WO2022210732A1 - 光電変換素子および光電変換素子の製造方法 - Google Patents

光電変換素子および光電変換素子の製造方法 Download PDF

Info

Publication number
WO2022210732A1
WO2022210732A1 PCT/JP2022/015546 JP2022015546W WO2022210732A1 WO 2022210732 A1 WO2022210732 A1 WO 2022210732A1 JP 2022015546 W JP2022015546 W JP 2022015546W WO 2022210732 A1 WO2022210732 A1 WO 2022210732A1
Authority
WO
WIPO (PCT)
Prior art keywords
photoelectric conversion
layer
proton beam
thin film
proton
Prior art date
Application number
PCT/JP2022/015546
Other languages
English (en)
French (fr)
Inventor
恭平 堀口
優天 北村
Original Assignee
出光興産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 出光興産株式会社 filed Critical 出光興産株式会社
Priority to EP22780943.1A priority Critical patent/EP4318603A1/en
Priority to JP2023511390A priority patent/JPWO2022210732A1/ja
Priority to CN202280025730.XA priority patent/CN117178375A/zh
Publication of WO2022210732A1 publication Critical patent/WO2022210732A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02167Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/041Provisions for preventing damage caused by corpuscular radiation, e.g. for space applications

Definitions

  • the present invention relates to a photoelectric conversion element and a method for manufacturing a photoelectric conversion element.
  • solar cells which are one type of photoelectric conversion element, have been used as power supply means for satellites and other devices operated in outer space. It is known that irradiation of cosmic rays, including proton beams, causes lattice defects in semiconductors of solar cells for space use, resulting in lower output. Therefore, various sealing structures for blocking proton beams have been proposed for space solar cells.
  • Non-Patent Document 1 discloses a sealing structure for space solar cells using a special cover glass and a resin adhesive. Further, for example, Patent Literature 1 discloses that an optical thin film is formed on the surface of a solar cell to improve the infrared emissivity in order to improve heat dissipation to outer space by infrared radiation.
  • the sealing structure of a solar cell for space using a special cover glass is very expensive, and the bonding of the cover glass is complicated, resulting in high cost. Moreover, since the solar cell becomes heavy, there is room for improvement in terms of suppressing the load weight at the time of launch.
  • the present invention has been made in view of the above circumstances, and provides a photoelectric conversion element that is lightweight and excellent in terms of cost while being able to suppress deterioration in the performance of the element due to proton beams.
  • a photoelectric conversion element of one embodiment of the present invention includes a photoelectric conversion portion and a proton beam-shielding layer formed over the photoelectric conversion portion and shielding the photoelectric conversion portion from proton beams.
  • the product of electron density and film thickness of the proton beam shielding layer is 5 ⁇ 10 20 (cm ⁇ 2 ) or more.
  • a photoelectric conversion element that can suppress deterioration in the performance of the element due to proton beams and that is lightweight and excellent in terms of cost.
  • FIG. 2 is a schematic diagram showing the influence of proton beams on a solar cell
  • FIG. 4 is a diagram showing the relationship between the proton beam energy and the amount of fluence corresponding to the operation period of a satellite or the like.
  • FIG. 4 is a diagram showing the electron density of various materials and the proton beam shielding effect
  • FIG. 12 is a diagram showing simulation results of Example 7
  • FIG. 12 is a diagram showing simulation results of Example 7
  • FIG. 12 is a diagram showing simulation results of Example 7
  • FIG. 12 is a diagram showing simulation results of Example 7
  • FIG. 12 is a diagram showing simulation results of Example 7
  • FIG. 12 is a diagram showing simulation results of Example 7
  • FIG. 12 is a diagram showing simulation results of Example 7;
  • FIG. 12 is a diagram showing simulation results of Example 7;
  • the photoelectric conversion device of this embodiment is attached to a satellite or the like operated in outer space, and used in an environment exposed to cosmic rays including proton rays.
  • a solar cell for space use will be described as an example of the photoelectric conversion element.
  • space solar cells it is known that if the proton beam stops near the photoelectric conversion layer of the solar cell, especially in the vicinity of the pn junction, the cell output will be greatly reduced.
  • a solar cell that is resistant to the deterioration of the proton beam should be adopted, or the total proton dose that stops in the vicinity of the pn junction of the solar cell will be the maintenance factor of the solar cell.
  • the shielding area for the proton beam should be increased in the thickness direction of the device to a level that does not affect the .
  • the proton beam shielding area can be increased by, for example, increasing the thickness of the cover glass.
  • FIG. 3(a) is a schematic diagram showing the effect of proton beams on a solar cell without a cover glass shielding region.
  • FIG. 3(b) is a schematic diagram showing the effect of proton beams on a solar cell having a cover glass shielding region.
  • low-energy proton beams e.g., proton beams of about 0.2 MeV
  • An energetic proton beam passes through the cover glass and stops near, for example, the pn junction of the solar cell.
  • the integrated dose of proton beam is called fluence (cm ⁇ 2 ).
  • the photoelectric conversion layer of the solar cell for example, the energy that stops at the pn junction, receives a certain fluence that depends on the type of solar cell, thereby generating defects at the pn junction and reducing the lifetime of minority carriers. electrical properties are degraded.
  • Fig. 4 shows the relationship between proton beam energy and the amount of fluence corresponding to the operation period of satellites, etc., calculated based on a representative space radiation environment model (NASA's AP8 model).
  • the fluence corresponding to the operating period of the satellite or the like be less than 1 ⁇ 10 10 (cm ⁇ 2 ). From FIG. 4, it can be seen that if the proton beam energy is greater than 0.6 MeV, the fluence corresponding to the operating period of the satellite can be made lower than 1 ⁇ 10 10 (cm ⁇ 2 ). Therefore, the proton beam shielding region is required to have the ability to block proton beams of 0.6 MeV or less.
  • the stopping power S(E) can be calculated, for example, by simulation software called Stopping Range of Irons in Solid (http://www.srim.org/). Also, the range X is the distance from the stopping power S(E) until the proton loses its energy and stops. The range X is equal to the reciprocal of the stopping power S(E) integrated by the energy E until the proton stops, as shown in equation (1).
  • the stopping power is correlated with the electron density n of the material shown in Equation (2).
  • N A is the Avogadro constant and Z is the average atomic number of the material.
  • is the density of the material and A is the average mass number of the material.
  • the energy of protons to be shielded can be expressed as the product of the electron density of the material and the film thickness.
  • the cooling efficiency of infrared radiation is defined by the emissivity ⁇ shown in Equation (3), and the higher the emissivity, the higher the cooling efficiency of the solar cell.
  • R is the reflectance
  • U is the radiant intensity of a blackbody
  • T is the temperature (K)
  • is the wavelength ( ⁇ m).
  • the transmittance is assumed to be 0 because a substrate including a metal film such as a solar cell does not transmit light.
  • the emissivity at an arbitrary temperature T can be calculated from Equation (3). In the embodiments and examples, emissivity is calculated from room temperature as an example.
  • the denominator of formula (3) indicates the radiant intensity of a blackbody.
  • the numerator of equation (3) is the radiant intensity of a black body multiplied by (1-R).
  • the size of the numerator with respect to the denominator of Equation (3) corresponds to the emissivity ⁇ . Therefore, it can be seen that in order to increase the emissivity ⁇ , the reflectance R should be decreased and the value of the numerator of formula (3) should be increased.
  • the range of wavelengths to be integrated is from 2.5 ⁇ m to Y ⁇ m, and Y is arbitrarily selected according to the environment of use.
  • the emissivity ⁇ is calculated in the wavelength range from 2.5 ⁇ m to 25 ⁇ m. Note that the emissivity may be calculated from a wider wavelength range from 2.5 ⁇ m to 35 ⁇ m.
  • the reflectance R of a substrate on which a single-layer thin film is formed is calculated as follows from Fresnel's thin film interference formula.
  • N a is the complex refractive index outside (vacuum) of the light receiving surface
  • N ⁇ is the complex refractive index of the thin film ⁇
  • N s is the complex refractive index of the substrate.
  • d ⁇ is the film thickness of the thin film ⁇
  • ⁇ ⁇ is the optical path difference of the thin film ⁇ .
  • n is the refractive index (real part of the complex refractive index)
  • k is the extinction coefficient (imaginary part of the complex refractive index). Note that the variable ⁇ is 1 when the thin film is a single layer.
  • the reflectance R of a substrate on which three layers of thin films are formed is calculated by the following formula.
  • the reflectance R is obtained from the film thickness d of the thin film, the refractive index n and the extinction coefficient k of the thin film material.
  • the parameters n and k of the thin film material and the film thickness d of the thin film it is possible to obtain a thin film with desired properties suitable for heat dissipation in a space environment.
  • FIG. 1 is a thickness direction sectional view showing a configuration example of the solar cell of this embodiment.
  • a configuration example of a CIS solar cell will be described.
  • the solar cell 10 has a laminated structure in which a photoelectric conversion section 12, a proton beam shielding layer 13, and a thermal emission layer 14 are sequentially laminated on a conductive substrate 11 from the bottom (substrate side). Light such as sunlight enters the photoelectric conversion part 12 from the side opposite to the conductive substrate 11 side (upper side in FIG. 1).
  • the conductive substrate 11 is made of, for example, titanium (Ti), stainless steel (SUS), copper, aluminum, or alloys thereof.
  • the conductive substrate 11 may be a rigid metal substrate or a flexible metal substrate.
  • the conductive substrate 11 may have a laminated structure in which a plurality of metal substrates are laminated.
  • stainless steel foil, titanium foil, or molybdenum foil may be formed on the surface of the substrate.
  • the shape and dimensions of the conductive substrate 11 are appropriately determined according to the size of the solar cell 10 and the like.
  • the overall shape of the conductive substrate 11 in this embodiment is, for example, a rectangular plate shape, but is not limited to this.
  • a flexible metal substrate is applied as the conductive substrate 11, the solar cell 10 can be bent, and cracking of the substrate due to bending can be suppressed. Furthermore, in the above case, it is easier to reduce the weight and thickness of the solar cell 10 compared to a glass substrate or a resin substrate.
  • the conductive substrate 11 from titanium or an alloy containing titanium from the viewpoint of reducing the load weight during launch and increasing the strength of the solar cell.
  • the photoelectric conversion section 12 has a laminated structure in which a first electrode layer 21, a photoelectric conversion layer 22, a buffer layer 23, and a second electrode layer 24 are sequentially laminated from the bottom (substrate side).
  • the first electrode layer 21 is a metal electrode layer such as molybdenum (Mo), and is formed on the conductive substrate 11 .
  • the first electrode layer 21 faces not the light-receiving surface side of the photoelectric conversion layer 22 but the back side (the conductive substrate 11 side), and is therefore also called a back electrode.
  • the thickness of the first electrode layer 21 is, for example, 50 nm to 1000 nm.
  • the photoelectric conversion layer 22 is formed on the first electrode layer 21 .
  • the photoelectric conversion layer 22 has a double-graded structure in which the bandgap is large on the light receiving surface side (upper side in FIG. 1) and the back side (lower side in FIG. 1), and the bandgap is small on the inner side in the thickness direction of the photoelectric conversion layer 22.
  • the thickness of the photoelectric conversion layer 22 is, for example, 1.0 ⁇ m to 3.0 ⁇ m.
  • the photoelectric conversion layer 22 functions as a polycrystalline or microcrystalline p-type compound semiconductor layer.
  • the photoelectric conversion layer 22 is, for example, a CIS photoelectric conversion element using a chalcopyrite structure I-III-VI group 2 compound semiconductor containing a group I element, a group III element, and a group VI element (chalcogen element).
