WO2022209588A1 - 表示装置、電子機器、ならびに表示装置の製造方法 - Google Patents

表示装置、電子機器、ならびに表示装置の製造方法 Download PDF

Info

Publication number
WO2022209588A1
WO2022209588A1 PCT/JP2022/009435 JP2022009435W WO2022209588A1 WO 2022209588 A1 WO2022209588 A1 WO 2022209588A1 JP 2022009435 W JP2022009435 W JP 2022009435W WO 2022209588 A1 WO2022209588 A1 WO 2022209588A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
sub
display device
electrode
refractive index
Prior art date
Application number
PCT/JP2022/009435
Other languages
English (en)
French (fr)
Inventor
朋芳 市川
Original Assignee
ソニーセミコンダクタソリューションズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーセミコンダクタソリューションズ株式会社 filed Critical ソニーセミコンダクタソリューションズ株式会社
Priority to CN202280023527.9A priority Critical patent/CN117044399A/zh
Priority to DE112022001918.2T priority patent/DE112022001918T5/de
Priority to JP2023510727A priority patent/JPWO2022209588A1/ja
Priority to US18/551,644 priority patent/US20240180002A1/en
Priority to KR1020237031072A priority patent/KR20230163374A/ko
Publication of WO2022209588A1 publication Critical patent/WO2022209588A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/875Arrangements for extracting light from the devices
    • H10K59/879Arrangements for extracting light from the devices comprising refractive means, e.g. lenses
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/875Arrangements for extracting light from the devices
    • H10K59/876Arrangements for extracting light from the devices comprising a resonant cavity structure, e.g. Bragg reflector pair
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/1201Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/805Electrodes
    • H10K59/8051Anodes
    • H10K59/80517Multilayers, e.g. transparent multilayers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/805Electrodes
    • H10K59/8052Cathodes
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • G09F9/33Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements being semiconductor devices, e.g. diodes
    • G09F9/335Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements being semiconductor devices, e.g. diodes being organic light emitting diodes [OLED]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/805Electrodes
    • H10K59/8051Anodes
    • H10K59/80518Reflective anodes, e.g. ITO combined with thick metallic layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/805Electrodes
    • H10K59/8052Cathodes
    • H10K59/80524Transparent cathodes, e.g. comprising thin metal layers

Definitions

  • the present disclosure relates to display devices, electronic devices, and methods of manufacturing display devices.
  • a microcavity structure (resonator structure) is known as a technique that contributes to color reproducibility and efficiency improvement according to the color type of sub-pixels, as shown in Patent Document 1.
  • the film thickness of the interlayer insulating film (optical path length adjusting layer) between the reflector and the lower transparent electrode is a value that satisfies the resonance condition determined according to the color type of the sub-pixel. be done.
  • the present disclosure has been made in view of the above points, and aims to provide a display device, an electronic device, and a method of manufacturing a display device that can suppress steps between sub-pixels even if they have a resonator structure.
  • each of the sub-pixels comprises a light-emitting element having a first electrode, an organic layer and a second electrode
  • the sub-pixel corresponding to at least one color species has a resonator structure that resonates light emitted from the organic layer, and at least one of the first electrode and the second electrode has a resonator structure.
  • a refractive index adjustment layer is included, It is a display device.
  • the present disclosure may be, for example, (2) an electronic device including the display device described in (1) above.
  • a step of forming an optical adjustment layer on a transparent conductive layer a step of collectively dividing the optical adjustment layer at a pitch corresponding to each sub-pixel; forming a transflective layer so as to cover the divided optical adjustment layer;
  • FIG. 1 is a cross-sectional view for explaining an example of the display device according to the first embodiment.
  • FIG. 2A is a plan view for explaining one embodiment of the display device.
  • FIG. 2B is a plan view showing the arrangement of sub-pixels in the region XS enclosed by the dashed lines in FIG. 2A.
  • 3A and 3B are cross-sectional views showing examples of light-emitting elements.
  • 4A to 4E are cross-sectional views for explaining the manufacturing method of the display device according to the first embodiment.
  • 5A to 5E are cross-sectional views for explaining the manufacturing method of the display device according to the first embodiment.
  • 6A is a cross-sectional view for explaining an example of the display device according to the first embodiment;
  • FIG. 1 is a cross-sectional view for explaining an example of the display device according to the first embodiment;
  • FIG. 2A is a plan view for explaining one embodiment of the display device.
  • FIG. 2B is a plan view showing the arrangement of sub-pixels
  • FIG. 6B is a cross-sectional view for explaining a modification of the display device according to the first embodiment
  • FIG. 7A and 7B are cross-sectional views for explaining modifications of the display device according to the first embodiment
  • 8A and 8B are cross-sectional views for explaining modifications of the display device according to the first embodiment
  • 9A and 9B are cross-sectional views for explaining modifications of the display device according to the first embodiment.
  • FIG. 10 is a cross-sectional view for explaining an example of the display device according to the second embodiment
  • FIG. 11A is a plan view for explaining the arrangement of sub-pixels of the display device according to the second embodiment
  • 11B is a cross-sectional view for explaining an example of the display device according to the second embodiment;
  • FIG. 12 is a diagram for explaining a display device equivalent to the display device according to the second embodiment.
  • 13A to 13C are cross-sectional views for explaining examples of the optical adjustment layer according to the second embodiment.
  • 14A to 14C are cross-sectional views for explaining the manufacturing method of the display device according to the second embodiment.
  • 15A to 15C are cross-sectional views for explaining the manufacturing method of the display device according to the second embodiment.
  • FIG. 16 is a cross-sectional view for explaining a modification of the display device according to the second embodiment; 17A and 17B are cross-sectional views for explaining modifications of the display device according to the second embodiment.
  • 18A and 18B are cross-sectional views for explaining modifications of the display device according to the second embodiment.
  • 19A and 19B are cross-sectional views for explaining modifications of the display device according to the second embodiment.
  • 20A and 20B are cross-sectional views for explaining modifications of the display device according to the second embodiment.
  • 21A and 21B are diagrams for explaining an example (third embodiment) of the layout of sub-pixels of a display device.
  • 22A and 22B are diagrams for explaining an example (third embodiment) of the layout of sub-pixels of a display device.
