WO2022209726A1 - 高周波モジュールおよび通信装置 - Google Patents

高周波モジュールおよび通信装置 Download PDF

Info

Publication number
WO2022209726A1
WO2022209726A1 PCT/JP2022/010793 JP2022010793W WO2022209726A1 WO 2022209726 A1 WO2022209726 A1 WO 2022209726A1 JP 2022010793 W JP2022010793 W JP 2022010793W WO 2022209726 A1 WO2022209726 A1 WO 2022209726A1
Authority
WO
WIPO (PCT)
Prior art keywords
filter
inductor
frequency module
main surface
hybrid filter
Prior art date
Application number
PCT/JP2022/010793
Other languages
English (en)
French (fr)
Inventor
正也 三浦
成 森戸
雅則 加藤
俊介 木戸
智美 安田
孝紀 上嶋
琢真 黒▲柳▼
幸哉 山口
裕基 福田
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to CN202280025789.9A priority Critical patent/CN117136497A/zh
Publication of WO2022209726A1 publication Critical patent/WO2022209726A1/ja
Priority to US18/477,705 priority patent/US20240030894A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/46Filters
    • H03H9/54Filters comprising resonators of piezoelectric or electrostrictive material
    • H03H9/542Filters comprising resonators of piezoelectric or electrostrictive material including passive elements
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/189High-frequency amplifiers, e.g. radio frequency amplifiers
    • H03F3/19High-frequency amplifiers, e.g. radio frequency amplifiers with semiconductor devices only
    • H03F3/195High-frequency amplifiers, e.g. radio frequency amplifiers with semiconductor devices only in integrated circuits
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/56Modifications of input or output impedances, not otherwise provided for
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/20Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
    • H03F3/24Power amplifiers, e.g. Class B amplifiers, Class C amplifiers of transmitter output stages
    • H03F3/245Power amplifiers, e.g. Class B amplifiers, Class C amplifiers of transmitter output stages with semiconductor devices only
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/72Gated amplifiers, i.e. amplifiers which are rendered operative or inoperative by means of a control signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/111Indexing scheme relating to amplifiers the amplifier being a dual or triple band amplifier, e.g. 900 and 1800 MHz, e.g. switched or not switched, simultaneously or not
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/222A circuit being added at the input of an amplifier to adapt the input impedance of the amplifier
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/294Indexing scheme relating to amplifiers the amplifier being a low noise amplifier [LNA]
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/387A circuit being added at the output of an amplifier to adapt the output impedance of the amplifier
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/451Indexing scheme relating to amplifiers the amplifier being a radio frequency amplifier
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2203/00Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
    • H03F2203/72Indexing scheme relating to gated amplifiers, i.e. amplifiers which are rendered operative or inoperative by means of a control signal
    • H03F2203/7209Indexing scheme relating to gated amplifiers, i.e. amplifiers which are rendered operative or inoperative by means of a control signal the gated amplifier being switched from a first band to a second band
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/01Frequency selective two-port networks
    • H03H7/17Structural details of sub-circuits of frequency selective networks
    • H03H7/1741Comprising typical LC combinations, irrespective of presence and location of additional resistors
    • H03H7/1766Parallel LC in series path
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/05Holders; Supports
    • H03H9/0538Constructional combinations of supports or holders with electromechanical or other electronic elements
    • H03H9/0542Constructional combinations of supports or holders with electromechanical or other electronic elements consisting of a lateral arrangement
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/05Holders; Supports
    • H03H9/0538Constructional combinations of supports or holders with electromechanical or other electronic elements
    • H03H9/0547Constructional combinations of supports or holders with electromechanical or other electronic elements consisting of a vertical arrangement
    • H03H9/0552Constructional combinations of supports or holders with electromechanical or other electronic elements consisting of a vertical arrangement the device and the other elements being mounted on opposite sides of a common substrate
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/46Filters
    • H03H9/54Filters comprising resonators of piezoelectric or electrostrictive material
    • H03H9/58Multiple crystal filters
    • H03H9/60Electric coupling means therefor
    • H03H9/605Electric coupling means therefor consisting of a ladder configuration
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/46Filters
    • H03H9/64Filters using surface acoustic waves
    • H03H9/6423Means for obtaining a particular transfer characteristic
    • H03H9/6433Coupled resonator filters
    • H03H9/6483Ladder SAW filters

