WO2022209618A1 - 多孔質液晶ポリマーの製造方法および多孔化剤 - Google Patents

多孔質液晶ポリマーの製造方法および多孔化剤 Download PDF

Info

Publication number
WO2022209618A1
WO2022209618A1 PCT/JP2022/009899 JP2022009899W WO2022209618A1 WO 2022209618 A1 WO2022209618 A1 WO 2022209618A1 JP 2022009899 W JP2022009899 W JP 2022009899W WO 2022209618 A1 WO2022209618 A1 WO 2022209618A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
crystal polymer
porous liquid
porosity
agent
Prior art date
Application number
PCT/JP2022/009899
Other languages
English (en)
French (fr)
Inventor
秀典 大西
吉紀 河野
友浩 樽野
俊介 首藤
智昭 日紫喜
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Priority to CN202280022821.8A priority Critical patent/CN117043244A/zh
Priority to JP2023510746A priority patent/JPWO2022209618A1/ja
Priority to KR1020237031270A priority patent/KR20230164018A/ko
Publication of WO2022209618A1 publication Critical patent/WO2022209618A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/26Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof by elimination of a solid phase from a macromolecular composition or article, e.g. leaching out
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/08Supercritical fluid
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/54Improvements relating to the production of bulk chemicals using solvents, e.g. supercritical solvents or ionic liquids