  • FIG. 23A is a cross-sectional view for explaining an example of the display device according to the fourth embodiment;
  • 23B is a cross-sectional view for explaining an example of the display device according to the fifth embodiment;
  • FIG. 24A is a cross-sectional view for explaining an example of the display device according to the sixth embodiment;
  • FIG. 24B is a cross-sectional view for explaining an example of the display device according to the seventh embodiment
  • FIG. 25A and 25B are diagrams for explaining an example of an electronic device using a display device.
  • FIG. 26 is a diagram for explaining an example of an electronic device using a display device.
  • FIG. 27 is a diagram for explaining an example of an electronic device using the display device;
  • the Z-axis direction is the vertical direction (the upper side is the +Z direction and the lower side is the -Z direction)
  • the X-axis direction is the front-back direction (the front side is the +X direction and the rear side is the -X direction)
  • the Y-axis direction. is the left-right direction (the right side is the +Y direction and the left side is the -Y direction). This is the same for FIGS.
  • FIGS. 14 to 24 as well.
  • the relative magnitude ratio of the size and thickness of each layer shown in each drawing such as FIG. 1 is described for convenience, and does not limit the actual magnitude ratio.
  • the directions and size ratios of these directions are the same for each of FIGS. 2 to 24 .
  • FIG. 1 is a cross-sectional view showing a configuration example of an organic EL (Electroluminescence) display device 10 (hereinafter simply referred to as “display device 10”) according to an embodiment of the present disclosure.
  • the display device 10 includes a driving substrate 11 and multiple light emitting elements 104 .
  • the display device 10 also has a resonator structure 19 .
  • FIG. 1 shows a filled resin layer 17 and a counter substrate 18, which will be described later. 2 to 24, the filling resin layer 17 and the opposing substrate 18 are omitted for convenience of explanation.
  • one pixel is formed by combining a plurality of sub-pixels corresponding to a plurality of color types.
  • three colors of red, green, and blue are defined as a plurality of color types, and three types of sub-pixels, sub-pixel 101R, sub-pixel 101G, and sub-pixel 101B, are provided.
  • a sub-pixel 101R, a sub-pixel 101G, and a sub-pixel 101B are a red sub-pixel, a green sub-pixel, and a blue sub-pixel, respectively, and display red, green, and blue, respectively.
  • FIG. 1 Structure of sub-pixel
  • FIG. 1 is just an example, and does not limit the color types of the plurality of sub-pixels.
  • the wavelengths of light corresponding to each color of red, green, and blue can be defined as wavelengths in the ranges of 610 nm to 650 nm, 510 nm to 590 nm, and 440 nm to 480 nm, respectively.
  • the layout of the individual sub-pixels 101R, 101G, and 101B is a horizontal layout in the example of FIG. 2B. Sub-pixels 101R, 101G, and 101B are provided two-dimensionally.
  • FIG. 2B is a diagram illustrating a state in which a partial area within the display surface formed in the display area 10A of FIG. 2A is enlarged.
  • FIG. 2A is a diagram for explaining the display area 10A of the display device 10.
  • the sub-pixels 101R, 101G, and 101B are collectively referred to as the sub-pixel 101 when the sub-pixels 101R, 101G, and 101B are not particularly distinguished.
  • the driving substrate 11 has various circuits for driving the plurality of light emitting elements 104 on the substrate 11A.
  • various circuits include a drive circuit that controls driving of the light emitting elements 104 and a power supply circuit that supplies power to the plurality of light emitting elements 104 (none of which is shown).
  • the substrate 11A may be made of, for example, glass or resin with low moisture and oxygen permeability, or may be made of a semiconductor that facilitates the formation of transistors and the like.
  • the substrate 11A may be a glass substrate, a semiconductor substrate, a resin substrate, or the like.
  • Glass substrates include, for example, high strain point glass, soda glass, borosilicate glass, forsterite, lead glass, or quartz glass.
  • Semiconductor substrates include, for example, amorphous silicon, polycrystalline silicon, monocrystalline silicon, or the like.
  • the resin substrate contains, for example, at least one selected from the group consisting of polymethyl methacrylate, polyvinyl alcohol, polyvinyl phenol, polyethersulfone, polyimide, polycarbonate, polyethylene terephthalate and polyethylene naphthalate.
  • a first surface of the drive substrate 11 is provided with a plurality of contact plugs (not shown) for connecting the light emitting elements 104 and various circuits provided on the substrate 11A.
  • the light emitting element 104 is an organic electroluminescence element.
  • the plurality of light emitting elements 104 individual light emitting elements 104R, 104G, and 104B are formed so as to correspond to individual sub-pixels 101R, 101G, and 101B.
  • the light-emitting elements 104R, 104G, and 104B emit red, green, and blue light from their respective light-emitting surfaces.
  • the term light emitting element 104 is used when the types of light emitting elements 104R, 104G, and 104B are not particularly distinguished.
  • the plurality of light emitting elements 104 are two-dimensionally arranged in a prescribed arrangement pattern such as a matrix, for example.
  • the plurality of light emitting elements 104 are two-dimensionally arranged in two predetermined directions (the X-axis direction and the Y-axis direction in FIG. 2A).
  • FIG. 2A is a plan view for explaining an example of a surface (display surface) on which the display area 10A of the display device 10 is formed.
  • reference numeral 10B indicates an area outside the display area 10A.
  • the light emitting element 104 includes a first electrode 13, an organic layer 14, and a second electrode 15.
  • the first electrode 13, the organic layer 14, and the second electrode 15 are laminated in this order from the drive substrate 11 side in the direction from the second surface to the first surface.
  • first electrode 13 A plurality of first electrodes 13 are provided on the first surface side of the drive substrate 11 .
  • the first electrode 13 is electrically isolated for each sub-pixel 101 by an insulating layer 12 which will be described later.
  • the first electrode 13 is an anode electrode.
  • the first electrode 13 also functions as a reflective layer. In this case, it is preferable that the reflectance of the first electrode 13 is as high as possible.
  • the first electrode 13 is preferably made of a material having a large work function in order to increase the luminous efficiency.
  • the first electrode 13 is composed of at least one of a metal layer and a metal oxide layer.
  • the first electrode 13 may be composed of a single layer film of a metal layer or a metal oxide layer, or a laminated film of a metal layer and a metal oxide layer.
  • the metal oxide layer may be provided on the organic layer 14 side, or the metal layer may be provided on the organic layer 14 side. From the viewpoint of placing a layer having a work function adjacent to the organic layer 14, the metal oxide layer is preferably provided on the organic layer 14 side.