Definitions

  • the present invention relates to high frequency modules and communication devices.
  • Patent Document 1 discloses a hybrid elastic LC filter including an elastic resonator (acoustic wave resonator), an inductor and a capacitor. According to the document, a relatively wide passband can be realized, and a strict out-of-band rejection specification can be met.
  • the hybrid elastic LC filter disclosed in Patent Document 1 has a large number of parts because it is a filter in which elastic wave resonators, inductors, and capacitors are combined. Therefore, in a multi-band high-frequency module having a plurality of transmission paths in which hybrid elastic LC filters are arranged, wiring loss in each transmission path tends to increase, and there is a problem that low-loss signal passing characteristics cannot be achieved. .
  • a high-frequency module includes a substrate having first and second main surfaces facing each other, a first acoustic wave resonator, a first inductor, and a first capacitor, and includes a 5G-NR A first hybrid filter including the n77 of the passband, a second acoustic wave resonator and a second inductor, a first filter including the 5G-NR n79 of the passband, a first power amplifier and a second power a first hybrid, comprising an amplifier, a third inductor connected between the first power amplifier and the first hybrid filter, and a fourth inductor connected between the second power amplifier and the first filter;
  • the passband width of the filter is larger than the resonance bandwidth of the first acoustic wave resonator, and when the substrate is viewed from above, (1) the first quadrant, which is an area on the left and above the reference point on the substrate, ( 2) the second quadrant that is the area to the left and below the reference point, (3) the third quadrant that
  • the first power amplifier and at least part of the second power amplifier are arranged in the first quadrant, and at least part of the third inductor and at least one of the fourth inductor.
  • the section is located in the second quadrant, at least part of the first hybrid filter and at least part of the first filter are located in the third quadrant, and the first power amplifier is more powerful than the second power amplifier.
  • the third inductor is positioned closer to the reference point than the fourth inductor, and the first hybrid filter is positioned closer to the reference point than the first filter.
  • a high-frequency module and a communication device that include a hybrid filter and have low-loss signal-passing characteristics and are compatible with multibands.
  • FIG. 1 is a circuit configuration diagram of a high frequency module and a communication device according to an embodiment.
  • 2A is a diagram illustrating an example of a circuit configuration of a first hybrid filter according to the embodiment
  • FIG. 2B is a diagram illustrating an example of a circuit configuration of a second hybrid filter according to the embodiment
  • FIG. 3A is a schematic plan view of the high-frequency module according to the embodiment.
  • FIG. 3B is a schematic cross-sectional view of the high-frequency module according to the example.
  • FIG. 3C is a schematic cross-sectional view of a radio frequency module according to a modification.
  • a is arranged on the first main surface of the substrate means not only that A is directly mounted on the first main surface, but also that A is mounted on the first main surface side separated by the substrate. and the space on the second main surface side, A is arranged in the space on the first main surface side. In other words, it includes that A is mounted on the first main surface via other circuit elements, electrodes, and the like.
  • connection includes not only direct connection with connection terminals and/or wiring conductors, but also electrical connection via other circuit components. Also, “connected between A and B” means connected to both A and B between A and B.
  • the x-axis and the y-axis are axes orthogonal to each other on a plane parallel to the main surface of the module substrate.
  • the z-axis is an axis perpendicular to the main surface of the module substrate, and its positive direction indicates an upward direction and its negative direction indicates a downward direction.
  • planar view means viewing an object by orthographic projection from the z-axis positive side onto the xy plane.
  • the component is placed on the main surface of the board means that the component is placed on the main surface in contact with the main surface of the board, and in addition, the component is placed on the main surface without contacting the main surface. It includes being arranged above and being arranged such that a part of the component is embedded in the substrate from the main surface side.
  • C is arranged between A and B in a plan view of the board (or the main surface of the board)" means It means that at least one of a plurality of line segments connecting an arbitrary point in A and an arbitrary point in B in plan view passes through the area of C.
  • a plan view of the substrate means that the substrate and circuit elements mounted on the substrate are orthographically projected onto a plane parallel to the main surface of the substrate.
  • transmission path refers to a transmission line composed of a wiring through which a high-frequency transmission signal propagates, an electrode directly connected to the wiring, and a terminal directly connected to the wiring or the electrode.
  • receiving path means a transmission line composed of a wiring through which a high-frequency received signal propagates, an electrode directly connected to the wiring, and a terminal directly connected to the wiring or the electrode. do.
  • FIG. 1 is a circuit configuration diagram of a high frequency module 1 and a communication device 5 according to an embodiment.
  • the communication device 5 includes a high frequency module 1, antennas 2A and 2B, an RF signal processing circuit (RFIC) 3, and a baseband signal processing circuit (BBIC) 4.
  • RFIC RF signal processing circuit
  • BBIC baseband signal processing circuit
  • the RFIC 3 is an RF signal processing circuit that processes high frequency signals transmitted and received by the antennas 2A and 2B. Specifically, the RFIC 3 performs signal processing such as down-conversion on the received signal input via the receiving path of the high-frequency module 1 , and outputs the received signal generated by the signal processing to the BBIC 4 . The RFIC 3 also outputs a high-frequency transmission signal processed based on the signal input from the BBIC 4 to the transmission path of the high-frequency module 1 .
  • the BBIC 4 is a circuit that processes data using a signal with a frequency lower than the high frequency signal transmitted through the high frequency module 1 .
  • a signal processed by the BBIC 4 is used, for example, as an image signal for image display, or as an audio signal for calling through a speaker.
  • the RFIC 3 controls connection of the switches 30, 31 and 32 of the high frequency module 1 based on whether the high frequency module 1 is used for transmission or reception and the communication band (frequency band) used. It has a function as a control unit that Specifically, the RFIC 3 switches the connections of the switches 30, 31 and 32 of the high frequency module 1 according to a control signal (not shown).
  • the controller may be provided outside the RFIC 3, for example, in the high frequency module 1 or the BBIC 4.
  • the RFIC 3 also functions as a control section that controls the gains of the power amplifiers 61 and 62 of the high frequency module 1 and the power supply voltage Vcc and bias voltage Vbias supplied to the power amplifiers 61 and 62 .
  • the antenna 2A is connected to the antenna connection terminal 110 of the high-frequency module 1, radiates a high-frequency signal output from the high-frequency module 1, and receives a high-frequency signal from the outside and outputs it to the high-frequency module 1.
  • the antenna 2B is connected to the antenna connection terminal 120 of the high-frequency module 1, radiates a high-frequency signal output from the high-frequency module 1, and receives a high-frequency signal from the outside and outputs the received high-frequency signal to the high-frequency module 1.
  • antennas 2A, 2B and BBIC 4 are not essential components in the communication device 5 according to the present embodiment.
  • the high frequency module 1 includes antenna connection terminals 110 and 120, a switch 30, and high frequency circuits 10 and 20.
  • the antenna connection terminal 110 is a first antenna common terminal connected to the antenna 2A
  • the antenna connection terminal 120 is a second antenna common terminal connected to the antenna 2B.
  • the switch 30 is an example of a third switch and has common terminals 30a and 30b and selection terminals 30c, 30d, 30e and 30f. , and switches connection and disconnection between the common terminal 30b and at least one of the selection terminals 30c to 30f.
  • the common terminal 30 a is connected to the antenna connection terminal 110 .
  • the common terminal 30 b is connected to the antenna connection terminal 120 .
  • the selection terminal 30 c is connected to the hybrid filter 11 .
  • the selection terminal 30 d is connected to the filter 12 .
  • the selection terminal 30 e is connected to the hybrid filter 21 .
  • the selection terminal 30 f is connected to the filter 22 .
  • the switch 30 switches connection and disconnection between the hybrid filter 11 and the antenna connection terminal 110 and switches connection and disconnection between the hybrid filter 11 and the antenna connection terminal 120 . Further, the switch 30 switches connection and disconnection between the filter 12 and the antenna connection terminal 110 and switches connection and disconnection between the filter 12 and the antenna connection terminal 120 . Switch 30 switches connection and disconnection between hybrid filter 21 and antenna connection terminal 110 and switches connection and disconnection between hybrid filter 21 and antenna connection terminal 120 . Further, the switch 30 switches connection and disconnection between the filter 22 and the antenna connection terminal 110 and switches connection and disconnection between the filter 22 and the antenna connection terminal 120 .
  • communication device 5 can connect antenna 2A to at least one of hybrid filters 11 and 21 and filters 12 and 22, and connect antenna 2B to hybrid filters 11 and 21. , with at least one of the filters 12 and 22 .
  • High frequency circuit 10 includes reception output terminals 130 and 150, transmission input terminals 140 and 160, hybrid filter 11, filter 12, switches 31 and 32, matching circuits 41, 42, 43 and 44, and a low noise amplifier. 51 and 52 and power amplifiers 61 and 62 .
  • the hybrid filter 11 is an example of a first hybrid filter, and is a filter including one or more first acoustic wave resonators, one or more first inductors, and one or more first capacitors.
  • One terminal of the hybrid filter 11 is connected to the selection terminal 30 c and the other terminal is connected to the switch 31 .
  • the pass band of the hybrid filter 11 includes 5G-NR (5th Generation New Radio) n77 (first communication band: 3300-4200 MHz).
  • the filter 12 is an example of a first filter, and is a filter including one or more second acoustic wave resonators and one or more second inductors. One terminal of the filter 12 is connected to the selection terminal 30 d and the other terminal is connected to the switch 32 .
  • the passband of the filter 12 includes 5G-NR n79 (second communication band: 4400-5000 MHz).
  • the first elastic wave resonator and the second elastic wave element are, for example, an elastic wave resonator using SAW (Surface Acoustic Wave) or an elastic wave resonator using BAW (Bulk Acoustic Wave).
  • SAW Surface Acoustic Wave
  • BAW Bulk Acoustic Wave
  • FIG. 2A is a diagram showing an example of the circuit configuration of the hybrid filter 11 according to the embodiment.
  • the hybrid filter 11 includes acoustic wave resonators P1 and P2, a capacitor C3, and inductors L1, L2 and L3.
  • Each of elastic wave resonators P1 and P2 is an example of a first elastic wave resonator
  • each of inductors L1, L2 and L3 is an example of a first inductor
  • capacitor C3 is an example of a first capacitor.
  • the inductor L3 and the capacitor C3 form an LC parallel resonance circuit.
  • a series connection circuit of elastic wave resonator P1 and inductor L1 is arranged between a node on a path connecting input/output terminal 101 and the LC parallel resonance circuit and the ground.
  • a series connection circuit of elastic wave resonator P2 and inductor L2 is arranged between a node on a path connecting input/output terminal 102 and the LC parallel resonance circuit and the ground.
  • the elastic wave resonators P1 and P2 form an elastic wave resonator A1, and are integrated into one chip, for example.
  • a plurality of acoustic wave resonators integrated into one chip means that a plurality of acoustic wave resonators are formed on one piezoelectric substrate, or that a plurality of acoustic wave resonators are contained in one package. defined as being contained in
  • the passband and attenuation band of the hybrid filter 11 are adjusted by adjusting the resonance frequency of the LC parallel resonance circuit composed of the inductor L3 and the capacitor C3 and the resonance and antiresonance frequencies of the elastic wave resonators P1 and P2. It is formed.
  • An LC parallel resonance circuit consisting of inductor L3 and capacitor C3 forms the pass band of hybrid filter 11, and elastic wave resonators P1 and P2 form attenuation poles.
  • the hybrid filter 11 can secure a wide passband that cannot be achieved with an elastic wave resonator by using the LC circuit, and can secure a steep attenuation slope that cannot be achieved by an LC circuit by using the elastic wave resonator.
  • the pass band width of the hybrid filter 11 is larger than the resonance band widths of the elastic wave resonators P1 and P2.
  • the resonance bandwidth of an elastic wave resonator is defined as the difference between the anti-resonance frequency and the resonance frequency of the elastic wave resonator.
  • a specific resonance bandwidth is defined as a ratio obtained by dividing the resonance bandwidth by the intermediate value of the anti-resonance frequency and the resonance frequency.
  • Common SAW resonators and BAW resonators are known to have a specific resonance bandwidth of 3-4% in the frequency band of 0.1-10 GHz.
  • the filter 12 may not have a capacitor, and the passband width of the filter 12 may be equal to or less than the resonance bandwidth of the second elastic wave resonator.
  • circuit components of the high-frequency circuit 10 will be described.
  • the low-noise amplifier 51 is an example of a first low-noise amplifier, and is an amplifier that amplifies the reception signal of the first communication band with low noise and outputs it to the reception output terminal 130 .
  • Low-noise amplifier 52 is an example of a second low-noise amplifier, and is an amplifier that amplifies the reception signal of the second communication band with low noise and outputs the amplified signal to reception output terminal 150 .
  • the power amplifier 61 is an example of a first power amplifier, and is an amplifier that amplifies the transmission signal of the first communication band input from the transmission input terminal 140 .
  • the power amplifier 62 is an amplifier that amplifies the transmission signal of the second communication band input from the transmission input terminal 160 .
  • the matching circuit 41 is connected between the low noise amplifier 51 and the switch 31 to match the impedance of the low noise amplifier 51 and the switch 31 .
  • the matching circuit 42 is connected between the power amplifier 61 and the switch 31 and performs impedance matching between the power amplifier 61 and the switch 31 .
  • the matching circuit 43 is connected between the low noise amplifier 52 and the switch 32 and performs impedance matching between the low noise amplifier 52 and the switch 32 .
  • the matching circuit 44 is connected between the power amplifier 62 and the switch 32 to provide impedance matching between the power amplifier 62 and the switch 32 .
  • the switch 31 is an example of a first switch and has a common terminal and two selection terminals.