Definitions

  • the present invention relates to a method for producing a porous liquid crystal polymer and a porosity agent.
  • a method for producing a porous resin in which a porosifying agent is extracted from a composition containing a resin and a porosifying agent by a supercritical extraction method using supercritical carbon dioxide as an extracting solvent (for example, Patent Document 1 below: reference.).
  • Patent Document 1 a composition solution containing polyoxyethylene dimethyl ether as a porosity agent, a polyimide resin precursor as a resin, and a solvent is prepared, and this is applied and dried to form a coating film.
  • the polyoxyethylene dimethyl ether described above is then extracted from the coating film by the method described above.
  • a liquid crystal polymer As the resin, in order to carry out the supercritical extraction method, first, a liquid crystal polymer and a porosity agent are kneaded to prepare a kneaded product.
  • polyoxyethylene dimethyl ether when polyoxyethylene dimethyl ether is kneaded as a porosity agent, it decomposes or volatilizes during kneading, making it impossible to prepare a kneaded product containing a porosity agent and, in turn, to produce a porous liquid crystal polymer.
  • the present invention provides a method for producing a porous liquid crystal polymer and a porosity agent that can reliably knead the porosity agent together with the liquid crystal polymer and reliably produce the porous liquid crystal polymer.
  • the present invention (1) comprises a first step of kneading a liquid crystal polymer and a porosifying agent to prepare a composition containing the liquid crystal polymer and the porosifying agent; and a second step of extracting with a supercritical fluid, wherein the porosity agent has a mass reduction rate of 10% by mass or less at 230°C.
  • the mass reduction rate of the porosifying agent at 230°C is 10% by mass or less, so the porosifying agent has excellent heat resistance. Therefore, in the first step, the porosity agent can be reliably kneaded together with the liquid crystal polymer while suppressing decomposition or volatilization. As a result, in the second step, the porous liquid crystal polymer can be reliably produced by extracting the porosity agent from the composition containing the porosity agent.
  • the porosity agent is at least one selected from the group consisting of purine derivatives, bisphenol AF derivatives, pearl fluoropolyether derivatives, calixarene derivatives, and dicarboxylic anhydride derivatives.
  • (1) includes the method for producing a porous liquid crystal polymer.
  • the present invention (3) includes the method for producing a porous liquid crystal polymer according to (1) or (2), wherein the temperature of the supercritical fluid in the second step is higher than the glass transition temperature of the liquid crystal polymer.
  • the temperature of the supercritical fluid in the second step is higher than the glass transition temperature of the liquid crystal polymer, so the extraction efficiency with the supercritical fluid in the second step can be increased. Therefore, a porous liquid crystal polymer having a high porosity P can be produced.
  • the present invention (4) is any one of (1) to (3), wherein in the first step, a nonporous sheet made of the composition is formed, and in the second step, a porous liquid crystal polymer sheet is produced. or a method for producing a porous liquid crystal polymer.
  • the present invention (5) includes the method for producing a porous liquid crystal polymer according to any one of (1) to (4), wherein hollow spheres are kneaded in the first step.
  • the present invention (6) includes a method for producing a porous liquid crystal polymer according to any one of (1) to (5), wherein the supercritical fluid is supercritical carbon dioxide.
  • the supercritical fluid is supercritical carbon dioxide, so the porous liquid crystal polymer can be produced at low cost.
  • the present invention (7) is the production of a porous liquid crystal polymer according to any one of (1) to (6), wherein in the second step, a porous liquid crystal polymer having a porosity P of 20% or more is produced. including methods.
  • the present invention (8) includes the method for producing a porous liquid crystal polymer according to any one of (1) to (7), wherein an entrainer is blended with the supercritical fluid in the second step.
  • the entrainer is blended with the supercritical fluid, so the extraction efficiency of the supercritical fluid can be increased. Therefore, a porous liquid crystal polymer with a high porosity P can be produced.
  • the present invention (9) includes the method for producing a porous liquid crystal polymer according to any one of (1) to (8), wherein the porosity agent has a mass reduction rate of 10% by mass or less at 300°C. .
  • the present invention (10) includes the method for producing a porous liquid crystal polymer according to any one of (1) to (9), wherein the porosity agent has a mass reduction rate of 10% by mass or less at 350°C. .
  • the present invention (11) includes the method for producing a porous liquid crystal polymer according to (2), wherein the dicarboxylic anhydride derivative contains a trifluoromethyl group.
  • the present invention (12) includes the method for producing a porous liquid crystal polymer according to (11), wherein the trifluoromethyl group is located in the center of the structure.
  • the present invention (13) includes a porosifying agent having a mass reduction rate of 10% by mass or less at 230°C.
  • This porosity agent has a mass reduction rate of 10% by mass or less at 230°C. Therefore, the porosity agent is excellent in heat resistance. Therefore, the porosity agent can be reliably kneaded together with the liquid crystal polymer while suppressing decomposition or volatilization. As a result, the porous liquid crystal polymer can be reliably produced by extracting the porosity agent from the composition containing the porosity agent.
  • the present invention (14) includes the porosifying agent according to (13), which has a mass reduction rate of 10% by mass or less at 300°C.
  • the present invention includes the porosifying agent according to (13) or (14), which has a mass reduction rate of 10% by mass or less at 350°C.
  • the present invention (16) is at least one selected from the group consisting of purine derivatives, bisphenol AF derivatives, pearl fluoropolyether derivatives, calixarene derivatives, and dicarboxylic anhydride derivatives (13) to (15) ) containing the porosity agent according to any one of ).
  • the present invention (17) includes the porosifying agent according to (16), wherein the dicarboxylic anhydride derivative contains a trifluoromethyl group.
  • the present invention (18) includes the porosifying agent according to (17), wherein the trifluoromethyl group is located in the center of the structure.
  • the porosity agent can be reliably kneaded together with the liquid crystal polymer, and the porous liquid crystal polymer can be reliably obtained.
  • FIG. 1A and 1B are process diagrams of one embodiment of the method for producing a porous liquid crystal polymer of the present invention.
  • FIG. 1A is the first step.
  • FIG. 1B is the second step.
  • FIG. 2 is a cross-sectional view of a wired circuit board comprising a porous liquid crystal polymer sheet.
  • a method for producing a porous liquid crystal polymer sheet 1, which is one embodiment of the method for producing a porous liquid crystal polymer of the present invention, will be described with reference to FIGS. 1A and 1B.
  • This manufacturing method includes a first step and a second step as essential steps. Moreover, this manufacturing method includes a third step as an optional step. In this manufacturing method, for example, the first to third steps are performed in order.
  • a liquid crystal polymer and a porosity agent are kneaded to prepare a composition.
  • Liquid crystal polymers are not limited.
  • a liquid crystal polymer is a liquid crystalline thermoplastic resin.
  • liquid crystalline polymers include liquid crystalline polyesters, preferably aromatic liquid crystalline polyesters.
  • Liquid crystal polymers are specifically described, for example, in JP-A-2020-147670 and JP-A-2004-189867.
  • a commercial item can be used for the liquid crystal polymer.
  • Commercially available products include, for example, UENO LCP (registered trademark, hereinafter the same) 8100 series (low melting point type, manufactured by Ueno Pharmaceutical Co., Ltd.) and UENO LCP 5000 series (high melting point type, manufactured by Ueno Pharmaceutical Co., Ltd.).
  • UENO LCP8100 series is mentioned.
  • the melting point of the liquid crystal polymer is not limited.
  • the melting point of the liquid crystal polymer is, for example, 200° C. or higher, preferably 220° C. or higher, more preferably 400° C. or higher, and for example, 370° C. or lower.
  • the melting point of a liquid crystal polymer is determined by differential scanning calorimetry. In differential scanning calorimetry, the heating rate is 10° C./min, operating in the range from 25° C. to 400° C., and heating the liquid crystal polymer in a nitrogen atmosphere. Moreover, if the liquid crystal polymer is a commercial product, the catalog value of the commercial product can be adopted as it is.
  • the porous liquid crystal polymer sheet 1 will be excellent in handleability and workability. If the melting point of the liquid crystal polymer is equal to or less than the above upper limit, the porous liquid crystal polymer sheet 1 will be excellent in heat resistance.
  • the glass transition temperature of the liquid crystal polymer is not limited.
  • the glass transition temperature of the liquid crystal polymer is, for example, 80° C. or higher and, for example, 125° C. or lower.
  • the glass transition temperature of the liquid crystal polymer is determined by differential scanning calorimetry performed at a heating rate of 10°C/min.
  • a porosity agent is a component dispersed in a liquid crystal polymer to make the liquid crystal polymer porous. Also, the porosity agent undergoes phase separation from the liquid crystal polymer at, for example, a kneading temperature (described later). Phase separation involves ensuring a constant shape in the kneaded material without dissolving in the liquid crystal polymer.
  • the mass reduction rate of the porosity agent at 230°C is 10% by mass or less. "230°C" is a temperature included in the kneading temperature described later.
  • the mass reduction rate of the porosifying agent at 230°C exceeds 10% by mass, the amount of thermal decomposition will be excessive during kneading in the first step, and therefore the liquid crystal polymer cannot be reliably made porous in the second step.
  • the mass reduction rate of the porosifying agent at 230°C is preferably 9% or less, more preferably 7% or less, more preferably 5% or less, still more preferably 4% or less, furthermore preferably 3% or less. Furthermore, it is preferably 2% or less, more preferably 1% or less.
  • the lower limit of the mass reduction rate of the porosity agent at 230°C is not limited. The lower limit of the mass reduction rate of the porosity agent at 230°C is, for example, 0%.
  • the mass reduction rate of the porosity agent is measured as the mass (weight) reduction rate at 230°C in thermogravimetric analysis at a heating rate of 10°C/min and a scanning temperature of 40°C to 400°C. The details of the measurement method will be described in Examples below.
  • the mass reduction rate of the porosity agent at 300°C is, for example, 100% or less, and the mass reduction rate of the porosity agent at 300°C is preferably 40% from the viewpoint of suppressing the amount of thermal decomposition in kneading in the first step. Below, more preferably 30% or less, more preferably 10% or less, even more preferably 6% or less, further 5% or less, further 4% or less, further 2% or less, 1% or less is preferred.
  • the lower limit of the mass reduction rate of the porosity agent at 300°C is, for example, 0%.
  • the mass reduction rate of the porosity agent is measured as the mass (weight) reduction rate at 300°C in thermogravimetric analysis at a heating rate of 10°C/min and a scanning temperature of 40°C to 400°C. The details of the measurement method will be described in Examples below.
  • the mass reduction rate of the porosity agent at 350°C is, for example, 100% or less. Below, more preferably 20% or less, more preferably 15% or less, still more preferably 10% or less, further 8% or less, further 5% or less, furthermore 3% or less is suitable .
  • the lower limit of the mass reduction rate of the porosity agent at 350°C is, for example, 0%.
  • the mass reduction rate of the porosity agent is measured as the mass (weight) reduction rate at 350°C in thermogravimetric analysis at a heating rate of 10°C/min and a scanning temperature of 40°C to 400°C. The details of the measurement method will be described in Examples below.
  • porosity agent is not limited as long as it satisfies the above mass reduction rate.