  • the first electrode 13 may be formed of a reflector and a transparent conductive layer. This can be realized, for example, by forming the first electrode 13 by using a light-reflecting metal layer as a reflector and by forming a light-transmitting metal oxide film as a transparent conductive layer. Alternatively, the first electrode 13 may be formed of the transparent conductive layer 130 and a reflector may be provided separately from the first electrode 13 .
  • the metal layer is, for example, chromium (Cr), gold (Au), platinum (Pt), nickel (Ni), copper (Cu), molybdenum (Mo), titanium (Ti), tantalum (Ta), aluminum (Al). , magnesium (Mg), iron (Fe), tungsten (W) and silver (Ag).
  • the metal layer may contain the at least one metal element as a constituent element of an alloy. Specific examples of alloys include aluminum alloys and silver alloys. Specific examples of aluminum alloys include AlNd and AlCu.
  • the metal oxide layer contains, for example, at least one of a mixture of indium oxide and tin oxide (ITO), a mixture of indium oxide and zinc oxide (IZO), and titanium oxide (TiO).
  • ITO indium oxide and tin oxide
  • IZO indium oxide and zinc oxide
  • TiO titanium oxide
  • the insulating layer 12 is provided on the first surface side of the drive substrate 11, as shown in FIG.
  • the insulating layer 12 is provided between adjacent first electrodes 13 and electrically separates each first electrode 13 for each light emitting element 104 (that is, for each subpixel 101).
  • the insulating layer 12 has a plurality of openings 12A, and the first surface of the first electrode 13 (the surface facing the second electrode 15) is exposed from the openings 12A.
  • the insulating layer 12 covers the region from the peripheral portion of the first surface of the separated first electrode 13 to the side surface (end surface). In this case, each opening 12A is arranged on the first surface of each first electrode 13 .
  • the first electrode 13 is exposed from the opening 12A, and this exposed region defines the light emitting region of the light emitting element 104.
  • the peripheral edge portion of the first surface of the first electrode 13 means that from the outer peripheral edge of the first surface side of each first electrode 13 toward the inner side of the first surface, A region having a predetermined width.
  • the insulating layer 12 is made of, for example, an organic material or an inorganic material.
  • the organic material includes, for example, at least one of polyimide and acrylic resin.
  • the inorganic material includes, for example, at least one of silicon oxide, silicon nitride, silicon oxynitride, and aluminum oxide.
  • the organic layer 14 is provided between the first electrode 13 and the second electrode 15 .
  • the organic layer 14 is provided as an electrically separated layer for each sub-pixel 101 corresponding to each color type.
  • the organic layer 14 is configured to emit white light in the example of FIG. However, this does not prohibit the emission color of the organic layer 14 from being other than white, and colors such as red, blue, and green may be employed. That is, the emission color of the organic layer 14 may be, for example, any one of white, red, blue, and green.
  • the organic layer 14 includes a hole injection layer 140, a hole transport layer 141, a light emitting layer 142, and an electron transport layer 143 from the first electrode 13 toward the second electrode 15. It has an ordered configuration.
  • An electron injection layer 144 may be provided between the electron transport layer 143 and the second electrode 15 .
  • the electron injection layer 144 is for improving electron injection efficiency. Examples of the material of the electron injection layer 144 include simple substances of alkali metals and alkaline earth metals such as lithium and lithium fluoride, and compounds containing them.
  • the structure of the organic layer 14 is not limited to this, and layers other than the light emitting layer 142 are provided as needed.
  • the hole injection layer 140 is for increasing the efficiency of hole injection into the light emitting layer 142 and is a buffer layer for suppressing leakage.
  • hexaazatriphenylene (HAT) can be exemplified.
  • the hole transport layer 141 is for increasing the efficiency of transporting holes to the light emitting layer 142 .
  • As a material for the hole transport layer 141 N,N'-di(1-naphthyl)-N,N'-diphenyl-1,1'-biphenyl-4,4'-diamine ( ⁇ -NPD) is exemplified. be able to.
  • the electron transport layer 143 is for enhancing electron transport efficiency to the light emitting layer 142 . Examples of materials for the electron transport layer 143 include aluminum quinolinol and bathophenanthroline.
  • the light-emitting layer 142 generates light by recombination of electrons and holes when an electric field is applied.
  • the light-emitting layer 142 is an organic light-emitting layer containing an organic light-emitting material.
  • the light-emitting layer 142 has, for example, a laminated structure (one-stack structure) in which a red light-emitting layer 142R, a blue light-emitting layer 142B, and a green light-emitting layer 142G are stacked. However, as shown in FIG. 3A, a light emission separation layer 145 is arranged between the red light emitting layer 142R and the blue light emitting layer 142B.
  • the red light emitting layer 142 ⁇ /b>R contains part of the holes injected from the first electrode 13 through the hole injection layer 140 and the hole transport layer 141 and the second electrode 15 Some of the electrons injected through the electron transport layer 143 are recombined with each other to generate red light.
  • the red light-emitting layer 142R contains, for example, at least one of a red light-emitting material, a hole transport material, an electron transport material, and both charge transport materials. Red emitting materials may be fluorescent or phosphorescent.
  • the red light-emitting layer is composed of, for example, 4,4-bis(2,2-diphenylvinine)biphenyl (DPVBi), 2,6-bis[(4′-methoxydiphenylamino)styryl]-1, It may be composed of a mixture of 30% by weight of 5-dicyanonaphthalene (BSN).
  • DPVBi 4,4-bis(2,2-diphenylvinine)biphenyl
  • BSN 5-dicyanonaphthalene
  • the light emission separation layer 145 is a layer for adjusting the injection of carriers into the light emission layer 142. Electrons and holes are injected into each layer constituting the light emission layer 142 through the light emission separation layer 145, thereby emitting light of each color. balance is adjusted.
  • the emission separation layer 145 is composed of, for example, a 4,4'-bis[N-(1-naphthyl)-N-phenyl-amino]biphenyl derivative or the like.
  • the blue light-emitting layer 142B contains part of the holes injected from the first electrode 13 through the hole-injection layer 140, the hole-transport layer 141, and the light-emitting separation layer 145, and the second hole-injection layer 142B. Some of the electrons injected from the electrode 15 through the electron transport layer 143 recombine to generate blue light.
  • the blue light emitting layer 142B contains, for example, at least one of a blue light emitting material, a hole transport material, an electron transport material and both charge transport materials. Blue emitting materials may be fluorescent or phosphorescent.