  • a common terminal of the switch 31 is connected to the hybrid filter 11 .
  • One selection terminal of the switch 31 is connected to the input terminal of the low noise amplifier 51 via the matching circuit 41, and the other selection terminal of the switch 31 is connected to the output terminal of the power amplifier 61 via the matching circuit 42.
  • the switch 31 is connected to the hybrid filter 11, the low noise amplifier 51, and the power amplifier 61, and switches the connection between the hybrid filter 11 and the low noise amplifier 51 and the connection between the hybrid filter 11 and the power amplifier 61.
  • It is a transmission (TDD: Time Division Duplex) switch.
  • the switch 31 is configured by, for example, an SPDT (Single Pole Double Throw) type switch circuit.
  • the hybrid filter 11 functions as a transmission/reception combined filter connected to the low noise amplifier 51 and the power amplifier 61 .
  • the switch 32 is an example of a second switch and has a common terminal and two selection terminals. A common terminal of the switch 32 is connected to the filter 12 . One selection terminal of switch 32 is connected to low noise amplifier 52 via matching circuit 43 , and the other selection terminal of switch 32 is connected to power amplifier 62 via matching circuit 44 . That is, the switch 32 is a TDD switch that switches the connection between the filter 12 and the low noise amplifier 52 and the connection between the filter 12 and the power amplifier 62 .
  • the switch 32 is composed of, for example, an SPDT type switch circuit.
  • filter 12 functions as a transmit/receive filter connected to low noise amplifier 52 and power amplifier 62 .
  • the high frequency circuit 20 includes reception output terminals 170 and 180, a hybrid filter 21, a filter 22, matching circuits 45 and 46, and low noise amplifiers 53 and .
  • the hybrid filter 21 is an example of a second hybrid filter, and is a filter including one or more third acoustic wave resonators, one or more fifth inductors, and one or more second capacitors.
  • One terminal of hybrid filter 21 is connected to selection terminal 30 e , and the other terminal is connected to low noise amplifier 53 via matching circuit 45 . Note that the hybrid filter 21 is not connected to the power amplifier.
  • the passband of the hybrid filter 21 includes 5G-NR n77.
  • the hybrid filter 21 functions as a reception-only filter connected between the switch 30 and the low noise amplifier 53.
  • the filter 22 is an example of a second filter, and is a filter including one or more fourth elastic wave resonators and one or more sixth inductors.
  • One terminal of the filter 22 is connected to the selection terminal 30 f and the other terminal is connected to the low noise amplifier 54 via the matching circuit 46 . Note that the filter 22 is not connected to the power amplifier.
  • the passband of filter 22 includes 5G-NR n79.
  • the filter 22 functions as a reception-only filter connected to the switch 30.
  • the third elastic wave resonator and the fourth elastic wave element are, for example, an elastic wave resonator using SAW or an elastic wave resonator using BAW.
  • FIG. 2B is a diagram showing an example of the circuit configuration of the hybrid filter 21 according to the embodiment.
  • the hybrid filter 21 includes elastic wave resonators P5 and P6, a capacitor C4, and inductors L4, L5 and L6.
  • elastic wave resonators P5 and P6 is an example of a second elastic wave resonator
  • each of inductors L4, L5 and L6 is an example of a second inductor
  • capacitor C4 is an example of a second capacitor.
  • the inductor L4 and capacitor C4 form an LC parallel resonance circuit.
  • a series connection circuit of elastic wave resonator P5 and inductor L5 is arranged between a node on a path connecting input/output terminal 103 and the LC parallel resonance circuit and the ground.
  • a series connection circuit of elastic wave resonator P6 and inductor L6 is arranged between a node on a path connecting input/output terminal 104 and the LC parallel resonance circuit and the ground.
  • the elastic wave resonators P5 and P6 form the elastic wave resonator A2 and are integrated into one chip, for example.
  • the passband and attenuation band of the hybrid filter 21 are adjusted by adjusting the resonance frequency of the LC parallel resonance circuit composed of the inductor L4 and the capacitor C4 and the resonance and antiresonance frequencies of the elastic wave resonators P5 and P6. It is formed.
  • An LC parallel resonance circuit composed of inductor L4 and capacitor C4 forms the passband of hybrid filter 21, and elastic wave resonators P5 and P6 form attenuation poles.
  • the hybrid filter 21 can secure a wide passband that cannot be achieved with an elastic wave resonator by using the LC circuit, and can secure a steep attenuation slope that cannot be achieved by an LC circuit by using the elastic wave resonator.
  • the pass band width of the hybrid filter 21 is larger than the resonance band widths of the elastic wave resonators P5 and P6.
  • the filter 22 may not have a capacitor, and the passband width of the filter 22 may be equal to or less than the resonance bandwidth of the fourth elastic wave resonator.
  • circuit components of the high-frequency circuit 20 will be described.
  • the low-noise amplifier 53 is an example of a third low-noise amplifier, and is an amplifier that amplifies the reception signal of the first communication band with low noise and outputs it to the reception output terminal 170 .
  • the low noise amplifier 54 is an amplifier that amplifies the received signal of the second communication band with low noise and outputs the amplified signal to the reception output terminal 180 .
  • the matching circuit 45 is connected between the low noise amplifier 53 and the hybrid filter 21 and performs impedance matching between the low noise amplifier 53 and the hybrid filter 21 .
  • the matching circuit 46 is connected between the low noise amplifier 54 and the filter 22 to provide impedance matching between the low noise amplifier 54 and the filter 22 .
  • the high-frequency module 1 can independently transmit the transmission signal and the reception signal of the first communication band and the transmission signal and the reception signal of the second communication band, and can transmit at least two of them. It is possible to transmit simultaneously.
  • the first transmission path in which the power amplifier 61, matching circuit 42, switch 31, hybrid filter 11 and switch 30 are arranged, transmits the transmission signal of the first communication band (n77 of 5G-NR).
  • the second transmission path in which the power amplifier 62, matching circuit 44, switch 32, filter 12 and switch 30 are arranged, transmits the transmission signal of the second communication band (n79 of 5G-NR).
  • the first receiving path in which switch 30, hybrid filter 11, switch 31, matching circuit 41, and low noise amplifier 51 are arranged, transmits the received signal of the first communication band (n77 of 5G-NR).
  • the second reception path in which the switch 30, the filter 12, the switch 32, the matching circuit 43, and the low noise amplifier 52 are arranged, transmits the reception signal of the second communication band (n79 of 5G-NR).
  • the third receiving path in which the switch 30, the hybrid filter 21, the matching circuit 45, and the low noise amplifier 53 are arranged, transmits the received signal of the first communication band (n77 of 5G-NR).
  • a fourth receiving path in which the switch 30, the filter 22, the matching circuit 46, and the low noise amplifier 54 are arranged, transmits the received signal of the second communication band (n79 of 5G-NR).
  • the first communication band (5G-NR n77) is used. many regions. In other words, of the first communication band (5G-NR n77) and the second communication band (5G-NR n79), the first communication band (5G-NR n77) is used more frequently.
  • the first transmission path is used more frequently. Further, of the first receiving path and the second receiving path, the first receiving path is used more frequently. Further, of the third receiving path and the fourth receiving path, the frequency of use of the third receiving path is higher.
  • At least two or more of the low noise amplifiers 51, 52, 53 and 54 and the switches 30, 31 and 32 may be formed in one semiconductor IC.
  • the semiconductor IC is composed of CMOS, for example. Specifically, it is formed by an SOI process. This makes it possible to manufacture semiconductor ICs at low cost.
  • the semiconductor IC may be made of at least one of GaAs, SiGe and GaN. This makes it possible to output a high frequency signal with high quality amplification performance and noise performance.
  • each of the hybrid filters 11 and 21 according to the present embodiment includes one or more elastic wave resonators, one or more inductors, and one or more capacitors, and the passband width of the hybrid filter is set to the elastic wave resonance It is sufficient if it is larger than the resonance bandwidth of the child. Further, in the circuit configuration of hybrid filters 11 and 21 according to the present embodiment, no switch is arranged between the elastic wave resonator and the LC circuit.
  • no switch is inserted between the LC parallel resonant circuit including the inductor L3 and the capacitor C3 and the elastic wave resonator P1, and between the LC parallel resonant circuit and the elastic wave resonator P2.
  • one terminal of the hybrid filter 11 and one terminal of the filter 12 may be connected to the same selection terminal of the switch 30 .
  • one terminal of hybrid filter 21 and one terminal of filter 22 may be connected to the same selection terminal of switch 30 .
  • Filters are connected between the switch 31 and the low noise amplifier 51, between the switch 31 and the power amplifier 61, between the switch 32 and the low noise amplifier 52, and between the switch 32 and the power amplifier 62. may have been
  • High-frequency module 1 includes at least hybrid filter 11, filter 12, power amplifiers 61 and 62, and matching circuits 42 and 44 among the circuit components and circuit elements shown in FIG. It is good if there is
  • the high-frequency module 1 having the circuit configuration described above includes a hybrid filter in which acoustic wave resonators, inductors, and capacitors are combined, and thus has a large number of parts. Therefore, in the high-frequency module 1, the wiring loss of each transmission path tends to increase.
  • FIG. 3A is a schematic plan view of the radio frequency module 1A according to the embodiment.
  • FIG. 3B is a schematic cross-sectional view of the high-frequency module 1A according to the embodiment, more specifically, a cross-sectional view taken along line IIIB-IIIB in FIG. 3A.
  • FIG. 3A shows a layout diagram of circuit components when the main surface 80a of the main surfaces 80a and 80b facing each other of the module substrate 80 is viewed from the positive direction of the z-axis.
  • (b) of FIG. 3A shows a perspective view of the layout of the circuit components when the main surface 80b is viewed from the z-axis positive direction.
  • each circuit component is provided with a mark representing its function so that the layout relationship of each circuit component can be easily understood. do not have.
  • a high-frequency module 1A according to an example specifically shows the layout configuration of each circuit element that constitutes the high-frequency module 1 according to the embodiment.
  • a high frequency module 1A further includes a module substrate 80, resin members 81 and 82, and external connection terminals 100 in addition to the circuit configuration shown in FIG. and a metal shield layer 85 .
  • the module substrate 80 is an example of a substrate, and is a substrate that has a main surface 80a and a main surface 80b facing each other and on which circuit components that constitute the high frequency module 1A are mounted.
  • a low temperature co-fired ceramics (LTCC) substrate having a laminated structure of a plurality of dielectric layers, a high temperature co-fired ceramics (HTCC) substrate, A component-embedded substrate, a substrate having a redistribution layer (RDL), a printed substrate, or the like is used.
  • the principal surface 80a corresponds to the first principal surface
  • the principal surface 80b corresponds to the second principal surface
  • the module substrate 80 is an example of a substrate, and has a multilayer structure in which a plurality of dielectric layers are laminated, and a ground electrode pattern is formed on at least one of the plurality of dielectric layers. is desirable. This improves the electromagnetic field shielding function of the module substrate 80 .
  • the resin member 81 is arranged on the main surface 80a and covers part of the circuit components forming the high frequency module 1A and the main surface 80a.
  • the resin member 82 is arranged on the main surface 80b and covers part of the circuit components forming the high frequency module 1A and the main surface 80b.
  • the resin members 81 and 82 have a function of ensuring reliability such as mechanical strength and moisture resistance of the circuit parts forming the high frequency module 1A.
  • the metal shield layer 85 covers the surface of the resin member 81 and is set to the ground potential.
  • the metal shield layer 85 is, for example, a metal thin film formed by sputtering.
  • the resin members 81 and 82 and the metal shield layer 85 are not essential components of the high frequency module 1 according to this embodiment.
  • the matching circuits 41-46 each include an inductor.
  • Matching circuit 42 includes a third inductor and matching circuit 44 includes a fourth inductor.
  • the wiring that connects each circuit component shown in FIG. 3A may be a bonding wire whose both ends are bonded to either the main surfaces 80a, 80b or the circuit parts constituting the high-frequency module 1A. It may be a formed terminal, electrode or wiring.
  • the hybrid filters 11 and 21, the filters 12 and 22, the power amplifiers 61 and 62, and the matching circuits 42, 44, 45 and 46 are arranged on the main surface 80a. It is On the other hand, switches 30, 31 and 32 and low noise amplifiers 51, 52, 53 and 54 are arranged on main surface 80b. Matching circuits 41 and 43 are arranged inside module substrate 80 .
  • At least one of the circuit components constituting the high-frequency module 1A is arranged on the main surface 80a, and at least one other circuit component is arranged on the main surface 80b, and each circuit component is arranged on either of the main surfaces 80a and 80b. It is not limited to the arrangement shown in FIG. 3A. Also, the matching circuit 41 may be arranged on the main surface 80a or the main surface 80b, and the matching circuit 43 may be arranged on the main surface 80a or the main surface 80b.
  • elastic wave resonators P1 and P2, capacitor C3, and inductors L1, L2, and L3 that constitute hybrid filter 11 are arranged on main surface 80a.
  • low noise amplifiers 51 and 52 are arranged on main surface 80b.
  • at least one of acoustic wave resonators P1 and P2, capacitor C3, and inductors L1, L2, and L3 may be arranged on main surface 80a, and at least one other may be arranged inside module substrate 80 or on the main surface. 80b.
  • part of the circuit elements of the hybrid filter 11 and the low noise amplifiers 51 and 52 are distributed and arranged on both sides of the module substrate 80 with the module substrate 80 interposed therebetween, so that the high frequency module 1A can be miniaturized. can.
  • At least one of acoustic wave resonator A3 (second acoustic wave resonator) and inductor L7 (second inductor) constituting filter 12 is disposed on main surface 80a, and at least one other is on module substrate 80. It may be located inside or on the major surface 80b.
  • At least part of the fourth inductor is arranged in the second quadrant Q3. At least part of the hybrid filter 11 and at least part of the filter 12 are arranged in the third quadrant Q4. At this time, the distance d1 between the power amplifier 61 and the reference point R1 is smaller than the distance d2 between the power amplifier 62 and the reference point R1. Also, the distance d3 between the third inductor and the reference point R1 is smaller than the distance d4 between the fourth inductor and the reference point R1. Also, the distance d5 between the hybrid filter 11 and the reference point R1 is smaller than the distance d6 between the filter 12 and the reference point R1.
