を予測値として予測する。第2の予測部は、第2の対象空間に対して、第1観点の機械学習器の学習部の学習の結果に基づき、環境情報と人数情報とから第2の対象空間内の一定時間後の二酸化炭素濃度を予測値として予測する。制御部は、第1の予測部の出力である、第1の対象空間内の一定時間後の二酸化炭素濃度の予測値に基づいて、第1の対象空間に対して設置されている換気機器の制御を行う。制御部は、第2の予測部の出力である、第2の対象空間内の一定時間後の二酸化炭素濃度の予測値に基づいて、第2の対象空間に対して設置されている換気機器の制御を行う。
 この換気制御装置では、各対象空間に各対象空間内の一定時間後の二酸化炭素濃度を予測する個別の予測部を設けるようにしたので、各対象空間内の一定時間後の二酸化炭素濃度をあらかじめ予測して、各対象空間に対して適切な換気制御を行うことができる。
 第11観点の換気制御方法は、予測ステップと、制御ステップと、を備える。予測ステップは、第1観点の機械学習器の学習部の学習の結果に基づき、環境情報と人数情報とから対象空間内の一定時間後の二酸化炭素濃度を予測値として予測する。制御ステップは、予測ステップの出力である、対象空間内の一定時間後の二酸化炭素濃度の予測値に基づいて、対象空間に対して設置されている換気機器の制御を行う。
 この換気制御方法では、対象空間内の一定時間後の二酸化炭素濃度の予測値に基づいて、換気機器の制御を行うようにしたので、対象空間内の一定時間後の二酸化炭素濃度をあらかじめ予測して、対象空間に対して適切な換気制御を行うことができる。
 第12観点の換気制御方法は、第1の予測ステップと、第2の予測ステップと、制御ステップと、を備える。第1の予測ステップは、第1の対象空間に対して、第1観点の機械学習器の学習部の学習の結果に基づき、環境情報と人数情報とから第1の対象空間内の一定時間後の二酸化炭素濃度を予測値として予測する。第2の予測ステップは、第2の対象空間に対して、第1観点の機械学習器の学習部の学習の結果に基づき、環境情報と人数情報とから第2の対象空間内の一定時間後の二酸化炭素濃度を予測値として予測する。制御ステップは、第1の予測ステップの出力である、第1の対象空間内の一定時間後の二酸化炭素濃度の予測値に基づいて、第1の対象空間に対して設置されている換気機器の制御を行う。制御部は、第2の予測ステップの出力である、第2の対象空間内の一定時間後の二酸化炭素濃度の予測値に基づいて、第2の対象空間に対して設置されている換気機器の制御を行う。
 この換気制御方法では、各対象空間に各対象空間内の一定時間後の二酸化炭素濃度を予測する個別の予測ステップを備えるようにしたので、各対象空間内の一定時間後の二酸化炭素濃度をあらかじめ予測して、各対象空間に対して適切な換気制御を行うことができる。
機械学習器の機能ブロック図である。 換気制御システムの機能ブロック図である。 ニューラルネットワークのニューロンのモデルの模式図である。 学習データの一例を示す図である。 二酸化炭素濃度の実測値と予測値の時系列変化の一例を示す図である。 換気制御システムのフローチャートである。 機械学習器の機能ブロック図である。 換気制御システムのフローチャートである。 二酸化炭素濃度の予測値の時系列変化の一例を示す図である。 在室人数の時系列変化の一例を示す図である。 閾値に達する時間の時系列変化の一例を示す図である。 機械学習器の機能ブロック図である。 換気制御システムの機能ブロック図である。 換気制御システムのフローチャートである。
 <第1実施形態>
 (1)換気制御システムの全体構成
 本実施形態の換気制御システム1は、対象空間である部屋R1~R3の換気制御を行うために設けられたシステムである。換気制御システム1は、図2に示すように、主にダンパ80a~80cと、ダクト配管81と、ファン82と、二酸化炭素センサ60a~60dと、カメラ70a~70cと、換気制御装置200と、を有している。
 換気制御装置200は、コンピュータにより実現されるものである。換気制御装置200は、機械学習器100と、制御部50とを備える。
 機械学習器100は、図1に示すように、第1取得部10と、第2取得部20と、学習部30と、予測部40と、を備える。第1取得部10は、対象空間R1~R3の環境情報を取得する。第2取得部20は、対象空間R1~R3に存在する人の数に関する人数情報を取得する。学習部30は、環境情報と人数情報とを関連付けて学習する。予測部40は、学習部30の学習結果に基づき、環境情報と人数情報とから対象空間R1~R3内の一定時間後の二酸化炭素濃度を予測値として予測する。
 換気制御装置200は、機械学習器100の予測部40の出力である部屋R1~R3内の一定時間後の二酸化炭素濃度の予測値に基づいて、ダンパ80a~80cの制御を行う。
 機械学習器100は、ネットワーク90を介して、部屋R1~R3に設置された二酸化炭素センサ60a~60cから、部屋R1~R3の実際の二酸化炭素濃度を取得する。また、機械学習器100は、ネットワーク90を介して、外部に設置された二酸化炭素センサ60dから、外部の二酸化炭素濃度を取得する。また、機械学習器100は、ネットワーク90を介して、部屋R1~R3に設置されたカメラ70a~70cから、部屋R1~R3の人数情報を取得する。
 (2)詳細構成
 (2-1)機械学習器
 (2-1-1)第1取得部
 第1取得部10は、対象空間である部屋R1~R3の環境情報を取得する。本実施形態では、環境情報は、対象空間R1~R3内の実際の二酸化炭素濃度を含む。また、対象空間R1~R3の環境情報は、外気の二酸化炭素濃度、対象空間R1~R2の換気量又は対象空間R1~R3の容積である。対象空間R1~R3の換気量は、換気機器であるダンパ80a~80cの換気量である。
 本実施形態では、第1取得部10は、二酸化炭素濃度センサ60a~60cを使って、対象空間R1~R3内の実際の二酸化炭素濃度を取得する。また、第1取得部10は、外部の二酸化炭素センサ60dを使って、外気の二酸化炭素濃度を取得する。また、第1取得部10は、換気機器であるダンパ80a~80cの換気量を、換気機器のカタログ等から取得する。また、第1取得部10は、図面を用いて対象空間R1~R3の容積を取得する。