  • DPAVBi 4,4′-bis[2- ⁇ 4-(N,N-diphenylamino)phenyl ⁇ vinyl]biphenyl
  • the green light-emitting layer 142G contains part of the holes injected from the first electrode 13 through the hole-injection layer 140, the hole-transport layer 141, and the light-emitting separation layer 145 and the second hole-injection layer 142G. Some of the electrons injected from the electrode 15 through the electron transport layer 143 recombine to generate green light.
  • the green light-emitting layer 142G contains, for example, at least one of a green light-emitting material, a hole-transporting material, an electron-transporting material, and both charge-transporting materials. Green emitting materials may be fluorescent or phosphorescent.
  • the green light emitting layer 142G is composed of, for example, DPVBi mixed with coumarin 6 in an amount of 5% by weight.
  • the configuration of the organic layer 14 is not limited to the above, and may have, for example, a configuration as shown in FIG. 3B.
  • the organic layer 14 includes a hole injection layer 140, a hole transport layer 141, a blue light emitting layer 142B, an electron transport layer 146, a charge generation layer 147, a hole transport layer 148, a yellow light emitting layer 142Y, an electron It has a structure in which transport layers 143 are laminated. This structure has a blue light emitting layer 142B and a yellow light emitting layer 142Y as the light emitting layer 142, and is a so-called two-stack structure.
  • an electron injection layer 144 may be provided between the electron transport layer 143 and the second electrode 15 as in the case of FIG. 3A.
  • the second electrode 15 is provided to face the first electrode 13 .
  • the second electrode 15 is provided as a common electrode for the sub-pixels 101 .
  • the second electrode 15 is the cathode electrode.
  • the second electrode 15 is preferably a transparent electrode that is transparent to light generated in the organic layer 14 .
  • the transparent electrodes referred to here include those formed of the transparent conductive layer 150 and those formed of a laminated structure having the transparent conductive layer 150 and the transflective layer 151 .
  • the second electrode 15 is formed with a laminated structure having a transparent conductive layer 150 and a transflective layer 151 . Note that the transflective layer 151 may be formed separately from the second electrode 15 .
  • the second electrode 15 is composed of at least one layer of a metal layer and a metal oxide layer. More specifically, the second electrode 15 is composed of a single layer film of a metal layer or a metal oxide layer, or a laminated film of a metal layer and a metal oxide layer. When the second electrode 15 is composed of a laminated film, the metal layer may be provided on the organic layer 14 side, or the metal oxide layer may be provided on the organic layer 14 side.
  • the transparent conductive layer 150 a transparent conductive material with good light transmittance and a small work function is preferably used.
  • the transparent conductive layer 150 can be made of, for example, metal oxide.
  • the material of the transparent conductive layer 150 includes at least a mixture of indium oxide and tin oxide (ITO), a mixture of indium oxide and zinc oxide (IZO), and zinc oxide (ZnO). Those containing one type can be exemplified.
  • the transflective layer 151 can be made of, for example, a metal layer.
  • the material of the transflective layer 151 is at least one metal element selected from the group consisting of magnesium (Mg), aluminum (Al), silver (Ag), gold (Au) and copper (Cu).
  • Mg magnesium
  • Al aluminum
  • Ag silver
  • Au gold
  • Cu copper
  • the metal layer may contain the at least one metal element as a constituent element of an alloy. Specific examples of alloys include MgAg alloys and AgPdCu alloys.
  • the second electrode 15 includes the refractive index adjustment layer 20 . In the examples of FIGS. 1, 6A, etc., it is included in the transparent conductive layer 150 of the second electrode 15 . Also, in this example, the refractive index adjustment layer 20 is arranged inside the transparent conductive layer 150 for each sub-pixel 101 .
  • the second electrode 15 includes a refractive index adjusting layer 20B in the sub-pixel 101B, a refractive index adjusting layer 20G in the sub-pixel 101G, and a refractive index adjusting layer 20R in the sub-pixel 101R.
  • the refractive index adjusting layers 20R, 20G, and 20B are collectively referred to as the refractive index adjusting layer 20 when the refractive index adjusting layers 20R, 20G, and 20B are not distinguished.
  • the refractive index adjustment layer 20 is made of a material having optical transparency, preferably a transparent material.
  • the material of the refractive index adjustment layer 20 has a material and a refractive index that correspond to the structure of the sub-pixels 101 .
  • the compositions of the refractive index adjustment layers 20R, 20G, and 20B in the sub-pixels 101 corresponding to the respective color species are different.
  • the difference in composition means that at least one of material, refractive index, and composition ratio is different.
  • Materials having a high refractive index as the material of the refractive index adjustment layer 20 include Al 2 O 3 , SiNx, HfO 2 , Ta 2 O 5 , Nb 2 O 5 , TiO 2 and the like, which have a refractive index of 1.9 or higher.
  • a material with a degree of 2.4 or less is exemplified.
  • Examples of materials having a low refractive index as materials for the refractive index adjustment layer 20 include materials having a refractive index of about 1.4 to 1.9, such as SiO2, LiF, MgF, and SiON.
  • Examples of materials for the refractive index adjustment layer 20 include various organic materials used in the organic layer 14 and other organic compounds.
  • the transparent conductive layer 150 and the refractive index adjusting layer 20 are preferably set to have a thickness ranging from 10 nm to 500 nm, for example.
  • the thickness of the other layers it is preferable to set the thickness of the first electrode 13 to about 100 nm to 300 nm, and the thickness of the organic layer 14 to about 20 to 500 nm, for example.
  • a resonator structure 19 is formed in the display device 10 .
  • the resonator structure 19 is a cavity structure, and is a structure that resonates light emitted from the organic layer 14 .
  • the resonator structure 19 is formed in the light emitting element 104, and in the examples of FIGS. 15, and a refractive index adjusting layer 20 is also included.
  • To resonate the light emitted from the organic layer 14 means to resonate light of a specific wavelength contained in the emitted light.
  • FIG. 6A is a cross-sectional view extracting a main part of each sub-pixel 101 of the display device of FIG. A thick arrow F in FIG. The same is true for FIGS. 6B, 7-9, 11, and 16-20.
  • the organic layer 14 emits white light, and the resonator structure 19 resonates light of a specific wavelength contained in the white light.
  • light of a predetermined wavelength among the white light from the organic layer 14 is emphasized.
  • the second electrode 15 side (that is, the light emitting surface side) of the light emitting element 104 light with a predetermined wavelength is emitted to the outside.