  • power amplifier 61 is positioned closer to reference point R1 than power amplifier 62
  • the third inductor is positioned closer to reference point R1 than the fourth inductor
  • hybrid filter 11 is positioned closer to reference point R1 than filter 12. It is located near the point R1.
  • the reference point R1 on the module board 80 is defined as an arbitrary point on the module board 80 excluding the outer edge of the module board 80 when the module board 80 is viewed from above.
  • the reference point R1 is positioned so that the first quadrant Q2, the second quadrant Q3, the third quadrant Q4, and the fourth quadrant Q1 can exist on the module substrate 80 when the module substrate 80 is viewed from above. This is the point arranged on the module substrate 80 .
  • the power amplifier 61, the matching circuit 42, and the hybrid filter 11 arranged in the first transmission path are arranged in the first quadrant Q2, the second quadrant Q3, and the third quadrant Q4, respectively.
  • one transmission path can be formed to be short counterclockwise around the reference point R1.
  • the power amplifier 62, the matching circuit 44, and the filter 12 arranged in the second transmission path are arranged in the first quadrant Q2, the second quadrant Q3, and the third quadrant Q4, respectively, so that the second transmission path is
  • the module substrate 80 is viewed from the positive direction of the z-axis, it is possible to shorten the length counterclockwise around the reference point R1.
  • the first transmission path and the second transmission path for transmitting high-power transmission signals can be formed short, so that the high-frequency module 1A for multibands having low-loss signal transmission characteristics can be realized. Moreover, the power consumption of the high frequency module 1A can be reduced.
  • power amplifier 61 is positioned closer to reference point R1 than power amplifier 62
  • the third inductor is positioned closer to reference point R1 than the fourth inductor
  • hybrid filter 11 is positioned closer to reference point R1 than filter 12. Because it is located close to R1, the first transmission path can be made shorter than the second transmission path.
  • the transmission signal of the first communication band (n77 of 5G-NR), which has many areas of use and is frequently used, can be transmitted with lower loss. Therefore, the high-frequency module 1A for multiband can be efficiently reduced in loss.
  • At least part of the hybrid filter 21 and at least part of the filter 22 may be arranged in a region other than the fourth quadrant Q1. According to this, the circuit parts constituting the high-frequency module 1A can be mounted with good balance and high density.
  • a plurality of external connection terminals 100 are arranged on the main surface 80b.
  • the high-frequency module 1A exchanges electric signals with an external substrate arranged on the z-axis negative direction side of the high-frequency module 1A via a plurality of external connection terminals 100 .
  • Some of the plurality of external connection terminals 100 are antenna connection terminals 110 and 120, transmission input terminals 140 and 160, and reception output terminals 130, 150, 170 and 180, as shown in FIG. good too.
  • Some other external connection terminals 100 are set to the ground potential of the external substrate.
  • the external connection terminal 100 may be a columnar electrode penetrating the resin member 82 in the z-axis direction. It may be a formed bump electrode. In this case, the resin member 82 on the main surface 80b may be omitted.
  • the power amplifiers 61 and 62 which are difficult to reduce in height, and the third and fourth inductors are arranged on the main surface 80a. According to this, circuit components that are difficult to reduce in height are not arranged on the main surface 80b, so that it becomes easy to reduce the height of the main surface 80b side of the high-frequency module 1A.
  • Low noise amplifiers 51 to 54 and switches 30 to 32 which can be easily made low-profile, are arranged on the main surface 80b, which faces the external substrate, of the main surfaces 80a and 80b. According to this, circuit components that can be easily reduced in height are arranged on the main surface 80b, so that the main surface 80b side of the high-frequency module 1A can be easily reduced in height. That is, it becomes possible to reduce the height of the high frequency module 1A.
  • the low noise amplifiers 51 to 54 and the switch 30 are included in the semiconductor IC 71 . According to this, the low noise amplifiers 51 to 54 and the switch 30 can be reduced in size and height.
  • the switches 31 and 32 are included in the semiconductor IC 72 . According to this, the switches 31 and 32 can be reduced in size and height.
  • the height of the high frequency module 1A can be reduced.
  • the hybrid filter 11 and the switch 30 are at least partially overlapped.
  • the hybrid filter 11 through which both the transmission signal and the reception signal pass and the switch 30 can be connected mainly by the via wiring formed in the module substrate 80 along the vertical direction of the module substrate 80 . Therefore, the wiring connecting the hybrid filter 11 and the switch 30 can be shortened, and the transmission loss of the transmission signal and the reception signal of the first communication band can be reduced.
  • elastic wave resonators P5 and P6, capacitor C4, and inductors L4, L5 and L6, which constitute hybrid filter 21, are arranged on main surface 80a.
  • low noise amplifier 53 connected to hybrid filter 21 via matching circuit 45 is arranged on main surface 80b.
  • the hybrid filter 21 and the low noise amplifier 53 are at least partially overlapped.
  • the hybrid filter 21 and the low-noise amplifier 53 can be connected mainly through the via wiring formed in the module substrate 80 along the vertical direction of the module substrate 80 . Therefore, the wiring connecting the hybrid filter 21 and the low noise amplifier 53 can be shortened, and the transmission loss of the reception signal of the first communication band can be reduced.
  • FIG. 3C is a schematic cross-sectional view of a radio frequency module 1B according to a modification.
  • a high-frequency module 1B according to a modification specifically shows the arrangement configuration of each circuit element constituting the high-frequency module 1 according to the embodiment.
  • the high-frequency module 1B shown in FIG. 3C differs from the high-frequency module 1A according to the embodiment in the arrangement configuration of the circuit elements forming the hybrid filter 11 and the filter 12.
  • FIG. 3C the description of the same configuration as that of the high-frequency module 1A according to the embodiment will be omitted, and the different configuration will be mainly described.
  • the hybrid filter 11 includes an elastic wave resonator A1 (acoustic wave resonators P1 and P2), a capacitor C3, and inductors L1, L2 and L3.
  • the filter 12 includes an elastic wave resonator A3 and inductors L7 and L8.
  • the elastic wave resonator A1 and the capacitor C3 are arranged on the main surface 80a, and the inductor L3 is formed inside the module substrate 80.
  • the inductor L3 is composed of, for example, a plurality of planar coil conductors and via conductors connecting them.
  • the elastic wave resonator A3 and the inductor L7 are arranged on the main surface 80a, and the inductor L8 is formed inside the module substrate 80.
  • the inductor L8 is composed of, for example, a plurality of planar coil conductors and via conductors connecting them.
  • part of the circuit elements constituting the hybrid filter 11 are arranged on the main surface 80a, and other circuit elements are formed inside the module substrate 80, so that the high frequency module 1B can be miniaturized.
  • the circuit element formed inside the module substrate 80 may be either an acoustic wave resonator or a capacitor.
  • the high-frequency module 1A has the module substrate 80 having the main surfaces 80a and 80b facing each other, the first elastic wave resonator, the first inductor, and the first capacitor, and is 5G- A hybrid filter 11 including NR n77 in the passband, a filter 12 having a second acoustic wave resonator and a second inductor, and including 5G-NR n79 in the passband, power amplifiers 61 and 62, and a power amplifier 61 and the hybrid filter 11, and a fourth inductor connected between the power amplifier 62 and the filter 12, the passband of the hybrid filter 11 being the first acoustic wave
  • a first quadrant Q2 which is an area on the left and above the reference point R1 on the module substrate 80, and (2) the reference point R1.
  • the third quadrant Q4 which is the area on the right and below the reference point R1.
  • the fourth quadrant Q4 which is the area on the right and above the reference point R1.
  • quadrant Q1 at least part of power amplifier 61 and at least part of power amplifier 62 are located in first quadrant Q2, and at least part of third inductor and at least part of fourth inductor are located in quadrant Q2.
  • At least part of the hybrid filter 11 and at least part of the filter 12 are arranged in the second quadrant Q3, and at least part of the hybrid filter 11 and at least part of the filter 12 are arranged in the third quadrant Q4, and the power amplifier 61 is arranged closer to the reference point R1 than the power amplifier 62.
  • the third inductor is located closer to the reference point R1 than the fourth inductor
  • the hybrid filter 11 is located closer to the reference point R1 than the filter 12 is.
  • the power amplifier 61, the third inductor, and the hybrid filter 11 arranged in the first transmission path are arranged in the first quadrant Q2, the second quadrant Q3, and the third quadrant Q4, respectively.
  • one transmission path can be formed to be short counterclockwise around the reference point R1.
  • the power amplifier 62, the fourth inductor, and the filter 12 arranged in the second transmission path are arranged in the first quadrant Q2, the second quadrant Q3, and the third quadrant Q4, respectively, the second transmission path is When the module substrate 80 is viewed from the positive direction of the z-axis, it is possible to shorten the length counterclockwise around the reference point R1.
  • the first transmission path and the second transmission path for transmitting high-power transmission signals can be formed short, so that the high-frequency module 1A for multibands having low-loss signal transmission characteristics can be realized. Moreover, the power consumption of the high frequency module 1A can be reduced.
  • power amplifier 61 is positioned closer to reference point R1 than power amplifier 62
  • the third inductor is positioned closer to reference point R1 than the fourth inductor
  • hybrid filter 11 is positioned closer to reference point R1 than filter 12. Because it is located close to R1, the first transmission path can be made shorter than the second transmission path. As a result, the transmission signal of the first communication band (n77 of 5G-NR), which is used in many areas and has a high frequency of use, can be transmitted with lower loss. Therefore, the high-frequency module 1A for multiband can be efficiently reduced in loss.
  • the high-frequency module 1A is further connected to the low-noise amplifiers 51 and 52 arranged on the main surface 80b, the hybrid filter 11, the low-noise amplifier 51, and the third inductor.
  • a switch 32 that switches connection between the filter 12 and the fourth inductor, and one of the first acoustic wave resonator, the first inductor, and the first capacitor may be arranged on the main surface 80a. .
  • part of the circuit elements of the hybrid filter 11 and the low noise amplifiers 51 and 52 are distributed and arranged on both sides of the module substrate 80 with the module substrate 80 interposed therebetween, so that the high frequency module 1A can be miniaturized. can.
  • the first elastic wave resonator, the first inductor, and the first capacitor are arranged either inside the main surface 80a or the module substrate 80.
  • the second acoustic wave resonator and the second inductor may be arranged either inside the main surface 80 a or the module substrate 80 .
  • part of the circuit elements constituting the hybrid filter 11 and the filter 12 are arranged inside the main surface 80a or the module substrate 80, so that the high frequency modules 1A and 1B can be miniaturized.
  • the high frequency module 1A further includes an external connection terminal 100 arranged on the main surface 80b, the power amplifiers 61 and 62 are arranged on the main surface 80a, and the third inductor and the fourth inductor are arranged on the main surface 80a. It may be arranged on the main surface 80a.
  • the power amplifiers 61 and 62 which are difficult to reduce in height, and the third and fourth inductors are arranged on the main surface 80a. Therefore, circuit components that are difficult to reduce in height are not arranged on the main surface 80b, so that the main surface 80b side of the high-frequency module 1A can be easily reduced in height.
  • the high-frequency module 1A is further connected to the hybrid filter 11 and the filter 12, switches connection and disconnection between the hybrid filter 11 and the antenna connection terminals 110 and 120, and connects the filter 12 to the antenna connection terminals 110 and
  • the hybrid filter 11 and the switch 30 may at least partially overlap each other when the module substrate 80 is viewed from above.
  • the hybrid filter 11 through which both the transmission signal and the reception signal pass and the switch 30 can be connected mainly by the via wiring formed in the module substrate 80 along the vertical direction of the module substrate 80 . Therefore, the wiring connecting the hybrid filter 11 and the switch 30 can be shortened, and the transmission loss of the transmission signal and the reception signal of the first communication band can be reduced.
  • the low noise amplifiers 51 and 52 and the switch 30 may be included in the semiconductor IC 71 arranged on the main surface 80b.
  • the low noise amplifiers 51 and 52 and the switch 30 can be made compact and low profile. Moreover, the height of the high frequency module 1A can be reduced by arranging the semiconductor IC 71 on the main surface 80b.
  • the high-frequency module 1A further includes a third elastic wave resonator, a fifth inductor, and a second capacitor, a hybrid filter 21 including 5G-NR n77 in the passband, and a fourth elastic a filter 22 having a wave resonator and a sixth inductor and including n79 of 5G-NR in the passband, wherein the hybrid filter 21 and the filter 22 are respectively reception-only filters connected to the switch 30; At least part of the hybrid filter 21 and at least part of the filter 22 may be arranged in the fourth quadrant Q1.
  • the circuit components constituting the high-frequency module 1A can be mounted with good balance and high density.
  • the high-frequency module 1A further includes a low-noise amplifier 53 connected to the hybrid filter 21.
  • the hybrid filter 21 and the low-noise amplifier 53 are at least partially may overlap.
  • the hybrid filter 21 and the low-noise amplifier 53 can be connected mainly through the via wiring formed in the module substrate 80 along the vertical direction of the module substrate 80 . Therefore, the wiring connecting the hybrid filter 21 and the low noise amplifier 53 can be shortened, and the transmission loss of the reception signal of the first communication band can be reduced.
  • the communication device 5 also includes an RFIC 3 that processes high-frequency signals received by the antennas 2A and 2B, and a high-frequency module 1 that propagates the high-frequency signals between the antennas 2A and 2B and the RFIC 3.
  • matching elements such as inductors and capacitors, and switch circuits may be connected between each component.
  • the inductor may include a wiring inductor that is a wiring that connects each component.
  • the present invention can be widely used in communication equipment such as mobile phones as a high-frequency module and communication device that can be applied to multiband systems.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Transceivers (AREA)