  • Group I elements can be selected from copper (Cu), silver (Ag), gold (Au), and the like.
  • Group III elements can be selected from indium (In), gallium (Ga), aluminum (Al), and the like.
  • the photoelectric conversion layer 22 may contain tellurium (Te), etc., in addition to selenium (Se) and sulfur (S) as VI group elements.
  • the photoelectric conversion layer 22 may contain alkali metals, such as Li, Na, K, Rb, and Cs.
  • buffer layer 23 A buffer layer 23 is formed on the photoelectric conversion layer 22 .
  • the thickness of the buffer layer 23 is, for example, 10 nm to 100 nm.
  • the buffer layer 23 is, for example, an n-type or i (intrinsic) high-resistance conductive layer.
  • high resistance means having a resistance value higher than that of the second electrode layer 24, which will be described later.
  • Buffer layer 23 can be selected from compounds containing zinc (Zn), cadmium (Cd), and indium (In).
  • Compounds containing zinc include, for example, ZnO, ZnS, Zn(OH) 2 , or mixed crystals thereof such as Zn(O,S) and Zn(O,S,OH), ZnMgO, ZnSnO, and the like. , there is.
  • Examples of compounds containing cadmium include CdS, CdO, and mixed crystals thereof such as Cd(O,S) and Cd(O,S,OH).
  • Examples of compounds containing indium include InS, InO, and mixed crystals thereof, In(O,S) and In(O,S,OH), such as In 2 O 3 , In 2 S 3 , In (OH) x and the like can be used.
  • the buffer layer 23 may have a laminated structure of these compounds.
  • the buffer layer 23 has the effect of improving characteristics such as photoelectric conversion efficiency, it can be omitted. If the buffer layer 23 is omitted, the second electrode layer 24 is formed on the photoelectric conversion layer 22 .
  • a second electrode layer 24 is formed on the buffer layer 23 .
  • the second electrode layer 24 is, for example, an n-type conductive layer.
  • the thickness of the second electrode layer 24 is, for example, 0.5 ⁇ m to 2.5 ⁇ m.
  • the second electrode layer 24 preferably comprises, for example, a material with a wide bandgap and a sufficiently low resistance value.
  • the second electrode layer 24 serves as a path for light such as sunlight, it preferably has a property of transmitting light having a wavelength that can be absorbed by the photoelectric conversion layer 22 . In this sense, the second electrode layer 24 is also called a transparent electrode layer or a window layer.
  • the second electrode layer 24 comprises, for example, a metal oxide doped with a Group III element (B, Al, Ga, or In) as a dopant.
  • metal oxides are ZnO or SnO2.
  • the second electrode layer 24 is made of, for example, In 2 O 3 (indium oxide), ITO (indium tin oxide), ITiO (indium titanium oxide), IZO (indium zinc oxide), ZTO (zinc tin oxide), FTO (fluorine doped tin oxide), GZO (gallium doped zinc oxide), BZO (boron doped zinc oxide), AZO (aluminum doped zinc oxide) and the like.
  • the proton beam shielding layer 13 is an optical thin film formed on the second electrode layer 24 of the photoelectric conversion section 12 and functions as a shielding region for proton beams incident from the light receiving surface side.
  • the proton beam shielding layer 13 As a material for the proton beam shielding layer 13, a material having a high light transmittance and a refractive index between the photoelectric conversion section 12 and the vacuum is used.
  • the proton beam shielding layer 13 is Al2O3 , Y2O3 , ZrO2, MgO, HfO2 , Bi2O3 , TiO2 , ZnO , In2O3 , SnO2 , Nb2O5 . , Ta 2 O 5 .
  • Each of the above materials satisfies the conditions of light transmittance and refractive index, and is also excellent in terms of cost.
  • the material of the proton beam shielding layer 13 may be a mixed composition containing one or more of the above materials.
  • the proton beam shielding layer 13 of the present embodiment is set to have a product of electron density and film thickness of 5 ⁇ 10 20 (cm ⁇ 2 ) or more in order to shield proton beams with an energy of at least 0.6 MeV or less.
  • the proton beam shielding layer 13 has a product of electron density and film thickness of 1.06 ⁇ 10 21 (cm ⁇ 2 ) or more in order to shield proton beams with an energy of 1 MeV or less.
  • FIG. 5 is a diagram showing the electron density and proton beam shielding effect of various materials.
  • FIG. 5 shows, for various materials, the electron density of the material, the film thickness for shielding proton beams of 0.6 MeV and 1 MeV, and the film thickness for shielding proton beams of 0.6 MeV and 1 MeV ⁇ electron density. From the viewpoint of forming a film on the solar cell, the material shown in FIG. 5 has a refractive index between the surface of the solar cell and the vacuum, has high translucency, and is highly cost-effective. is doing.
  • the energy to stop the proton beam in various materials is calculated from the range.
  • the minimum value of film thickness ⁇ electron density for shielding a proton beam of 0.6 MeV is 5 ⁇ 10 20 (cm ⁇ 2 ) of MgO. Therefore, in order to block proton beams of 0.6 MeV or less, the film thickness ⁇ electron density should be 5 ⁇ 10 20 (cm ⁇ 2 ) or more.
  • the proton beam shielding layer 13 can shield proton beams of 1 MeV or less.
  • the minimum value of film thickness ⁇ electron density for shielding a proton beam of 1 MeV is 1.06 ⁇ 10 21 (cm ⁇ 2 ) of MgO. Therefore, in order to block proton beams of 1 MeV or less, the film thickness ⁇ electron density should be 1.06 ⁇ 10 21 (cm ⁇ 2 ) or more.
  • the electron density ⁇ film thickness of a general space cover glass is 6.68 ⁇ 10 21 (cm ⁇ 2 ). Therefore, from the viewpoint of making the proton beam shielding layer 13 lighter than the cover glass, it is preferable that the electron density ⁇ film thickness is less than 6.68 ⁇ 10 21 (cm ⁇ 2 ).
  • the proton beam shielding layer 13 may be a multilayer film in which layers of different materials selected from the above materials are laminated. Even in the case of a multilayer film, the film thickness required to shield the proton beam is calculated from the range, so even if the proton beam shielding layer 13 has a plurality of layers, the proton beam shielding effect will be impaired. no. Moreover, from the viewpoint of increasing the infrared emissivity of the solar cell 10, it is preferable to laminate materials having different refractive indexes and extinction coefficients in the proton beam shielding layer 13 as well.
  • the thin film laminated on the photoelectric conversion part 12 should ideally have a structure in which the refractive index monotonously increases in the thickness direction from the light-receiving surface side to the transparent electrode layer over a wide wavelength range from visible light to infrared light. .
  • the change in the thickness direction of the refractive index does not monotonically increase in any wavelength range, and optical design is performed to bring the entire thin film closer to the desired optical performance.
  • the proton beam shielding layer 13 a multilayer film and adjusting the optical performance of the entire thin film, it becomes easy to flexibly design the thin films laminated on the photoelectric conversion section 12 .
  • the thermal emission layer 14 is an optical thin film formed on the proton beam shielding layer 13 and has a function of promoting cooling of the solar cell 10 by radiation.
  • the emissivity of the thermal radiation layer 14 is preferably 0.80 or more in order to efficiently cool the solar cell 10 by infrared radiation.
  • the film thickness may become very thick. Therefore, by laminating the thermal radiation layer 14 on the proton beam shielding layer 13, it is possible to secure the desired emissivity while securing the proton beam shielding effect.
  • the thermal emission layer 14 may be a single layer film of either SiO 2 or Al 2 O 3 material, or may be a laminated film in which thin films of SiO 2 and Al 2 O 3 are laminated. From the viewpoint of increasing the infrared emissivity of the solar cell 10, the thermal emission layer 14 is preferably formed by laminating materials having different refractive indices and extinction coefficients.
  • the thermal radiation layer 14 preferably has a film thickness of 210 nm or more in order to achieve an emissivity of 0.8 or more.
  • the film thickness of any one of the films included in the laminated film is preferably 110 nm or more in order to achieve an emissivity of 0.8 or more.
  • FIG. 2 is a thickness direction sectional view showing another configuration example of the solar cell of this embodiment.
  • a configuration example of a solar cell using a semiconductor substrate of crystalline Si, GaAs, or the like will be described.
  • elements common to those in FIG. 1 are denoted by the same reference numerals, and redundant explanations are omitted.
  • the solar cell 10a shown in FIG. 2 has a laminated structure in which a photoelectric conversion section 12, a proton beam shielding layer 13, and a thermal emission layer 14 are laminated in order.
  • Light such as sunlight enters the photoelectric conversion section 12 from the thermal radiation layer 14 side (upper side in FIG. 2).
  • the photoelectric conversion unit 12 has a first conductivity type semiconductor substrate 11 a , a first electrode layer 31 , a second conductivity type semiconductor layer 32 , and a second electrode layer 33 .
  • the first conductivity type is one of p-type and n-type
  • the second conductivity type is the other of p-type and n-type.
  • the semiconductor substrate 11a is, for example, a silicon substrate made of a first conductivity type single crystal or polycrystal.
  • the semiconductor substrate 11a is configured by doping a small amount of a Group III element (for example, boron, aluminum, etc.).
  • the semiconductor substrate 11a is configured by doping a trace amount of a Group V element (for example, phosphorus, arsenic, etc.).
  • the first electrode layer 31 is a back electrode formed on one surface side (lower side in FIG. 2) of the semiconductor substrate 11a.
  • the first electrode layer 31 is composed of a thin film of conductive metal such as silver (Ag), aluminum (Al), titanium (Ti), or the like.
  • the second-conductivity-type semiconductor layer 32 is, for example, a layer made of second-conductivity-type crystal or polycrystalline silicon, and forms a pn junction with the first-conductivity-type semiconductor substrate 11a.
  • the semiconductor layer 32 may be provided on the entire other surface side of the semiconductor substrate 11a, or may be provided on a part of the other surface side of the semiconductor substrate 11a.
  • the semiconductor layer 32 is configured by doping a small amount of a group V element (for example, phosphorus, arsenic, etc.).
  • the semiconductor layer 32 is configured by doping a trace amount of a Group III element (eg, boron, aluminum, etc.).
  • a second electrode layer 33 is formed on the semiconductor layer 32 .
  • the second electrode layer 33 is configured, for example, as a translucent transparent electrode layer or a comb-shaped bus bar electrode.
  • the proton beam shielding layer 13 shown in FIG. 2 is formed on the second electrode layer 33, and the thermal radiation layer 14 is formed on the proton beam shielding layer 13.
  • the proton beam shielding layer 13 and the thermal emission layer 14 are the same as those in FIG.
  • the process of forming the photoelectric conversion section 12 on the conductive substrate 11 is the same as the manufacturing process of general CIS solar cells. That is, the photoelectric conversion layer 22 is formed by forming a precursor layer on the surface of the conductive substrate 11 on which the first electrode layer 21 is formed and chalcogenizing the precursor layer. Then, the photoelectric conversion section 12 is formed by sequentially stacking the buffer layer 23 and the second electrode layer 24 on the photoelectric conversion layer 22 .
  • a first electrode layer 31 is formed on one side of the semiconductor substrate 11a and a By forming the semiconductor layer 32 and the second electrode layer 33, the photoelectric conversion section 12 is formed.
  • the proton beam shielding layer 13 and the thermal radiation layer 14 are formed in order.
  • the film formation of the proton beam shielding layer 13 and the thermal radiation layer 14 is performed, for example, by a semiconductor thin film such as a sputtering method, a CVD (Chemical vapor deposition) method, a vapor deposition method, an optical Mod (Metal Organic Deposition) method, an AD (Aerosol Deposition) method. , respectively, using the formation process of
  • the total thickness of the proton beam shielding layer 13 and the thermal radiation layer 14 is, for example, in the range of 1 ⁇ m to 65 ⁇ m.
  • Table 1 shows an example of deposition conditions when a Y 2 O 3 thin film and an Al 2 O 3 thin film are deposited as the proton beam shielding layer 13 and SiO 2 is deposited as the heat radiation layer 14. .
  • thin films of the proton beam shielding layer 13 and the heat radiation layer 14 are formed by electron beam evaporation.
  • the second electrode layer 24 (or the second electrode layer 33) of the photoelectric conversion section 12 shields the photoelectric conversion section 12 from proton beams.
  • a proton beam shielding layer 13 is provided.
  • the product of electron density and film thickness of the proton beam shielding layer 13 is 5 ⁇ 10 20 (cm ⁇ 2 ) or more.