  • the light of the predetermined wavelength is light corresponding to a predetermined color type, and indicates light corresponding to the color type determined according to the sub-pixel 101 .
  • the display device 10 has sub-pixels 101R, 101G, and 101B, and light-emitting elements 104R, 104G, and 104B corresponding to the sub-pixels 101R, 101G, and 101B, respectively.
  • resonator structures 19R, 19G and 19B are formed corresponding to the light emitting elements 104R, 104G and 104B, respectively.
  • red light out of the light emitted from the organic layer 14 resonates. Light is emitted to the outside from the second electrode 15 of the light emitting element 104R while emphasizing red light.
  • the resonator structures 19G and 19B green light and blue light out of the light emitted from the organic layer 14 resonate, respectively.
  • the resonator structures 19R, 19G, and 19B are collectively referred to as the resonator structure 19 when the resonator structures 19R, 19G, and 19B are not particularly distinguished.
  • Resonance of light emitted from the organic layer 14 is formed by light reflection between the second electrode 15 and the first electrode 13 .
  • resonance of emitted light is formed by light reflection between the transflective layer 151 and the first electrode 13 as described above.
  • An optical path length (sometimes referred to as an optical distance) between the semi-transmissive reflective layer 151 and the first electrode 13 is set according to a predetermined color of light.
  • the predetermined color type is a color type that the sub-pixel 101 is desired to emit light.
  • the optical path length between the first electrode 13 and the second electrode 15 is set to cause red light resonance.
  • the optical path length between the first electrode 13 and the second electrode 15 is set so as to cause resonance of green light and blue light, respectively. be done.
  • the refractive index adjustment layer 20 is provided and the resonator structure 19 is formed so as to satisfy the resonance condition for each sub-pixel 101 .
  • the resonator structure 19 satisfies a resonance condition.
  • the resonance condition indicates that Equation 1 below is satisfied.
  • L is the optical distance [nm] between the first electrode 13 and the second electrode 15
  • is the peak wavelength [nm] of the light spectrum corresponding to the predetermined color species.
  • is the magnitude [rad] (radian) of the phase shift caused by reflection of light at the first electrode 13 and the second electrode 15
  • m is an integer (resonance order).
  • the light corresponding to the predetermined color species corresponds to the light desired to be extracted to the outside.
  • the optical distance L indicates the sum of the products of the thickness and refractive index of each layer formed between the first electrode 13 and the second electrode 15 . Therefore, the optical distance L can be adjusted by setting the refractive index of the refractive index adjustment layer 20 to a value corresponding to the color type of the sub-pixel 101 . Then, the material and thickness of the refractive index adjustment layer 20 are adjusted according to the color type of the sub-pixel 101 so that the above-described resonance condition Equation 1 is satisfied, and the thickness of each layer is adjusted.
  • the refractive index adjusting layer 20B has a refractive index N1 and a thickness D1
  • the refractive index adjusting layer 20G has a refractive index N2 and a thickness D2
  • the refractive index adjusting layer 20R has a refractive index N3 and a thickness D3
  • the refractive indices N1, N2, and N3 are obtained.
  • the optical distance L is adjusted according to the thicknesses D1, D2, and D3. Therefore, the thicknesses D1, D2, and D3 can be adjusted by selecting the refractive indices N1, N2, and N3 of the refractive index adjustment layer 20, and the physical thickness difference (specifically, step between the sub-pixels 101) can be suppressed.
  • a protective layer 16 is formed on the first surface of the second electrode 15 .
  • the protective layer 16 shields the light-emitting element 104 from the outside air and suppresses moisture from entering the light-emitting element 104 from the external environment.
  • the protective layer 16 may have a function of suppressing oxidation of this metal layer.
  • the protective layer 16 is made of an insulating material.
  • the insulating material for example, a thermosetting resin can be used.
  • the insulating material may be SiO, SiON, AlO, TiO, or the like.
  • a CVD film containing SiO, SiON, etc. an ALD film containing AlO, TiO, SiO, etc. can be exemplified.
  • the protective layer 16 may be formed as a single layer, or may be formed as a laminate of a plurality of layers.
  • a CVD film indicates a film formed using a chemical vapor deposition method.
  • ALD films refer to films formed using atomic layer deposition.
  • a filled resin layer 17 may be formed on the first surface side of the protective layer 16 .
  • the filled resin layer 17 can exhibit the function of smoothing the surface of the first surface on which the protective layer 16 is formed.
  • the filled resin layer 17 can have a function as an adhesive layer for adhering the later-described counter substrate 18 .
  • the filling resin layer 17 can be exemplified by an ultraviolet curable resin, a thermosetting resin, or the like.
  • the opposing substrate 18 is provided on the filling resin layer 17 so as to face the driving substrate 11 .
  • the counter substrate 18 seals the light emitting element 104 together with the filling resin layer 17 .
  • the counter substrate 18 may be made of the same material as the substrate 11A forming the drive substrate 11, and is preferably made of a material such as glass.
  • the distance between the second electrode 15 and the organic layer 14 is adjusted according to the color type of the sub-pixel 101, for example, so that the optical distance L satisfies the resonance condition for each sub-pixel 101. distance was adjusted. Further, in the resonator structure 19, as another adjustment method for satisfying the resonance condition, a reflector is separately arranged on the second surface side of the first electrode 13, and the distance between the reflector and the second electrode 15 is provided. have been adjusted. In any of these, since the thickness of each layer is adjusted so that the optical distance of the sub-pixel 101 of each color type satisfies the resonance condition, a large step ( step on the first surface side between the sub-pixels 101). Therefore, in the display device, reduction of such steps has been demanded from the viewpoint of color purity and effective use of light.
  • the second electrode 15 includes the refractive index adjustment layer 20. Since the refractive index adjustment layer 20 is formed according to the color type of the sub-pixel 101 , the optical distance L can be adjusted for each sub-pixel 101 by the refractive index adjustment layer 20 . That is, by arranging the refractive index adjustment layer 20 having a predetermined refractive index or the like according to the color type of the sub-pixels 101, the step between the adjacent sub-pixels 101 on the first surface side of the light emitting element 104 is reduced. be able to. In addition, since the optical distance L can be adjusted by adjusting the refractive index of the refractive index adjustment layer 20, the thickness of the display device 10 can be prevented from becoming excessively large, and a decrease in light extraction efficiency can be suppressed. .