Abstract

高周波モジュール(1A)は、5G-NRのn77用のハイブリッドフィルタ(11)と、5G-NRのn79用のフィルタ(12)と、電力増幅器(61および62)と、電力増幅器(61)に接続された第3インダクタと、電力増幅器(62)に接続された第4インダクタと、を備え、モジュール基板(80)を平面視した場合に、電力増幅器(61および62)は第1象限(Q2)に配置されており、第3インダクタおよび第4インダクタは第2象限(Q3)に配置されており、ハイブリッドフィルタ(11)およびフィルタ(12)は第3象限(Q4)に配置され、電力増幅器(61)は電力増幅器(62)よりも基準点(R1)に近く配置され、第3インダクタは第4インダクタよりも基準点(R1)に近く配置されており、ハイブリッドフィルタ(11)はフィルタ(12)よりも基準点(R1)に近く配置されている。

Description

高周波モジュールおよび通信装置
 本発明は、高周波モジュールおよび通信装置に関する。
 特許文献1には、弾性共振器(弾性波共振子)、インダクタおよびキャパシタを含むハイブリッド弾性LCフィルタが開示されている。これによれば、相対的に広い通過帯域を実現でき、さらには厳格な帯域外阻止仕様を満たすことができるとしている。
特開2020-14204号公報
 しかしながら、特許文献1に開示されたハイブリッド弾性LCフィルタは、弾性波共振子、インダクタおよびキャパシタが組み合わされたフィルタであるため部品点数が多い。このため、ハイブリッド弾性LCフィルタが配置された伝送経路を複数有するマルチバンド対応の高周波モジュールでは、各伝送経路の配線ロスが増大する傾向にあり、低損失の信号通過特性を実現できないという問題がある。
 そこで、本発明は、上記課題を解決するためになされたものであって、ハイブリッドフィルタを含み、低損失の信号通過特性を有するマルチバンド対応の高周波モジュールおよび通信装置を提供することを目的とする。
 本発明の一態様に係る高周波モジュールは、互いに対向する第1主面および第2主面を有する基板と、第1弾性波共振子、第1インダクタ、および第1キャパシタを有し、5G-NRのn77を通過帯域に含む第1ハイブリッドフィルタと、第2弾性波共振子および第2インダクタを有し、5G-NRのn79を通過帯域に含む第1フィルタと、第1電力増幅器および第2電力増幅器と、第1電力増幅器と第1ハイブリッドフィルタとの間に接続された第3インダクタと、第2電力増幅器と第1フィルタとの間に接続された第4インダクタと、を備え、第1ハイブリッドフィルタの通過帯域幅は、第1弾性波共振子の共振帯域幅よりも大きく、基板を平面視した場合に、(1)基板上の基準点から左側かつ上側の領域である第1象限、(2)基準点から左側かつ下側の領域である第2象限、(3)基準点から右側かつ下側の領域である第3象限、および(4)基準点から右側かつ上側の領域である第4象限、を定義した場合、第1電力増幅器の少なくとも一部および第2電力増幅器の少なくとも一部は、第1象限に配置されており、第3インダクタの少なくとも一部および第4インダクタの少なくとも一部は、第2象限に配置されており、第1ハイブリッドフィルタの少なくとも一部および第1フィルタの少なくとも一部は第3象限に配置されており、第1電力増幅器は、第2電力増幅器よりも基準点に近く配置されており、第3インダクタは第4インダクタよりも基準点に近く配置されており、第1ハイブリッドフィルタは第1フィルタよりも基準点に近く配置されている。
 本発明によれば、ハイブリッドフィルタを含み、低損失の信号通過特性を有するマルチバンド対応の高周波モジュールおよび通信装置を提供することができる。
図1は、実施の形態に係る高周波モジュールおよび通信装置の回路構成図である。 図2Aは、実施の形態に係る第1ハイブリッドフィルタの回路構成の一例を示す図である。 図2Bは、実施の形態に係る第2ハイブリッドフィルタの回路構成の一例を示す図である。 図3Aは、実施例に係る高周波モジュールの平面構成概略図である。 図3Bは、実施例に係る高周波モジュールの断面構成概略図である。 図3Cは、変形例に係る高周波モジュールの断面構成概略図である。
 以下、本発明の実施の形態について詳細に説明する。なお、以下で説明する実施の形態は、いずれも包括的または具体的な例を示すものである。以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置および接続形態等は、一例であり、本発明を限定する主旨ではない。以下の実施例および変形例における構成要素のうち、独立請求項に記載されていない構成要素については、任意の構成要素として説明される。また、図面に示される構成要素の大きさまたは大きさの比は、必ずしも厳密ではない。各図において、実質的に同一の構成については同一の符号を付し、重複する説明は省略または簡略化する場合がある。
 また、以下において、平行および垂直等の要素間の関係性を示す用語、矩形状等の要素の形状を示す用語、ならびに、数値範囲は、厳格な意味のみを表すのではなく、実質的に同等な範囲、例えば数%程度の差異をも含むことを意味する。
 また、以下において、「Aが基板の第1主面に配置されている」とは、Aが第1主面上に直接実装されているだけでなく、基板で隔された第1主面側の空間および第2主面側の空間のうち、Aが第1主面側の空間に配置されていることを意味する。つまり、Aが第1主面上に、その他の回路素子や電極などを介して実装されていることを含む。
 また、以下において、「接続される」とは、接続端子および/または配線導体で直接接続される場合だけでなく、他の回路部品を介して電気的に接続される場合も含む。また、「AおよびBの間に接続される」とは、AおよびBの間でAおよびBの両方に接続されることを意味する。
 以下の各図において、x軸およびy軸は、モジュール基板の主面と平行な平面上で互いに直交する軸である。また、z軸は、モジュール基板の主面に垂直な軸であり、その正方向は上方向を示し、その負方向は下方向を示す。
 また、本開示のモジュール構成において、「平面視」とは、z軸正側からxy平面に物体を正投影して見ることを意味する。「部品が基板の主面に配置される」とは、部品が基板の主面と接触した状態で主面上に配置されることに加えて、部品が主面と接触せずに主面の上方に配置されること、および、部品の一部が主面側から基板内に埋め込まれて配置されることを含む。
 また、以下において、基板に実装されたA、BおよびCにおいて、「基板(または基板の主面)の平面視において、AとBとの間にCが配置されている」とは、基板の平面視においてA内の任意の点とB内の任意の点とを結ぶ複数の線分の少なくとも1つがCの領域を通ることを意味する。また、基板の平面視とは、基板および基板に実装された回路素子を基板の主面に平行な平面に正投影して見ることを意味する。
 また、以下において、「送信経路」とは、高周波送信信号が伝搬する配線、当該配線に直接接続された電極、および当該配線または当該電極に直接接続された端子等で構成された伝送線路であることを意味する。また、「受信経路」とは、高周波受信信号が伝搬する配線、当該配線に直接接続された電極、および当該配線または当該電極に直接接続された端子等で構成された伝送線路であることを意味する。
 (実施の形態)
 [1.実施の形態に係る高周波モジュール1および通信装置5の構成]
 図1は、実施の形態に係る高周波モジュール1および通信装置5の回路構成図である。同図に示すように、通信装置5は、高周波モジュール1と、アンテナ2Aおよび2Bと、RF信号処理回路(RFIC)3と、ベースバンド信号処理回路(BBIC)4と、を備える。
 RFIC3は、アンテナ2Aおよび2Bで送受信される高周波信号を処理するRF信号処理回路である。具体的には、RFIC3は、高周波モジュール1の受信経路を介して入力された受信信号を、ダウンコンバートなどにより信号処理し、当該信号処理して生成された受信信号をBBIC4へ出力する。また、RFIC3は、BBIC4から入力された信号に基づいて処理された高周波送信信号を、高周波モジュール1の送信経路に出力する。
 BBIC4は、高周波モジュール1を伝送する高周波信号よりも低い周波数の信号を用いてデータ処理する回路である。BBIC4で処理された信号は、例えば、画像表示のための画像信号として使用され、または、スピーカを介した通話のために音声信号として使用される。
 また、RFIC3は、高周波モジュール1が送信および受信のいずれに使用されるか、および、使用される通信バンド(周波数帯域)に基づいて、高周波モジュール1が有するスイッチ30、31および32の接続を制御する制御部としての機能を有する。具体的には、RFIC3は、制御信号(図示せず)により高周波モジュール1が有するスイッチ30、31および32の接続を切り替える。なお、制御部は、RFIC3の外部に設けられていてもよく、例えば、高周波モジュール1またはBBIC4に設けられていてもよい。
 また、RFIC3は、高周波モジュール1が有する電力増幅器61および62の利得、電力増幅器61および62に供給される電源電圧Vccおよびバイアス電圧Vbiasを制御する制御部としての機能も有する。
 アンテナ2Aは、高周波モジュール1のアンテナ接続端子110に接続され、高周波モジュール1から出力された高周波信号を放射し、また、外部からの高周波信号を受信して高周波モジュール1へ出力する。アンテナ2Bは、高周波モジュール1のアンテナ接続端子120に接続され、高周波モジュール1から出力された高周波信号を放射し、また、外部からの高周波信号を受信して高周波モジュール1へ出力する。
 なお、本実施の形態に係る通信装置5において、アンテナ2A、2BおよびBBIC4は、必須の構成要素ではない。
 次に、高周波モジュール1の詳細な構成について説明する。
 図1に示すように、高周波モジュール1は、アンテナ接続端子110および120と、スイッチ30と、高周波回路10および20と、を備える。
 アンテナ接続端子110はアンテナ2Aに接続される第1アンテナ共通端子であり、アンテナ接続端子120はアンテナ2Bに接続される第2アンテナ共通端子である。
 スイッチ30は、第3スイッチの一例であり、共通端子30aおよび30bと、選択端子30c、30d、30eおよび30fを有し、共通端子30aと選択端子30c~30fの少なくとも1つとの接続および非接続を切り替え、共通端子30bと、選択端子30c~30fの少なくとも1つとの接続および非接続を切り替える。共通端子30aはアンテナ接続端子110に接続されている。共通端子30bはアンテナ接続端子120に接続されている。選択端子30cはハイブリッドフィルタ11に接続されている。選択端子30dはフィルタ12に接続されている。選択端子30eはハイブリッドフィルタ21に接続されている。選択端子30fはフィルタ22に接続されている。スイッチ30は、ハイブリッドフィルタ11とアンテナ接続端子110との接続および非接続を切り替え、ハイブリッドフィルタ11とアンテナ接続端子120との接続および非接続を切り替える。また、スイッチ30は、フィルタ12とアンテナ接続端子110との接続および非接続を切り替え、フィルタ12とアンテナ接続端子120との接続および非接続を切り替える。また、スイッチ30は、ハイブリッドフィルタ21とアンテナ接続端子110との接続および非接続を切り替え、ハイブリッドフィルタ21とアンテナ接続端子120との接続および非接続を切り替える。また、スイッチ30は、フィルタ22とアンテナ接続端子110との接続および非接続を切り替え、フィルタ22とアンテナ接続端子120との接続および非接続を切り替える。
 スイッチ30の上記接続構成によれば、通信装置5は、アンテナ2Aをハイブリッドフィルタ11および21、フィルタ12および22の少なくとも1つと接続することが可能であり、また、アンテナ2Bをハイブリッドフィルタ11および21、フィルタ12および22の少なくとも1つと接続することが可能である。
 高周波回路10は、受信出力端子130および150と、送信入力端子140および160と、ハイブリッドフィルタ11と、フィルタ12と、スイッチ31および32と、整合回路41、42、43および44と、低雑音増幅器51および52と、電力増幅器61および62と、を備える。
 ハイブリッドフィルタ11は、第1ハイブリッドフィルタの一例であり、1以上の第1弾性波共振子と、1以上の第1インダクタと、1以上の第1キャパシタと、を備えたフィルタである。ハイブリッドフィルタ11の一方の端子は選択端子30cに接続され、他方の端子はスイッチ31に接続されている。ハイブリッドフィルタ11の通過帯域は、5G-NR(5th Generation New Radio)のn77(第1通信バンド:3300-4200MHz)を含む。
 フィルタ12は、第1フィルタの一例であり、1以上の第2弾性波共振子と、1以上の第2インダクタと、を備えたフィルタである。フィルタ12の一方の端子は選択端子30dに接続され、他方の端子はスイッチ32に接続されている。フィルタ12の通過帯域は、5G-NRのn79(第2通信バンド:4400-5000MHz)を含む。
 なお、第1弾性波共振子および第2弾性波素子は、例えば、SAW(Surface Acoustic Wave)を用いた弾性波共振子、または、BAW(Bulk Acoustic Wave)を用いた弾性波共振子である。
 図2Aは、実施の形態に係るハイブリッドフィルタ11の回路構成の一例を示す図である。同図に示すように、ハイブリッドフィルタ11は、弾性波共振子P1およびP2と、キャパシタC3と、インダクタL1、L2およびL3と、を備える。弾性波共振子P1およびP2のそれぞれは第1弾性波共振子の一例であり、インダクタL1、L2およびL3のそれぞれは第1インダクタの一例であり、キャパシタC3は第1キャパシタの一例である。
 インダクタL3とキャパシタC3とは、LC並列共振回路を構成している。弾性波共振子P1とインダクタL1との直列接続回路は、入出力端子101と上記LC並列共振回路とを結ぶ経路上のノードとグランドとの間に配置されている。弾性波共振子P2とインダクタL2との直列接続回路は、入出力端子102と上記LC並列共振回路とを結ぶ経路上のノードとグランドとの間に配置されている。弾性波共振子P1およびP2は、弾性波共振器A1を形成しており、例えば、1チップ化されている。なお、複数の弾性波共振子が1チップ化されているとは、複数の弾性波共振子が1枚の圧電基板上に形成されている、または、複数の弾性波共振子が1つのパッケージ内に含まれていることと定義される。
 上記構成において、インダクタL3およびキャパシタC3からなるLC並列共振回路の共振周波数と弾性波共振子P1およびP2の共振周波数および反共振周波数とを調整することにより、ハイブリッドフィルタ11の通過帯域および減衰帯域が形成される。インダクタL3およびキャパシタC3からなるLC並列共振回路により、ハイブリッドフィルタ11の通過帯域が形成され、弾性波共振子P1およびP2により減衰極が形成される。
 つまり、ハイブリッドフィルタ11は、LC回路により弾性波共振子では実現できない広い通過帯域を確保でき、弾性波共振子によりLC回路では実現できない急峻な減衰スロープを確保できる。
 この観点から、ハイブリッドフィルタ11の通過帯域幅は、弾性波共振子P1およびP2の共振帯域幅よりも大きい。
 なお、本実施の形態において、弾性波共振子の共振帯域幅とは、当該弾性波共振子の反共振周波数と共振周波数との差と定義される。また、比共振帯域幅は、上記共振帯域幅を反共振周波数および共振周波数の中間値で割った比率と定義される。一般的なSAW共振子およびBAW共振子は、0.1~10GHzの周波数帯で、3~4%の比共振帯域幅を有することが知られている。
 なお、フィルタ12は、キャパシタを備えていなくてもよく、フィルタ12の通過帯域幅は、第2弾性波共振子の共振帯域幅以下であってもよい。
 図1に戻って高周波回路10の回路部品の説明をする。
 低雑音増幅器51は、第1低雑音増幅器の一例であり、第1通信バンドの受信信号を低雑音で増幅し、受信出力端子130へ出力する増幅器である。低雑音増幅器52は、第2低雑音増幅器の一例であり、第2通信バンドの受信信号を低雑音で増幅し、受信出力端子150へ出力する増幅器である。
 電力増幅器61は、第1電力増幅器の一例であり、送信入力端子140から入力された第1通信バンドの送信信号を増幅する増幅器である。電力増幅器62は、送信入力端子160から入力された第2通信バンドの送信信号を増幅する増幅器である。
 整合回路41は、低雑音増幅器51とスイッチ31との間に接続され、低雑音増幅器51とスイッチ31とのインピーダンス整合をとる。整合回路42は、電力増幅器61とスイッチ31との間に接続され、電力増幅器61とスイッチ31とのインピーダンス整合をとる。整合回路43は、低雑音増幅器52とスイッチ32との間に接続され、低雑音増幅器52とスイッチ32とのインピーダンス整合をとる。整合回路44は、電力増幅器62とスイッチ32との間に接続され、電力増幅器62とスイッチ32とのインピーダンス整合をとる。
 スイッチ31は、第1スイッチの一例であり、共通端子および2つの選択端子を有する。スイッチ31の共通端子は、ハイブリッドフィルタ11に接続されている。スイッチ31の一方の選択端子は整合回路41を介して低雑音増幅器51の入力端子に接続され、スイッチ31の他方の選択端子は整合回路42を介して電力増幅器61の出力端子に接続されている。つまり、スイッチ31は、ハイブリッドフィルタ11、低雑音増幅器51、および電力増幅器61に接続され、ハイブリッドフィルタ11と低雑音増幅器51との接続およびハイブリッドフィルタ11と電力増幅器61との接続を切り替える時分割複信(TDD:Time Division Duplex)スイッチである。スイッチ31は、例えば、SPDT(Single Pole Double Throw)型のスイッチ回路で構成される。