  • the proton beam shielding layer 13 can shield proton beams of 0.6 MeV or less, and the fluence corresponding to the operation period of a satellite or the like can be reduced to 1 ⁇ 10 10 (cm -2 ) can be lower than Therefore, according to the present embodiment, it is possible to suppress deterioration of the performance of the device due to proton beams throughout the operating period of the space solar cell.
  • the proton beam shielding layer 13 is laminated on the photoelectric conversion section 12 by applying a semiconductor thin film forming process.
  • the proton beam shielding layer 13 having excellent proton beam shielding ability can be formed to be lighter than the cover glass, and a complicated assembly process such as bonding of the cover glass can be omitted. Therefore, the solar cells 10 and 10a of the present embodiment are lighter and more cost-effective than solar cells having a cover glass.
  • Example 1 In Example 1, four solar cells with different thin films formed on the transparent electrode layers were compared, and the product of electron density and film thickness and the difference in emissivity of the thin films were calculated by simulation.
  • the configuration from the conductive substrate to the transparent electrode layer of the solar cell of Example 1 is a CIS solar cell.
  • the configuration of the solar cell of Example 1 is shown below.
  • Example 1 A solar cell without a thin film on the transparent electrode layer
  • Example 1A A solar cell with a ZrO2 thin film of 4.59 ⁇ m on the transparent electrode layer
  • Example 1B On the transparent electrode layer, A solar cell having a 4.59 ⁇ m ZrO 2 thin film and a 1.3 ⁇ m SiO 2 thin film stacked in this order from the bottom.
  • Example 1C On the transparent electrode layer, a 4.59 ⁇ m ZrO 2 thin film, 0.5 ⁇ m ZrO 2 thin film, 0.5 ⁇ m thick ZrO 2 thin film, 0.5 ⁇ m ZrO 2 thin film, 0.5 ⁇ m thick ZrO 2 thin film, 0.5 ⁇ m thin film, A solar cell formed by stacking a 65 ⁇ m Al 2 O 3 thin film and a 0.65 ⁇ m SiO 2 thin film
  • the product of the thickness of the thin film and the electron density when shielding a proton beam of 0.6 MeV is smaller than 5 ⁇ 10 20 (cm ⁇ 2 ) in Comparative Example 1, and It was 5 ⁇ 10 20 (cm ⁇ 2 ) or more.
  • Example 1C had an emissivity of 83.7%. Therefore, in the configuration in which two or more proton shielding layers are laminated as in Examples 1B and 1C, the emissivity was improved as compared with Comparative Example 1 and Example 1A. In addition, as in Example 1C compared to Example 1B, even if the total thickness of the proton shielding layers from the second layer onward is the same, the structure in which the proton shielding layers made of different materials are laminated is different from that in Example 1B. emissivity is also improved.
  • Example 1C can also be considered to have a structure having a thermal emission layer in which an Al 2 O 3 thin film and an SiO 2 thin film are laminated.
  • the heat radiation layer having a laminated structure of Al 2 O 3 and SiO 2 has a higher emissivity. It is also understood that it contributes to the improvement.
  • Example 2 The energy shielding the proton beam is calculated from the range. Therefore, in Example 2, each film thickness in the case of a thin film composed of a plurality of materials was calculated by simulation.
  • Example 2 energy of 0.6 MeV and 1 MeV was shielded against material Z (mixed composition) composed of Al 2 O 3 , Y 2 O 3 and In 2 O 3 in a ratio of 1:1:1. The thickness of the film was calculated. Table 2 shows the calculation results in Example 2.
  • Example 2 can theoretically provide a solar cell that can shield the energy of 0.6 MeV proton beams.
  • Example 3 In Example 3, a laminated film formed by laminating an Al 2 O 3 thin film, a Y 2 O 3 thin film, and an In 2 O 3 thin film with the same film thickness shields energy of 0.6 MeV and 1 MeV. Thickness was calculated. Table 3 shows the calculation results in Example 3. The thickness of each of the Al 2 O 3 thin film, the Y 2 O 3 thin film and the In 2 O 3 thin film is 1/3 of the thickness of the laminated film.
  • the laminated film shown in Example 3 can theoretically provide a solar cell that can shield the energy of 0.6 MeV proton beams.
  • Example 4 In Example 4, a thin film of SiO 2 or Al 2 O 3 was formed as a thermal radiation layer on the proton shielding layer laminated on the CIS solar cell, and a thin In 2 O 3 thin film was formed as a comparative example. The emissivity when formed was calculated by simulation. Al 2 O 3 , HfO 2 , In 2 O 3 , ZrO 2 and Y 2 O 3 were selected as materials for the proton shielding layer in Example 4. The film thickness of the proton beam shielding layer was set to the minimum film thickness capable of shielding a proton beam of 0.6 MeV for each material, and the film thickness of the thin film on the proton beam shielding layer was set to 1.0 ⁇ m. Table 4 shows the calculation results in Example 4.
  • Table 4 shows the emissivity ratio when a thin film is laminated on the proton shielding layer, with the emissivity of the proton shielding layer alone being 1.
  • Table 4 shows the emissivity ratio when a thin film is laminated on the proton shielding layer, with the emissivity of the proton shielding layer alone being 1.
  • the emissivity ratio is 1 or more, suggesting that the thermal radiation layer improves the emissivity.
  • the reflectance of light with a wavelength range of 5 ⁇ m to 15 ⁇ m is suppressed by the thin film of SiO 2 or Al 2 O 3 , thereby improving the emissivity as described above.
  • the In 2 O 3 thin film is formed on the proton shielding layer of the comparative example, the emissivity tends to decrease due to the increase in light reflectance.
  • Example 5 a case in which a thin film of SiO 2 or Al 2 O 3 was formed as a thermal emission layer on a proton beam shielding layer laminated on a solar cell using a crystalline Si-based semiconductor substrate, and a comparative example.
  • the emissivity in the case of forming an In 2 O 3 thin film as was calculated by simulation.
  • ZrO 2 was selected as the material for the proton beam shielding layer in Example 5.
  • the film thickness of the proton beam shielding layer was set to the minimum film thickness capable of shielding a proton beam of 0.6 MeV, and the film thickness of the thin film on the proton beam shielding layer was set to 1.0 ⁇ m. Table 5 shows the calculation results in Example 5.
  • Table 5 shows the emissivity ratio when a thin film is laminated on the proton shielding layer, with the emissivity of the proton shielding layer alone being 1.
  • Table 5 shows the emissivity ratio when a thin film of SiO 2 or Al 2 O 3 is formed on the proton beam shielding layer, the emissivity ratio is 1 or more, suggesting that the thermal radiation layer improves the emissivity. I understand. Specifically, it is thought that the reflectance of light with a wavelength range of 5 ⁇ m to 15 ⁇ m is suppressed by the thin film of SiO 2 or Al 2 O 3 , thereby improving the emissivity as described above. On the other hand, when the In 2 O 3 thin film is formed on the proton shielding layer of the comparative example, the emissivity tends to decrease due to the increase in light reflectance.
  • Example 6 when a thin film of SiO 2 or Al 2 O 3 is formed as a thermal radiation layer on the proton beam shielding layer, the film thickness for increasing the emissivity to 80% or more was calculated by simulation.
  • the structure from the conductive substrate to the transparent electrode layer of the solar cell of Example 6 is a CIS solar cell.
  • Example 6 Al 2 O 3 , HfO 2 , In 2 O 3 , ZrO 2 and Y 2 O 3 were selected as materials for the proton shielding layer in Example 6.
  • the film thickness of the proton beam shielding layer was set to the minimum film thickness capable of shielding a proton beam of 0.6 MeV for each material. Table 6 shows the calculation results in Example 6.
  • the film thickness must be set to at least 210 nm or more in order to achieve an emissivity of 80% or more. I know there is.
  • Example 7 when the SiO 2 thin film and the Al 2 O 3 thin film are laminated on the proton beam shielding layer, each film thickness for increasing the emissivity to 80% or more was calculated by simulation.
  • the configuration from the conductive substrate to the transparent electrode layer of the solar cell of Example 7 is a CIS solar cell.
  • Example 7 an Al 2 O 3 thin film and an SiO 2 thin film are sequentially laminated on the proton beam shielding layer.
  • Al 2 O 3 , HfO 2 , In 2 O 3 , ZrO 2 and Y 2 O 3 were selected as materials for the proton beam shielding layer.
  • the film thickness of the proton beam shielding layer was set to the minimum film thickness capable of shielding a proton beam of 0.6 MeV for each material.
  • FIGS. 6 to 10 show simulation results in Example 7.
  • FIG. The vertical axis in each of FIGS. 6 to 10 is the film thickness (nm) of the SiO 2 thin film
  • the horizontal axis in each of FIGS. 6 to 10 is the film thickness (nm) of the Al 2 O 3 thin film.
  • 6 to 10 respectively show distributions of an emissivity region of less than 75%, an emissivity region of 75% or more and less than 80%, and an emissivity region of 80% or more.
  • FIG. 6 is a distribution diagram showing the relationship between the thicknesses of the Al 2 O 3 thin film and the SiO 2 thin film when the material of the proton beam shielding layer is Al 2 O 3 .
  • the thickness of the Al 2 O 3 thin film and the thickness of the SiO 2 thin film are both 0.21 ⁇ m, there is a region where the emissivity is 80% or more.
  • Table 7 shows an example of the combination of the film thicknesses of Al 2 O 3 and SiO 2 in the thermal emission layer when the proton beam shielding layer is Al 2 O 3 and the emissivity is 80%.
  • FIG. 7 is a distribution diagram showing the relationship between the film thicknesses of the Al 2 O 3 thin film and the SiO 2 thin film when the material of the proton beam shielding layer is HfO 2 .
  • the film thickness of the Al 2 O 3 thin film is 1.83 ⁇ m and the film thickness of the SiO 2 thin film is 0.86 ⁇ m, there is a region where the emissivity is 80% or more.
  • Table 8 shows an example of the combination of the Al 2 O 3 and SiO 2 film thicknesses of the thermal radiation layer when the proton beam shielding layer is HfO 2 and the emissivity is 80%.
  • FIG. 8 is a distribution diagram showing the relationship between the film thicknesses of the Al 2 O 3 thin film and the SiO 2 thin film when the material of the proton beam shielding layer is In 2 O 3 .
  • the film thickness of the Al 2 O 3 thin film is 1.37 ⁇ m and the film thickness of the SiO 2 thin film is 0.50 ⁇ m, there is a region where the emissivity is 80% or more.
  • Table 9 shows an example of the combination of the film thicknesses of Al 2 O 3 and SiO 2 in the thermal emission layer when the proton beam shielding layer is In 2 O 3 and the emissivity is 80%.
  • FIG. 9 is a distribution diagram showing the relationship between the film thicknesses of the Al 2 O 3 thin film and the SiO 2 thin film when the material of the proton beam shielding layer is ZrO 2 .
  • the film thickness of the Al 2 O 3 thin film is 0.11 ⁇ m and the film thickness of the SiO 2 thin film is 0.2 ⁇ m, there is a region where the emissivity is 80% or more.
  • Table 10 shows an example of the combination of the film thicknesses of Al 2 O 3 and SiO 2 in the thermal emission layer when the proton beam shielding layer is ZrO 2 and the emissivity is 80%.
  • FIG. 10 is a distribution diagram showing the relationship between the film thicknesses of the Al 2 O 3 thin film and the SiO 2 thin film when the material of the proton beam shielding layer is Y 2 O 3 .
  • the film thickness of the Al 2 O 3 thin film is 0.13 ⁇ m and the film thickness of the SiO 2 thin film is 0.17 ⁇ m, there is a region where the emissivity is 80% or more.
  • Table 11 shows an example of the combination of the film thicknesses of Al 2 O 3 and SiO 2 in the thermal emission layer when the proton beam shielding layer is Y 2 O 3 and the emissivity is 80%.
  • the film thicknesses must be increased in order to increase the emissivity to 80% or more. It can be seen that it is necessary to set the thickness to 110 nm or more.
  • the configuration example of the solar cell including the proton beam shielding layer has been described as an example of the photoelectric conversion element for space use.
  • the configuration of the photoelectric conversion device of the present invention is not limited to solar cells, and can be widely applied to other semiconductor devices (for example, imaging devices) that are used in outer space and have a photoelectric conversion layer.
  • the present invention is not limited to CIS-based solar cells or solar cells using a crystalline Si-based semiconductor substrate, but can also be applied to compound-based solar cells other than CIS-based solar cells and other general solar cells.
  • the configuration of the present invention can also be applied to compound solar cells such as CZTS solar cells, CIGS solar cells, CdTe solar cells, and GaAs solar cells, organic solar cells, and the like.
  • the proton beam shielding layer or the heat radiation layer in the present invention may each be configured as a laminated film of three or more layers.