  • porosity agents include purine derivatives, bisphenol AF derivatives, pearl fluoropolyether derivatives, calixarene derivatives, acene derivatives, and dicarboxylic acid anhydride derivatives. These can be used alone or in combination.
  • Purine derivatives include, for example, caffeine, theobromine, and theophylline-7-acetic acid, and caffeine and theobromine from the viewpoint of obtaining high extraction efficiency and high porosity.
  • Examples of bisphenol AF derivatives include 5,5′-(1,1,1,3,3,3-hexafluoro-2,2-propanediyl)bis[2-phenyl-1H-isoindole-1,3 (2H)-dione] and 2,2-bis(4-carboxyphenyl)hexafluoropropane.
  • Perfluoropolyether derivatives include, for example, perfluoropolyethers.
  • the weight average molecular weight (catalog value) of perfluoropolyether is, for example, 1000 or more and 10,000 or less.
  • Examples of calixarene derivatives include p-tert-butylcalix[4]arene.
  • Examples of acene derivatives include 6,13-pentacenedione.
  • Dicarboxylic anhydride derivatives include, for example, a compound containing a trifluoromethyl group, preferably a compound having a trifluoromethyl group located in the center of the structure, more preferably a compound having a trifluoromethyl group located in the center of the structure, and more preferably and more preferably a compound in which the density of trifluoromethyl groups at the center of the structure is higher than that of trifluoromethyl groups at the ends of the structure.
  • dicarboxylic anhydride derivatives include, for example, 4,4′-oxydiphthalic anhydride, 2,2′-diphenyl[5,5′-bi-1H-isoindole]-1,1′, 3,3′(2H,2H′)-tetrone and 2,2′-[2,2′-bis(trifluoromethyl)[1,1′-biphenyl]-4,4′-diyl]bis[ 1H-isoindole-1,3(2H)-dione], 2,2′-bis[4-(trifluoromethyl)phenyl][5,5′-bi-1H-isoindole]-1,1′, 3,3′(2H,2′H)-tetrone and 2,2′-[2,2′-bis(trifluoromethyl)[1,1′-biphenyl]-4,4′-diyl]bis [octahydro-1,3-dioxo-1H-
  • 2,2′-[2,2′-bis(trifluoromethyl)[1,1′-biphenyl]-4,4′-diyl]bis[octahydro-1,3-dioxo-1H-isoindole -5-methyl] is a compound containing a trifluoromethyl group, and is an example of a dicarboxylic anhydride derivative in which the density of the trifluoromethyl group at the center of the structure is higher than the density of the trifluoromethyl groups at the ends of the structure. .
  • a porosity agent preferably a purine derivative, a bisphenol AF derivative, a perfluoropolyether derivative, a calixarene derivative, and a dicarboxylic acid in which the density of trifluoromethyl groups in the center of the structure is higher than the density of trifluoromethyl groups at the ends of the structure.
  • acid anhydride derivatives The porosity agent is a purine derivative, a bisphenol AF derivative, a perfluoropolyether derivative, a calixarene derivative, or a dicarboxylic acid anhydride in which the density of the trifluoromethyl groups in the center of the structure is higher than that of the trifluoromethyl groups at the ends of the structure. If it is at least one selected from the group consisting of derivatives, the extraction efficiency with the supercritical fluid (preferably supercritical carbon dioxide) in the second step is high, and therefore the porous liquid crystal having a high porosity P A polymer sheet 1 can be produced.
  • the supercritical fluid preferably
  • the blending ratio of the porosity agent is not limited.
  • the mixing ratio of the porosity agent is appropriately adjusted so that the desired porosity P is achieved.
  • the volume percentage of the porosity agent to the total volume of the liquid crystal polymer and the porosity agent is, for example, 20% by volume or more, preferably 30% by volume or more, and more preferably 40% by volume or more. Also, for example, it is 90% by volume or less, preferably 80% by volume or less, more preferably 70% by volume or less.
  • the percentage of the volume of the porosifying agent relative to the total volume of the liquid crystal polymer and the porosifying agent is obtained by conversion using the specific gravity from the percentage of the mass of the porosifying agent relative to the total mass of the liquid crystal polymer and the porosifying agent.
  • the mass ratio of the porosifying agent to 100 parts by mass of the liquid crystal polymer is, for example, 10 parts by mass or more, preferably 50 parts by mass or more, and is, for example, 500 parts by mass or less, preferably 250 parts by mass or less. be.
  • additives may be kneaded.
  • additives include fillers.
  • Fillers include, for example, hollow spheres.
  • Hollow spheres include, for example, glass balloons. Hollow spheres are described, for example, in JP-A-2004-189867.
  • a porous liquid crystal polymer sheet 1 with a high porosity P can be produced.
  • the porous liquid crystal polymer sheet 1 can be prevented from becoming brittle.
  • the kneading temperature is not limited.
  • the kneading temperature is set to a temperature at which the amount of thermal decomposition of the porosity agent is small.
  • the kneading temperature is, for example, 200° C. or higher, preferably 210° C. or higher, and is, for example, 350° C. or lower, preferably 300° C. or lower, more preferably 270° C. or lower, further preferably 270° C. or lower. , 250° C. or less.
  • the kneading temperature is, for example, in the range of 230°C ⁇ 30°C (that is, 200°C or higher and 260°C or lower), preferably in the range of 230°C ⁇ 20°C (that is, 210°C or higher and 250°C or lower). It is preferably in the range of 230° C. ⁇ 10° C. (that is, 220° C. or higher and 240° C. or lower), more preferably in the range of 230° C. ⁇ 5° C. (that is, 225° C. or higher and 235° C. or lower).
  • the composition is formed into a sheet to produce a nonporous sheet 3.
  • Sheeting the composition includes, for example, pressing, extrusion, and injection. Pressing is preferred, and hot pressing is more preferred.
  • the temperature of hot pressing is not limited.
  • the temperature of the hot press is set to a temperature at which the amount of thermal decomposition of the porosity agent is small. Specifically, the temperature of the hot press is, for example, 200° C. or higher and 300° C. or lower.
  • the press pressure is, for example, 1 MPa or more, preferably 4 MPa or more, and for example, 20 MPa or less, preferably 10 MPa or less.
  • the thickness of the nonporous sheet 3 is not limited.
  • the thickness of the nonporous sheet 3 is set to the target thickness of the porous liquid crystal polymer sheet 1 .
  • the porosity agent in the composition is extracted with a supercritical fluid.
  • the porosity agent in the nonporous sheet 3 is extracted with a supercritical fluid.
  • the second step uses a supercritical device 10, as shown in FIG. 1B.
  • the supercritical device 10 includes a pressure vessel 11 and a circulation device (not shown).
  • the pressure vessel 11 accommodates the supercritical fluid 15 and is capable of circulating inside.
  • the circulation device circulates the supercritical fluid 15 in the pressure vessel 11 .
  • the circulation device is provided with a recovery device.
  • a recovery device removes the porosity agent extracted into the supercritical fluid 15 .
  • Supercritical Fluid 15 The type of supercritical fluid 15 is not limited. Examples of the supercritical fluid 15 include supercritical carbon dioxide and supercritical nitrogen. Supercritical carbon dioxide is preferably used as the supercritical fluid 15 from the viewpoint of manufacturing costs.
  • An entrainer may be blended in the supercritical fluid 15 .
  • the entrainer is blended with the supercritical fluid 15 in order to increase the extraction efficiency of the porosifying agent by the supercritical fluid 15 .
  • the entrainer is compatible with the supercritical fluid 15 and the porosity agent.
  • Entrainers include, for example, water, alcohol compounds, ketone compounds, ester compounds, aromatic compounds, long-chain alkyl compounds, and aprotic amide compounds. These can be used alone or in combination.
  • Alcohol compounds include, for example, methanol and ethanol.
  • Ketone compounds include, for example, acetone and methyl ethyl ketone.
  • Ester compounds include, for example, methyl acetate, ethyl acetate, and propyl acetate.
  • Aromatic compounds include, for example, benzene, toluene, and xylene.
  • Long chain alkyl compounds include, for example, pentane, hexane, and heptane.
  • Aprotic amide compounds include, for example, N-methyl-2-pyrrolidone (NMP), dimethylformamide (DMF), and dimethylacetamide (DMAC).
  • Entrainers preferably include alcohol compounds, ester compounds, and aprotic amide compounds. The mixing ratio of the entrainer is appropriately set.
  • the blending flow rate of the entrainer is, for example, 0.1 mL/min or more, preferably 1 mL/min or more, or, for example, 20 mL/min with respect to the supercritical fluid circulation flow rate of 100 mL/min. Below, preferably, it is 5 mL/min or less.
  • the nonporous sheet 3 is installed in the pressure vessel 11. Subsequently, the supercritical fluid 15 is caused to flow into the pressure vessel 11 in the supercritical apparatus 10 . Subsequently, the supercritical fluid 15 is circulated by a circulation device (not shown). These allow the supercritical fluid 15 to contact the nonporous sheet 3 .
  • the nonporous sheet 3 is impregnated with the supercritical fluid 15 outside the nonporous sheet 3 . That is, the supercritical fluid 15 penetrates into the nonporous sheet 3 . Then, the supercritical fluid 15 described above returns to the outside of the nonporous sheet 3 while dissolving the porosifying agent. As a result, the porosity agent in the nonporous sheet 3 is extracted with the supercritical fluid 15 .
  • the conditions for the second step are not limited.
  • the temperature of the supercritical fluid 15 is, for example, higher than the glass transition temperature of the liquid crystal polymer described above.
  • the temperature of the supercritical fluid 15 is, for example, at least 10° C. higher, preferably at least 30° C. higher, more preferably at least 50° C. higher than the glass transition temperature of the liquid crystal polymer described above, and more preferably, 70 degrees higher.
  • the extraction efficiency of the supercritical fluid 15 in the second step can be increased. Therefore, a porous liquid crystal polymer sheet 1 with a high porosity P can be produced. For example, 40° C. or higher, preferably 75° C.
  • the pressure of the supercritical fluid 15 is, for example, 10 MPa or higher, preferably 20 MPa or higher, and is, for example, 30 MPa or lower, preferably 27 MPa or lower.
  • the extraction time is, for example, 20 minutes or longer, preferably 1 hour or longer, more preferably 3 hours or longer, still more preferably 5 hours or longer, particularly preferably 8 hours or longer, and most preferably 10 hours or longer. Also, for example, it is 100 hours or less, preferably 48 hours or less, more preferably 24 hours or less. If the extraction time is at least the lower limit described above, the extraction efficiency of the supercritical fluid in the second step can be increased, and the porous liquid crystal polymer sheet 1 having a high porosity P can be produced. If the extraction time is equal to or less than the upper limit described above, the tact time can be shortened and the production efficiency can be improved.
  • ⁇ Third step> the pressure in the pressure vessel 11 is lowered while the supercritical fluid 15 inside the pressure vessel 11 is removed. Specifically, the pressure in the pressure vessel 11 is returned to the atmospheric pressure.
  • the rate of pressure drop is not limited. For example, the rate of pressure drop is adjusted such that foaming by the supercritical fluid 15 impregnated in the nonporous sheet 3 is suppressed.
  • the pressure vessel 11 can be heated.
  • the heating temperature is the same as the temperature of the supercritical fluid in the second step. , 150° C. or higher, most preferably 170° C. or higher, and for example, 200° C. or lower, preferably 190° C. or lower, more preferably 180° C. or lower.
  • the heating time is, for example, 10 minutes or more and 3 hours or less.
  • porous liquid crystal polymer sheet 1 is produced.
  • the porous liquid crystal polymer sheet 1 is manufactured by performing the first to third steps described above.
  • the porous liquid crystal polymer sheet 1 has a thickness and a sheet shape.
  • a sheet shape includes a film shape.
  • the porous liquid crystal polymer sheet 1 extends in the plane direction.
  • the plane direction is perpendicular to the thickness direction.
  • the porous liquid crystal polymer sheet 1 has a large number of fine pores (pores).
  • the cell structure of the porous liquid crystal polymer sheet 1 includes, for example, a closed cell structure, an open cell structure, and a semi-closed and semi-open cell structure. A closed cell structure is preferred.
  • the porosity P of the porous liquid crystal polymer sheet 1 is, for example, 1% or more, preferably 1.5% or more, more preferably 10% or more, still more preferably 20% or more, or 22% or more. % or more, 30% or more, 35% or more, 40% or more, 50% or more, 55% or more.