 (2-1-2)第2取得部
 第2取得部20は、対象空間である部屋R1~R3に存在する人の数に関する人数情報を取得する。本実施形態では、第2取得部20は、部屋R1~R3に設置されたカメラ70a~70cを使って、部屋R1~R3に存在する人の数に関する人数情報を取得する。図2に示すように、部屋R1の人数は2人である。部屋R2の人数は0人である。部屋R3の人数は5人である。
 (2-1-3)学習部
 学習部30は、第1取得部10が取得した環境情報と、第2取得部20が取得した人数情報とを関連付けて学習する。学習部30は、対象空間毎に異なる環境情報、及び人数情報を情報として機械学習を行い、次の式1に示す二酸化炭素濃度推定モデルを作成する。
式1:
Figure JPOXMLDOC01-appb-I000001
但し、
C:室内の二酸化炭素濃度(ppm)
o:外気の二酸化炭素濃度(ppm)
:換気機器の換気量(m/h)
V:部屋容積(m
:一般的な人の二酸化炭素排出量(m/h・人)
n:人数(人)
 図3にニューラルネットワークのニューロンのモデルの模式図を示す。図3に示すように、ニューロンは、複数の入力(図3では入力x、x)に対する出力yを出力とする。各入力(図3では入力x、x)には、対応する重みが乗算される。入力xに対応する重みはaである。入力xに対応する重みはbである。
 本実施形態では、入力xは、換気機器による二酸化炭素濃度の変化である(C-C)*Q/Vを示す。また、入力xは、人による二酸化炭素濃度の変化であるM*n/Vを示す。出力yは、ΔC/Δt(傾き)を示す。
 本実施形態では、最急降下法を用いて、ΔC/Δt(傾き)と二酸化炭素濃度の実測値を比較することで、重み(係数)a、bの学習を行う。重みa、bの値は、対象空間R1~R3毎に決定される。
 (2-1-4)予測部
 予測部40は、学習部30の学習結果に基づき、対象空間R1~R3の環境情報と人数情報とから対象空間R1~R3内の一定時間後の二酸化炭素濃度を予測値として予測する。
 予測部40は、対象空間R1の環境情報と人数情報とを入力情報として学習部30で学習を行って作成した式1の二酸化炭素濃度推定モデル(学習済みモデル)を用いて、対象空間R1内の一定時間後の二酸化炭素濃度を予測値として予測する。
 また、予測部40は、対象空間R2の環境情報と人数情報とを入力情報として学習部30で学習を行って作成した式1の二酸化炭素濃度推定モデルを用いて、対象空間R2内の一定時間後の二酸化炭素濃度を予測値として予測する。
 また、予測部40は、対象空間R3の環境情報と人数情報とを入力情報として学習部30で学習を行って作成した式1の二酸化炭素濃度推定モデルを用いて、対象空間R3内の一定時間後の二酸化炭素濃度を予測値として予測する。
 予測部40は、式1のΔC/Δtを用いて、Δtの時間経過した一定時間後の二酸化炭素濃度を予測することができる。
 (2-2)制御部
 制御部50は、機械学習器100の予測部40の出力である、対象空間R1~R3内の一定時間後の二酸化炭素濃度の予測値に基づいて、対象空間R1~R3に対して設置されているダンパ80a~80cの制御を行う。
 制御部50はコンピュータにより実現されるものである。制御部50は、制御演算装置と記憶装置(図示せず)とを備える。制御演算装置には、CPU又はGPUといったプロセッサを使用できる。制御演算装置は、記憶装置に記憶されているプログラムを読み出し、このプログラムに従って所定の画像処理や演算処理を行う。さらに、制御演算装置は、プログラムに従って、演算結果を記憶装置に書き込んだり、記憶装置に記憶されている情報を読み出したりすることができる。記憶装置は、データベースとして用いることができる。
 (3)学習処理
 学習部30は、環境情報と、人数情報と、微小時間の二酸化炭素濃度の変化を学習用データセットとして学習する。本実施形態では、環境情報は、室内の実際の二酸化炭素濃度と、外気の二酸化炭素濃度と、換気機器の換気量である。人数情報は、対象空間に存在する人の数に関する人数情報である。
 図4に部屋R1における学習データの一例を示す。部屋R1で、部屋容積がV1であるとする。また、換気機器はダンパ80aである。図4に示すように、室内二酸化炭素濃度C、外気の二酸化炭素濃度Co1、換気機器の換気量Qm1、部屋R1に在室する人数nを入力とし、微小時間の二酸化炭素濃度ΔC/Δtを出力とする学習用データセットによって学習させる。また、室内二酸化炭素濃度C、外気の二酸化炭素濃度Co2、換気機器の換気量Qm2、部屋R1に在室する人数nを入力とし、微小時間の二酸化炭素濃度ΔC/Δtを出力とする学習用データセットによって学習させる。また、室内二酸化炭素濃度C、外気の二酸化炭素濃度Co3、換気機器の換気量Qm3、部屋R1に在室する人数nを入力とし、微小時間の二酸化炭素濃度ΔC/Δtを出力とする学習用データセットによって学習させる。また、室内二酸化炭素濃度C、外気の二酸化炭素濃度Cok、換気機器の換気量Qmk、部屋R1に在室する人数nを入力とし、微小時間の二酸化炭素濃度ΔC/Δtを出力とする学習用データセットによって学習させる。
 対象空間R1の二酸化炭素濃度の実測値と予測値の時系列変化の例を図5に示す。二酸化炭素濃度の実測値を実線で、二酸化炭素濃度の予測値を点線で示す。予測値は、対象空間R1における学習用データセットによって学習して得られた二酸化炭素濃度推定モデルを使用して求める。予測値は、ある時点から10分後の二酸化炭素濃度を予測したものとする。対象空間R1における学習用データセットで学習して得られた二酸化炭素濃度推定モデルを用いた場合、対象空間R1の二酸化炭素濃度の実測値と予測値は平均誤差が9.3ppmであり、標準偏差が8.0ppmである。