Abstract

光電変換素子(10)は、光電変換部(12)と、光電変換部(12)の上に形成され、光電変換部(12)を陽子線から遮蔽する陽子線遮蔽層(13)と、を備える。陽子線遮蔽層(13)の電子密度と膜厚の積は、5×1020(cm-2)以上である。

Description

光電変換素子および光電変換素子の製造方法
 本発明は、光電変換素子および光電変換素子の製造方法に関する。
 従来から、宇宙空間で運用される衛星等の電力供給手段として、光電変換素子の1つである太陽電池が用いられている。宇宙用の太陽電池では、陽子線を含む宇宙線の照射によって半導体中に格子欠陥が生じ、その出力が低下することが知られている。そのため、宇宙用の太陽電池に関しては、陽子線を阻止するための封止構造も種々提案されている。
 例えば、非特許文献1は、特殊なカバーガラスと樹脂接着剤を用いた宇宙用の太陽電池の封止構造を開示している。
 また、例えば、特許文献1には、赤外放射による宇宙空間への排熱性を高めるために、太陽電池の表面に光学薄膜を形成して赤外放射率を向上させることが開示されている。
松田純夫 「宇宙線から太陽電池を守るカバーガラス」 New GLASS Vol.14 No.4 1999, P27-30, ニューガラスフォーラム社
特許第4565105号公報
 上記のように、特殊なカバーガラスを用いた宇宙用の太陽電池の封止構造は、カバーガラス自体が非常に高価であり、またカバーガラスの貼り合わせが煩雑であることから高コストとなる。しかも、太陽電池が重くなることから、打ち上げ時の積載重量を抑制する上でも改善の余地がある。
 一方、特許文献1の光学薄膜では、低エネルギーの陽子線は遮蔽できないことから、陽子線による太陽電池の劣化を防ぐことは困難であった。
 本発明は、上記の状況に鑑みてなされたものであって、陽子線による素子の性能低下を抑制できるともに、軽量でコスト面に優れた光電変換素子を提供する。
 本発明の一態様の光電変換素子は、光電変換部と、光電変換部上に形成され、光電変換部を陽子線から遮蔽する陽子線遮蔽層と、を備える。陽子線遮蔽層の電子密度と膜厚の積は、5×1020(cm-2)以上である。
 本発明の一態様によれば、陽子線による素子の性能低下を抑制できるともに、軽量でコスト面に優れた光電変換素子を提供できる。
本実施形態の太陽電池の構成例を示す厚さ方向断面図である。 本実施形態の太陽電池の他の構成例を示す厚さ方向断面図である。 太陽電池での陽子線の影響を示す模式図である。 陽子線のエネルギーと、衛星等の運用期間に相当するフルエンスの量の関係を示す図である。 各種材料の電子密度と陽子線の遮蔽効果を示す図である。 実施例7のシミュレーション結果を示す図である。 実施例7のシミュレーション結果を示す図である。 実施例7のシミュレーション結果を示す図である。 実施例7のシミュレーション結果を示す図である。 実施例7のシミュレーション結果を示す図である。
 以下、図面を参照しながら実施形態を説明する。
 実施形態では、その説明を分かり易くするため、本発明の主要部以外の構造または要素については、簡略化または省略して説明する。また、図面において、同じ要素には同じ符号を付す。なお、図面において、各要素の形状、寸法などは、模式的に示したもので、実際の形状や寸法などを示すものではない。
 本実施形態の光電変換素子は、宇宙空間で運用される衛星等に取り付けられ、陽子線を含む宇宙線に晒される環境下で使用される。本実施形態では、光電変換素子の一例として宇宙用の太陽電池の場合について説明する。
 最初に、宇宙用の太陽電池における陽子線劣化と放熱について概説する。
<太陽電池の陽子線劣化>
 宇宙用の太陽電池において、太陽電池セルの光電変換層、特にpn接合部分の近傍に陽子線が止まると、電池出力の大幅な低下を引き起こすことが知られている。陽子線による太陽電池の劣化を抑制するためには、陽子線の劣化に強い太陽電池セルを採用するか、あるいは太陽電池セルのpn接合部分の近傍内で止まる総陽子線量が太陽電池の維持率に影響を与えないレベルまで陽子線の遮蔽領域を素子の厚さ方向に大きくすればよい。陽子線の遮蔽領域は、例えばカバーガラスを厚くすることで大きくできる。
 図3(a)は、カバーガラスの遮蔽領域がない太陽電池での陽子線の影響を示す模式図である。図3(b)は、カバーガラスの遮蔽領域を有する太陽電池での陽子線の影響を示す模式図である。
 図3(a)のように、カバーガラスの遮蔽領域がない太陽電池が宇宙線に晒されると、低エネルギーの陽子線(例えば0.2MeV程度の陽子線)が太陽電池セルの例えばpn接合部分の近傍で止まる。これに対し、図3(b)のように、カバーガラス(厚さ100μm)の遮蔽領域を有する太陽電池が宇宙線に晒された場合、低エネルギーの陽子線はカバーガラスで止まるが、より高エネルギーの陽子線(例えば3MeV程度の陽子線)はカバーガラスを通過して太陽電池セルの例えばpn接合部分の近傍で止まる。
 図3(a)、(b)のいずれでも1つの陽子がセルのpn接合部分に与えるダメージはほぼ同じである。しかし、高エネルギーの陽子線は低エネルギーの陽子線より総量が少ないため、図3(b)のように遮蔽領域を有する方が図3(a)と比べて陽子線による劣化が少なくなる。ただし、遮蔽領域を大きくするためにカバーガラスを厚くすると、積載重量の増加につながることとなる。
 ここで、積算された陽子線の照射量をフルエンス(cm-2)という。
 太陽電池セルの光電変換層、例えばpn接合部分で止まるエネルギーが、太陽電池の種類に依存したあるフルエンスを受けることでpn接合部分に欠陥が生成され、少数キャリアの寿命が低下することで太陽電池の電気特性が低下する。
 GaAs太陽電池やCIGS太陽電池に関し、ある一定のエネルギーに対するフルエンスと電気特性の維持率は各種の文献で報告されている。これらの文献の報告によれば、フルエンスが1×1010(cm-2)未満であれば、太陽電池の電気特性の維持率が十分に高く、太陽電池の劣化が少ないといえる。
 また、代表的な宇宙空間の放射線環境モデル(NASAのAP8モデル)に基づき算出した、陽子線のエネルギーと、衛星等の運用期間に相当するフルエンスの量の関係を図4に示す。
 上述のように、陽子線による太陽電池の劣化を抑制するためには、衛星等の運用期間に相当するフルエンスを1×1010(cm-2)未満にすることが求められる。図4から、陽子線のエネルギーが0.6MeVより大きければ、衛星等の運用期間に相当するフルエンスを1×1010(cm-2)よりも低くできることが分かる。したがって、陽子線の遮蔽領域には0.6MeV以下の陽子線を防ぐ性能が要求される。
 次に、陽子線の遮蔽の計算方法について説明する。
 ある物質に陽子線を照射したとき、陽子はエネルギーを失いながら物質を通過する。このときに陽子が失うエネルギーの量を阻止能という。阻止能S(E)は、例えば、Stopping Range of Irons in Solid (http://www.srim.org/)というシミュレーションソフトにより算出することができる。また、阻止能S(E)に対して陽子がエネルギーを失い停止するまでの距離を飛程Xという。飛程Xは、式(1)に示すように、阻止能S(E)の逆数を陽子が停止するまでのエネルギーEで積分した値に等しい。
Figure JPOXMLDOC01-appb-M000001
 式(1)で算出される飛程Xにより、あるエネルギーの陽子線を任意の材料の被膜内で停止させるときの材料の厚さ(つまり、陽子線を遮蔽可能な膜厚)を算出することができる。
 また、阻止能は、式(2)に示す材料の電子密度nと相関がある。ここで、NAはアボガドロ定数であり、Zは材料の平均原子番号である。また、ρは材料の密度であり、Aは材料の平均質量数である。
Figure JPOXMLDOC01-appb-M000002
 以上より、遮蔽したい陽子のエネルギーは、材料の電子密度と膜厚の積で表現することができる。
<太陽電池の宇宙空間での放熱>
 一般に、太陽電池などの半導体は、高熱が加わる状態では性能低下や寿命低下が生じるため冷却の必要が生じる。宇宙では地上と異なり大気がなく、宇宙での太陽電池は真空断熱状態にある。したがって、宇宙での太陽電池は、大気による熱交換ができないことから主に赤外の放射によって冷却が行われる。
 赤外放射による冷却効率は、式(3)に示す放射率εによって規定され、放射率が高いほど太陽電池の冷却効率が高くなる。
Figure JPOXMLDOC01-appb-M000003
 ここで、Rは反射率であり、Uは黒体の放射強度であり、Tは温度(K)であり、λは波長(μm)である。なお、太陽電池のような金属膜を含む基板は光を透過しないため、透過率を0としている。式(3)より任意の温度Tにおける放射率が算出可能である。実施形態および実施例では、その一例として室温から放射率を算出している。
 式(3)の分母は黒体の放射強度を示す。式(3)の分子は、黒体の放射強度に(1-R)を乗じたものである。そして、式(3)の分母に対する分子の大きさが放射率εに相当する。したがって、放射率εを上げるためには、反射率Rを小さくして式(3)の分子の値を大きくすればよいことが分かる。
 積分する波長の範囲は2.5μmからYμmであり、Yは使用する環境によって任意に選択される。実施形態および実施例では、その一例として、波長2.5μmから25μmまでの波長範囲で放射率εを算出している。なお、より広い波長範囲である波長2.5μmから35μmまでの波長範囲から放射率を算出してもよい。
 例えば、単層の薄膜が形成された基板の反射率Rは、フレネルの薄膜干渉の式より以下のように算出される。
Figure JPOXMLDOC01-appb-M000004