  • the upper limit of the porosity P of the porous liquid crystal polymer sheet 1 is not limited.
  • the upper limit of the porosity P of the porous liquid crystal polymer sheet 1 is, for example, 95%, and from the viewpoint of ensuring the mechanical strength of the porous liquid crystal polymer sheet 1, preferably 90%.
  • the porosity P of the porous liquid crystal polymer sheet 1 can be determined using a nonporous liquid crystal polymer sheet corresponding to the porous liquid crystal polymer sheet 1 . Specifically, the specific gravity G1 of the porous liquid crystal polymer sheet and the specific gravity G0 of the nonporous liquid crystal polymer sheet are respectively measured, and the porosity P of the porous liquid crystal polymer sheet 1 is obtained by the following equation.
  • P 100 ⁇ (1 ⁇ G1/G0) P: porosity P of the porous liquid crystal polymer sheet 1 G1: Specific gravity of porous liquid crystal polymer sheet 1 G0: Specific gravity of nonporous liquid crystal polymer sheet
  • the dielectric constant of the porous liquid crystal polymer sheet 1 at 10 GHz is, for example, less than 3.10, preferably 2.60 or less, more preferably 2.50 or less, even more preferably 2.20 or less, or even 2. 0.10 or less, 2.00 or less, or 1.90 or less are preferred. If the dielectric constant of the porous liquid crystal polymer sheet 1 is equal to or less than the above upper limit, the porous liquid crystal polymer sheet has a low dielectric.
  • the lower limit of the dielectric constant of the porous liquid crystal polymer sheet at 10 GHz is not limited. For example, the dielectric constant of a porous liquid crystal polymer sheet at 10 GHz is 1.00. A method for measuring the dielectric constant of the porous liquid crystal polymer sheet will be described later in Examples.
  • the dielectric loss tangent of the porous liquid crystal polymer sheet 1 at 10 GHz is, for example, 0.00129 or less, preferably 0.00100 or less, more preferably 0.00080 or less, still more preferably 0.00070 or less, and particularly preferably 0.00060 or less. If the dielectric loss tangent of the porous liquid crystal polymer sheet 1 is equal to or less than the above upper limit, the porous liquid crystal polymer sheet has a low dielectric.
  • the lower limit of the dielectric loss tangent of the porous liquid crystal polymer sheet at 10 GHz is not limited. For example, the lower limit of dielectric loss tangent of a porous liquid crystal polymer sheet at 10 GHz is 0.00000. A method for measuring the dielectric loss tangent of the porous liquid crystal polymer sheet will be described later in Examples.
  • porous liquid crystal polymer sheet 1 Applications of the porous liquid crystal polymer sheet 1 are not limited. Applications of the porous liquid crystal polymer sheet 1 include, for example, insulating layers for printed circuit boards and antenna substrates for wireless communication.
  • FIG. 2 shows an example of a wired circuit board having the porous liquid crystal polymer sheet 1 as an insulating layer.
  • the printed circuit board 21 extends in the planar direction.
  • the wired circuit board 21 has a sheet shape.
  • the printed circuit board 21 includes an insulating layer 12 and a conductor layer 13 in order toward one side in the thickness direction.
  • the insulating layer 12 is made of the porous liquid crystal polymer sheet 1 described above.
  • the conductor layer 13 contacts one surface of the insulating layer 12 in the thickness direction.
  • the conductor layer 13 has a predetermined wiring pattern 14 .
  • a laminated plate 16 including an insulating layer 12 and a conductor sheet 25 is prepared.
  • the conductor sheet 25 is drawn in phantom lines in FIG.
  • a nonporous laminate (phantom line in FIG. 1A) including the above nonporous sheet 3 and a conductor sheet 25 is prepared, and the nonporous sheet 3 in the nonporous laminate is removed by the above method ( An extraction method, a foaming method, etc.) are used to obtain the laminate 16 described above.
  • the conductor sheet 25 in the laminated plate 16 is patterned to form the conductor layer 13 .
  • etching is used in the patterning.
  • the mass reduction rate of the porosifying agent at 230° C. is 10% by mass or less, so the porosifying agent has excellent heat resistance. Therefore, in the first step, the porosity agent can be reliably kneaded together with the liquid crystal polymer while suppressing decomposition or volatilization. Therefore, in the second step, the porous liquid crystal polymer sheet 1 can be reliably produced by extracting the porosity agent from the composition containing the porosity agent.
  • the porosity agent is at least one selected from the group consisting of purine derivatives, bisphenol AF derivatives, pearl fluoropolyether derivatives, and calixarene derivatives.
  • a critical fluid preferably supercritical carbon dioxide
  • the temperature of the supercritical fluid in the second step is higher than the glass transition temperature of the liquid crystal polymer, the extraction efficiency with the supercritical fluid in the second step can be increased. Therefore, a porous liquid crystal polymer having a high porosity P can be produced.
  • the nonporous sheet 3 made of the composition can be formed in the first step, and the thin porous liquid crystal polymer sheet 1 can be produced from the nonporous sheet 3 in the second step.
  • the porous liquid crystal polymer sheet 1 with a high porosity P can be produced by further kneading the hollow spheres in the first step.
  • the porous liquid crystal polymer sheet 1 can be produced at low cost if the supercritical fluid is supercritical carbon dioxide.
  • a porous liquid crystal polymer sheet 1 having a low dielectric constant can be manufactured.
  • the extraction efficiency of the supercritical fluid 15 can be increased by blending the entrainer with the supercritical fluid in the second step. Therefore, a porous liquid crystal polymer sheet 1 with a high porosity P can be produced.
  • the porosity agent used in the above production method has a mass reduction rate of 10% by mass or less at 230°C. Therefore, the porosity agent is excellent in heat resistance. Therefore, the porosity agent can be reliably kneaded together with the liquid crystal polymer while suppressing decomposition or volatilization. As a result, the porous liquid crystal polymer can be reliably produced by extracting the porosity agent from the composition containing the porosity agent.
  • the porous liquid crystal polymer may have a bulk shape. That is, in the first step, a nonporous bulk body is produced, and in the second and third steps, a porous liquid crystal bulk body is produced. Preferably, a porous liquid crystal polymer sheet 1 is produced. By doing so, a thin porous liquid crystal polymer sheet 1 can be produced and placed in a narrow space.
  • the porous liquid crystal polymer sheet 1 after the third step can be made even thinner.
  • Methods for thinning the porous liquid crystal polymer sheet 1 include, for example, pressing, drawing, and rolling. From the viewpoint of precision in adjusting the thickness of the porous liquid crystal polymer sheet 1 obtained as a product, pressing is preferred.
  • the printed circuit board of the modification includes a conductor layer, an insulating layer, and a conductor layer in order toward one side in the thickness direction.
  • the insulating layer is made of the porous liquid crystal polymer sheet described above.
  • Each of the two conductor layers is arranged on one surface and the other surface in the thickness direction of the insulating layer, and has a predetermined wiring pattern.
  • Examples and comparative examples are shown below to describe the present invention more specifically.
  • the present invention is not limited to Examples and Comparative Examples.
  • specific numerical values such as the mixing ratio (content ratio), physical property values, and parameters used in the following description are the corresponding mixing ratios ( content ratio), physical properties, parameters, etc. can.
  • Porosity agents used are described below. ⁇ Type of porosity agent> Porosifying agent 1: caffeine (purine derivative) Porosifying agent 2: theobromine (purine derivative) Porosity agent 3: 5,5′-(1,1,1,3,3,3-hexafluoro-2,2-propanediyl)bis[2-phenyl-1H-isoindole-1,3(2H) -dione (bisphenol AF derivative) Porosity agent 4: 2,2-bis(4-carboxyphenyl)hexafluoropropane (bisphenol AF derivative) Porosity agent 5: perfluoropolyether having a weight average molecular weight of 2000-9000 (perfluoropolyether) Porosity agent 6: p-tert-butylcalix[4]arene (calixarene derivative) Porosity agent 7: 6,13-pentacenedione (acene derivative) Porosity agent 8: 4,4'-oxydiphthalic
  • thermogravimetric analyzer model number: SDT650 manufactured by TA Instruments Japan.
  • the temperature increase rate in the thermogravimetric analysis was 10°C/min, the scanning temperature was from 40°C to 400°C, and the mass (weight) reduction rate was obtained at 230°C, 300°C, and 350°C.
  • the thermogravimetric analysis was performed under an oxygen atmosphere.
  • ⁇ Solubility of porosity agent in supercritical carbon dioxide 50 mg of each of porosity agent 1 to porosity agent 9 was placed on an aluminum petri dish, and the temperature in the pressure vessel 11 was set to 175° C. and the pressure to 25 MPa using AKICO's "CO Supercritical Fluid Experimental Apparatus". The porosifier was extracted for 0.5 hours. The solubility of the porosifying agent in supercritical carbon dioxide was evaluated by calculating the mass change rate (the following formula) before and after extraction.
  • Mass change rate (%) [mass of porosity agent before extraction - mass of porosity agent after extraction]/) (mass of porosity agent before extraction) x 100
  • ⁇ Glass transition temperature of liquid crystal polymer> The glass transition temperature of UENO LCP A8100 manufactured by Ueno Pharmaceutical Co., Ltd. as a liquid crystal polymer was determined using differential scanning calorimetry. The rate of temperature increase in differential scanning calorimetry was 10° C./min, and the liquid crystal polymer was heated in a nitrogen atmosphere. As a result, the glass transition temperature of the liquid crystal polymer (UENO LCP A8100) was 100°C.
  • UENO LCP A8100 (melting point 220°C, catalog value) manufactured by Ueno Pharmaceutical Co., Ltd. as a liquid crystal polymer and caffeine as a porosifying agent are combined with Laboplastomill manufactured by Toyo Seiki Co., Ltd. (model number: 4C150). to prepare a composition.
  • FIG. 1A The number of volume parts of the porosifying agent was 60 parts by volume with respect to the total volume of 100 volume parts of the liquid crystal polymer and the porosifying agent.
  • the temperature during kneading was 230° C. and the rotation speed was 30 min ⁇ 1 .
  • a nonporous sheet 3 with a thickness of 100 to 200 ⁇ m was produced from the kneaded material using a manual hydraulic vacuum press (model number: 11FD) manufactured by Imoto Seisakusho.
  • the temperature in the press was 230° C.
  • the press pressure was 4-10 MPa
  • the vacuum pressure was 0.1 MPa.
  • Second step A porosifying agent was extracted from the nonporous sheet 3 using supercritical carbon dioxide as the supercritical fluid using the "CO2 supercritical fluid experimental apparatus" manufactured by AKICO (second step, Fig. 1B). .
  • the temperature of supercritical carbon dioxide in the second step was 175° C.
  • the pressure of supercritical carbon dioxide was 25 MPa
  • the impregnation time was 1 hour.
  • Examples 2 to 19 Using the same extraction method as in Example 1, a porous liquid crystal polymer sheet 1 was produced. However, the type of porosity agent and the conditions of the manufacturing method were changed as shown in Tables 1 to 3.
  • Example 1 A manufacturing method similar to that of Example 1 was carried out. However, in the first step, no porosity agent was blended. Therefore, instead of obtaining porous liquid crystal polymer sheet 1, nonporous sheet 3 was obtained. This was used as a sheet of Comparative Example 1.
  • the thermal decomposition amount of the porosity agent was excessive, so the nonporous sheet 3 could not be formed. Therefore, the second step and the third step could not be performed, and therefore the porous liquid crystal polymer sheet 1 could not be produced.
  • ⁇ Porosity P> The specific gravity G1 of the porous liquid crystal polymer sheet 1 and the specific gravity G0 of the non-porous sheet 3 made of a liquid crystal polymer corresponding to the porous liquid crystal polymer sheet 1 were measured using an electronic hydrometer (model number: EW300SG) manufactured by Alpha Mirage. measured by After that, the porosity P of the porous liquid crystal polymer sheet 1 was determined using the following formula.
  • P 100 ⁇ (1 ⁇ G1/G0) P: porosity P of the porous liquid crystal polymer sheet 1 G1: specific gravity of porous liquid crystal polymer sheet 1 G0: specific gravity of nonporous sheet 3
  • a porosity agent is used in a method for producing a porous liquid crystal polymer.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