 一方、他の部屋における学習用データセットで学習を行った二酸化炭素濃度推定モデルを使用して、対象空間R1の二酸化炭素濃度の予測値を求めた場合、対象空間R1の二酸化炭素濃度の平均誤差が12.2ppm、標準偏差が8.5ppmとなり、二酸化炭素濃度の予測値の精度が低下する。従って、対象空間のデータである環境情報と人数情報を用いて、二酸化炭素濃度推定モデルを作成することが好ましい。
 (4)換気制御システムの全体動作
 換気制御システム1のフローチャートを図6に示す。
 まず、ステップS1で対象空間R1~R3の環境情報を取得する(ステップS1)。対象空間R1~R3に存在する人の数に関する人数情報を取得する(ステップS2)。
 次に、学習部30の学習の結果に基づき、対象空間R1~R3における一定時間後の二酸化炭素濃度を予測する(ステップS3)。本実施形態では、対象空間R1~R3における10分後の二酸化炭素濃度を予測するとする。
 ステップS3では、対象空間R1の環境情報と人数情報を入力情報として学習部30で学習した結果に基づき、対象空間R1における10分後の二酸化炭素濃度を予測する。また、対象空間R2の環境情報と人数情報を入力情報として学習部30で学習した結果に基づき、対象空間R2における10分後の二酸化炭素濃度を予測する。また、対象空間R3の環境情報と人数情報を入力情報として学習部30で学習した結果に基づき、対象空間R3における10分後の二酸化炭素濃度を予測する。
 次に、ステップS3で予測した二酸化炭素濃度に基づいて、ダンパ80a~80cの制御を行う(ステップS4)。
 (5)特徴
 (5-1)
 本実施形態の機械学習器100は、第1取得部10と、第2取得部20と、学習部30と、を備える。第1取得部10は、対象空間R1~R3の環境情報を取得する。第2取得部20は、対象空間R1~R3に存在する人の数に関する人数情報を取得する。学習部30は、第1取得部10が取得した環境情報と、第2取得部20が取得した人数情報と、を関連付けて学習する。環境情報は、対象空間R1~R3内の実際の二酸化炭素濃度を含む。
 対象空間の二酸化炭素濃度をコントロールするためにリアルタイムに二酸化炭素濃度を監視し換気制御を行った場合において、換気機器の起動時間やデータ通信時間は物件により異なるため、換気機器が設定した換気量に達するまでに、在室者の急増や発言量の増加などで二酸化炭素濃度が上昇する場合がある。また、対象空間内に人が入室しても二酸化炭素濃度が拡散するまで時間がかかるため、二酸化炭素濃度の上昇の検知が遅れる場合もある。
 この機械学習器100では、対象空間R1~R3での適切な換気制御のために用いることができる、対象空間R1~R3特有の二酸化炭素濃度推定モデルを作成することができる。従って、本実施形態の機械学習器100では、対象空間によって異なる二酸化炭素濃度の変化の特性を把握し、二酸化炭素濃度の高精度な推定を行うことができる。
 (5-2)
 本実施形態の機械学習器100は、学習部30の学習の結果に基づき、環境情報と人数情報とから対象空間R1~R3内の一定時間後の二酸化炭素濃度を予測値として予測する予測部40、をさらに備える。
 この機械学習器100では、学習部30の学習の結果に基づき、対象空間R1~R3の環境情報と人数情報とから一定時間後の二酸化炭素濃度を予測することで、一定時間内に対象空間R1~R3の環境や人数が変化した場合でも、対象空間R1~R3特有の二酸化炭素濃度を高い精度で推定することができる。
 (5-3)
 本実施形態の機械学習器100は、環境情報が、対象空間R1~R3の換気量、又は対象空間の容積をさらに含む。
 この機械学習器100では、環境情報が、対象空間R1~R3の換気量、又は対象空間R1~R3の容積をさらに含むことで、対象空間R1~R3特有の二酸化炭素濃度を高い精度で推定することができる。
 (5-4)
 本実施形態の換気制御装置200は、機械学習器100と、制御部50と、を備える。制御部50は、機械学習器100の予測部40の出力である、対象空間R1~R3内の一定時間後の二酸化炭素濃度の予測値に基づいて、対象空間R1~R3に対して設置されている換気機器80a~80cの制御を行う。
 換気の悪い密閉空間に当たらない基準の一つとして、室内二酸化炭素濃度1000ppm以下であることを厚生労働省が公表している。一方で、感染症の影響により、密閉への意識が高まり、感染リスクを抑えるために過剰な換気が行われている場合がある。そのため、外気負荷が増大するなどの要因により消費エネルギー量が増加している。
 この換気制御装置200では、対象空間R1~R3内の一定時間後の二酸化炭素濃度の予測値に基づいて、換気機器80a~80cの制御を行うようにしたので、対象空間R1~R3内の一定時間後の二酸化炭素濃度をあらかじめ予測して、対象空間R1~R3に対して適切な換気制御を行うことができる。また、この換気制御装置200では、対象空間R1~R3内の一定時間後の二酸化炭素濃度の予測値を用いて、フィードフォワード式で換気連動を行うことによって安全性を高めることができる。従って、二酸化炭素濃度がある設定値以下を維持した必要十分な換気を行うことによって、安全性と省エネ性の両立が可能である。
 (5-5)
 本実施形態の換気制御装置200による換気制御方法は、予測ステップと、制御ステップと、を備える。予測ステップは、機械学習器100の学習部30の学習の結果に基づき、環境情報と人数情報とから対象空間R1~R3内の一定時間後の二酸化炭素濃度を予測値として予測する。制御ステップは、予測ステップの出力である、対象空間R1~R3内の一定時間後の二酸化炭素濃度の予測値に基づいて、対象空間R1~R3に対して設置されている換気機器の制御を行う。
 この換気制御装置200による換気制御方法では、対象空間R1~R3内の一定時間後の二酸化炭素濃度の予測値に基づいて、換気機器の制御を行うようにしたので、対象空間R1~R3内の一定時間後の二酸化炭素濃度をあらかじめ予測して、対象空間R1~R3に対して適切な換気制御を行うことができる。
 (6)変形例
 (6-1)変形例1A