 ここで、Naは受光面より外側(真空)の複素屈折率であり、Nαは薄膜αの複素屈折率であり、Nsは基板の複素屈折率である。dαは薄膜αの膜厚であり、φαは薄膜αの光路差である。また、nは屈折率(複素屈折率の実部)であり、kは消衰係数(複素屈折率の虚部)である。なお、薄膜が単層の場合、変数αは1である。
 また、例えば、三層の薄膜が形成された基板の反射率Rは、以下の式で算出される。ここでは、基板側の薄膜を薄膜1(α=1)とし、薄膜1に臨む薄膜を薄膜2(α=2)とし、薄膜2に臨む受光面側の薄膜を薄膜3(α=3)とする。
Figure JPOXMLDOC01-appb-M000005
 上記の各式により、反射率Rは、薄膜の膜厚dと、薄膜材料の屈折率nおよび消衰係数kで求められる。換言すれば、薄膜材料のパラメータn,kと、薄膜の膜厚dの組み合わせにより、宇宙環境での放熱に適した所望の特性の薄膜を得ることが可能である。
<太陽電池の構成例>
 次に、図面を参照して、本実施形態における宇宙用の太陽電池の構成について説明する。図1は、本実施形態の太陽電池の構成例を示す厚さ方向断面図である。図1の例では、CIS系太陽電池での構成例を説明する。
 太陽電池10は、導電性基板11の上に、下(基板側)から順に、光電変換部12、陽子線遮蔽層13、熱放射層14が順次積層された積層構造を有する。太陽光などの光は、導電性基板11側とは反対側(図1の上側)から光電変換部12に入射する。
(導電性基板11)
 導電性基板11は、例えば、チタン(Ti)、ステンレス鋼(SUS)、銅、アルミニウムあるいはこれらの合金等で形成される。導電性基板11は、リジッドな金属基板であってもフレキシブルな金属基板であってもよい。導電性基板11は、複数の金属基材を積層した積層構造であってもよく、例えば、ステンレス箔、チタン箔、モリブデン箔が基板の表面に形成されていてもよい。
 導電性基板11の形状および寸法は、太陽電池10の大きさ等に応じて適宜決定される。本実施形態における導電性基板11の全体形状は、例えば矩形の平板状であるがこれに限られることはない。
 導電性基板11として、フレキシブルな金属基板を適用した場合、太陽電池10を曲げることが可能となり、曲げによる基板の割れも抑制できる。さらに、上記の場合には、ガラス基板や樹脂基板と比べて、太陽電池10の軽量化および薄型化を図ることが容易となる。
 なお、宇宙用の太陽電池においては、打ち上げ時の積載重量の抑制および太陽電池の高強度化を図る観点から、導電性基板11をチタンまたはチタンを含む合金で形成することが好ましい。
(光電変換部12)
 光電変換部12は、下(基板側)から順に、第1の電極層21、光電変換層22、バッファ層23、第2の電極層24が順次積層された積層構造を有する。
(第1の電極層21)
 第1の電極層21は、例えばモリブデン(Mo)などの金属電極層であり、導電性基板11の上に形成される。第1の電極層21は、光電変換層22の受光面側ではなく裏面側(導電性基板11側)に臨むため、裏面電極とも称される。特に限定するものではないが、第1の電極層21の厚さは、例えば、50nm~1000nmである。
(光電変換層22)
 光電変換層22は、第1の電極層21上に形成される。光電変換層22は、受光面側(図1の上側)および裏面側(図1の下側)ではバンドギャップがそれぞれ大きく、光電変換層22の厚さ方向内側ではバンドギャップが小さいダブルグレーデッド構造を有してもよい。特に限定するものではないが、光電変換層22の厚さは、例えば、1.0μm~3.0μmである。
 光電変換層22は、多結晶または微結晶のp型化合物半導体層として機能する。光電変換層22は、例えば、I族元素と、III族元素と、VI族元素(カルコゲン元素)と、を含むカルコパイライト構造のI-III-VI族化合物半導体を用いたCIS系光電変換素子である。I族元素は、銅(Cu)、銀(Ag)、金(Au)などから選択可能である。III族元素は、インジウム(In)、ガリウム(Ga)、アルミニウム(Al)などから選択可能である。また、光電変換層22は、VI族元素として、セレン(Se)や硫黄(S)の他に、テルル(Te)などを含んでもよい。また、光電変換層22は、Li、Na、K、Rb、Cs等のアルカリ金属を含んでいてもよい。
(バッファ層23)
 バッファ層23は、光電変換層22の上に形成される。特に限定するものではないが、バッファ層23の厚さは、例えば、10nm~100nmである。
 バッファ層23は、例えば、n型またはi(intrinsic)型高抵抗導電層である。ここで「高抵抗」とは、後述する第2の電極層24の抵抗値よりも高い抵抗値を有するという意味である。
 バッファ層23は、亜鉛(Zn)、カドミウム(Cd)、インジウム(In)を含む化合物から選択可能である。亜鉛を含む化合物としては、例えば、ZnO、ZnS、Zn(OH)2、または、これらの混晶であるZn(O,S)、Zn(O,S,OH)、さらには、ZnMgO、ZnSnOなど、がある。カドミウムを含む化合物としては、例えば、CdS、CdO、または、これらの混晶であるCd(O,S)、Cd(O,S,OH)がある。インジウムを含む化合物としては、例えば、InS、InO、または、これらの混晶であるIn(O,S)、In(O,S,OH)があり、In23、In23、In(OH)x等を用いることができる。また、バッファ層23は、これらの化合物の積層構造を有してもよい。
 なお、バッファ層23は、光電変換効率などの特性を向上させる効果を有するが、これを省略することも可能である。バッファ層23が省略される場合、第2の電極層24は光電変換層22の上に形成される。
(第2の電極層24)
 第2の電極層24は、バッファ層23の上に形成される。第2の電極層24は、例えば、n型導電層である。特に限定するものではないが、第2の電極層24の厚さは、例えば、0.5μm~2.5μmである。
 第2の電極層24は、例えば、禁制帯幅が広く、抵抗値が十分に低い材料を備えることが好ましい。また、第2の電極層24は、太陽光などの光の通り道となるため、光電変換層22が吸収可能な波長の光を透過する性質を持つことが好ましい。この意味から、第2の電極層24は、透明電極層または窓層とも称される。
 第2の電極層24は、例えば、III族元素(B、Al、Ga、またはIn)がドーパントとして添加された酸化金属を備える。酸化金属の例としては、ZnO、または、SnO2がある。第2の電極層24は、例えば、In23(酸化インジウム)、ITO(酸化インジウムスズ)、ITiO(酸化インジウムチタン)、IZO(酸化インジウム亜鉛)、ZTO(酸化亜鉛スズ)、FTO(フッ素ドープト酸化スズ)、GZO(ガリウムドープト酸化亜鉛)、BZO(ホウ素ドープト酸化亜鉛)、AZO(アルミドープト酸化亜鉛)などから選択可能である。
(陽子線遮蔽層13)
 陽子線遮蔽層13は、光電変換部12の第2の電極層24の上に形成された光学薄膜であり、受光面側から入射する陽子線への遮蔽領域として機能する。
 陽子線遮蔽層13の材料としては、光透過率が高く、屈折率が光電変換部12と真空の間にある材料が使用される。一例として、陽子線遮蔽層13は、Al23、Y23、ZrO2、MgO、HfO2、Bi23、TiO2、ZnO、In23、SnO2、Nb25、Ta25の1つまたは複数から選択される材料で形成される。上記の各材料は、光透過率および屈折率の条件を満たし、コスト性にも優れている。
 なお、陽子線の遮蔽効果は材料の電子密度に依存し、結合状態には依存しない。そのため、陽子線遮蔽層13の材料は、上記の材料のいずれか1以上を含む混合組成物であってもよい。
 本実施形態の陽子線遮蔽層13は、少なくとも0.6MeV以下のエネルギーの陽子線を遮蔽するために、電子密度と膜厚の積が5×1020(cm-2)以上に設定される。好ましくは、陽子線遮蔽層13は、1MeV以下のエネルギーの陽子線を遮蔽するために、電子密度と膜厚の積が1.06×1021(cm-2)以上に設定される。
 図5は、各種材料の電子密度と陽子線の遮蔽効果を示す図である。図5では、各種材料について、材料の電子密度、0.6MeV,1MeVの陽子線を遮蔽する膜厚、0.6MeV,1MeVの陽子線を遮蔽する膜厚×電子密度をそれぞれ示している。なお、図5に示す材料は、太陽電池上に成膜する観点から、屈折率が太陽電池表面と真空の間の値をとり、高い透光性を有し、かつコスト性に優れる材料を選定している。
 各種材料内で陽子線を止めるためのエネルギーは、飛程より計算される。図5に示すように、0.6MeVの陽子線を遮蔽する場合における膜厚×電子密度の最小値はMgOの5×1020(cm-2)である。したがって、0.6MeV以下の陽子線を遮蔽する場合には、膜厚×電子密度は5×1020(cm-2)以上であればよいことが分かる。
 また、陽子線遮蔽層13は、1MeV以下の陽子線を遮蔽できればより好ましい。図5に示すように、1MeVの陽子線を遮蔽する場合における膜厚×電子密度の最小値はMgOの1.06×1021(cm-2)である。したがって、1MeV以下の陽子線を遮蔽する場合には、膜厚×電子密度は1.06×1021(cm-2)以上であればよいことが分かる。
 また、陽子線遮蔽層13も膜厚を厚くするほど重量が重くなる。ここで、一般的な宇宙用のカバーガラス(厚さ100μm)の電子密度×膜厚は、6.68×1021(cm-2)である。そのため、陽子線遮蔽層13は、カバーガラスよりも軽量とする観点から、電子密度×膜厚が6.68×1021(cm-2)未満であることが好ましい。
 また、陽子線遮蔽層13は、上記の材料から選択される異なる材料の層を積層した多層膜であってもよい。多層膜の場合においても陽子線を遮蔽するために必要な膜厚は飛程より計算されるため、陽子線遮蔽層13が複数の層を有していても陽子線の遮蔽効果が損なわれることはない。また、太陽電池10の赤外放射率を上げる観点からは、陽子線遮蔽層13においても屈折率と消衰係数の異なる材料を積層させる方が好ましい。