多孔質液晶ポリマーの製造方法は、第1工程と、第2工程とを備える。第1工程では、液晶ポリマーと、多孔化剤とを混練して、液晶ポリマーと多孔化剤とを含有する組成物を調製する。第2工程では、組成物における多孔化剤を超臨界流体で抽出する。230℃における多孔化剤の質量減少率が10質量%以下である。

Description

多孔質液晶ポリマーの製造方法および多孔化剤
 本発明は、多孔質液晶ポリマーの製造方法および多孔化剤に関する。
 超臨界二酸化炭素を抽出溶媒として用いる超臨界抽出法によって、樹脂と多孔化剤とを含む組成物から多孔化剤を抽出する多孔質樹脂の製造方法が知られている(例えば、下記特許文献1参照。)。特許文献1の実施例では、多孔化剤としてのポリオキシエチレンジメチルエーテルと、樹脂としてのポリイミド樹脂前駆体と、溶剤とを含む組成物溶液を調製して、これを塗布および乾燥して塗膜を形成し、続いて、塗膜から上記したポリオキシエチレンジメチルエーテルを上記の方法で抽出している。
特開2020-49897号公報
 低い吸湿率および低い誘電率を得るために、樹脂として液晶ポリマーを用いることが試案される。この試案において、超臨界抽出法を実施するには、まず、液晶ポリマーと多孔化剤とを混練して、混練物を調製する。
 しかし、多孔化剤としてポリオキシエチレンジメチルエーテルを混練すると、混練中に分解または揮発して、多孔化剤を含む混練物を調製できず、ひいては、多孔質液晶ポリマーを製造できないという不具合がある。
 本発明は、多孔化剤を液晶ポリマーとともに確実に混練でき、多孔質液晶ポリマーを確実に製造することができる、多孔質液晶ポリマーの製造方法および多孔化剤を提供する。
 本発明(1)は、液晶ポリマーと、多孔化剤とを混練して、前記液晶ポリマーと前記多孔化剤とを含有する組成物を調製する第1工程と、前記組成物における前記多孔化剤を超臨界流体で抽出する第2工程とを備え、230℃における前記多孔化剤の質量減少率が10質量%以下である、多孔質液晶ポリマーの製造方法を含む。
 この多孔質液晶ポリマーの製造方法では、230℃における多孔化剤の質量減少率が10質量%以下であるので、多孔化剤は、耐熱性に優れる。そのため、第1工程で、多孔化剤を、分解または揮発を抑制しながら、液晶ポリマーとともに確実に混練できる。その結果、第2工程では、上記した多孔化剤を含む組成物から多孔化剤を抽出することによって、多孔質液晶ポリマーを確実に製造することができる。
 本発明(2)は、前記多孔化剤が、プリン誘導体、ビスフェノールAF誘導体、パールフルオロポリエーテル誘導体、カリックスアレーン誘導体、および、ジカルボン酸無水物誘導体からなる群から選択される少なくとも1つである、(1)に記載の多孔質液晶ポリマーの製造方法を含む。
 本発明(3)は、前記第2工程における前記超臨界流体の温度が、前記液晶ポリマーのガラス転移温度より高い、(1)または(2)に記載の多孔質液晶ポリマーの製造方法を含む。
 この多孔質液晶ポリマーの製造方法では、第2工程における超臨界流体の温度が、液晶ポリマーのガラス転移温度より高いので、第2工程における超臨界流体による抽出効率を高くできる。そのため、高い空孔率Pを有する多孔質液晶ポリマーを製造できる。
 本発明(4)は、前記第1工程では、前記組成物からなる無孔質シートを形成し、前記第2工程では、多孔質液晶ポリマーシートを製造する、(1)~(3)のいずれか一項に多孔質液晶ポリマーの製造方法を含む。
 この多孔質液晶ポリマーの製造方法では、薄い多孔質液晶ポリマーシートを製造できる。
 本発明(5)は、前記第1工程では、中空球体を混練する、(1)~(4)のいずれか一項に記載の多孔質液晶ポリマーの製造方法を含む。
 この多孔質液晶ポリマーの製造方法では、第1工程で、中空球体を混練するので、空孔率が高い多孔質液晶ポリマーシートを製造できる。
 本発明(6)は、前記超臨界流体が、超臨界二酸化炭素である、(1)~(5)のいずれか一項に多孔質液晶ポリマーの製造方法を含む。
 この多孔質液晶ポリマーの製造方法では、超臨界流体が、超臨界二酸化炭素であるので、多孔質液晶ポリマーを低コストで製造できる。
 本発明(7)は、前記第2工程では、空孔率Pが20%以上である多孔質液晶ポリマーを製造する、(1)~(6)のいずれか一項に多孔質液晶ポリマーの製造方法を含む。
 この多孔質液晶ポリマーの製造方法であれば、低い誘電率を有する多孔質液晶ポリマーを製造できる。
 本発明(8)は、前記第2工程では、エントレーナを前記超臨界流体に配合する、(1)~(7)のいずれか一項に多孔質液晶ポリマーの製造方法を含む。
 この多孔質液晶ポリマーの製造方法であれば、第2工程において、エントレーナを超臨界流体に配合するので、超臨界流体の抽出効率を高くできる。そのため、高い空孔率Pの多孔質液晶ポリマーを製造できる。
 本発明(9)は、300℃における前記多孔化剤の質量減少率が10質量%以下である、(1)~(8)のいずれか一項に記載の多孔質液晶ポリマーの製造方法を含む。
 本発明(10)は、350℃における前記多孔化剤の質量減少率が10質量%以下である、(1)~(9)のいずれか一項に記載の多孔質液晶ポリマーの製造方法を含む。
 本発明(11)は、ジカルボン酸無水物誘導体が、トリフルオロメチル基を含む、(2)に記載の多孔質液晶ポリマーの製造方法を含む。
 本発明(12)は、トリフルオロメチル基は、構造中央に位置する、(11)に記載の多孔質液晶ポリマーの製造方法を含む。
 本発明(13)は、230℃における質量減少率が10質量%以下である、多孔化剤を含む。
 この多孔化剤は、230℃における多孔化剤の質量減少率が10質量%以下である。そのため、多孔化剤は、耐熱性に優れる。そのため、多孔化剤を、分解または揮発を抑制しながら、液晶ポリマーとともに確実に混練できる。その結果、上記した多孔化剤を含む組成物から多孔化剤を抽出することによって、多孔質液晶ポリマーを確実に製造することができる。
 本発明(14)は、300℃における質量減少率が10質量%以下である、(13)に記載の多孔化剤を含む。
 本発明(15)は、350℃における質量減少率が10質量%以下である、(13)または(14)に記載の多孔化剤を含む。
 本発明(16)は、プリン誘導体、ビスフェノールAF誘導体、パールフルオロポリエーテル誘導体、カリックスアレーン誘導体、および、ジカルボン酸無水物誘導体からなる群から選択される少なくとも1つである、(13)~(15)のいずれか一項に記載の多孔化剤を含む。
 本発明(17)は、ジカルボン酸無水物誘導体が、トリフルオロメチル基を含む、(16)に記載の多孔化剤を含む。
 本発明(18)は、トリフルオロメチル基は、構造中央に位置する、(17)に記載の多孔化剤を含む。
 本発明の多孔質液晶ポリマーの製造方法および多孔化剤によれば、多孔化剤を液晶ポリマーとともに確実に混練でき、確実に多孔質液晶ポリマーを得ることができる。
図1Aと図1Bとは、本発明の多孔質液晶ポリマーの製造方法の一実施形態の工程図である。図1Aが、第1工程である。図1Bが、第2工程である。 図2は、多孔質液晶ポリマーシートを備える配線回路基板の断面図である。
 本発明の多孔質液晶ポリマーの製造方法の一実施形態である多孔質液晶ポリマーシート1の製造方法を、図1Aと図1Bとを参照して説明する。この製造方法は、第1工程と、第2工程とを必須の工程として備える。また、この製造方法は、第3工程を任意の工程として備える。この製造方法では、例えば、第1工程から第3工程までが、順に実施される。
<第1工程>
 第1工程では、液晶ポリマーと、多孔化剤とを混練して、組成物を調製する。
<液晶ポリマー>
 液晶ポリマーは、限定されない。液晶ポリマーは、液晶性の熱可塑性樹脂である。液晶ポリマーとしては、例えば、液晶ポリエステル、好ましくは、芳香族液晶ポリエステルが挙げられる。液晶ポリマーは、例えば、特開2020-147670号公報、および、特開2004-189867号公報に具体的に記載される。液晶ポリマーは、市販品を用いることができる。市販品として、例えば、UENO LCP(登録商標、以下同様)8100シリーズ(低融点タイプ、上野製薬社製)、および、UENO LCP 5000シリーズ(高融点タイプ、上野製薬社製)が挙げられる。好ましくは、UENO LCP8100シリーズが挙げられる。
 液晶ポリマーの融点は、限定されない。液晶ポリマーの融点は、例えば、200℃以上、好ましくは、220℃以上、より好ましくは、400℃以上であり、また、例えば、370℃以下である。液晶ポリマーの融点は、示差走査熱量測定によって求められる。示差走査熱量測定では、昇温速度は、10℃/minであり、25℃から400℃までの範囲を操作し、窒素雰囲気で液晶ポリマーを加熱する。また、液晶ポリマーが市販品であれば、市販品のカタログ値をそのまま採用することができる。液晶ポリマーの融点が上記した下限以上であれば、多孔質液晶ポリマーシート1は、取扱性および加工性に優れる。液晶ポリマーの融点が上記した上限以下であれば、多孔質液晶ポリマーシート1は、耐熱性に優れる。
 液晶ポリマーのガラス転移温度は、限定されない。液晶ポリマーのガラス転移温度は、例えば、80℃以上であり、また、例えば、125℃以下である。液晶ポリマーのガラス転移温度は、昇温速度10℃/minで実施される示差走査熱量測定法により求められる。
<多孔化剤>
 多孔化剤は、液晶ポリマーを多孔化するために液晶ポリマーに分散される成分である。また、多孔化剤は、例えば、混練温度(後述)において、液晶ポリマーと相分離する。相分離は、液晶ポリマーに溶解せず、混練物中において一定形状を確保することを含む。
 そして、230℃における多孔化剤の質量減少率は、10質量%以下である。「230℃」は、後述する混練温度に含まれる温度である。
 230℃における多孔化剤の質量減少率が10質量%超過であれば、第1工程の混練で熱分解量が過多となり、そのため、第2工程で液晶ポリマーを確実に多孔化できない。
 230℃における多孔化剤の質量減少率は、好ましくは、9%以下、より好ましくは、7%以下、より好ましくは、5%以下、さらに好ましくは、4%以下、さらには、3%以下、さらには、2%以下、さらには、1%以下が好適である。230℃における多孔化剤の質量減少率の下限は、限定されない。230℃における多孔化剤の質量減少率の下限は、例えば、0%である。
 多孔化剤の質量減少率は、昇温速度10℃/min、走査温度40℃から400℃における熱重量分析における230℃における質量(重量)減少率として測定される。測定方法の詳細は、後の実施例で記載する。
 300℃における多孔化剤の質量減少率は、例えば、100%以下、300℃における多孔化剤の質量減少率は、第1工程の混練で熱分解量を抑制する観点から、好ましくは、40%以下、より好ましくは、30%以下、より好ましくは、10%以下、さらに好ましくは、6%以下、さらには、5%以下、さらには、4%以下、さらには、2%以下、さらには、1%以下が好適である。300℃における多孔化剤の質量減少率の下限は、例えば、0%である。
 多孔化剤の質量減少率は、昇温速度10℃/min、走査温度40℃から400℃における熱重量分析における300℃における質量(重量)減少率として測定される。測定方法の詳細は、後の実施例で記載する。
 350℃における多孔化剤の質量減少率は、例えば、100%以下、350℃における多孔化剤の質量減少率は、第1工程の混練で熱分解量を抑制する観点から、好ましくは、90%以下、より好ましくは、20%以下、より好ましくは、15%以下、さらに好ましくは、10%以下、さらには、8%以下、さらには、5%以下、さらには、3%以下が好適である。350℃における多孔化剤の質量減少率の下限は、例えば、0%である。
 多孔化剤の質量減少率は、昇温速度10℃/min、走査温度40℃から400℃における熱重量分析における350℃における質量(重量)減少率として測定される。測定方法の詳細は、後の実施例で記載する。
 多孔化剤の種類は、上記した質量減少率を満足すれば、限定されない。具体的には、多孔化剤としては、プリン誘導体、ビスフェノールAF誘導体、パールフルオロポリエーテル誘導体、カリックスアレーン誘導体、アセン誘導体、および、ジカルボン酸無水物誘導体が挙げられる。これらは、単独使用または併用できる。
 プリン誘導体としては、例えば、カフェイン、テオブロミン、および、テオフィリン-7-酢酸が挙げられ、高い抽出効率および高い空孔率を得る観点から、カフェイン、および、テオブロミンが挙げられる。
 ビスフェノールAF誘導体としては、例えば、5,5’-(1,1,1,3,3,3-ヘキサフルオロ-2,2-プロパンジイル)ビス[2-フェニル-1H-イソインドール-1,3(2H)-ジオン]、および、2,2-ビス(4-カルボキシフェニル)ヘキサフルオロプロパンが挙げられる。パールフルオロポリエーテル誘導体としては、例えば、パーフルオロポリエーテルが挙げられる。パーフルオロポリエーテルの重量平均分子量(カタログ値)は、例えば、1000以上、10,000以下である。カリックスアレーン誘導体としては、例えば、p―tert-ブチルカリックス[4]アレンが挙げられる。アセン誘導体としては、例えば、6,13-ペンタセンジオンが挙げられる。