 本実施形態では、予測部40が対象空間R1~R3内の一定時間後の二酸化炭素濃度を予測値として予測する場合について説明したが、対象空間内の二酸化炭素濃度の変化量を予測値として予測するようにしてもよい。
 予測部が、学習部の学習の結果に基づき、対象空間R1~R3の環境情報と人数情報とから二酸化炭素濃度の変化量を予測することで、対象空間R1~R3の環境や人数が変化した場合でも、対象空間R1~R3特有の二酸化炭素濃度の変化量を高い精度で推定することができる。
 (6-2)変形例1B
 本実施形態では、予測部40が対象空間R1~R3内の一定時間後の二酸化炭素濃度を予測値として予測する場合について説明した。予測部40は、対象空間R1~R3内の定常状態時の二酸化炭素濃度を予測することもできる。
 予測部40は、対象空間のある時刻の入力情報に基づいて、その入力情報における二酸化炭素濃度が最大となる濃度(定常状態時の二酸化炭素濃度)を算出して予測することができる。例えば、対象空間のある時間の環境情報と人数情報を用いて、式1のΔC/Δt=0としたときのCの値を求めれば、このCの値が対象空間の定常状態時の二酸化炭素濃度の予測値となる。
 このように、人数情報などの入力情報を用いて、事前にどの程度まで二酸化炭素濃度が上昇するか予測することができる。
 (6-3)変形例1C
 本実施形態では、環境情報が外気の二酸化炭素濃度、対象空間の換気量又は対象空間の容積である場合について説明したが、これに限るものではない。環境情報は対象空間が有する扉もしくは開閉でもよい。
 環境情報が、対象空間R1~R3が有する扉もしくは窓の開閉を含むことで、対象空間R1~R3で扉もしくは窓の開閉による換気が行われた場合でも、対象空間R1~R3特有の二酸化炭素濃度を高い精度で予測することができる。
 各対象空間R1~R3の二酸化炭素濃度推定モデルを利用して、例えば換気量や窓開閉などの入力情報を変化させた場合の二酸化炭素濃度を予測し、窓を開けるなどの所定の二酸化炭素濃度以下にするための行動を提案することができる。
 また、本実施形態では、第1取得部10が外部の二酸化炭素センサ60dを使って、外気の二酸化炭素濃度を取得する場合について説明したが、これに限るものではない。例えば、外気の二酸化炭素濃度を取得できない場合、外気の二酸化炭素濃度の値として、一般的に大気中に含まれる二酸化炭素濃度である420ppmという値を用いてもよい。
 (6-4)変形例1D
 本実施形態では、第2取得部20が人数情報を取得する場合について説明したが、これに限るものではない。第2取得部は、対象空間に存在する人の生体に関する情報をさらに取得するようにしてもよい。
 変形例1Dの機械学習器110の機能ブロック図を図7に示す。
 機械学習器110は、図7に示すように、第1取得部10と、第2取得部21、学習部30と、予測部40と、を備える。第1取得部10は、対象空間R1~R3の環境情報を取得する。第2取得部21は、対象空間R1~R3に存在する人の数に関する人数情報と、対象空間R1~R3に存在する人の生体に関する情報とを取得する。学習部30は、環境情報と人数情報と生体に関する情報とを関連付けて学習する。予測部40は、学習部30の学習結果に基づき、環境情報と人数情報と生体に関する情報から対象空間R1~R3内の一定時間後の二酸化炭素濃度を予測値として予測する。
 生体に関する情報は、対象空間R1~R3に存在する人の会話量又は体温を含むようにしてもよい。また、生体に関する情報は、対象空間R1~R3に存在する人の性別、年齢、体格、又は姿勢をさらに含むようにしてもよい。
 第2取得部21は、例えば音センサを用いて人の会話量を取得する。また、第2取得部21は、サーモセンサを用いて人の体温を取得する。また、第2取得部21は、カメラを用いて人の性別、年齢、体格、又は姿勢を取得する。
 変形例1Dの換気制御システムのフローチャートを図8に示す。
 まず、ステップS1で対象空間R1~R3の環境情報を取得する(ステップS11)。対象空間R1~R3に存在する人の数に関する人数情報を取得する(ステップS12)。次に、対象空間R1~R3に存在する人の生体に関する情報を取得する(ステップS13)。次に、学習部30の学習の結果に基づき、対象空間R1~R3における一定時間後の二酸化炭素濃度を予測する(ステップS14)。ステップS14で予測した二酸化炭素濃度に基づいて、ダンパ80a~80cの制御を行う(ステップS15)。
 変形例1Dの機械学習器110では、入力情報として、対象空間に存在する人に関する生体に関する情報をさらに用いることで、その人が存在する対象空間R1~R3特有の二酸化炭素濃度を高い精度で推定することができる。
 また、機械学習器110では、生体に関する情報が対象空間に存在する人の会話量又は体温を含むことで、対象空間R1~R3に存在する人の会話量が増加することによって二酸化炭素濃度が増加した場合であっても、その人が存在する対象空間R1~R3特有の二酸化炭素濃度を高い精度で推定することができる。
 また、機械学習器110では、生体に関する情報が対象空間R1~R3に存在する人の性別、年齢、体格、又は姿勢をさらに含むことで、その人が存在する対象空間R1~R3特有の二酸化炭素濃度を高い精度で推定することができる。
 (6-5)変形例1E
 本実施形態では、第1取得部10が図面を用いて対象空間R1~R3の容積を取得する場合について説明したが、これに限るものではない。
 対象空間内の人数情報と、室内の二酸化炭素濃度と、外気の二酸化炭素濃度と、換気機器の換気量とを用いて、対象空間の容積を推定することもできる。対象空間内の人数が0人の場合において、ある時点t1と、t1とは異なる時点t2の、対象空間内の二酸化炭素濃度の減衰から対象空間の容積を推定するようにしてもよい。
 (6-6)変形例1F
 換気制御装置200の制御部50が換気機器80a~80cの制御を行う際に、対象空間R1~R3に人が存在する時の二酸化炭素濃度を推定することにより、二酸化炭素濃度が閾値以下を維持する換気制御を行うようにしてもよい。