 また、光電変換部12に積層される薄膜は、可視光から赤外光までの広い波長域にわたって、受光面側から透明電極層にかけて屈折率が厚さ方向に単調増加する構造が理想的である。しかしながら、一般的にはいずれかの波長域で屈折率の厚さ方向変化が単調増加しない場合が多く、薄膜全体として所望の光学性能に近づけるための光学設計が行われる。このとき、陽子線遮蔽層13を多層膜として薄膜全体での光学性能を調整することで、光電変換部12に積層される薄膜の光学設計を柔軟に行うことが容易となる。
(熱放射層14)
 熱放射層14は、陽子線遮蔽層13の上に形成された光学薄膜であり、太陽電池10の放射による冷却を促進する機能を担う。特に限定するものではないが、赤外の放射による太陽電池10の効率的な冷却を図るために、熱放射層14の放射率は0.80以上であることが好ましい。
 光電変換部12に陽子線遮蔽層13だけを形成する場合、所望の放射率を満たすことが難しく、また所望の放射率を満たせる場合には膜厚が非常に厚くなりうる。そのため、陽子線遮蔽層13の上に熱放射層14を積層することで、陽子線の遮蔽効果を確保しつつ、所望の放射率を確保することが可能となる。
 熱放射層14に使用される材料としては、一例として、高い放射率を有する材料であるSiO2またはAl23が挙げられる。熱放射層14は、SiO2またはAl23のいずれかの材料の単層膜であってもよく、SiO2とAl23の薄膜を積層した積層膜であってもよい。太陽電池10の赤外放射率を上げる観点からは、熱放射層14は、屈折率と消衰係数の異なる材料を積層させる方が好ましい。
 また、熱放射層14は、放射率を0.8以上にするために、210nm以上の膜厚であることが好ましい。また、熱放射層14が積層膜である場合、放射率を0.8以上にするために、積層膜に含まれるいずれかの膜の膜厚が110nm以上であることが好ましい。
 図2は、本実施形態の太陽電池の他の構成例を示す厚さ方向断面図である。図2の例では、結晶Si系、GaAs系などの半導体基板を用いた太陽電池での構成例を説明する。なお、図2の例において、図1と共通の要素には同一符号を付して重複説明はいずれも省略する。
 図2に示す太陽電池10aは、光電変換部12、陽子線遮蔽層13、熱放射層14が順次積層された積層構造を有する。太陽光などの光は、熱放射層14の側(図2の上側)から光電変換部12に入射する。
 光電変換部12は、第1導電型の半導体基板11aと、第1の電極層31と、第2導電型の半導体層32と、第2の電極層33とを有する。ここで、第1導電型はp型およびn型の一方であり、第2導電型はp型およびn型の他方である。
 半導体基板11aは、例えば、第1導電型の単結晶または多結晶からなるシリコン基板である。第1導電型がp型の場合、例えば、半導体基板11aは、微量のIII族の元素(例えば、ホウ素、アルミニウムなど)をドープして構成される。第1導電型がn型の場合、例えば、半導体基板11aは、微量のV族の元素(例えば、リン、ヒ素など)をドープして構成される。
 第1の電極層31は、半導体基板11aの一面側(図2の下側)に形成される裏面電極である。第1の電極層31は、例えば、銀(Ag)、アルミ(Al)、チタン(Ti)などの導電性金属の薄膜で構成される。
 第2導電型の半導体層32は、例えば、第2導電型の結晶あるいは多結晶シリコンからなる層であり、第1導電型の半導体基板11aとpn接合を構成する。半導体層32は、半導体基板11aの他面側の全体に設けられていてもよく、半導体基板11aの他面側の一部に設けられていてもよい。また、第2導電型がn型の場合、例えば、半導体層32は、微量のV族の元素(例えば、リン、ヒ素など)をドープして構成される。第2導電型がp型の場合、例えば、半導体層32は、微量のIII族の元素(例えば、ホウ素、アルミニウムなど)をドープして構成される。
 第2の電極層33は、半導体層32の上に形成される。第2の電極層33は、例えば、透光性を有する透明電極層、または櫛歯状のバスバー電極として構成される。
 図2に示す陽子線遮蔽層13は第2の電極層33の上に形成され、熱放射層14は、陽子線遮蔽層13の上に形成される。陽子線遮蔽層13および熱放射層14は、図1の構成と同様である。
<太陽電池の製造方法>
 次に、上記実施形態の太陽電池の製造方法について説明する。
 図1に示す太陽電池10のうち、導電性基板11上に光電変換部12を形成する工程は、一般的なCIS系太陽電池の製造工程と同様である。つまり、第1の電極層21を形成した導電性基板11の表面上にプリカーサ層を形成し、プリカーサ層をカルコゲン化することで光電変換層22が形成される。そして、光電変換層22の上に、バッファ層23、第2の電極層24を順次積層することで光電変換部12が形成される。
 一方、図2に示す太陽電池10aの場合、一般的な半導体層や電極層の形成プロセスで、半導体基板11aの一面側に第1の電極層31を形成し、半導体基板11aの他面側に半導体層32および第2の電極層33を形成することで、光電変換部12が形成される。
 次に、光電変換部12の第2の電極層24(または第2の電極層33)の上に、陽子線遮蔽層13および熱放射層14を順次形成する。陽子線遮蔽層13および熱放射層14の成膜は、例えば、スパッタ法、CVD(Chemical vapor deposition)法、蒸着法、光Mod(Metal Organic Deposition)法、AD(Aerosol Deposition)法などの半導体薄膜の形成プロセスを用いてそれぞれ行われる。なお、陽子線遮蔽層13および熱放射層14の合計膜厚は、例えば、1μm~65μmの範囲である。
 一例として、陽子線遮蔽層13としてY23薄膜、Al23薄膜を成膜し、熱放射層14としてSiO2を成膜する場合の成膜条件の例を以下の表1に示す。以下の例では、陽子線遮蔽層13と熱放射層14の薄膜を電子線蒸着によりそれぞれ形成している。
Figure JPOXMLDOC01-appb-T000006
 以上のように、本実施形態の太陽電池10、10aは、光電変換部12の第2の電極層24(または第2の電極層33)の上に、光電変換部12を陽子線から遮蔽する陽子線遮蔽層13を備える。陽子線遮蔽層13の電子密度と膜厚の積は5×1020(cm-2)以上である。
 これにより、本実施形態の太陽電池10、10aは、陽子線遮蔽層13で0.6MeV以下の陽子線を遮蔽することができ、衛星等の運用期間に相当するフルエンスを1×1010(cm-2)よりも低くできる。したがって、本実施形態によれば、宇宙用の太陽電池の運用期間中にわたって、陽子線による素子の性能低下を抑制できる。
 また、本実施形態の太陽電池10、10aでは、半導体の薄膜形成プロセスを適用して光電変換部12の上に陽子線遮蔽層13を積層する。本実施形態では、陽子線の遮蔽能力に優れた陽子線遮蔽層13をカバーガラスよりも軽量に形成でき、しかも、カバーガラスの貼り合わせのような煩雑な組立工程を省くことができる。したがって、本実施形態の太陽電池10、10aは、カバーガラスを有する太陽電池に比べて軽量でコスト面に優れる。
<実施例の説明>
 以下、本実施形態の太陽電池に関する実施例について説明する。
(実施例1)
 実施例1では、透明電極層上に形成された薄膜が異なる4つの太陽電池を比較し、薄膜の電子密度と膜厚の積および放射率の違いをシミュレーションで算出した。実施例1の太陽電池の導電性基板から透明電極層までの構成はいずれもCIS太陽電池である。実施例1の太陽電池の構成を以下に示す。
・比較例1:透明電極層上に薄膜を有しない太陽電池
・実施例1A:透明電極層上に、4.59μmのZrO2薄膜を形成した太陽電池
・実施例1B:透明電極層上に、下から順に、4.59μmのZrO2薄膜と1.3μmのSiO2薄膜を積層形成した太陽電池
・実施例1C:透明電極層上に、下から順に、4.59μmのZrO2薄膜、0.65μmのAl23薄膜、0.65μmのSiO2薄膜を積層形成した太陽電池
 0.6MeVの陽子線を遮蔽する場合の薄膜の膜厚と電子密度の積について、比較例1では5×1020(cm-2)より小さく、実施例1A、実施例1B、実施例1Cでは5×1020(cm-2)以上であった。
 また、比較例1での放射率は31.3%であり、実施例1Aでの放射率は75.7%であった。これに対し、実施例1Bでの放射率は80.6%であり、実施例1Cでの放射率は83.7%であった。したがって、実施例1Bおよび1Cのように、陽子線遮蔽層を2層以上に積層する構成では、比較例1、実施例1Aよりも放射率が向上した。また、実施例1Bに対し実施例1Cのように、2層目以降の陽子線遮蔽層の総膜厚が同じであっても異なる材料の陽子線遮蔽層を積層した構成では、実施例1Bよりも放射率が向上した。
 また、実施例1Cの薄膜材料であるAl23は、熱放射層の材料でもある。そのため、実施例1Cは、Al23薄膜とSiO2薄膜が積層された熱放射層を有する構成と考えることもできる。つまり、陽子線遮蔽層の上に熱放射層として単層のSiO2薄膜を形成する場合に比べて、Al23とSiO2の積層構造の熱放射層を形成する方が、放射率の向上に寄与することも分かる。
(実施例2)
 陽子線を遮蔽するエネルギーは、飛程より計算される。そこで、実施例2では、複数の材料により構成される薄膜の場合における各膜厚をシミュレーションで算出した。
 実施例2では、Al23、Y23、In23が1:1:1の割合で構成された材料Z(混合組成物)に対して0.6MeV、1MeVのエネルギーを遮蔽するときの膜厚を算出した。実施例2での算出結果を表2に示す。
Figure JPOXMLDOC01-appb-T000007
 このように、実施例2に示す材料と膜厚の組み合わせにより、理論上、0.6MeVの陽子線のエネルギーを遮蔽できる太陽電池を提供できる。