 ジカルボン酸無水物誘導体は、例えば、トリフルオロメチル基を含有する化合物を含み、好ましくは、構造中央に位置するトリフルオロメチル基を有する化合物が挙げられ、より好ましくは、構造中央と構造の末端とでトリフルオロメチル基の密度が異なる化合物が挙げられ、さらに好ましくは、構造中央のトリフルオロメチル基の密度が構造末端のトリフルオロメチル基の密度よりも高い化合物が挙げられる。具体的には、ジカルボン酸無水物誘導体としては、例えば、4,4’-オキシジフタル酸無水物、2,2’-ジフェニル[5,5’-ビ-1H-イソインドール]-1,1’,3,3’(2H,2H’)-テトロン、および、2,2’-[2,2’-ビス(トリフルオロメチル)[1,1′-ビフェニル]-4,4’-ジイル]ビス[1H-イソインドール-1,3(2H)-ジオン]、2,2’-ビス[4-(トリフルオロメチル)フェニル][5,5′-ビ-1H-イソインドール]-1,1’,3,3’(2H,2’H)-テトロン、および、2,2‘-[2,2’-ビス(トリフルオロメチル)[1,1‘-ビフェニル]-4,4’-ジイル]ビス[オクタハイドロ-1,3-ジオキソ-1H-イソインドール-5-メチル]が挙げられる。
 なお、2,2‘-[2,2’-ビス(トリフルオロメチル)[1,1‘-ビフェニル]-4,4’-ジイル]ビス[オクタハイドロ-1,3-ジオキソ-1H-イソインドール-5-メチル]は、トリフルオロメチル基を含有する化合物であって、構造中央のトリフルオロメチル基の密度が構造末端のトリフルオロメチル基の密度よりも高いジカルボン酸無水物誘導体の一例である。
Figure JPOXMLDOC01-appb-C000001
 多孔化剤として、好ましくは、プリン誘導体、ビスフェノールAF誘導体、パールフルオロポリエーテル誘導体、カリックスアレーン誘導体、および、構造中央のトリフルオロメチル基の密度が構造末端のトリフルオロメチル基の密度よりも高いジカルボン酸無水物誘導体が挙げられる。多孔化剤が、プリン誘導体、ビスフェノールAF誘導体、パールフルオロポリエーテル誘導体、カリックスアレーン誘導体、および、構造中央のトリフルオロメチル基の密度が構造末端のトリフルオロメチル基の密度よりも高いジカルボン酸無水物誘導体からなる群から選択される少なくとも1つであれば、第2工程における超臨界流体(好ましくは、超臨界二酸化炭素)による抽出効率が高くなり、そのため、高い空孔率Pを有する多孔質液晶ポリマーシート1を製造できる。
 多孔化剤の配合割合は、限定されない。多孔化剤の配合割合は、所望の空孔率Pとなるように、適宜調整される。具体的には、液晶ポリマーと多孔化剤との合計体積に対する多孔化剤の体積の百分率は、例えば、20体積%以上、好ましくは、30体積%以上、より好ましくは、40体積%以上であり、また、例えば、90体積%以下、好ましくは、80体積%以下、より好ましくは、70体積%以下である。なお、液晶ポリマーと多孔化剤との合計体積に対する多孔化剤の体積の百分率は、液晶ポリマーと多孔化剤との合計質量に対する多孔化剤の質量の百分率から比重を用いる換算によって、求められる。また、液晶ポリマー100質量部に対する多孔化剤の質量割合は、例えば、10質量部以上、好ましくは、50質量部以上であり、また、例えば、500質量部以下、好ましくは、250質量部以下でもある。
 第1工程において、さらに、添加剤を混練してもよい。添加剤としては、例えば、フィラーが挙げられる。フィラーとしては、例えば、中空球体が挙げられる。中空球体は、例えば、ガラスバルーンを含む。中空球体は、例えば、特開2004-189867号公報に記載される。
 第1工程において、中空球体を混練すれば、空孔率Pが高い多孔質液晶ポリマーシート1を製造できる。
 他方、第1工程において、中空球体を混練しなければ、多孔質液晶ポリマーシート1が脆くなることを抑制できる。
 混練温度は、限定されない。例えば、混練温度は、上記した多孔化剤の熱分解量が少ない温度に設定される。具体的には、混練温度は、例えば、200℃以上、好ましくは、210℃以上であり、また、例えば、350℃以下、好ましくは、300℃以下、より好ましくは、270℃以下、さらに好ましくは、250℃以下である。また、混練温度は、例えば、230℃±30℃の範囲(つまり、200℃以上、260℃以下)、好ましくは、230℃±20℃の範囲(つまり、210℃以上、250℃以下)、より好ましくは、230℃±10℃の範囲(つまり、220℃以上、240℃以下)、さらに好ましくは、230℃±5℃の範囲(つまり、225℃以上、235℃以下)である。
 続いて、第1工程では、図1Aに示すように、組成物をシート化して、無孔質シート3を作製する。組成物をシート化するには、例えば、プレス、押出、および、射出が挙げられる。好ましくは、プレスが挙げられ、より好ましくは、熱プレスが挙げられる。熱プレスの温度は、限定されない。熱プレスの温度は、上記した多孔化剤の熱分解量が少ない温度に設定される。具体的には、熱プレスの温度は、例えば、200℃以上、300℃以下である。プレスの圧力は、例えば、1MPa以上、好ましくは、4MPa以上であり、例えば、20MPa以下、好ましくは、10MPa以下である。これにより、液晶ポリマーと多孔化剤とを含む無孔質シート3が得られる。
 無孔質シート3の厚みは、限定されない。例えば、無孔質シート3の厚みは、多孔質液晶ポリマーシート1の狙い厚みに設定する。
<第2工程>
 第2工程では、組成物における多孔化剤を超臨界流体で抽出する。具体的には、無孔質シート3における多孔化剤を超臨界流体で抽出する。例えば、図1Bに示すように、第2工程は、超臨界装置10を用いる。超臨界装置10は、圧力容器11と、図示しない循環装置とを備える。圧力容器11は、超臨界流体15を収容しながら、内部において流通可能である。循環装置は、圧力容器11に超臨界流体15を循環させる。また、循環装置には、回収装置が設けられる。回収装置は、超臨界流体15に抽出された多孔化剤を除去する。
<超臨界流体15>
 超臨界流体15の種類は、限定されない。超臨界流体15としては、例えば、超臨界二酸化炭素、および、超臨界窒素が挙げられる。超臨界流体15として、製造コストの観点から、好ましくは、超臨界二酸化炭素が挙げられる。
<エントレーナ>
 超臨界流体15にエントレーナが配合されていてもよい。エントレーナは、超臨界流体15による多孔化剤の抽出効率を高めるために、超臨界流体15に配合される。エントレーナは、超臨界流体15および多孔化剤と相溶する。エントレーナとしては、例えば、水、アルコール化合物、ケトン化合物、エステル化合物、芳香族化合物、長鎖アルキル化合物、および、非プロトン性のアミド系化合物が挙げられる。これらは、単独使用または併用できる。アルコール化合物としては、例えば、メタノール、および、エタノールが挙げられる。ケトン化合物としては、例えば、アセトン、および、メチルエチルケトンが挙げられる。エステル化合物としては、例えば、酢酸メチル、酢酸エチル、および、酢酸プロピルが挙げられる。芳香族化合物としては、例えば、ベンゼン、トルエン、および、キシレンが挙げられる。長鎖アルキル化合物としては、例えば、ペンタン、ヘキサン、および、ヘプタンが挙げられる。非プロトン性のアミド系化合物としては、例えば、N-メチル-2-ピロリドン(NMP)、ジメチルホルムアミド(DMF)、ジメチルアセトアミド(DMAC)が挙げられる。エントレーナとして、好ましくは、アルコール化合物、エステル化合物、および、非プロトン性のアミド系化合物が挙げられる。
 エントレーナの配合割合は、適宜設定される。具体的には、エントレーナの配合流量は、超臨界流体の循環流量100mL/minに対して、例えば、0.1mL/min以上、好ましくは、1mL/min以上であり、また、例えば、20mL/min以下、好ましくは、5mL/min以下である。
 第2工程では、無孔質シート3を圧力容器11に設置する。続いて、超臨界装置10において圧力容器11に超臨界流体15を流入させる。続いて、図示しない循環装置によって、超臨界流体15を循環させる。これらによって、超臨界流体15は、無孔質シート3に接触する。
 すると、まず、無孔質シート3の外部の超臨界流体15は、無孔質シート3に含浸される。つまり、超臨界流体15が無孔質シート3の内部に浸入する。すると、上記した超臨界流体15は、多孔化剤を溶解しながら、無孔質シート3の外部に戻る。これによって、無孔質シート3における多孔化剤を超臨界流体15で抽出する。
 第2工程の条件は、限定されない。超臨界流体15の温度は、例えば、上記した液晶ポリマーのガラス転移温度より高い。また、超臨界流体15の温度は、例えば、上記した液晶ポリマーのガラス転移温度より、例えば、少なくとも10℃高く、好ましくは、少なくとも30℃高く、より好ましくは、少なくとも50℃高く、さらに好ましくは、70℃高い。上記したように、超臨界流体15の温度が液晶ポリマーのガラス転移温度より高ければ、第2工程における超臨界流体15の抽出効率を高くできる。そのため、高い空孔率Pの多孔質液晶ポリマーシート1を製造できる。例えば、40℃以上、好ましくは、75℃以上、より好ましくは、110℃以上、さらに好ましくは、120℃以上、とりわけ好ましくは、150℃以上、最も好ましくは、170℃以上であり、また、例えば、200℃以下、好ましくは、190℃以下、より好ましくは、180℃以下である。
 超臨界流体15の圧力は、例えば、10MPa以上、好ましくは、20MPa以上であり、また、例えば、30MPa以下、好ましくは、27MPa以下である。
 抽出時間は、例えば、20分以上、好ましくは、1時間以上、より好ましくは、3時間以上、さらに好ましくは、5時間以上、とりわけ好ましくは、8時間以上、最も好ましくは、10時間以上であり、また、例えば、100時間以下、好ましくは、48時間以下、より好ましくは、24時間以下である。抽出時間が上記した下限以上であれば、第2工程における超臨界流体の抽出効率を高くでき、高い空孔率Pを有する多孔質液晶ポリマーシート1を製造できる。抽出時間が上記した上限以下であれば、タクトタイムを短縮でき、製造効率を向上できる。
<第3工程>
 第3工程では、圧力容器11の内部の超臨界流体15を除去しつつ、圧力容器11の圧力を降下させる。具体的には、圧力容器11の圧力を大気圧に戻す。圧力の降下の速度は、限定されない。例えば、圧力の降下の速度は、無孔質シート3に含浸された超臨界流体15による発泡が抑制されるように、調整される。この際、圧力容器11を加熱することができる。加熱温度は、第2工程における超臨界流体の温度と同様であり、例えば、40℃以上、好ましくは、75℃以上、より好ましくは、110℃以上、さらに好ましくは、120℃以上、とりわけ好ましくは、150℃以上、最も好ましくは、170℃以上であり、また、例えば、200℃以下、好ましくは、190℃以下、より好ましくは、180℃以下である。加熱時間は、例えば、10分以上、3時間以下である。
 以上により、無孔質シート3において含浸されていた多孔化剤に代わって、複数の気孔2が形成される。これによって、多孔質液晶ポリマーシート1が製造される。
 上記した第1工程から第3工程までの実施により、多孔質液晶ポリマーシート1が製造される。
<多孔質液晶ポリマーシート1>
 多孔質液晶ポリマーシート1は、厚みを有し、シート形状を有する。シート形状は、フィルム形状を含む。多孔質液晶ポリマーシート1は、面方向に延びる。面方向は、厚み方向に直交する。多孔質液晶ポリマーシート1は、微細な空孔(気孔)を多数有する。また、多孔質液晶ポリマーシート1の気泡構造としては、例えば、独立気泡構造、連続気泡構造、および、半独立半連続気泡構造が挙げられる。好ましくは、独立気泡構造である。
<空孔率P>
 多孔質液晶ポリマーシート1の空孔率Pは、例えば、1%以上、好ましくは、1.5%以上、より好ましくは、10%以上、さらに好ましくは、20%以上であり、さらには、22%以上、30%以上、35%以上、40%以上、50%以上、55%以上である。多孔質液晶ポリマーシート1の空孔率Pの上限は、限定されない。多孔質液晶ポリマーシート1の空孔率Pの上限は、例えば、95%、多孔質液晶ポリマーシート1の機械強度を確保する観点から、好ましくは、90%である。多孔質液晶ポリマーシート1の空孔率Pは、多孔質液晶ポリマーシート1に対応する無孔質液晶ポリマーシートを用いて、求めることができる。具体的には、多孔質液晶ポリマーシートの比重G1と、無孔質液晶ポリマーシートの比重G0とのそれぞれを測定し、次式により、多孔質液晶ポリマーシート1の空孔率Pを求める。
 P=100×(1-G1/G0)
  P:多孔質液晶ポリマーシート1の空孔率P
  G1:多孔質液晶ポリマーシート1の比重
  G0:無孔質液晶ポリマーシートの比重
<誘電率>