 図9Aに対象空間R1の二酸化炭素濃度の予測値の時系列変化の一例を示す。図9Bに対象空間R1の在室人数の時系列変化の一例を示す。図9Cに対象空間R1における二酸化炭素濃度の閾値に達する時間の時系列変化の一例を示す。
 二酸化炭素濃度の閾値を1000ppmとする。また、推定される定常状態時の二酸化炭素濃度が閾値以下の場合、閾値に到達するまでの時間を20分とする。また、対象空間R1の二酸化炭素濃度の予測値が閾値に達するまでの時間が5分以下の場合、換気制御を行う。
 例えば、図9Bに示すように、対象空間R1の在室人数は0時の時点では0人であり、1時の時点で30人である。
 0時の時点で、対象空間R1の二酸化炭素濃度の実測値は約820ppmである。その後、図9Aに示すように、1時の時点で、対象空間R1の二酸化炭素濃度の予測値は約958ppmである。従って、0時から1時の間に対象空間R1の二酸化炭素濃度が増加することが推定される。図9Cに示すように、0時から1時の間に、対象空間R1の二酸化炭素濃度の予測値が閾値に到達するまでの時間は短くなり、1時の時点で閾値に到達するまでの時間は5分になる。その後、図9Aに示すように、さらに対象空間R1の二酸化炭素濃度の予測値は増加し、2時30分頃まで、閾値の1000ppmを超えている。1時から2時30分頃の間、図9Cに示すように、対象空間R1の二酸化炭素濃度の予測値が閾値に到達するまでの時間は5分以下である。従って、1時から2時30分頃までの間、対象空間R1の換気制御を行う。
 このように、対象空間に人が存在する時の二酸化炭素濃度を推定することにより、二酸化炭素濃度が閾値以下を維持する換気制御を行うことで、安全性と省エネ性の両立を実現できる。
 また、予測部40から出力される対象空間内の二酸化炭素濃度の予測値を用いて、対象空間内の二酸化炭素濃度の変化をディスプレイに表示して、対象空間の利用者に二酸化炭素濃度の変化を認識させることができるようにしてもよい。例えば、対象空間内の二酸化炭素濃度の変化として、対象空間内の二酸化炭素濃度の予測値が所定の設定値に到達するまでの時間をディスプレイに表示するようにしてもよい。対象空間内の二酸化炭素濃度の変化は、対象空間内の二酸化炭素濃度が増加する場合に限らず、対象空間内の二酸化炭素濃度が減少する場合も含まれる。
 (6-7)変形例1G
 本実施形態では、学習部30が教師ありのニューラルネットワークを用いた機械学習を行い、二酸化炭素濃度推定モデルを作成する場合について説明したが、これに限るものではない。機械学習方法は、線形回帰やディープラーニング、LSTM(Long Short Term Memory)等を用いてもよい。
 <第2実施形態>
 (1)全体構成
 本実施形態の換気制御システム2は、部屋R1~R3の換気制御を行うために設けられたシステムである。換気制御システム2は、図11に示すように、主にダンパ80a~80cと、ダクト配管81と、ファン82と、二酸化炭素センサ60a~60dと、カメラ70a~70cと、予測部41a~41cと、機械学習器120と、換気制御装置210と、を有している。
 換気制御装置210は、コンピュータにより実現されるものである。換気制御装置200は、制御部51を備える。
 機械学習器120は、図10に示すように、第1取得部10と、第2取得部20と、学習部30と、を備える。第1取得部10は、対象空間R1~R3の環境情報を取得する。第2取得部20は、対象空間R1~R3に存在する人の数に関する人数情報を取得する。学習部30は、環境情報と人数情報とを関連付けて学習する。
 部屋R1~R3に予測部41a~41cが設けられている。予測部41a~41cは、機械学習器120で学習した学習済みモデルを有する。予測部41a~41cは、機械学習器120の学習部30の学習結果に基づき、環境情報と人数情報とから対象空間R1~R3内の一定時間後の二酸化炭素濃度を予測値として予測する。
 換気制御装置210は、予測部41a~41cの出力である部屋R1~R3内の一定時間後の二酸化炭素濃度の予測値に基づいて、ダンパ80a~80cの制御を行う。
 機械学習器120は、ネットワーク90を介して、部屋R1~R3に設置された二酸化炭素センサ60a~60cから、部屋R1~R3の実際の二酸化炭素濃度を取得する。また、機械学習器100は、ネットワーク90を介して、外部に設置された二酸化炭素センサ60dから、外部の二酸化炭素濃度を取得する。また、機械学習器100は、ネットワーク90を介して、部屋R1~R3に設置されたカメラ70a~70cから、部屋R1~R3の人数情報を取得する。
 (2)詳細構成
 (2-1)機械学習器
 機械学習器120は、図10に示すように、第1取得部10と、第2取得部20と、学習部30と、を備える。第1取得部10と、第2取得部20と、学習部30の構成は、第1実施形態と同様であるため、詳しい説明を省略する。
 (2-2)予測部
 予測部41aは、対象空間R1に設置されている。予測部41aは、対象空間R1に対して、機械学習器120の学習部30の学習の結果に基づき、対象空間R1の環境情報と人数情報とから対象空間R1内の一定期間後の二酸化炭素濃度を予測値として予測する。
 また、予測部41bは、対象空間R2に設置されている。予測部41bは、対象空間R2に対して、機械学習器120の学習部30の学習の結果に基づき、対象空間R2の環境情報と人数情報とから対象空間R2内の一定期間後の二酸化炭素濃度を予測値として予測する。
 また、予測部41cは、対象空間R3に設置されている。予測部41cは、対象空間R3に対して、機械学習器120の学習部30の学習の結果に基づき、対象空間R3の環境情報と人数情報とから対象空間R3内の一定期間後の二酸化炭素濃度を予測値として予測する。
 (2-3)制御部