(実施例3)
 実施例3では、Al23薄膜、Y23薄膜、In23薄膜をそれぞれ同じ膜厚で積層して構成された積層膜が0.6MeV、1MeVのエネルギーを遮蔽するときの膜厚を算出した。実施例3での算出結果を表3に示す。なお、Al23薄膜、Y23薄膜、In23薄膜の各膜厚は、積層膜の膜厚の1/3である。
Figure JPOXMLDOC01-appb-T000008
 このように、実施例3に示す積層膜により、理論上、0.6MeVの陽子線のエネルギーを遮蔽できる太陽電池を提供できる。
(実施例4)
 実施例4では、CIS系太陽電池上に積層された陽子線遮蔽層の上に、熱放射層としてSiO2またはAl23の薄膜を形成した場合と、比較例としてIn23薄膜を形成した場合の放射率をそれぞれシミュレーションで算出した。実施例4での陽子線遮蔽層の材料としては、Al23、HfO2、In23、ZrO2、Y23を選択した。そして、陽子線遮蔽層の膜厚は、材料ごとに0.6MeVの陽子線を遮蔽できる最小の膜厚、また、陽子線遮蔽層上の薄膜の膜厚は1.0μmに設定した。実施例4での算出結果を表4に示す。
Figure JPOXMLDOC01-appb-T000009
 表4は、陽子線遮蔽層単独での放射率を1として、陽子線遮蔽層上に薄膜を積層したときの放射率の比率を示している。表4に示すように、陽子線遮蔽層の上にSiO2またはAl23の薄膜を形成した場合には放射率の比率が1以上になり、熱放射層により放射率が改善することが分かる。具体的には、波長域が5μm~15μmの光の反射がSiO2またはAl23の薄膜で抑制されることで、上記のように放射率が改善すると考えられる。一方、比較例の陽子線遮蔽層上にIn23薄膜を形成した場合には、光の反射率が上がることで放射率は低下する傾向を示す。
(実施例5)
 実施例5では、結晶Si系の半導体基板を用いた太陽電池上に積層された陽子線遮蔽層の上に、熱放射層としてSiO2またはAl23の薄膜を形成した場合と、比較例としてIn23薄膜を形成した場合の放射率をそれぞれシミュレーションで算出した。実施例5での陽子線遮蔽層の材料としては、ZrO2を選択した。そして、陽子線遮蔽層の膜厚は、0.6MeVの陽子線を遮蔽できる最小の膜厚、また、陽子線遮蔽層上の薄膜の膜厚は1.0μmに設定した。実施例5での算出結果を表5に示す。
Figure JPOXMLDOC01-appb-T000010
 表5は、表4と同様に、陽子線遮蔽層単独での放射率を1として、陽子線遮蔽層上に薄膜を積層したときの放射率の比率を示している。表5に示すように、陽子線遮蔽層の上にSiO2またはAl23の薄膜を形成した場合には放射率の比率が1以上になり、熱放射層により放射率が改善することが分かる。具体的には、波長域が5μm~15μmの光の反射がSiO2またはAl23の薄膜で抑制されることで、上記のように放射率が改善すると考えられる。一方、比較例の陽子線遮蔽層上にIn23薄膜を形成した場合には、光の反射率が上がることで放射率は低下する傾向を示す。
 上記の実施例4、5によれば、CIS系太陽電池、結晶Si系の半導体基板を用いた太陽電池のいずれでも、0.6MeVの陽子線を遮蔽できる膜厚の陽子線遮蔽層の上に、熱放射層としてSiO2またはAl23で1.0μmの薄膜を形成すると、放射率を改善できることが分かる。
(実施例6)
 実施例6では、陽子線遮蔽層の上に熱放射層としてSiO2またはAl23の薄膜を形成する場合において、放射率を80%以上にするための膜厚をシミュレーションで算出した。なお、実施例6の太陽電池の導電性基板から透明電極層までの構成はいずれもCIS太陽電池である。
 実施例6での陽子線遮蔽層の材料としては、Al23、HfO2、In23、ZrO2、Y23を選択した。そして、陽子線遮蔽層の膜厚は、材料ごとに0.6MeVの陽子線を遮蔽できる最小の膜厚に設定した。実施例6での算出結果を表6に示す。
Figure JPOXMLDOC01-appb-T000011
 表6に示すように、陽子線放射層の上にSiO2またはAl23の薄膜を形成する場合、放射率を80%以上にするためには少なくとも膜厚を210nm以上に設定する必要があることが分かる。
(実施例7)
 実施例7では、陽子線遮蔽層の上にSiO2薄膜およびAl23薄膜を積層形成する場合において、放射率を80%以上にするための各膜厚をシミュレーションで算出した。なお、実施例7の太陽電池の導電性基板から透明電極層までの構成はいずれもCIS太陽電池である。
 実施例7では、陽子線遮蔽層の上にAl23薄膜とSiO2薄膜が順次積層される構成とする。また、陽子線遮蔽層の材料としては、Al23、HfO2、In23、ZrO2、Y23を選択した。そして、陽子線遮蔽層の膜厚は、材料ごとに0.6MeVの陽子線を遮蔽できる最小の膜厚に設定した。
 図6~図10は、実施例7でのシミュレーション結果を示している。図6~図10各図の縦軸は、SiO2薄膜の膜厚(nm)であり、図6~図10各図の横軸は、Al23薄膜の膜厚(nm)である。また、図6~図10各図では、放射率が75%未満の領域と、放射率が75%以上80%未満の領域と、放射率が80%以上の領域の分布をそれぞれ示している。
 図6は、陽子線遮蔽層の材料がAl23であるときのAl23薄膜とSiO2薄膜の膜厚の関係を示す分布図である。図6の場合、Al23薄膜の膜厚とSiO2薄膜の膜厚がともに0.21μmのときに、放射率が80%以上となる領域が認められる。また、陽子線遮蔽層がAl23であって、放射率が80%のときの熱放射層のAl23とSiO2の膜厚の組み合わせの一例を表7に示す。
Figure JPOXMLDOC01-appb-T000012
 図7は、陽子線遮蔽層の材料がHfO2であるときのAl23薄膜とSiO2薄膜の膜厚の関係を示す分布図である。図7の場合、Al23薄膜の膜厚を1.83μmとし、SiO2薄膜の膜厚を0.86μmとしたときに、放射率が80%以上となる領域が認められる。また、陽子線遮蔽層がHfO2であって、放射率が80%のときの熱放射層のAl23とSiO2の膜厚の組み合わせの一例を表8に示す。
Figure JPOXMLDOC01-appb-T000013
 図8は、陽子線遮蔽層の材料がIn23であるときのAl23薄膜とSiO2薄膜の膜厚の関係を示す分布図である。図8の場合、Al23薄膜の膜厚を1.37μmとし、SiO2薄膜の膜厚を0.50μmとしたときに、放射率が80%以上となる領域が認められる。また、陽子線遮蔽層がIn23であって、放射率が80%のときの熱放射層のAl23とSiO2の膜厚の組み合わせの一例を表9に示す。
Figure JPOXMLDOC01-appb-T000014
 図9は、陽子線遮蔽層の材料がZrO2であるときのAl23薄膜とSiO2薄膜の膜厚の関係を示す分布図である。図9の場合、Al23薄膜の膜厚を0.11μmとし、SiO2薄膜の膜厚を0.2μmとしたときに、放射率が80%以上となる領域が認められる。また、陽子線遮蔽層がZrO2であって、放射率が80%のときの熱放射層のAl23とSiO2の膜厚の組み合わせの一例を表10に示す。
Figure JPOXMLDOC01-appb-T000015
 図10は、陽子線遮蔽層の材料がY23であるときのAl23薄膜とSiO2薄膜の膜厚の関係を示す分布図である。図10の場合、Al23薄膜の膜厚を0.13μmとし、SiO2薄膜の膜厚を0.17μmとしたときに、放射率が80%以上となる領域が認められる。また、陽子線遮蔽層がY23であって、放射率が80%のときの熱放射層のAl23とSiO2の膜厚の組み合わせの一例を表11に示す。
Figure JPOXMLDOC01-appb-T000016
 図6~図10に示すように、陽子線遮蔽層の上にAl23薄膜とSiO2薄膜を順次積層する場合、放射率を80%以上にするためには少なくともいずれかの膜厚を110nm以上に設定する必要があることが分かる。
<実施形態の補足事項>
 上記実施形態では、宇宙用の光電変換素子の一例として、陽子線遮蔽層を備える太陽電池の構成例について説明した。しかし、本発明の光電変換素子の構成は、太陽電池に限定されず、宇宙空間で使用され、光電変換層を備える他の半導体素子(例えば、撮像素子など)にも広く適用することができる。
 また、本発明は、CIS系太陽電池や結晶Si系の半導体基板を用いた太陽電池に限定されることなく、CIS系以外の化合物系太陽電池や、他の一般的な太陽電池にも適用可能である。一例として、本発明の構成は、CZTS系太陽電池、CIGS系太陽電池、CdTe系太陽電池、GaAs系太陽電池などの化合物系太陽電池や、有機系太陽電池等にも適用することができる。
 また、本発明における陽子線遮蔽層または熱放射層は、それぞれ3層以上の積層膜として構成されてもよい。
 以上のように、本発明の実施形態を説明したが、実施形態は、一例として提示したものであり、本発明の範囲を限定することを意図しない。実施形態は、上記以外の様々な形態で実施することが可能であり、本発明の要旨を逸脱しない範囲で、種々の省略、置換、変更など、を行える。実施形態およびその変形は、本発明の範囲および要旨に含まれると共に、特許請求の範囲に記載された発明およびその均等物についても、本発明の範囲および要旨に含まれる。
 本出願は2021年3月30日に出願した日本国特許出願2021-057856号に基づく優先権を主張するものであり、日本国特許出願2021-057856号の全内容を本出願に援用する。
10,10a…太陽電池、11…導電性基板、11a…半導体基板、12…光電変換部、13…陽子線遮蔽層、14…熱放射層、21…第1の電極層、22…光電変換層、23…バッファ層、24…第2の電極層、31…第1の電極層、32…半導体層、33…第2の電極層