 10GHzにおける多孔質液晶ポリマーシート1の誘電率は、例えば、3.10未満、好ましくは、2.60以下、より好ましくは、2.50以下、さらに好ましくは、2.20以下、さらには、2.10以下、2.00以下、1.90以下が好適である。多孔質液晶ポリマーシート1の誘電率が上記した上限以下であれば、多孔質液晶ポリマーシートは、低誘電である。10GHzにおける多孔質液晶ポリマーシートの誘電率の下限は、限定されない。例えば、10GHzにおける多孔質液晶ポリマーシートの誘電率は、1.00である。多孔質液晶ポリマーシートの誘電率の測定方法は、後の実施例で記載する。
<誘電正接>
 10GHzにおける多孔質液晶ポリマーシート1の誘電正接は、例えば、0.00129以下、好ましくは、0.00100以下、より好ましくは、0.00080以下、さらに好ましくは、0.00070以下、とりわけ好ましくは、0.00060以下である。
 多孔質液晶ポリマーシート1の誘電正接が上記した上限以下であれば、多孔質液晶ポリマーシートは、低誘電である。10GHzにおける多孔質液晶ポリマーシートの誘電正接の下限は、限定されない。例えば、10GHzにおける多孔質液晶ポリマーシートの誘電正接の下限は、0.00000である。多孔質液晶ポリマーシートの誘電正接の測定方法は、後の実施例で記載する。
 <多孔質液晶ポリマーシート1の用途>
 多孔質液晶ポリマーシート1の用途は、限定されない。多孔質液晶ポリマーシート1の用途としては、例えば、配線回路基板の絶縁層、および、無線通信のアンテナ基板が挙げられる。
 次に、多孔質液晶ポリマーシート1を絶縁層として備える配線回路基板の一例を、図2に示す。
 図2に示すように、配線回路基板21は、面方向に延びる。配線回路基板21は、シート形状を有する。配線回路基板21は、絶縁層12と、導体層13とを厚み方向の一方側に向かって順に備える。
 絶縁層12は、上記した多孔質液晶ポリマーシート1からなる。
 導体層13は、絶縁層12の厚み方向の一方面に接触する。導体層13は、所定の配線パターン14を有する。
 配線回路基板21を得るには、例えば、絶縁層12と導体シート25とを備える積層板16を準備する。導体シート25は、図2において仮想線で描画される。例えば、上記した無孔質シート3と、導体シート25とを備える無孔質積層板(図1Aの仮想線)を準備し、無孔質積層板における無孔質シート3を、上記した方法(抽出法、発泡法)を用いて多孔化させて、上記した積層板16を得る。
 その後、積層板16における導体シート25をパターニングして、導体層13を形成する。パターニングでは、例えば、エッチングが用いられる。
<作用効果>
 一実施形態の多孔質液晶ポリマーシート1の製造方法では、230℃における多孔化剤の質量減少率が10質量%以下であるので、多孔化剤は、耐熱性に優れる。そのため、第1工程で、多孔化剤を、分解または揮発を抑制しながら、液晶ポリマーとともに確実に混練できる。そのため、第2工程では、上記した多孔化剤を含む組成物から多孔化剤を抽出することによって、多孔質液晶ポリマーシート1を確実に製造することができる。
 一実施形態の製造方法において、多孔化剤が、プリン誘導体、ビスフェノールAF誘導体、パールフルオロポリエーテル誘導体、および、カリックスアレーン誘導体からなる群から選択される少なくとも1つであれば、第2工程における超臨界流体(好ましくは、超臨界二酸化炭素)による抽出効率が高くなり、そのため、高い空孔率Pを有する多孔質液晶ポリマーシート1を製造できる。
 一実施形態の多孔質液晶ポリマーシート1の製造方法において、第2工程における超臨界流体の温度が、液晶ポリマーのガラス転移温度より高ければ、第2工程における超臨界流体による抽出効率を高くできる。そのため、高い空孔率Pを有する多孔質液晶ポリマーを製造できる。
 一実施形態では、第1工程では、組成物からなる無孔質シート3を形成し、第2工程では、無孔質シート3から薄い多孔質液晶ポリマーシート1を製造できる。
 一実施形態では、第1工程で、中空球体をさらに混練すれば、空孔率Pが高い多孔質液晶ポリマーシート1を製造できる。
 一実施形態の製造方法では、超臨界流体が、超臨界二酸化炭素であれば、多孔質液晶ポリマーシート1を低コストで製造できる。
 一実施形態の製造方法であれば、低い誘電率を有する多孔質液晶ポリマーシート1を製造できる。
 一実施形態の製造方法であれば、第2工程において、エントレーナを超臨界流体に配合すれば、超臨界流体15の抽出効率を高くできる。そのため、高い空孔率Pの多孔質液晶ポリマーシート1を製造できる。
 上記した製造方法で用いられる多孔化剤は、230℃における多孔化剤の質量減少率が10質量%以下である。そのため、多孔化剤は、耐熱性に優れる。そのため、多孔化剤を、分解または揮発を抑制しながら、液晶ポリマーとともに確実に混練できる。その結果、上記した多孔化剤を含む組成物から多孔化剤を抽出することによって、多孔質液晶ポリマーを確実に製造することができる。
<変形例>
 変形例において、一実施形態と同様の部材および工程については、同一の参照符号を付し、その詳細な説明を省略する。また、変形例は、特記する以外、一実施形態と同様の作用効果を奏することができる。さらに、一実施形態およびその変形例を適宜組み合わせることができる。
 変形例では、多孔質液晶ポリマーは、バルク形状を有していてもよい。つまり、第1工程で、無孔質バルク体を作製し、第2工程および第3工程において、多孔質液晶バルク体を製造する。好ましくは、多孔質液晶ポリマーシート1を製造する。そうすれば、薄い多孔質液晶ポリマーシート1を作製でき、これを狭小空間に配置できる。
 変形例において、第3工程後の多孔質液晶ポリマーシート1をさらに薄くすることができる。多孔質液晶ポリマーシート1を薄くする方法としては、例えば、プレス、延伸、および、圧延が挙げられる。好ましくは、製品として得られる多孔質液晶ポリマーシート1の厚みの調整の精度の観点から、プレスが挙げられる。
 変形例の配線回路基板は、導体層と、絶縁層と、導体層とを厚み方向の一方側に向かって順に備える。絶縁層は、上記した多孔質液晶ポリマーシートからなる。2つの導体層のそれぞれは、絶縁層の厚み方向の一方面および他方面のそれぞれに配置されており、所定の配線パターンを有する。
 以下に、実施例および比較例を示し、本発明をさらに具体的に説明する。なお、本発明は、何ら実施例および比較例に限定されない。また、以下の記載において用いられる配合割合(含有割合)、物性値、パラメータなどの具体的数値は、上記の「発明を実施するための形態」において記載されている、それらに対応する配合割合(含有割合)、物性値、パラメータなど該当記載の上限(「以下」、「未満」として定義されている数値)または下限(「以上」、「超過」として定義されている数値)に代替することができる。
 まず、使用した多孔化剤を下記に記載する。
<多孔化剤の種類>
 多孔化剤1:カフェイン(プリン誘導体)
 多孔化剤2:テオブロミン(プリン誘導体)
 多孔化剤3:5,5’-(1,1,1,3,3,3-ヘキサフルオロ-2,2-プロパンジイル)ビス[2-フェニル-1H-イソインドール-1,3(2H)-ジオン(ビスフェノールAF誘導体)
 多孔化剤4:2,2-ビス(4-カルボキシフェニル)ヘキサフルオロプロパン(ビスフェノールAF誘導体)
 多孔化剤5:重量平均分子量が2000-9000のパーフルオロポリエーテル(パーフルオロポリエーテル)
 多孔化剤6:p―tert-ブチルカリックス[4]アレン(カリックスアレーン誘導体)
 多孔化剤7:6,13-ペンタセンジオン(アセン誘導体)
 多孔化剤8:4,4’-オキシジフタル酸無水物(ジカルボン酸無水物)
 多孔化剤9:重量平均分子量400のポリオキシエチレンジメチルエーテル(ポリオキシアルキレンアルキルエーテル)
 多孔化剤10:2,2‘-[2,2’-ビス(トリフルオロメチル)[1,1‘-ビフェニル]-4,4’-ジイル]ビス[オクタハイドロ-1,3-ジオキソ-1H-イソインドール-5-メチル](ジカルボン酸無水物)
<多孔化剤および液晶ポリマーの物性>
 下記に記載の多孔化剤および液晶ポリマーの物性を評価した。評価の結果を表1-表3に記載する。
<多孔化剤の質量減少率>
 上記した多孔化剤1から多孔化剤9のそれぞれの230℃における質量減少率を、ティー・エイ・インスツルメント・ジャパン社製の熱重量分析計(型番:SDT650)を用いて測定した。熱重量分析における昇温速度は、10℃/minであり、走査温度は、40℃から400℃とし、230℃、300℃、および、350℃のそれぞれにおける質量(重量)減少率を取得した。また、熱重量分析は、酸素雰囲気下で実施した。
<多孔化剤の超臨界二酸化炭素に対する溶解性>
 多孔化剤1から多孔化剤9のそれぞれをアルミシャーレに50mg乗せ、AKICO製「CO2超臨界流体実験装置」を用いて圧力容器11内の温度が175℃、圧力が25MPaになるよう設定し、0.5時間、多孔化剤を抽出した。抽出前後の質量変化率(次式)を求めて、多孔化剤の超臨界二酸化炭素に対する溶解性を評価した。
 質量変化率(%)=[抽出前の多孔化剤の質量-抽出後の多孔化剤の質量]/)(抽出前の多孔化剤の質量)×100
<液晶ポリマーのガラス転移温度>
 液晶ポリマーとしての上野製薬(株)製のUENO LCP A8100のガラス転移温度を、示差走査熱量測定法を用いて求めた。示差走査熱量測定法の昇温速度は、10℃/minであり、窒素雰囲気で液晶ポリマーを加熱した。その結果、液晶ポリマー(UENO LCP A8100)のガラス転移温度は、100℃であった。
<実施例1>
  第1工程
 液晶ポリマーとしての上野製薬(株)製のUENO LCP A8100(融点220℃、カタログ値)と、多孔化剤としてのカフェインとを、東洋精機社製のラボプラストミル(型番:4C150)で混練して、組成物を調製した。(第1工程、図1A)。液晶ポリマーと多孔化剤との合計体積100体積部に対する多孔化剤の体積部数は、60体積部であった。混練における温度は、230℃であり、回転数は、30min-1であった。
 続いて、混練物から、井元製作所社製の手動油圧真空プレス(型番:11FD)を用いて、厚み100~200μmの無孔質シート3を作製した。プレスにおける温度は、230℃であり、プレス圧力は、4~10MPa、真空圧は、0.1MPaであった。
  第2工程
 AKICO製「CO2超臨界流体実験装置」を用いて、超臨界流体としての超臨界二酸化炭素を用いて、無孔質シート3から多孔化剤を抽出した(第2工程、図1B)。第2工程における超臨界二酸化炭素の温度は、175℃であり、超臨界二酸化炭素の圧力は、25MPaであり、含浸時間(抽出時間)は、1時間であった。
  第3工程
 圧力容器11の内部の超臨界二酸化炭素を除去しつつ、圧力容器11の圧力を30分かけて大気圧まで降下させながら、圧力容器11の温度を175℃に設定した(第3工程)。
<実施例2~実施例19>
 実施例1と同様の抽出法を用いて多孔質液晶ポリマーシート1を製造した。但し、多孔化剤の種類および製造方法の条件を、表1-表3に記載の通りに変更した。
<比較例1>
 実施例1と同様の製造方法を実施した。但し、第1工程では、多孔化剤を配合しなかった。そのため、多孔質液晶ポリマーシート1を得るのではなく、無孔質シート3を得た。
 これを比較例1のシートとした。
<比較例2>
 実施例1と同様の製造方法で多孔質液晶ポリマーシート1の製造を試みた。但し、多孔化剤9を混練した。
 しかし、第1工程において、多孔化剤の熱分解量が過多であったため、無孔質シート3を形成できなかった。そのため、第2工程と第3工程とを実施できず、したがって、多孔質液晶ポリマーシート1を製造できなかった。
 <評価>
 実施例1~実施例19の多孔質液晶ポリマーシート1と、比較例の無孔質シート3とのそれぞれについて、以下の事項を評価した。それらの結果を表1-表3に記載する。
<空孔率P>
 多孔質液晶ポリマーシート1の比重G1と、多孔質液晶ポリマーシート1に対応する液晶ポリマーからなる無孔質シート3の比重G0とを、アルファミラージュ社製の電子比重計(型番:EW300SG)を用いて測定した。その後、次式を用いて、多孔質液晶ポリマーシート1の空孔率Pを求めた。
 P=100×(1-G1/G0)
  P:多孔質液晶ポリマーシート1の空孔率P
  G1:多孔質液晶ポリマーシート1の比重
  G0:無孔質シート3の比重
<誘電率および誘電正接>
 ASTMD150に準拠したSPDR方式にて、QWED社製「10GHzSPDR共振器」を用いて、10GHzにおける多孔質液晶ポリマーシート1および無孔質シート3の誘電率および誘電正接を測定した。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 なお、上記発明は、本発明の例示の実施形態として提供したが、これは単なる例示に過ぎず、限定的に解釈してはならない。当該技術分野の当業者によって明らかな本発明の変形例は、後記請求の範囲に含まれる。
 多孔化剤は、多孔質液晶ポリマーの製造方法に用いられる。
1  多孔質液晶ポリマーシート
3  無孔質シート
15 超臨界流体