 制御部51は、予測部41aの出力である、対象空間R1内の一定時間後の二酸化炭素濃度の予測値に基づいて、対象空間R1に対して設置されているダンパ80aの制御を行う。また、制御部51は、予測部41bの出力である、対象空間R2内の一定時間後の二酸化炭素濃度の予測値に基づいて、対象空間R2に対して設置されているダンパ80bの制御を行う。また、制御部51は、予測部41cの出力である、対象空間R3内の一定時間後の二酸化炭素濃度の予測値に基づいて、対象空間R3に対して設置されているダンパ80cの制御を行う。
 制御部51はコンピュータにより実現されるものである。制御部51は、制御演算装置と記憶装置(図示せず)とを備える。制御演算装置には、CPU又はGPUといったプロセッサを使用できる。制御演算装置は、記憶装置に記憶されているプログラムを読み出し、このプログラムに従って所定の画像処理や演算処理を行う。さらに、制御演算装置は、プログラムに従って、演算結果を記憶装置に書き込んだり、記憶装置に記憶されている情報を読み出したりすることができる。記憶装置は、データベースとして用いることができる。
 (3)全体動作
 換気制御システム2のフローチャートを図12に示す。図6に示した第1実施形態における処理と実質的に同じであるため、詳細な説明を省略する。第1実施形態では、ステップS3で機械学習器100の予測部40を用いて一定時間後の二酸化炭素濃度を予測している。第2実施形態では、ステップS23で、各対象空間R1~R3に設けられた予測部41a~41cを用いて二酸化炭素濃度を予測する点が第1実施形態と異なる。
 (4)特徴
 (4-1)
 本実施形態の換気制御装置210は、第1の予測部41aと、第2の予測部41bと、第3の予測部41cと、制御部50と、を備える。第1の予測部41aは、第1の対象空間R1に対して、機械学習器120の学習部30の学習の結果に基づき、環境情報と人数情報とから第1の対象空間R1内の一定時間後の二酸化炭素濃度を予測値として予測する。第2の予測部41bは、第2の対象空間R2に対して、機械学習器120の学習部30の学習の結果に基づき、環境情報と人数情報とから第2の対象空間R2内の一定時間後の二酸化炭素濃度を予測値として予測する。第3の予測部41cは、第3の対象空間R3に対して、機械学習器120の学習部30の学習の結果に基づき、環境情報と人数情報とから第3の対象空間R3内の一定時間後の二酸化炭素濃度を予測値として予測する。制御部51は、第1の予測部41aの出力である、第1の対象空間R1内の一定時間後の二酸化炭素濃度の予測値に基づいて、第1の対象空間R1に対して設置されている換気機器80aの制御を行う。制御部51は、第2の予測部41bの出力である、第2の対象空間R2内の一定時間後の二酸化炭素濃度の予測値に基づいて、第2の対象空間R2に対して設置されている換気機器80bの制御を行う。制御部51は、第3の予測部41cの出力である、第3の対象空間R3内の一定時間後の二酸化炭素濃度の予測値に基づいて、第3の対象空間R3に対して設置されている換気機器80cの制御を行う。
 この換気制御装置210では、各対象空間R1~R3に各対象空間R1~R3内の一定時間後の二酸化炭素濃度を予測する個別の予測部41a~41cを設けるようにしたので、各対象空間R1~R3内の一定時間後の二酸化炭素濃度をあらかじめ予測して、各対象空間R1~R3に対して適切な換気制御を行うことができる。
 (4-2)
 本実施形態の換気制御装置210による換気制御方法は、第1の予測ステップと、第2の予測ステップと、第3の予測ステップと、制御ステップと、を備える。第1の予測ステップは、第1の対象空間R1に対して、機械学習器120の学習部30の学習の結果に基づき、環境情報と人数情報とから第1の対象空間R1内の一定時間後の二酸化炭素濃度を予測値として予測する。第2の予測ステップは、第2の対象空間R2に対して、機械学習器120の学習部30の学習の結果に基づき、環境情報と人数情報とから第2の対象空間R2内の一定時間後の二酸化炭素濃度を予測値として予測する。第3の予測ステップは、第3の対象空間R3に対して、機械学習器120の学習部30の学習の結果に基づき、環境情報と人数情報とから第3の対象空間R3内の一定時間後の二酸化炭素濃度を予測値として予測する。制御ステップは、第1の予測ステップの出力である、第1の対象空間R1内の一定時間後の二酸化炭素濃度の予測値に基づいて、第1の対象空間R1に対して設置されている換気機器の制御を行う。制御ステップは、第2の予測ステップの出力である、第2の対象空間R2内の一定時間後の二酸化炭素濃度の予測値に基づいて、第2の対象空間R2に対して設置されている換気機器の制御を行う。制御ステップは、第3の予測ステップの出力である、第3の対象空間R3内の一定時間後の二酸化炭素濃度の予測値に基づいて、第3の対象空間R3に対して設置されて換気機器の制御を行う。
 この換気制御装置210による換気制御方法では、各対象空間R1~R3に各対象空間R1~R3内の一定時間後の二酸化炭素濃度を予測する個別の予測ステップを備えるようにしたので、各対象空間R1~R3内の一定時間後の二酸化炭素濃度をあらかじめ予測して、各対象空間R1~R3に対して適切な換気制御を行うことができる。
 (5)変形例
 (5-1)変形例2A
 本実施形態では、3部屋のそれぞれに第1~第3の予測部41a~41bを備える場合について説明したが、これに限るものではない。2以上である複数の部屋のそれぞれに予測部を備えるようにしてもよい。また、対象空間が1部屋であり、1つの対象空間に予測部を備えるようにしてもよい。
 (5-2)変形例2B
 以上、本開示の実施形態を説明したが、特許請求の範囲に記載された本開示の趣旨及び範囲から逸脱することなく、形態や詳細の多様な変更が可能なことが理解されるであろう。
1、2 換気制御システム
100、110、120 機械学習器
200、210 換気制御装置
10 第1取得部
20、21 第2取得部
30 学習部
40、41a~41c 予測部
50、51 制御部
60a~60d 二酸化炭素センサ
70a~70c カメラ
80a~80c ダンパ(換気機器)
81 ダクト配管
82 ファン
90 ネットワーク
特開2010-96382号公報