 

Claims (12)

  1.  光電変換部と、
     前記光電変換部の上に形成され、前記光電変換部を陽子線から遮蔽する陽子線遮蔽層と、を備え、
     前記陽子線遮蔽層の電子密度と膜厚の積は、5×1020(cm-2)以上である
    ことを特徴とする光電変換素子。
  2.  前記光電変換部は、基板上に形成されている
    請求項1に記載の光電変換素子。
  3.  前記光電変換部は、半導体基板を有する
    請求項1に記載の光電変換素子。
  4.  前記陽子線遮蔽層は、Al23、Y23、ZrO2、MgO、HfO2、Bi23、TiO2、ZnO、In23、SnO2、Nb25、Ta25の1つまたは複数から選択される第1の材料を含む層である
    請求項1から請求項3のいずれか1項に記載の光電変換素子。
  5.  前記陽子線遮蔽層は、二種以上の前記第1の材料を含む層が積層された積層膜である
    請求項4に記載の光電変換素子。
  6.  前記陽子線遮蔽層の上に形成される熱放射層をさらに備える
    請求項1から請求項3のいずれか一項に記載の光電変換素子。
  7.  前記熱放射層は、SiO2とAl23のうちの少なくとも1つから選択される第2の材料を含む層である
    請求項6に記載の光電変換素子。
  8.  前記熱放射層の厚さは、210nm以上である
    請求項7に記載の光電変換素子。
  9.  前記熱放射層は、二種の前記第2の材料を含む層が積層された積層膜である
    請求項8に記載の光電変換素子。
  10.  前記熱放射層の前記積層膜のうち、いずれかの膜厚は110nm以上である
    請求項9に記載の光電変換素子。
  11.  光電変換部と、
     前記光電変換部上に形成され、前記光電変換部を陽子線から遮蔽する陽子線遮蔽層と、を備えた光電変換素子の製造方法であって、
     前記光電変換部を形成する工程と、
     電子密度と膜厚の積が5×1020(cm-2)以上の前記陽子線遮蔽層を前記光電変換部の上に形成する工程と、を有する
    光電変換素子の製造方法。
  12.  前記陽子線遮蔽層の上に熱放射層を形成する工程をさらに有する
    請求項11に記載の光電変換素子の製造方法。
PCT/JP2022/015546 2021-03-30 2022-03-29 光電変換素子および光電変換素子の製造方法 WO2022210732A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP22780943.1A EP4318603A1 (en) 2021-03-30 2022-03-29 Photoelectric conversion element and method for producing photoelectric conversion element
JP2023511390A JPWO2022210732A1 (ja) 2021-03-30 2022-03-29
CN202280025730.XA CN117178375A (zh) 2021-03-30 2022-03-29 光电转换元件和光电转换元件的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021057856 2021-03-30
JP2021-057856 2021-03-30

Publications (1)

Publication Number Publication Date
WO2022210732A1 true WO2022210732A1 (ja) 2022-10-06

Family

ID=83456313

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/015546 WO2022210732A1 (ja) 2021-03-30 2022-03-29 光電変換素子および光電変換素子の製造方法

Country Status (4)

Country Link
EP (1) EP4318603A1 (ja)
JP (1) JPWO2022210732A1 (ja)
CN (1) CN117178375A (ja)
WO (1) WO2022210732A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0582822A (ja) * 1991-09-25 1993-04-02 Nippon Electric Glass Co Ltd 太陽電池保護カバー
JPH0758355A (ja) * 1993-05-12 1995-03-03 Optical Coating Lab Inc Uv/ir反射太陽電池カバー
JP2004504232A (ja) * 2000-07-20 2004-02-12 ユニベルシテ・ド・リエージュ 太陽光集光装置
JP2006310711A (ja) * 2005-05-02 2006-11-09 Japan Aerospace Exploration Agency 太陽電池用の光学薄膜およびその製造方法
JP2014016348A (ja) * 2012-07-06 2014-01-30 Qioptiq Ltd 耐放射線シールド
US20170054048A1 (en) * 2015-08-17 2017-02-23 Solaero Technologies Corp. Four junction solar cell for space applications
JP2017525324A (ja) * 2014-06-02 2017-08-31 カリフォルニア インスティチュート オブ テクノロジー 大規模宇宙太陽光発電所:効率的発電タイル
JP2021057856A (ja) 2019-10-02 2021-04-08 コニカミノルタ株式会社 画像形成装置、および画像形成装置の制御方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0582822A (ja) * 1991-09-25 1993-04-02 Nippon Electric Glass Co Ltd 太陽電池保護カバー
JPH0758355A (ja) * 1993-05-12 1995-03-03 Optical Coating Lab Inc Uv/ir反射太陽電池カバー
JP2004504232A (ja) * 2000-07-20 2004-02-12 ユニベルシテ・ド・リエージュ 太陽光集光装置
JP2006310711A (ja) * 2005-05-02 2006-11-09 Japan Aerospace Exploration Agency 太陽電池用の光学薄膜およびその製造方法
JP4565105B2 (ja) 2005-05-02 2010-10-20 独立行政法人 宇宙航空研究開発機構 太陽電池用の光学薄膜およびその製造方法
JP2014016348A (ja) * 2012-07-06 2014-01-30 Qioptiq Ltd 耐放射線シールド
JP2017525324A (ja) * 2014-06-02 2017-08-31 カリフォルニア インスティチュート オブ テクノロジー 大規模宇宙太陽光発電所:効率的発電タイル
US20170054048A1 (en) * 2015-08-17 2017-02-23 Solaero Technologies Corp. Four junction solar cell for space applications
JP2021057856A (ja) 2019-10-02 2021-04-08 コニカミノルタ株式会社 画像形成装置、および画像形成装置の制御方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SUMIO MATSUDA: "Coverglasses protected solar cells from cosmic rays", NEW GLASS, vol. 14, no. 4, 1999, pages 27 - 30

Also Published As

Publication number Publication date
CN117178375A (zh) 2023-12-05
JPWO2022210732A1 (ja) 2022-10-06
EP4318603A1 (en) 2024-02-07

Similar Documents

Publication Publication Date Title
US8575478B2 (en) Integrated structure of CIS based solar cell
EP1492169A2 (en) Solar cell
US20110232760A1 (en) Photoelectric conversion device and solar cell
JP5775165B2 (ja) 太陽電池
US20120042942A1 (en) Solar cell having a buffer layer with low light loss
US20110129957A1 (en) Method of manufacturing solar cell
JP2014209586A (ja) 薄膜太陽電池及びその製造方法
WO2011108033A1 (ja) 化合物薄膜太陽電池及びその製造方法
KR20120024048A (ko) 태양전지 및 이의 제조방법
KR101081270B1 (ko) 태양전지 및 이의 제조방법
KR101415251B1 (ko) 다중 버퍼층 및 이를 포함하는 태양전지 및 그 생산방법
US20170077327A1 (en) Photoelectric conversion element, solar cell, solar cell module, and solar power generating system
WO2022210732A1 (ja) 光電変換素子および光電変換素子の製造方法
JP5287380B2 (ja) 太陽電池、及び太陽電池の製造方法
US20120125425A1 (en) Compound semiconductor solar cell and method of manufacturing the same
JP2017059656A (ja) 光電変換素子および太陽電池
JP2011023520A (ja) p型半導体膜及び太陽電池
WO2022210727A1 (ja) 光電変換素子および光電変換素子の製造方法
US20240162357A1 (en) Photoelectric conversion element and method for manufacturing photoelectric conversion element
KR101412150B1 (ko) 탠덤 구조 cigs 태양전지 및 그 제조방법
JP2012209518A (ja) 光電素子及び太陽電池
JP6104576B2 (ja) 化合物系薄膜太陽電池
JP5594949B2 (ja) 光起電力素子、および、その製造方法
KR20130031020A (ko) 태양전지
KR20120074180A (ko) 태양전지

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22780943

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023511390

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 18284457

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2022780943

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022780943

Country of ref document: EP

Effective date: 20231030