Claims (18)

  1.  液晶ポリマーと、多孔化剤とを混練して、前記液晶ポリマーと前記多孔化剤とを含有する組成物を調製する第1工程と、
     前記組成物における前記多孔化剤を超臨界流体で抽出する第2工程とを備え、
     230℃における前記多孔化剤の質量減少率が10質量%以下である、多孔質液晶ポリマーの製造方法。
  2.  前記多孔化剤が、プリン誘導体、ビスフェノールAF誘導体、パールフルオロポリエーテル誘導体、カリックスアレーン誘導体、および、ジカルボン酸無水物誘導体からなる群から選択される少なくとも1つである、請求項1に記載の多孔質液晶ポリマーの製造方法。
  3.  前記第2工程における前記超臨界流体の温度が、前記液晶ポリマーのガラス転移温度より高い、請求項1または2に記載の多孔質液晶ポリマーの製造方法。
  4.  前記第1工程では、前記組成物からなる無孔質シートを形成し、
     前記第2工程では、多孔質液晶ポリマーシートを製造する、請求項1~3のいずれか一項に記載の多孔質液晶ポリマーの製造方法。
  5.  前記第1工程では、中空球体を混練する、請求項1~4のいずれか一項に記載の多孔質液晶ポリマーの製造方法。
  6.  前記超臨界流体が、超臨界二酸化炭素である、請求項1~5のいずれか一項に記載の多孔質液晶ポリマーの製造方法。
  7.  前記第2工程では、空孔率Pが20%以上である多孔質液晶ポリマーを製造する、請求項1~6のいずれか一項に記載の多孔質液晶ポリマーの製造方法。
  8.  前記第2工程では、エントレーナを前記超臨界流体に配合する、請求項1~7のいずれか一項に記載の多孔質液晶ポリマーの製造方法。
  9.  300℃における前記多孔化剤の質量減少率が10質量%以下である、請求項1~8のいずれか一項に記載の多孔質液晶ポリマーの製造方法。
  10.  350℃における前記多孔化剤の質量減少率が10質量%以下である、請求項1~9のいずれか一項に記載の多孔質液晶ポリマーの製造方法。
  11.  ジカルボン酸無水物誘導体が、トリフルオロメチル基を含む、請求項2に記載の多孔質液晶ポリマーの製造方法。
  12.  トリフルオロメチル基は、構造中央に位置する、請求項11に記載の多孔質液晶ポリマーの製造方法。
  13.  230℃における質量減少率が10質量%以下である、多孔化剤。
  14.  300℃における質量減少率が10質量%以下である、請求項13に記載の多孔化剤。
  15.  350℃における質量減少率が10質量%以下である、請求項13または14に記載の多孔化剤。
  16.  プリン誘導体、ビスフェノールAF誘導体、パールフルオロポリエーテル誘導体、カリックスアレーン誘導体、および、ジカルボン酸無水物誘導体からなる群から選択される少なくとも1つである、請求項13~15のいずれか一項に記載の多孔化剤。
  17.  ジカルボン酸無水物誘導体が、トリフルオロメチル基を含む、請求項16に記載の多孔化剤。
  18.  トリフルオロメチル基は、構造中央に位置する、請求項17に記載の多孔化剤。
     
PCT/JP2022/009899 2021-03-31 2022-03-08 多孔質液晶ポリマーの製造方法および多孔化剤 WO2022209618A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202280022821.8A CN117043244A (zh) 2021-03-31 2022-03-08 多孔质液晶聚合物的制造方法及多孔化剂
JP2023510746A JPWO2022209618A1 (ja) 2021-03-31 2022-03-08
KR1020237031270A KR20230164018A (ko) 2021-03-31 2022-03-08 다공질 액정 폴리머의 제조 방법 및 다공화제

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2021-060766 2021-03-31
JP2021060766 2021-03-31
JP2021-147547 2021-09-10
JP2021147547 2021-09-10

Publications (1)

Publication Number Publication Date
WO2022209618A1 true WO2022209618A1 (ja) 2022-10-06

Family

ID=83458648

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/009899 WO2022209618A1 (ja) 2021-03-31 2022-03-08 多孔質液晶ポリマーの製造方法および多孔化剤

Country Status (4)

Country Link
JP (1) JPWO2022209618A1 (ja)
KR (1) KR20230164018A (ja)
TW (1) TW202248326A (ja)
WO (1) WO2022209618A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10505618A (ja) * 1994-08-15 1998-06-02 ヘキスト・アクチェンゲゼルシャフト 液晶ポリマーとポリアリーレンスルホキシドとの混合物、該混合物から形成される発泡体、及びその製造方法並びにその用途
JP2004519693A (ja) * 2001-05-05 2004-07-02 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング センサーエレメント
US20060094850A1 (en) * 2004-10-07 2006-05-04 Samsung Corning Co., Ltd. Composition for preparing nanoporous material comprising calixarene derivative
WO2018092845A1 (ja) * 2016-11-18 2018-05-24 住友化学株式会社 発泡成形用液晶ポリマー組成物、発泡成形体の製造方法、および発泡成形体
JP2019172943A (ja) * 2018-03-29 2019-10-10 住友化学株式会社 発泡成形品の製造方法及び発泡成形品
JP2020049897A (ja) * 2018-09-28 2020-04-02 日東電工株式会社 ロール体
JP2020055935A (ja) * 2018-10-01 2020-04-09 日東電工株式会社 多孔質体の製造方法
CN113072734A (zh) * 2021-03-17 2021-07-06 武汉纺织大学 一种热致液晶聚合物微孔泡沫材料及其制备方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10505618A (ja) * 1994-08-15 1998-06-02 ヘキスト・アクチェンゲゼルシャフト 液晶ポリマーとポリアリーレンスルホキシドとの混合物、該混合物から形成される発泡体、及びその製造方法並びにその用途
JP2004519693A (ja) * 2001-05-05 2004-07-02 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング センサーエレメント
US20060094850A1 (en) * 2004-10-07 2006-05-04 Samsung Corning Co., Ltd. Composition for preparing nanoporous material comprising calixarene derivative
WO2018092845A1 (ja) * 2016-11-18 2018-05-24 住友化学株式会社 発泡成形用液晶ポリマー組成物、発泡成形体の製造方法、および発泡成形体
JP2019172943A (ja) * 2018-03-29 2019-10-10 住友化学株式会社 発泡成形品の製造方法及び発泡成形品
JP2020049897A (ja) * 2018-09-28 2020-04-02 日東電工株式会社 ロール体
JP2020055935A (ja) * 2018-10-01 2020-04-09 日東電工株式会社 多孔質体の製造方法
CN113072734A (zh) * 2021-03-17 2021-07-06 武汉纺织大学 一种热致液晶聚合物微孔泡沫材料及其制备方法

Also Published As

Publication number Publication date
JPWO2022209618A1 (ja) 2022-10-06
TW202248326A (zh) 2022-12-16
KR20230164018A (ko) 2023-12-01

Similar Documents

Publication Publication Date Title
JP6567722B2 (ja) ミリ波アンテナ用フィルム
JP7179912B2 (ja) ミリ波アンテナ用フィルム
JP6567590B2 (ja) ミリ波アンテナ用フィルム
JP5916498B2 (ja) ポリイミド多孔質体及びその製造方法
JP4159199B2 (ja) 多孔質体及び多孔質体の製造方法
JP4557409B2 (ja) 多孔質ポリイミドの製造方法及び多孔質ポリイミド
JP2003026850A (ja) 多孔質ポリイミド樹脂の製造方法および多孔質ポリイミド樹脂
KR20010007220A (ko) 내열성 중합체 발포체 및 그의 제조 방법, 및 발포체 기판
JP2007211136A (ja) ポリイミド前駆体溶液、ポリイミド多孔質フィルム、およびそれらの製造方法
JP2013216776A (ja) ポリイミド前駆体溶液の製造方法及びこれを用いたポリイミド前駆体溶液、多孔質ポリイミド
JP4386564B2 (ja) 低分子量物を含むポリイミド前駆体又はポリイミドからの低分子量物の除去方法
WO2022209618A1 (ja) 多孔質液晶ポリマーの製造方法および多孔化剤
WO2022209752A1 (ja) 多孔質熱可塑性樹脂の製造方法
CN117043244A (zh) 多孔质液晶聚合物的制造方法及多孔化剂
KR102378209B1 (ko) 고내상 에멀젼을 이용한 저유전율의 폴리이미드 필름 및 이의 제조방법
WO2022209753A1 (ja) 多孔質液晶ポリマーの製造方法
JP2022156865A (ja) 多孔質液晶ポリマーシートおよび配線回路基板
JP2022165325A (ja) 多孔質ポリイミドフィルム
WO2013141109A1 (ja) 多孔質体及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22779842

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023510746

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 202280022821.8

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22779842

Country of ref document: EP

Kind code of ref document: A1