 スイッチ31によれば、ハイブリッドフィルタ11は、低雑音増幅器51および電力増幅器61に接続される送信受信兼用フィルタとして機能する。
 スイッチ32は、第2スイッチの一例であり、共通端子および2つの選択端子を有する。スイッチ32の共通端子は、フィルタ12に接続されている。スイッチ32の一方の選択端子は整合回路43を介して低雑音増幅器52に接続され、スイッチ32の他方の選択端子は整合回路44を介して電力増幅器62に接続されている。つまり、スイッチ32は、フィルタ12と低雑音増幅器52との接続およびフィルタ12と電力増幅器62との接続を切り替えるTDDスイッチである。スイッチ32は、例えば、SPDT型のスイッチ回路で構成される。
 スイッチ32によれば、フィルタ12は、低雑音増幅器52および電力増幅器62に接続される送信受信兼用フィルタとして機能する。
 高周波回路20は、受信出力端子170および180と、ハイブリッドフィルタ21と、フィルタ22と、整合回路45および46と、低雑音増幅器53および54と、を備える。
 ハイブリッドフィルタ21は、第2ハイブリッドフィルタの一例であり、1以上の第3弾性波共振子と、1以上の第5インダクタと、1以上の第2キャパシタと、を備えたフィルタである。ハイブリッドフィルタ21の一方の端子は選択端子30eに接続され、他方の端子は整合回路45を介して低雑音増幅器53に接続されている。なお、ハイブリッドフィルタ21は、電力増幅器には接続されない。ハイブリッドフィルタ21の通過帯域は、5G-NRのn77を含む。
 これによれば、ハイブリッドフィルタ21は、スイッチ30と低雑音増幅器53との間に接続された受信専用フィルタとして機能する。
 フィルタ22は、第2フィルタの一例であり、1以上の第4弾性波共振子と、1以上の第6インダクタと、を備えたフィルタである。フィルタ22の一方の端子は選択端子30fに接続され、他方の端子は整合回路46を介して低雑音増幅器54に接続されている。なお、フィルタ22は、電力増幅器には接続されない。フィルタ22の通過帯域は、5G-NRのn79を含む。
 これによれば、フィルタ22は、スイッチ30に接続された受信専用フィルタとして機能する。
 なお、第3弾性波共振子および第4弾性波素子は、例えば、SAWを用いた弾性波共振子、または、BAWを用いた弾性波共振子である。
 図2Bは、実施の形態に係るハイブリッドフィルタ21の回路構成の一例を示す図である。同図に示すように、ハイブリッドフィルタ21は、弾性波共振子P5およびP6と、キャパシタC4と、インダクタL4、L5およびL6と、を備える。弾性波共振子P5およびP6のそれぞれは第2弾性波共振子の一例であり、インダクタL4、L5およびL6のそれぞれは第2インダクタの一例であり、キャパシタC4は第2キャパシタの一例である。
 インダクタL4とキャパシタC4とは、LC並列共振回路を構成している。弾性波共振子P5とインダクタL5との直列接続回路は、入出力端子103と上記LC並列共振回路とを結ぶ経路上のノードとグランドとの間に配置されている。弾性波共振子P6とインダクタL6との直列接続回路は、入出力端子104と上記LC並列共振回路とを結ぶ経路上のノードとグランドとの間に配置されている。弾性波共振子P5およびP6は、弾性波共振器A2を形成しており、例えば、1チップ化されている。
 上記構成において、インダクタL4およびキャパシタC4からなるLC並列共振回路の共振周波数と弾性波共振子P5およびP6の共振周波数および反共振周波数とを調整することにより、ハイブリッドフィルタ21の通過帯域および減衰帯域が形成される。インダクタL4およびキャパシタC4からなるLC並列共振回路により、ハイブリッドフィルタ21の通過帯域が形成され、弾性波共振子P5およびP6により減衰極が形成される。
 つまり、ハイブリッドフィルタ21は、LC回路により弾性波共振子では実現できない広い通過帯域を確保でき、弾性波共振子によりLC回路では実現できない急峻な減衰スロープを確保できる。
 この観点から、ハイブリッドフィルタ21の通過帯域幅は、弾性波共振子P5およびP6の共振帯域幅よりも大きい。
 なお、フィルタ22は、キャパシタを備えていなくてもよく、フィルタ22の通過帯域幅は、第4弾性波共振子の共振帯域幅以下であってもよい。
 図1に戻って高周波回路20の回路部品の説明をする。
 低雑音増幅器53は、第3低雑音増幅器の一例であり、第1通信バンドの受信信号を低雑音で増幅し、受信出力端子170へ出力する増幅器である。低雑音増幅器54は、第2通信バンドの受信信号を低雑音で増幅し、受信出力端子180へ出力する増幅器である。
 整合回路45は、低雑音増幅器53とハイブリッドフィルタ21との間に接続され、低雑音増幅器53とハイブリッドフィルタ21とのインピーダンス整合をとる。整合回路46は、低雑音増幅器54とフィルタ22との間に接続され、低雑音増幅器54とフィルタ22とのインピーダンス整合をとる。
 上記回路構成によれば、高周波モジュール1は、第1通信バンドの送信信号および受信信号、ならびに、第2通信バンドの送信信号および受信信号をそれぞれ単独で伝送でき、また、それらの少なくとも2つを同時に伝送することが可能である。
 電力増幅器61、整合回路42、スイッチ31、ハイブリッドフィルタ11およびスイッチ30が配置された第1送信経路は、第1通信バンド(5G-NRのn77)の送信信号を伝送する。
 電力増幅器62、整合回路44、スイッチ32、フィルタ12およびスイッチ30が配置された第2送信経路は、第2通信バンド(5G-NRのn79)の送信信号を伝送する。
 スイッチ30、ハイブリッドフィルタ11、スイッチ31、整合回路41、および低雑音増幅器51が配置された第1受信経路は、第1通信バンド(5G-NRのn77)の受信信号を伝送する。
 スイッチ30、フィルタ12、スイッチ32、整合回路43、および低雑音増幅器52が配置された第2受信経路は、第2通信バンド(5G-NRのn79)の受信信号を伝送する。
 スイッチ30、ハイブリッドフィルタ21、整合回路45、および低雑音増幅器53が配置された第3受信経路は、第1通信バンド(5G-NRのn77)の受信信号を伝送する。
 スイッチ30、フィルタ22、整合回路46、および低雑音増幅器54が配置された第4受信経路は、第2通信バンド(5G-NRのn79)の受信信号を伝送する。
 ここで、上記高周波モジュール1において、第1通信バンド(5G-NRのn77)および第2通信バンド(5G-NRのn79)のうち、第1通信バンド(5G-NRのn77)のほうが、使用地域が多い。言い換えると、第1通信バンド(5G-NRのn77)および第2通信バンド(5G-NRのn79)のうち、第1通信バンド(5G-NRのn77)のほうが、使用頻度が高い。
 つまり、第1送信経路および第2送信経路のうち、第1送信経路のほうが、使用頻度が高い。また、第1受信経路および第2受信経路のうち、第1受信経路のほうが、使用頻度が高い。また、第3受信経路および第4受信経路のうち、第3受信経路のほうが、使用頻度が高い。
 なお、低雑音増幅器51、52、53および54、スイッチ30、31および32のうちの少なくとも2以上が、1つの半導体ICに形成されていてもよい。半導体ICは、例えば、CMOSで構成されている。具体的には、SOIプロセスにより形成されている。これにより、半導体ICを安価に製造することが可能となる。なお、半導体ICは、GaAs、SiGeおよびGaNの少なくともいずれかで構成されていてもよい。これにより、高品質な増幅性能および雑音性能を有する高周波信号を出力することが可能となる。
 なお、本実施の形態に係るハイブリッドフィルタ11および21の回路構成は、図2Aおよび図2Bの回路構成に限定されない。本実施の形態に係るハイブリッドフィルタ11および21のそれぞれは、1以上の弾性波共振子と、1以上のインダクタと、1以上のキャパシタと、を備え、ハイブリッドフィルタの通過帯域幅が当該弾性波共振子の共振帯域幅よりも大きければよい。また、本実施の形態に係るハイブリッドフィルタ11および21の回路構成として、弾性波共振子とLC回路との間には、スイッチは配置されない。例えば、ハイブリッドフィルタ11では、インダクタL3およびキャパシタC3からなるLC並列共振回路と弾性波共振子P1との間、および、当該LC並列共振回路と弾性波共振子P2との間にはスイッチは挿入されない。
 また、ハイブリッドフィルタ11の一方の端子およびフィルタ12の一方の端子は、スイッチ30の同じ選択端子に接続されていてもよい。また、ハイブリッドフィルタ21の一方の端子およびフィルタ22の一方の端子は、スイッチ30の同じ選択端子に接続されていてもよい。
 また、スイッチ31と低雑音増幅器51との間、スイッチ31と電力増幅器61との間、スイッチ32と低雑音増幅器52との間、および、スイッチ32と電力増幅器62との間に、フィルタが接続されていてもよい。
 なお、本実施の形態に係る高周波モジュール1は、図1に示された回路部品および回路素子のうち、ハイブリッドフィルタ11、フィルタ12、電力増幅器61および62、ならびに、整合回路42および44を少なくとも備えていればよい。
 ここで、上記回路構成を有する高周波モジュール1は、弾性波共振子、インダクタおよびキャパシタが組み合わされたハイブリッドフィルタを含むため、部品点数が多い。このため、高周波モジュール1では、各伝送経路の配線ロスが増大する傾向にある。
 これに対して、以下では、伝送経路の配線ロスが低減された高周波モジュール1の構成について説明する。
 [2.実施例に係る高周波モジュール1Aの回路素子配置構成]
 図3Aは、実施例に係る高周波モジュール1Aの平面構成概略図である。また、図3Bは、実施例に係る高周波モジュール1Aの断面構成概略図であり、具体的には、図3AのIIIB-IIIB線における断面図である。なお、図3Aの(a)には、モジュール基板80の互いに対向する主面80aおよび80bのうち、主面80aをz軸正方向側から見た場合の回路部品の配置図が示されている。一方、図3Aの(b)には、主面80bをz軸正方向側から見た場合の回路部品の配置を透視した図が示されている。また、図3Aでは、各回路部品の配置関係が容易に理解されるよう各回路部品にはその機能を表すマークが付されているが、実際の高周波モジュール1Aには、当該マークは付されていない。
 実施例に係る高周波モジュール1Aは、実施の形態に係る高周波モジュール1を構成する各回路素子の配置構成を具体的に示したものである。
 図3Aおよび図3Bに示すように、本実施例に係る高周波モジュール1Aは、図1に示された回路構成に加えて、さらに、モジュール基板80と、樹脂部材81および82と、外部接続端子100と、金属シールド層85と、を有している。
 モジュール基板80は、基板の一例であり、互いに対向する主面80aおよび主面80bを有し、高周波モジュール1Aを構成する回路部品を実装する基板である。モジュール基板80としては、例えば、複数の誘電体層の積層構造を有する低温同時焼成セラミックス(Low Temperature Co-fired Ceramics:LTCC)基板、高温同時焼成セラミックス(High Temperature Co-fired Ceramics:HTCC)基板、部品内蔵基板、再配線層(Redistribution Layer:RDL)を有する基板、または、プリント基板等が用いられる。
 なお、本実施例では、主面80aは第1主面に相当し、主面80bは第2主面に相当する。
 なお、モジュール基板80は、基板の一例であり、複数の誘電体層が積層された多層構造を有し、当該複数の誘電体層の少なくとも1つには、グランド電極パターンが形成されていることが望ましい。これにより、モジュール基板80の電磁界遮蔽機能が向上する。
 なお、図3Aの(b)に示すように、主面80b上に、アンテナ接続端子110および120、送信入力端子140および160、ならびに受信出力端子130、150、170および180が形成されていてもよい。
 樹脂部材81は、主面80aに配置され、高周波モジュール1Aを構成する回路部品の一部および主面80aを覆っている。樹脂部材82は、主面80bに配置され、高周波モジュール1Aを構成する回路部品の一部および主面80bを覆っている。樹脂部材81および82は、高周波モジュール1Aを構成する回路部品の機械強度および耐湿性などの信頼性を確保する機能を有している。
 金属シールド層85は、樹脂部材81の表面を覆い、グランド電位に設定されている。金属シールド層85は、例えば、スパッタ法により形成された金属薄膜である。
 なお、樹脂部材81、82および金属シールド層85は、本実施の形態に係る高周波モジュール1に必須の構成要素ではない。
 本実施例では、整合回路41~46は、それぞれインダクタを含む。整合回路42は第3インダクタを含み、整合回路44は第4インダクタを含む。
 なお、図3Aには図示していないが、図1に示された、各回路部品を接続する配線は、モジュール基板80の内部、主面80aおよび80bに形成されている。また、上記配線は、両端が主面80a、80bおよび高周波モジュール1Aを構成する回路部品のいずれかに接合されたボンディングワイヤであってもよく、また、高周波モジュール1Aを構成する回路部品の表面に形成された端子、電極または配線であってもよい。
 図3Aに示すように、本実施例に係る高周波モジュール1Aでは、ハイブリッドフィルタ11および21、フィルタ12および22、電力増幅器61および62、整合回路42、44、45および46は、主面80aに配置されている。一方、スイッチ30、31および32、低雑音増幅器51、52、53および54は、主面80bに配置されている。また、整合回路41および43は、モジュール基板80の内部に配置されている。
 上記構成によれば、高周波モジュール1Aを構成するハイブリッドフィルタ11およびフィルタ12、ならびに電力増幅器61および62と、低雑音増幅器51~54およびスイッチ30~32とが、モジュール基板80を挟んで、モジュール基板80の両面に振り分けられて配置されている。これにより、高周波モジュール1Aを小型化できる。
 なお、高周波モジュール1Aを構成する回路部品の少なくとも1つが主面80aに配置され、他の少なくとも1つが主面80bに配置されていればよく、各回路部品が主面80aおよび80bのいずれに配置されるかについては、図3Aに示された配置構成には限定されない。また、整合回路41は、主面80aまたは主面80bに配置されてもよく、整合回路43は、主面80aまたは主面80bに配置されてもよい。
 本実施例では、ハイブリッドフィルタ11を構成する弾性波共振子P1およびP2、キャパシタC3、ならびにインダクタL1、L2およびL3は、主面80aに配置されている。一方、低雑音増幅器51および52は、主面80bに配置されている。なお、弾性波共振子P1およびP2、キャパシタC3、ならびにインダクタL1、L2およびL3のうちの少なくとも1つが主面80aに配置されていてもよく、他の少なくとも1つがモジュール基板80の内部または主面80bに配置されてもよい。これによれば、ハイブリッドフィルタ11の一部の回路素子と低雑音増幅器51および52とが、モジュール基板80を挟んでモジュール基板80の両面に振り分けられて配置されるので、高周波モジュール1Aを小型化できる。
 また、フィルタ12を構成する弾性波共振器A3(第2弾性波共振子)およびインダクタL7(第2インダクタ)のうちの少なくとも1つが主面80aに配置され、他の少なくとも1つがモジュール基板80の内部または主面80bに配置されてもよい。
 ここで、図3Aの(a)に示すように、本実施例に係る高周波モジュール1Aでは、モジュール基板80を平面視した場合に、(1)モジュール基板80上の基準点R1から左側かつ上側の領域である第1象限Q2、(2)基準点R1から左側かつ下側の領域である第2象限Q3、(3)基準点R1から右側かつ下側の領域である第3象限Q4、および(4)基準点R1から右側かつ上側の領域である第4象限Q1、が定義される。この場合、電力増幅器61の少なくとも一部および電力増幅器62の少なくとも一部は、第1象限Q2に配置されており、整合回路42に含まれる第3インダクタの少なくとも一部および整合回路44に含まれる第4インダクタの少なくとも一部は、第2象限Q3に配置されている。また、ハイブリッドフィルタ11の少なくとも一部およびフィルタ12の少なくとも一部は第3象限Q4に配置されている。このとき、電力増幅器61と基準点R1との距離d1は、電力増幅器62と基準点R1との距離d2よりも小さい。また、第3インダクタと基準点R1との距離d3は、第4インダクタと基準点R1との距離d4よりも小さい。また、ハイブリッドフィルタ11と基準点R1との距離d5は、フィルタ12と基準点R1との距離d6よりも小さい。言い換えると、電力増幅器61は電力増幅器62よりも基準点R1に近く配置されており、第3インダクタは第4インダクタよりも基準点R1に近く配置されており、ハイブリッドフィルタ11はフィルタ12よりも基準点R1に近く配置されている。