Claims (12)

  1.  対象空間の環境情報を取得する第1取得部(10)と、
     前記対象空間に存在する人の数に関する人数情報を取得する第2取得部(20、21)と、
     前記第1取得部が取得した前記環境情報と、前記第2取得部が取得した前記人数情報と、を関連付けて学習する学習部(30)と、
    を備え、
     前記環境情報は、前記対象空間内の実際の二酸化炭素濃度を含む、
    機械学習器(100、110、120)。
  2. 前記学習部の学習の結果に基づき、前記環境情報と前記人数情報とから前記対象空間内の一定時間後の二酸化炭素濃度を予測値として予測する予測部(40、41a~41c)、をさらに備える、
    請求項1に記載の機械学習器。
  3.  前記予測部は、前記対象空間内の二酸化炭素濃度の変化量を前記予測値として予測する、
    請求項2に記載の機械学習器。
  4.  前記第2取得部は、前記対象空間に存在する人の生体に関する情報をさらに取得し、
     前記学習部は、前記第2取得部が取得した前記生体に関する情報を、さらに関連付けて学習する、
    請求項1から3のいずれかに記載の機械学習器。
  5.  前記生体に関する情報は、前記対象空間に存在する人の会話量又は体温を含む、
    請求項4に記載の機械学習器。
  6.  前記生体に関する情報は、前記対象空間に存在する人の性別、年齢、体格、又は姿勢をさらに含む、
    請求項4又は5に記載の機械学習器。
  7.  前記環境情報が、外気の二酸化炭素濃度、又は前記対象空間が有する扉もしくは窓の開閉を含む、
    請求項1から6のいずれかに記載の機械学習器。
  8.  前記環境情報が、前記対象空間の換気量、又は前記対象空間の容積をさらに含む、
    請求項7に記載の機械学習器。
  9.  請求項2に記載の機械学習器と、
     前記機械学習器の前記予測部の出力である、前記対象空間内の一定時間後の二酸化炭素濃度の前記予測値に基づいて、前記対象空間に対して設置されている換気機器の制御を行う制御部(50)と、
    を備える換気制御装置(200)。
  10.  第1の対象空間に対して、請求項1に記載の機械学習器の前記学習部の学習の結果に基づき、前記環境情報と前記人数情報とから前記第1の対象空間内の一定時間後の二酸化炭素濃度を予測値として予測する第1の予測部と、
     第2の対象空間に対して、請求項1に記載の機械学習器の前記学習部の学習の結果に基づき、前記環境情報と前記人数情報とから前記第2の対象空間内の一定時間後の二酸化炭素濃度を予測値として予測する第2の予測部と、
     前記第1の予測部の出力である、前記第1の対象空間内の一定時間後の二酸化炭素濃度の前記予測値に基づいて、前記第1の対象空間に対して設置されている換気機器の制御を行い、前記第2の予測部の出力である、前記第2の対象空間内の一定時間後の二酸化炭素濃度の前記予測値に基づいて、前記第2の対象空間に対して設置されている換気機器の制御を行う、制御部(51)と、
    を備える換気制御装置(210)。
  11.  請求項1に記載の機械学習器の前記学習部の学習の結果に基づき、前記環境情報と前記人数情報とから前記対象空間内の一定時間後の二酸化炭素濃度を予測値として予測する予測ステップと、
     前記予測ステップの出力である、前記対象空間内の一定時間後の二酸化炭素濃度の前記予測値に基づいて、前記対象空間に対して設置されている換気機器の制御を行う制御ステップと、
    を備える換気制御方法。
  12.  第1の対象空間に対して、請求項1に記載の機械学習器の前記学習部の学習の結果に基づき、前記環境情報と前記人数情報とから前記第1の対象空間内の一定時間後の二酸化炭素濃度を予測値として予測する第1の予測ステップと、
     第2の対象空間に対して、請求項1に記載の機械学習器の前記学習部の学習の結果に基づき、前記環境情報と前記人数情報とから前記第2の対象空間内の一定時間後の二酸化炭素濃度を予測値として予測する第2の予測ステップと、
     前記第1の予測ステップの出力である、前記第1の対象空間内の一定時間後の二酸化炭素濃度の前記予測値に基づいて、前記第1の対象空間に対して設置されている換気機器の制御を行い、前記第2の予測ステップの出力である、前記第2の対象空間内の一定時間後の二酸化炭素濃度の前記予測値に基づいて、前記第2の対象空間に対して設置されている換気機器の制御を行う、制御ステップと、
    を備える換気制御方法。
PCT/JP2022/015676 2021-03-31 2022-03-29 機械学習器、換気制御装置、及び、換気制御方法 WO2022210777A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP22780988.6A EP4317816A1 (en) 2021-03-31 2022-03-29 Machine learning device, ventilation control device, and ventilation control method
US18/372,484 US20240011658A1 (en) 2021-03-31 2023-09-25 Machine learning device, ventilation control device, and ventilation control method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021061762A JP2022157502A (ja) 2021-03-31 2021-03-31 機械学習器、換気制御装置、及び、換気制御方法
JP2021-061762 2021-03-31