  • the drive substrate 11 is formed by forming transistors and various wirings on the substrate 11A made of a semiconductor material such as silicon.
  • the first electrodes 13 are patterned on the driving substrate 11 by sputtering a material such as an Al alloy according to the pattern of the first electrodes 13, for example.
  • An insulating layer 12 is then formed between adjacent first electrodes 13 . That is, the insulating layer 12 is patterned on the entire surface including, for example, the first electrode 13 using a patterning technique such as lithography or etching. At this time, an opening 12A is formed to expose the upper surface of the first electrode 13.
  • a patterning technique such as lithography or etching.
  • a hole injection layer 140, a hole transport layer 141, a red light emitting layer 142R, a light emitting separation layer 145, a blue light emitting layer 142B, a green light emitting layer 142G, an electron transport layer 143, and the like are sequentially formed on the first electrode 13. .
  • a vapor deposition method or the like is used for forming these layers.
  • a transparent conductive layer 150 (for example, IZO) of the second electrode 15 is formed using a sputtering method or the like.
  • a refractive index adjusting layer 20B is formed on the transparent conductive layer 150 (Fig. 4A). Furthermore, a refractive index adjusting layer 20B is formed in a portion corresponding to the sub-pixel 101B. This can be achieved by processing the refractive index adjustment layer 20B formed by a suitable method such as CVD, ALD, or sputtering by dry etching (FIG. 4B).
  • a refractive index adjusting layer 20G is formed (FIG. 4C) and processed by dry etching so as to leave a portion corresponding to the sub-pixel 101G (FIG. 4D).
  • a refractive index adjusting layer 20R is formed (FIG. 4E) and processed by dry etching so as to leave a portion corresponding to the sub-pixel 101G (FIG. 5A).
  • the refractive index adjustment layers 20G and 20R are also formed in the portions corresponding to the sub-pixels 101G and 101R.
  • the transparent conductive layer 150 and the organic layer 14 are divided into sub-pixels 101 according to the arrangement pattern of the sub-pixels 101 .
  • a dry etching method for example, is used for the dividing process.
  • Sidewall layers 22 are formed on the side surfaces of the transparent conductive layer 150 and the organic layer 14 (FIG. 5B).
  • the sidewall layer 22 may be formed, for example, from deposits (reproduced products from etching) during the dividing process. The formation of the sidewall layer 22 makes it difficult for light to leak to adjacent sub-pixels even if light is emitted in an oblique direction.
  • a transparent conductive layer 150 of the second electrode 15 is further formed by appropriately using a sputtering method or the like (FIG. 5C).
  • the refractive index adjusting layer 20 is included in the transparent conductive layer 150 .
  • a transflective layer 151 is formed on the transparent conductive layer 150 (FIG. 5D). This can be realized, for example, by sputtering the material of the transflective layer 151 such as Ag alloy onto the transparent conductive layer 150 .
  • the second electrode 15 can function as a common cathode electrode common to the sub-pixels 101 .
  • a protective layer 16 is formed to cover the second electrode 15 (FIG. 5E). Formation of the protective layer 16 can be concretely realized by, for example, forming a material such as SiN on the entire surface by a CVD method.
  • the opposing substrate 18 is attached to the first surface side of the protective layer 16 .
  • the adhesive resin that bonds the counter substrate 18 and the protective layer 16 together becomes the filled resin layer 17 .
  • the display device 10 is obtained.
  • FIG. 6B is a cross-sectional view showing a main part of an example of the display device 10 according to Modification 1 of the first embodiment.
  • the refractive index adjustment layer 20 is not arranged for the sub-pixel 101B, and the refractive index adjustment layers 20G and 20R are formed for the sub-pixels 101G and 101R of other color types.
  • the configuration is simplified, the number of manufacturing steps can be reduced, and the ease of manufacture is improved.
  • the refractive index adjustment layer 20 may be formed in only one of the sub-pixels 101B, 101G, and 101R (not shown).
  • FIG. 7A shows an example of the display device 10 according to Modification 2 of the first embodiment.
  • the refractive index adjustment layers 20G and 20R have a multilayer structure.
  • the refractive index adjustment layer 20B for the sub-pixel 101B has a single-layer structure, and the refractive index adjustment layers 20G and 20R are respectively formed with a two-layer structure and a three-layer structure.
  • the first layer 120A forming the refractive index adjusting layer 20B is also formed in the refractive index adjusting layers 20G and 20R, and the refractive index adjusting layer 20G and the refractive index adjusting layer 20R are the first layers. 120A and a second layer 120B.
  • the refractive index adjustment layer 20R further has a third layer 120C.
  • the first layer 120A, the second layer 120B, and the third layer 120C are layers made of a material that can be used as a material for forming the refractive index adjustment layer 20, respectively.
  • the first layer 120A, the second layer 120B, and the third layer 120C are arranged so that the resonance condition corresponding to the color type of the sub-pixel 101 is satisfied in the resonator structure 19 of each sub-pixel 101.
  • Material, refractive index and thickness are selected. According to the display device 10 of Modification 2, the degree of freedom in design is improved by increasing the number of layers.
  • the refractive index adjustment layer 20 may be formed between the transparent conductive layer 150 and the transflective layer 151 (modification 3).
  • FIG. 7B shows an example of the display device 10 according to Modification 1 of the first embodiment.
  • the entire refractive index adjustment layers 20B, 20G, and 20R formed on the transparent conductive layer 150 are covered with the transflective layer 151.
  • the step of further forming the transparent conductive layer 150 on the refractive index adjustment layers 20B, 20G, and 20R formed on the transparent conductive layer 150 can be omitted. can be reduced.
  • the organic layers 14 provided in the sub-pixels 101B, 101G, and 101R all emit light of the same white color. Not limited.
  • the emission color (first emission color) of the organic layer 14 provided in the sub-pixel 101 corresponding to at least one color type is The luminescent color (second luminescent color) of the organic layer 14 provided in the sub-pixel 101 corresponding to a plurality of other color species may be different.
  • the organic layer 14 provided in the sub-pixel 101B is the organic layer 14B whose first emission color is blue.
  • the refractive index adjustment layer 20B is included in the second electrode 15 (transparent conductive layer 150) to form the resonator structure 19, but is not limited to this.
  • the adjustment layer 20B may be omitted.
  • the second emission color of the organic layer 14 provided in the sub-pixels 101 corresponding to a plurality of other color types is the second emission color of the sub-pixels 101 corresponding to a plurality of other color types. common among them.