 なお、モジュール基板80上の基準点R1とは、モジュール基板80を平面視した場合に、モジュール基板80の外縁を除いたモジュール基板80の任意の一点と定義される。言い換えると、基準点R1は、モジュール基板80を平面視した場合に、第1象限Q2、第2象限Q3、第3象限Q4および第4象限Q1が、モジュール基板80上に存在し得るように、モジュール基板80上に配置された点である。
 これによれば、第1送信経路に配置される電力増幅器61、整合回路42、およびハイブリッドフィルタ11は、それぞれ、第1象限Q2、第2象限Q3および第3象限Q4に配置されるので、第1送信経路は、モジュール基板80をz軸正方向から平面視した場合、基準点R1を中心として反時計回りに短く形成することが可能となる。また、第2送信経路に配置される電力増幅器62、整合回路44、およびフィルタ12は、それぞれ、第1象限Q2、第2象限Q3および第3象限Q4に配置されるので、第2送信経路は、モジュール基板80をz軸正方向から平面視した場合、基準点R1を中心として反時計回りに短く形成することが可能となる。これにより、高出力の送信信号を伝送する第1送信経路および第2送信経路を短く形成できるので、低損失の信号通過特性を有するマルチバンド対応の高周波モジュール1Aを実現できる。また、高周波モジュール1Aの消費電力を低減できる。
 さらに、電力増幅器61は電力増幅器62よりも基準点R1に近く配置されており、第3インダクタは第4インダクタよりも基準点R1に近く配置されており、ハイブリッドフィルタ11はフィルタ12よりも基準点R1に近く配置されているので、第1送信経路を第2送信経路よりも短く形成できる。
 これによれば、使用地域が多く、また、使用頻度が高い第1通信バンド(5G-NRのn77)の送信信号をより低損失で伝送できる。よって、マルチバンド対応の高周波モジュール1Aを、高効率に低損失化できる。
 なお、本実施例では、ハイブリッドフィルタ21の少なくとも一部およびフィルタ22の少なくとも一部は、第4象限Q1以外の領域に配置されていてもよい。これによれば、高周波モジュール1Aを構成する回路部品をバランスよく高密度実装できる。
 また、本実施例に係る高周波モジュール1Aでは、主面80bに複数の外部接続端子100が配置されている。高周波モジュール1Aは、高周波モジュール1Aのz軸負方向側に配置される外部基板と、複数の外部接続端子100を経由して、電気信号のやりとりを行う。複数の外部接続端子100のいくつかは、図3Aの(b)に示すように、アンテナ接続端子110および120、送信入力端子140および160、ならびに受信出力端子130、150、170および180であってもよい。また、複数の外部接続端子100の他のいくつかは、外部基板のグランド電位に設定される。
 なお、外部接続端子100は、図3Aおよび図3Bに示すように、樹脂部材82をz軸方向に貫通する柱状電極であってもよいし、また、外部接続端子100は、主面80b上に形成されたバンプ電極であってもよい。この場合には、主面80b上の樹脂部材82はなくてもよい。
 ここで、低背化が困難な電力増幅器61および62、ならびに第3インダクタおよび第4インダクタは、主面80aに配置されている。これによれば、主面80bには低背化が困難な回路部品が配置されないので、高周波モジュール1Aの主面80b側を低背化することが容易となる。
 また、主面80aおよび80bのうち、外部基板と対向する主面80bには、低背化が容易な低雑音増幅器51~54およびスイッチ30~32が配置されている。これによれば、主面80bには低背化が容易な回路部品が配置されるので、高周波モジュール1Aの主面80b側を低背化することが容易となる。つまり、高周波モジュール1Aを低背化することが可能となる。
 また、低雑音増幅器51~54およびスイッチ30は、半導体IC71に含まれている。これによれば、低雑音増幅器51~54およびスイッチ30を小型化かつ低背化できる。
 また、スイッチ31および32は、半導体IC72に含まれている。これによれば、スイッチ31および32を小型化かつ低背化できる。
 半導体IC71および72が主面80bに配置されることにより、高周波モジュール1Aを低背化できる。
 ここで、図3Aおよび図3Bに示すように、モジュール基板80を平面視した場合、ハイブリッドフィルタ11とスイッチ30とは、少なくとも一部が重なっている。
 これによれば、送信信号および受信信号の双方が通過するハイブリッドフィルタ11とスイッチ30とを、モジュール基板80の垂直方向に沿ってモジュール基板80内に形成されたビア配線を主として接続できる。よって、ハイブリッドフィルタ11とスイッチ30とを結ぶ配線を短くでき、第1通信バンドの送信信号および受信信号の伝送損失を低減できる。
 また、ハイブリッドフィルタ21を構成する弾性波共振子P5およびP6、キャパシタC4、ならびにインダクタL4、L5およびL6が、主面80aに配置されている。一方、ハイブリッドフィルタ21と整合回路45を介して接続される低雑音増幅器53が、主面80bに配置されている。
 ここで、図3Aおよび図3Bに示すように、モジュール基板80を平面視した場合、ハイブリッドフィルタ21と低雑音増幅器53とは、少なくとも一部が重なっている。
 これによれば、ハイブリッドフィルタ21と低雑音増幅器53とを、モジュール基板80の垂直方向に沿ってモジュール基板80内に形成されたビア配線を主として接続できる。よって、ハイブリッドフィルタ21と低雑音増幅器53とを結ぶ配線を短くでき、第1通信バンドの受信信号の伝送損失を低減できる。
 [3.変形例に係る高周波モジュール1Bの回路素子配置構成]
 図3Cは、変形例に係る高周波モジュール1Bの断面構成概略図である。変形例に係る高周波モジュール1Bは、実施の形態に係る高周波モジュール1を構成する各回路素子の配置構成を具体的に示したものである。
 図3Cに示された高周波モジュール1Bは、実施例に係る高周波モジュール1Aと比較して、ハイブリッドフィルタ11およびフィルタ12を構成する回路素子の配置構成が異なる。以下、本変形例に係る高周波モジュール1Bについて、実施例に係る高周波モジュール1Aと同じ構成については説明を省略し、異なる構成を中心に説明する。
 ハイブリッドフィルタ11は、弾性波共振器A1(弾性波共振子P1およびP2)と、キャパシタC3と、インダクタL1、L2およびL3と、を備える。
 フィルタ12は、弾性波共振器A3と、インダクタL7およびL8と、を備える。
 ここで、ハイブリッドフィルタ11において、弾性波共振器A1およびキャパシタC3は主面80aに配置されており、インダクタL3は、モジュール基板80の内部に形成されている。インダクタL3は、例えば、複数の平面コイル導体とそれらを接続するビア導体とで構成される。
 また、フィルタ12において、弾性波共振器A3およびインダクタL7は主面80aに配置されており、インダクタL8は、モジュール基板80の内部に形成されている。インダクタL8は、例えば、複数の平面コイル導体とそれらを接続するビア導体とで構成される。
 上記構成によれば、ハイブリッドフィルタ11を構成する回路素子の一部が主面80aに配置され、他の回路素子がモジュール基板80の内部に形成されるので、高周波モジュール1Bを小型化できる。
 なお、モジュール基板80の内部に形成される回路素子は、弾性波共振器およびキャパシタのいずれかであってもよい。
 [4.効果等]
 以上のように、実施例に係る高周波モジュール1Aは、互いに対向する主面80aおよび80bを有するモジュール基板80と、第1弾性波共振子、第1インダクタ、および第1キャパシタを有し、5G-NRのn77を通過帯域に含むハイブリッドフィルタ11と、第2弾性波共振子および第2インダクタを有し、5G-NRのn79を通過帯域に含むフィルタ12と、電力増幅器61および62と、電力増幅器61とハイブリッドフィルタ11との間に接続された第3インダクタと、電力増幅器62とフィルタ12との間に接続された第4インダクタと、を備え、ハイブリッドフィルタ11の通過帯域幅は第1弾性波共振子の共振帯域幅よりも大きく、モジュール基板80を平面視した場合に、(1)モジュール基板80上の基準点R1から左側かつ上側の領域である第1象限Q2、(2)基準点R1から左側かつ下側の領域である第2象限Q3、および(3)基準点R1から右側かつ下側の領域である第3象限Q4(4)基準点R1から右側かつ上側の領域である第4象限Q1、を定義した場合、電力増幅器61の少なくとも一部および電力増幅器62の少なくとも一部は第1象限Q2に配置されており、第3インダクタの少なくとも一部および第4インダクタの少なくとも一部は第2象限Q3に配置されており、ハイブリッドフィルタ11の少なくとも一部およびフィルタ12の少なくとも一部は第3象限Q4に配置されており、電力増幅器61は電力増幅器62よりも基準点R1に近く配置されており、第3インダクタは第4インダクタよりも基準点R1に近く配置されており、ハイブリッドフィルタ11はフィルタ12よりも基準点R1に近く配置されている。
 これによれば、第1送信経路に配置される電力増幅器61、第3インダクタ、およびハイブリッドフィルタ11は、それぞれ、第1象限Q2、第2象限Q3および第3象限Q4に配置されるので、第1送信経路は、モジュール基板80をz軸正方向から平面視した場合、基準点R1を中心として反時計回りに短く形成することが可能となる。また、第2送信経路に配置される電力増幅器62、第4インダクタ、およびフィルタ12は、それぞれ、第1象限Q2、第2象限Q3および第3象限Q4に配置されるので、第2送信経路は、モジュール基板80をz軸正方向から平面視した場合、基準点R1を中心として反時計回りに短く形成することが可能となる。これにより、高出力の送信信号を伝送する第1送信経路および第2送信経路を短く形成できるので、低損失の信号通過特性を有するマルチバンド対応の高周波モジュール1Aを実現できる。また、高周波モジュール1Aの消費電力を低減できる。
 さらに、電力増幅器61は電力増幅器62よりも基準点R1に近く配置されており、第3インダクタは第4インダクタよりも基準点R1に近く配置されており、ハイブリッドフィルタ11はフィルタ12よりも基準点R1に近く配置されているので、第1送信経路を第2送信経路よりも短く形成できる。これにより、使用地域が多く、また、使用頻度が高い第1通信バンド(5G-NRのn77)の送信信号を、より低損失で伝送できる。よって、マルチバンド対応の高周波モジュール1Aを、高効率に低損失化できる。
 また、実施例に係る高周波モジュール1Aは、さらに、主面80bに配置された低雑音増幅器51および52と、ハイブリッドフィルタ11、低雑音増幅器51、および第3インダクタに接続され、ハイブリッドフィルタ11と低雑音増幅器51との接続およびハイブリッドフィルタ11と第3インダクタとの接続を切り替えるスイッチ31と、フィルタ12、低雑音増幅器52、および第4インダクタに接続され、フィルタ12と低雑音増幅器52との接続およびフィルタ12と第4インダクタとの接続を切り替えるスイッチ32と、を備え、第1弾性波共振子、第1インダクタ、および第1キャパシタのうちの1つは、主面80aに配置されていてもよい。
 これによれば、ハイブリッドフィルタ11の一部の回路素子と低雑音増幅器51および52とが、モジュール基板80を挟んでモジュール基板80の両面に振り分けられて配置されるので、高周波モジュール1Aを小型化できる。
 また、実施例に係る高周波モジュール1Aおよび変形例に係る高周波モジュール1Bにおいて、第1弾性波共振子、第1インダクタ、および第1キャパシタは、主面80aおよびモジュール基板80の内部のいずれかに配置されており、第2弾性波共振子および第2インダクタは、主面80aおよびモジュール基板80の内部のいずれかに配置されていてもよい。
 これによれば、ハイブリッドフィルタ11およびフィルタ12を構成する回路素子の一部が主面80aまたはモジュール基板80の内部に配置されるので、高周波モジュール1Aおよび1Bを小型化できる。
 また、実施例に係る高周波モジュール1Aは、さらに、主面80bに配置された外部接続端子100を備え、電力増幅器61および62は主面80aに配置されており、第3インダクタおよび第4インダクタは主面80aに配置されていてもよい。
 これによれば、低背化が困難な電力増幅器61および62、ならびに第3インダクタおよび第4インダクタは、主面80aに配置されている。よって、主面80bには低背化が困難な回路部品が配置されないので、高周波モジュール1Aの主面80b側を低背化することが容易となる。
 また、実施例に係る高周波モジュール1Aは、さらに、ハイブリッドフィルタ11およびフィルタ12に接続され、ハイブリッドフィルタ11とアンテナ接続端子110および120との接続および非接続を切り替え、フィルタ12とアンテナ接続端子110および120との接続および非接続を切り替えるスイッチ30を備え、モジュール基板80を平面視した場合、ハイブリッドフィルタ11とスイッチ30とは、少なくとも一部が重なっていてもよい。
 これによれば、送信信号および受信信号の双方が通過するハイブリッドフィルタ11とスイッチ30とを、モジュール基板80の垂直方向に沿ってモジュール基板80内に形成されたビア配線を主として接続できる。よって、ハイブリッドフィルタ11とスイッチ30とを結ぶ配線を短くでき、第1通信バンドの送信信号および受信信号の伝送損失を低減できる。
 また、実施例に係る高周波モジュール1Aにおいて、低雑音増幅器51および52、ならびにスイッチ30は、主面80bに配置された半導体IC71に含まれていてもよい。
 これによれば、低雑音増幅器51および52、ならびにスイッチ30を小型化かつ低背化できる。また、半導体IC71が主面80bに配置されることにより、高周波モジュール1Aを低背化できる。
 また、実施例に係る高周波モジュール1Aは、さらに、第3弾性波共振子、第5インダクタ、および第2キャパシタを有し、5G-NRのn77を通過帯域に含むハイブリッドフィルタ21と、第4弾性波共振子および第6インダクタを有し、5G-NRのn79を通過帯域に含むフィルタ22と、を備え、ハイブリッドフィルタ21およびフィルタ22は、それぞれ、スイッチ30に接続された受信専用フィルタであり、ハイブリッドフィルタ21の少なくとも一部およびフィルタ22の少なくとも一部は第4象限Q1に配置されていてもよい。
 これによれば、高周波モジュール1Aを構成する回路部品をバランスよく高密度実装できる。
 また、実施例に係る高周波モジュール1Aは、さらに、ハイブリッドフィルタ21に接続された低雑音増幅器53を備え、モジュール基板80を平面視した場合、ハイブリッドフィルタ21と低雑音増幅器53とは、少なくとも一部が重なっていてもよい。
 これによれば、ハイブリッドフィルタ21と低雑音増幅器53とを、モジュール基板80の垂直方向に沿ってモジュール基板80内に形成されたビア配線を主として接続できる。よって、ハイブリッドフィルタ21と低雑音増幅器53とを結ぶ配線を短くでき、第1通信バンドの受信信号の伝送損失を低減できる。
 また、通信装置5は、アンテナ2Aおよび2Bで受信される高周波信号を処理するRFIC3と、アンテナ2Aおよび2BとRFIC3との間で高周波信号を伝搬する高周波モジュール1と、を備える。
 これにより、ハイブリッドフィルタ11を含み、低損失の信号通過特性を有するマルチバンド対応の通信装置5を提供できる。
 (その他の実施の形態)
 以上、本発明に係る高周波モジュールおよび通信装置について、実施の形態、実施例および変形例を挙げて説明したが、本発明は、上記実施の形態、実施例および変形例に限定されるものではない。上記実施の形態、実施例および変形例における任意の構成要素を組み合わせて実現される別の実施の形態や、上記実施の形態に対して本発明の主旨を逸脱しない範囲で当業者が思いつく各種変形を施して得られる変形例や、本発明に係る高周波モジュールおよび通信装置を内蔵した各種機器も本発明に含まれる。
 例えば、実施の形態、実施例および変形例に係る高周波モジュールおよび通信装置において、各構成要素の間に、インダクタおよびキャパシタなどの整合素子、ならびにスイッチ回路が接続されていてもかまわない。なお、インダクタには、各構成要素間を繋ぐ配線による配線インダクタが含まれてもよい。
 本発明は、マルチバンドシステムに適用できる高周波モジュールおよび通信装置として、携帯電話などの通信機器に広く利用できる。
 1、1A、1B  高周波モジュール
 2A、2B  アンテナ
 3  RF信号処理回路(RFIC)
 4  ベースバンド信号処理回路(BBIC)
 5  通信装置
 10、20  高周波回路
 11、21  ハイブリッドフィルタ
 12、22  フィルタ
 30、31、32  スイッチ
 30a、30b  共通端子
 30c、30d、30e、30f  選択端子
 41、42、43、44、45、46  整合回路
 51、52、53、54  低雑音増幅器
 61、62  電力増幅器
 71、72  半導体IC
 80  モジュール基板
 80a、80b  主面
 81、82  樹脂部材
 85  金属シールド層
 100  外部接続端子
 101、102、103、104  入出力端子
 110、120  アンテナ接続端子
 130、150、170、180  受信出力端子
 140、160  送信入力端子
 A1、A2、A3  弾性波共振器
 C3、C4  キャパシタ
 d1、d2、d3、d4、d5、d6  距離
 L1、L2、L3、L4、L5、L6、L7、L8  インダクタ
 P1、P2、P5、P6  弾性波共振子
 Q1  第4象限
 Q2  第1象限
 Q3  第2象限
 Q4  第3象限
 R1  基準点