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/372,484 Continuation US20240011658A1 (en) 2021-03-31 2023-09-25 Machine learning device, ventilation control device, and ventilation control method

Publications (1)

Publication Number Publication Date
WO2022210777A1 true WO2022210777A1 (ja) 2022-10-06

Family

ID=83459481

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/015676 WO2022210777A1 (ja) 2021-03-31 2022-03-29 機械学習器、換気制御装置、及び、換気制御方法

Country Status (4)

Country Link
US (1) US20240011658A1 (ja)
EP (1) EP4317816A1 (ja)
JP (1) JP2022157502A (ja)
WO (1) WO2022210777A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024157395A1 (ja) * 2023-01-25 2024-08-02 三菱電機株式会社 空気調和システム

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11264590A (ja) * 1998-03-18 1999-09-28 Mitsubishi Electric Corp 換気装置の運転方法
JP2010096382A (ja) 2008-10-15 2010-04-30 Panasonic Corp 換気装置
WO2015173842A1 (ja) * 2014-05-12 2015-11-19 三菱電機株式会社 パラメータ学習装置およびパラメータ学習方法
JP2017003203A (ja) * 2015-06-11 2017-01-05 株式会社東芝 推定装置、推定方法、及び推定プログラム
JP2018048749A (ja) * 2016-09-20 2018-03-29 株式会社東芝 推定装置、推定システム、推定方法及び推定プログラム
JP2020144628A (ja) * 2019-03-06 2020-09-10 パナソニックIpマネジメント株式会社 炭酸ガス濃度予測装置、炭酸ガス濃度予測方法、眠気予測装置、及び眠気予測方法
JP2020154976A (ja) * 2019-03-22 2020-09-24 株式会社Jvcケンウッド 車内環境警告装置及び車内環境警告方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11264590A (ja) * 1998-03-18 1999-09-28 Mitsubishi Electric Corp 換気装置の運転方法
JP2010096382A (ja) 2008-10-15 2010-04-30 Panasonic Corp 換気装置
WO2015173842A1 (ja) * 2014-05-12 2015-11-19 三菱電機株式会社 パラメータ学習装置およびパラメータ学習方法
JP2017003203A (ja) * 2015-06-11 2017-01-05 株式会社東芝 推定装置、推定方法、及び推定プログラム
JP2018048749A (ja) * 2016-09-20 2018-03-29 株式会社東芝 推定装置、推定システム、推定方法及び推定プログラム
JP2020144628A (ja) * 2019-03-06 2020-09-10 パナソニックIpマネジメント株式会社 炭酸ガス濃度予測装置、炭酸ガス濃度予測方法、眠気予測装置、及び眠気予測方法
JP2020154976A (ja) * 2019-03-22 2020-09-24 株式会社Jvcケンウッド 車内環境警告装置及び車内環境警告方法

Also Published As

Publication number Publication date
EP4317816A1 (en) 2024-02-07
US20240011658A1 (en) 2024-01-11
JP2022157502A (ja) 2022-10-14

Similar Documents

Publication Publication Date Title
Vanus et al. Monitoring of the daily living activities in smart home care
Weekly et al. Modeling and estimation of the humans' effect on the CO 2 dynamics inside a conference room
JP2019522163A (ja) 空調システムを動作させるコントローラー及び空調システムの制御方法
Han et al. Occupancy estimation based on CO2 concentration using dynamic neural network model
JP6410187B2 (ja) 空気環境調整システム、制御装置
KR102156121B1 (ko) 실내 공간에 대한 환기 알림 장치
WO2022210777A1 (ja) 機械学習器、換気制御装置、及び、換気制御方法
JP6280733B2 (ja) 空調制御システム及び空調制御方法
JP2018048749A (ja) 推定装置、推定システム、推定方法及び推定プログラム
Dougan et al. CO 2-Based Demand Control Ventilation.
Alam et al. Uncertainties in neural network model based on carbon dioxide concentration for occupancy estimation
JP3214317B2 (ja) 空調装置
JP2016169925A (ja) 室内環境制御装置、室内環境制御方法及びコンピュータプログラム
Jazizadeh et al. Personalized Thermal Comfort-Driven Control in HVAC-OperatedOffice Buildings
JP2020166731A (ja) 在室人数推定装置および在室人数推定プログラム
WO2022059137A1 (ja) 空調システム、学習装置、および推論装置
US11530836B2 (en) Air conditioner and control method thereof
US20210034967A1 (en) Environment controller and methods for validating an estimated number of persons present in an area
Rastogi et al. IoT-based occupancy estimation models for indoor non-residential environments
TWI699637B (zh) 利用深度強化學習控制環境舒適度之系統及其方法
JP2021189573A (ja) 情報処理システム、及び、情報処理方法
JPH04316947A (ja) 空気調和機の制御装置
WO2023112074A1 (ja) 機器制御装置及び機器制御方法
JP6802325B2 (ja) 集中度評価装置及び空調最適化制御システム
Kapalo et al. Analysis of Natural and Mechanical Ventilation in the Classroom During the Pause of Teaching

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22780988

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022780988

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022780988

Country of ref document: EP

Effective date: 20231031

NENP Non-entry into the national phase

Ref country code: DE