  • the organic layer 14 provided in the sub-pixels 101G and 101R is the organic layer 14Y whose second emission color is yellow.
  • the organic layer 14 emitting yellow light may have a structure in which a red light emitting layer and a green light emitting layer are laminated.
  • refractive index adjustment layers 20G and 20R are included in the second electrode 15 (transparent conductive layer 150).
  • the refractive index adjustment layers 20G and 20R are determined to have different refractive indices and thicknesses so that the resonator structures 19G and 19R formed in the sub-pixels 101G and 101R respectively resonate green and red light.
  • high luminous efficiency can be achieved for one predetermined color (blue in the example of FIG. 8A).
  • colors red and green in the example of FIG. 8A
  • by providing different refractive index adjustment layers 20 according to the sub-pixels 101 light of different colors corresponding to the sub-pixels 101 can be efficiently emitted. can be taken out.
  • the refractive index adjustment layer 20 may be included in the first electrode 13 (Modification 5).
  • FIG. 8B shows an example of the display device 10 according to Modification 5 of the first embodiment.
  • the first electrode 13 is an anode electrode having a transparent conductive layer 130 and a reflective layer 131, and the transparent conductive layer 130 is arranged closer to the organic layer 14.
  • a metal such as Al is preferably used for the reflective layer 131 .
  • a metal oxide film such as ITO or IZO is preferably used.
  • the refractive index adjustment layer 20 is included in the transparent conductive layer 130 .
  • Various conditions such as the refractive index, material and thickness of the refractive index adjustment layer 20 are the same as in the case where the second electrode 15 includes the refractive index adjustment layer 20 . That is, even when the refractive index adjustment layer 20 is included in the first electrode 13, the optical distance is such that the resonance conditions are satisfied in the resonator structures 19B, 19G, and 19R in the respective sub-pixels 101B, 101G, and 101R. It is preferable that conditions such as the refractive index, material and thickness of the refractive index adjustment layer 20 are determined based on L.
  • the second electrode 15 is formed of the transparent conductive layer 150 and the semi-transmissive reflective layer 151 in FIG. 8B. It may be formed of the transmissive reflective layer 151 .
  • the second electrode 15 is preferably formed of a material with good light transmittance and a small work function.
  • the second electrode 15 is composed of a metal layer such as magnesium (Mg), silver (Ag), or alloys thereof.
  • the second electrode 15 may be formed with multiple layers of semi-transmissive reflective layers 151 .
  • the second electrode 15 includes, for example, calcium (Ca), barium (Ba), lithium (Li), cesium (Cs), indium (In), magnesium (Mg), and silver (Ag) as the first layer.
  • the second layer may be composed of a laminated structure of metal layers such as magnesium (Mg), silver (Ag), or alloys thereof.
  • the semi-transmissive reflective layer 151 forming the second electrode 15 preferably has a thickness of 3 to 20 nm.
  • the refractive index adjustment layer 20 is included in the first electrode 13 as in the display device 10 according to Modification 5, it is similar to the case where the refractive index adjustment layer 20 is included in the second electrode 15. In addition, the effect of reducing the step between the sub-pixels 101 can be obtained.
  • the display device 10 is described as an example in which the refractive index adjustment layer 20 is formed on the second electrode 15.
  • the first electrode The case where the refractive index adjustment layer 20 is included in has been described.
  • the display device 10 according to the first embodiment is not limited to these, and both the refractive index adjustment layer 20 included in the first electrode 13 and the refractive index adjustment layer 20 included in the second electrode 15 may be provided (FIG. 9B).
  • the steps between the sub-pixels 101 You can get a mitigation effect.
  • the second electrode 15 includes the transparent conductive layer 150, and the refractive index adjustment layer 20 is provided on the transparent conductive layer 150.
  • the refractive index adjustment layer 20 may have a density-reduced structure (Modification 6).
  • FIG. 9A shows an example of the display device 10 according to Modification 1 of the first embodiment.
  • the refractive index adjusting layer 20 is included in the transparent conductive layer 150 .
  • the refractive index adjustment layer 20 provided in the sub-pixel 101B has a density reduction structure 23.
  • the density reduction structure 23 can be, for example, a porous structure, as shown in the example of FIG. 9A. Since the refractive index adjustment layer 20 has the density-reducing structure 23, it becomes a sparse layer (a layer with low density) and can lower the refractive index. For example, by making a film using SiOx (silicon oxide film, etc.) into a porous film as the refractive index adjusting layer 20, the refractive index of the refractive index adjusting layer 20 is lowered to 1.4 or less. can be In this case, the optical distance can be adjusted to be short.
  • SiOx silicon oxide film, etc.
  • the density reduction structure 23 in the refractive index adjustment layer 20 of the sub-pixels 101 having a short optical distance that satisfies the resonance condition, the steps between the sub-pixels 101 can be more effectively reduced. can be done.
  • the degree of freedom in design can be improved.
  • the display device 10 according to Modification 6 can be similarly applied to the case where the first electrode 13 includes the transparent conductive layer 130 . That is, when the refractive index adjusting layer 20 is provided on the transparent conductive layer 130 , the refractive index adjusting layer 20 may have the density reduction structure 23 .
  • FIG. 10 is a cross-sectional view showing an example of the display device 10 according to the second embodiment. As shown in FIG.
  • a plurality of optical adjustment layers 21B, 21G and 21R are provided for each of the refractive index adjustment layers 20B, 20G and 20R.
  • the optical adjustment layers 21B, 21G, and 21R are collectively referred to as the optical adjustment layer 21 when the optical adjustment layers 21B, 21G, and 21R are not particularly distinguished.
  • the optical adjustment layer 21 is a constituent unit that is a unit layer of the refractive index adjustment layer 20 .
  • the plurality of optical adjustment layers 21 are arranged in the direction of the light emitting surface of the light emitting element 104 (the spreading direction of the surface on which the display region 10A is formed (the direction along the XY plane)). ) are spaced apart from each other.
  • optical adjustment layers 21B, 21G, and 21R are arranged in a grid pattern with a predetermined size and pitch in sub-pixels 101B, 101G, and 101R, respectively.
  • the refractive index adjustment layer 20 is formed with a group structure of the optical adjustment layers 21 arranged in a grid pattern.