Claims (9)

  1.  互いに対向する第1主面および第2主面を有する基板と、
     第1弾性波共振子、第1インダクタ、および第1キャパシタを有し、5G-NRのn77を通過帯域に含む第1ハイブリッドフィルタと、
     第2弾性波共振子および第2インダクタを有し、5G-NRのn79を通過帯域に含む第1フィルタと、
     第1電力増幅器および第2電力増幅器と、
     前記第1電力増幅器と前記第1ハイブリッドフィルタとの間に接続された第3インダクタと、
     前記第2電力増幅器と前記第1フィルタとの間に接続された第4インダクタと、を備え、
     前記第1ハイブリッドフィルタの通過帯域幅は、前記第1弾性波共振子の共振帯域幅よりも大きく、
     前記基板を平面視した場合に、(1)前記基板上の基準点から左側かつ上側の領域である第1象限、(2)前記基準点から左側かつ下側の領域である第2象限、(3)前記基準点から右側かつ下側の領域である第3象限、および(4)前記基準点から右側かつ上側の領域である第4象限、を定義した場合、
     前記第1電力増幅器の少なくとも一部および前記第2電力増幅器の少なくとも一部は、前記第1象限に配置されており、
     前記第3インダクタの少なくとも一部および前記第4インダクタの少なくとも一部は、前記第2象限に配置されており、
     前記第1ハイブリッドフィルタの少なくとも一部および前記第1フィルタの少なくとも一部は前記第3象限に配置されており、
     前記第1電力増幅器は、前記第2電力増幅器よりも前記基準点に近く配置されており、
     前記第3インダクタは前記第4インダクタよりも前記基準点に近く配置されており、
     前記第1ハイブリッドフィルタは前記第1フィルタよりも前記基準点に近く配置されている、
     高周波モジュール。
  2.  さらに、
     前記第2主面に配置された第1低雑音増幅器および前記第2主面に配置された第2低雑音増幅器と、
     前記第1ハイブリッドフィルタ、前記第1低雑音増幅器、および前記第3インダクタに接続され、前記第1ハイブリッドフィルタと前記第1低雑音増幅器との接続および前記第1ハイブリッドフィルタと前記第3インダクタとの接続を切り替える第1スイッチと、
     前記第1フィルタ、前記第2低雑音増幅器、および前記第4インダクタに接続され、前記第1フィルタと前記第2低雑音増幅器との接続および前記第1フィルタと前記第4インダクタとの接続を切り替える第2スイッチと、を備え、
     前記第1弾性波共振子、前記第1インダクタ、および前記第1キャパシタのうちの1つは、前記第1主面に配置されている、
     請求項1に記載の高周波モジュール。
  3.  前記第1弾性波共振子、前記第1インダクタ、および前記第1キャパシタは、前記第1主面および前記基板の内部のいずれかに配置されており、
     前記第2弾性波共振子および前記第2インダクタは、前記第1主面および前記基板の内部のいずれかに配置されている、
     請求項2に記載の高周波モジュール。
  4.  さらに、前記第2主面に配置された外部接続端子を備え、
     前記第1電力増幅器および前記第2電力増幅器は、前記第1主面に配置されており、
     前記第3インダクタおよび前記第4インダクタは、前記第1主面に配置されている、
     請求項2または3に記載の高周波モジュール。
  5.  さらに、
     前記第1ハイブリッドフィルタおよび前記第1フィルタに接続され、前記第1ハイブリッドフィルタとアンテナ接続端子との接続および非接続を切り替え、前記第1フィルタとアンテナ接続端子との接続および非接続を切り替える第3スイッチを備え、
     前記基板を平面視した場合、前記第1ハイブリッドフィルタと前記第3スイッチとは、少なくとも一部が重なっている、
     請求項2~4のいずれか1項に記載の高周波モジュール。
  6.  前記第1低雑音増幅器、前記第2低雑音増幅器、および前記第3スイッチは、前記第2主面に配置された半導体ICに含まれている、
     請求項5に記載の高周波モジュール。
  7.  さらに、
     第3弾性波共振子、第5インダクタ、および第2キャパシタを有し、5G-NRのn77を通過帯域に含む第2ハイブリッドフィルタと、
     第4弾性波共振子および第6インダクタを有し、5G-NRのn79を通過帯域に含む第2フィルタと、を備え、
     前記第2ハイブリッドフィルタおよび前記第2フィルタは、それぞれ、前記第3スイッチに接続された受信専用フィルタであり、
     前記第2ハイブリッドフィルタの少なくとも一部および前記第2フィルタの少なくとも一部は前記第4象限に配置されている、
     請求項5または6に記載の高周波モジュール。
  8.  さらに、
     前記第2ハイブリッドフィルタに接続された第3低雑音増幅器を備え、
     前記基板を平面視した場合、前記第2ハイブリッドフィルタと前記第3低雑音増幅器とは、少なくとも一部が重なっている、
     請求項7に記載の高周波モジュール。
  9.  アンテナで受信される高周波信号を処理するRF信号処理回路と、
     前記アンテナと前記RF信号処理回路との間で前記高周波信号を伝搬する請求項1~8のいずれか1項に記載の高周波モジュールと、を備える、
     通信装置。
PCT/JP2022/010793 2021-03-31 2022-03-11 高周波モジュールおよび通信装置 WO2022209726A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202280025789.9A CN117136497A (zh) 2021-03-31 2022-03-11 高频模块和通信装置
US18/477,705 US20240030894A1 (en) 2021-03-31 2023-09-29 Radio-frequency module and communication device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-059145 2021-03-31
JP2021059145 2021-03-31

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/477,705 Continuation US20240030894A1 (en) 2021-03-31 2023-09-29 Radio-frequency module and communication device

Publications (1)

Publication Number Publication Date
WO2022209726A1 true WO2022209726A1 (ja) 2022-10-06

Family

ID=83456134

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/010793 WO2022209726A1 (ja) 2021-03-31 2022-03-11 高周波モジュールおよび通信装置

Country Status (3)

Country Link
US (1) US20240030894A1 (ja)
CN (1) CN117136497A (ja)
WO (1) WO2022209726A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040018814A1 (en) * 2002-07-25 2004-01-29 Tsung-Liang Lin Layout of wireless communication circuit on a printed circuit board
JP2006311305A (ja) * 2005-04-28 2006-11-09 Matsushita Electric Ind Co Ltd 受動型ポリフェーズフィルタ
JP2020014204A (ja) * 2018-07-18 2020-01-23 スカイワークス ソリューションズ, インコーポレイテッドSkyworks Solutions, Inc. Lcフィルタにカスケード接続されたハイブリッド弾性lcフィルタ
JP2021044654A (ja) * 2019-09-10 2021-03-18 株式会社村田製作所 高周波回路および通信装置
JP2021048503A (ja) * 2019-09-19 2021-03-25 株式会社村田製作所 高周波回路および通信装置
JP2021048566A (ja) * 2019-09-20 2021-03-25 株式会社村田製作所 高周波モジュールおよび通信装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040018814A1 (en) * 2002-07-25 2004-01-29 Tsung-Liang Lin Layout of wireless communication circuit on a printed circuit board
JP2006311305A (ja) * 2005-04-28 2006-11-09 Matsushita Electric Ind Co Ltd 受動型ポリフェーズフィルタ
JP2020014204A (ja) * 2018-07-18 2020-01-23 スカイワークス ソリューションズ, インコーポレイテッドSkyworks Solutions, Inc. Lcフィルタにカスケード接続されたハイブリッド弾性lcフィルタ
JP2021044654A (ja) * 2019-09-10 2021-03-18 株式会社村田製作所 高周波回路および通信装置
JP2021048503A (ja) * 2019-09-19 2021-03-25 株式会社村田製作所 高周波回路および通信装置
JP2021048566A (ja) * 2019-09-20 2021-03-25 株式会社村田製作所 高周波モジュールおよび通信装置

Also Published As

Publication number Publication date
CN117136497A (zh) 2023-11-28
US20240030894A1 (en) 2024-01-25

Similar Documents

Publication Publication Date Title
KR102448318B1 (ko) 고주파 모듈 및 통신 장치
CN213213462U (zh) 高频模块和通信装置
US11381265B2 (en) Radio frequency module and communication device
CN213879810U (zh) 高频模块和通信装置
WO2020071020A1 (ja) 高周波モジュールおよび通信装置
JP2021197642A (ja) 高周波モジュールおよび通信装置
JP2021145288A (ja) 高周波モジュールおよび通信装置
US20240014805A1 (en) Radio-frequency module and communication device
JP2021158569A (ja) 高周波モジュールおよび通信装置
CN214851214U (zh) 高频模块和通信装置
CN216699996U (zh) 高频模块和通信装置
CN214851215U (zh) 高频模块和通信装置
KR102471373B1 (ko) 고주파 모듈 및 통신 장치
JP2021197644A (ja) 高周波モジュールおよび通信装置
JP2021158554A (ja) 高周波モジュールおよび通信装置
WO2022153926A1 (ja) 高周波回路および通信装置
KR102455844B1 (ko) 고주파 모듈 및 통신장치
WO2021241339A1 (ja) 高周波モジュールおよび通信装置
US11418225B2 (en) Radio frequency module and communication device
WO2022209726A1 (ja) 高周波モジュールおよび通信装置
WO2022209727A1 (ja) 高周波モジュールおよび通信装置
WO2022202328A1 (ja) 高周波モジュールおよび通信装置
JP2021093709A (ja) 高周波モジュールおよび通信装置
WO2022123823A1 (ja) ハイブリッドフィルタ、マルチプレクサ、高周波モジュールおよび通信装置
WO2022209728A1 (ja) 高周波モジュール及び通信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22779947

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22779947

Country of ref document: EP

Kind code of ref document: A1