  • the second electrode 15 has a transparent conductive layer 150 and a transflective layer 151, and the plurality of optical adjustment layers 21 are formed on the transparent conductive layer 150. is contained. Further, for each of the optical adjustment layers 21B, 21G, and 21R, the refractive index of the plurality of optical adjustment layers 21 and the refractive index of the transparent conductive layer 150 are different from each other. 11B is a cross-sectional view showing a main part of FIG. 10. FIG.
  • the size of the plurality of optical adjustment layers 21 is set to a value equal to or less than the peak wavelength of light corresponding to the color type of the sub-pixels 101. preferably less than or equal to 1/2 of the peak wavelength.
  • the pitch of the plurality of optical adjustment layers 21 is set to a value equal to or less than the peak wavelength of light corresponding to the color type of the sub-pixels 101. It is preferably 1/2 or less of the peak wavelength.
  • the pitch of the optical adjustment layer 21 is preferably equal to or less than the peak wavelength of blue light
  • the pitch of the optical adjustment layer 21 is preferably equal to or less than the peak wavelength of green light
  • the pitch of the optical adjustment layer 21 is preferably equal to or less than the peak wavelength of red light.
  • the pitch is determined by the center-to-center distance between adjacent optical adjustment layers 21 .
  • the size of the optical adjustment layer 21 is also set to a value equal to or less than the peak wavelength of light corresponding to the color type of the sub-pixels 101 .
  • the effective refractive index neff of the refractive index adjustment layer 20 differs between the sub-pixels 101 of different color types.
  • the effective refractive index neff is set by the volume ratio of the transparent conductive layer 150 and the optical adjustment layer 21 .
  • the volume ratio can be specified by the volume ratio of the optical adjustment layer 21 to the volume of the transparent conductive layer 150 in appearance.
  • the effective refractive index neff of the optical adjustment layer 21 and the transparent conductive layer 150 is It takes a value between the refractive index N1 and the refractive index N0 depending on the volume ratio. That is, as shown in FIG. 12, the refractive index adjustment layer 20 is formed of a plurality of optical adjustment layers 21, so that from the viewpoint of the refractive index, the refractive index adjustment layer 20 refracts the value of the effective refractive index neff. It becomes a layer equivalent to the refractive index adjustment layer Nf.
  • the refractive index adjustment layer Nf is a continuous layer having an effective refractive index neff as a refractive index.
  • mathematical symbols indicating approximation indicate that the refractive index adjustment layer 20 and the refractive index adjustment layer Nf are equivalent.
  • the same material as the material for the refractive index adjustment layer 20 described in the first embodiment may be adopted.
  • the refractive index of the optical adjustment layer 21 is not particularly limited, and may be larger than, equal to, or smaller than the refractive index of the layer containing the optical adjustment layer 21 .
  • the refractive index of the optical adjustment layer 21 is preferably higher than the refractive index of the layer including the optical adjustment layer 21 .
  • the refractive index of the optical adjustment layer 21 is the same as that of the transparent conductive layer 150. It is preferably larger than the refractive index.
  • the three-dimensional shape of the optical adjustment layer 21 is not particularly limited, and may be prismatic (FIG. 13A) or cylindrical (FIG. 13B). Also, the optical adjustment layer 21 may be continuous in one direction, as shown in FIG. 13C. 13A to 13C illustrate a state in which the optical adjustment layer 21 is formed on the transparent conductive layer 150, but this is for the sake of convenience, and in the display device 10, the optical adjustment layer 21 is covered with a transparent conductive layer 150 or a transflective layer 151 on the top side.
  • the pitch P of the optical adjustment layer 21 may be changed to a different value in the region near the periphery of the sub-pixel 101 than in the central region of the sub-pixel 101 . This makes it possible to adjust the optical effects at the periphery of the sub-pixel and the boundary with the adjacent sub-pixel.
  • the display device 10 may be the same as the first embodiment except that the refractive index adjustment layer 20 includes a plurality of optical adjustment layers 21 .
  • the second electrode 15 includes the refractive index adjustment layer 20 .
  • the refractive index adjustment layer 20 includes a plurality of optical adjustment layers 21 corresponding to the color types of the sub-pixels 101 . Therefore, the effective refractive index can be adjusted for each sub-pixel 101 by the refractive index adjustment layer 20, and the optical distance L can be adjusted. Therefore, in the display device according to the second embodiment, as in the first embodiment, by forming a plurality of optical adjustment layers 21 having a predetermined pitch and size, the distance between adjacent sub-pixels 101 is reduced. , the step on the first surface side of the light emitting element 104 can be reduced.
  • the display device 10 even if the material of the refractive index adjustment layer 20 is not changed for each color type of the sub-pixel 101, by changing the layout pattern of the optical adjustment layer 21, Since it is possible to adjust the refractive index (adjust the effective refractive index neff) according to the color type of the pixel 101, the number of manufacturing steps can be easily reduced as described later.
  • a first electrode 13 and an organic layer 14 are formed on a driving substrate 11 in the same manner as in the first embodiment. Furthermore, the transparent conductive layer 150 of the second electrode 15 is formed in the same manner as in the first embodiment.
  • the optical adjustment layer 21 is formed on the entire surface of the transparent conductive layer 150 using, for example, the CVD method, the ALD method, or the sputtering method (FIG. 14A). Further, the optical adjustment layer 21 is collectively cut (FIG. 14B). The dividing process can be realized, for example, by a dry etching method. At this time, a plurality of optical adjustment layers 21 are formed with a pitch and size corresponding to the color type of each sub-pixel 101, and an optical adjustment layer 21B is formed in a region corresponding to the sub-pixel 101B. An optical adjustment layer 21G is formed in a region corresponding to the sub-pixel 101G. An optical adjustment layer 21R is formed in a region corresponding to the sub-pixel 101R. Thereby, a refractive index adjustment layer 20 (20B, 20G, 20R) having a plurality of optical adjustment layers 21 for each sub-pixel 101 is formed.
  • the transparent conductive layer 150 and the organic layer 14 are divided into sub-pixels 101 using a dry etching method or the like. Further, sidewall layers 22 are formed on the side end surfaces of the organic layer 14 (FIG. 14C).
  • the sidewall layer 22 may be formed of, for example, a regenerated material (deposit) from the cutting process.
  • a transparent conductive layer 150 of the second electrode 15 is further formed by appropriately using a sputtering method or the like (FIG. 15A). At this time, a state in which the optical adjustment layer 21 is included in the transparent conductive layer 150 is formed, that is, a state in which the refractive index adjustment layer 20 is included in the transparent conductive layer 150 is formed. Furthermore, as in the first embodiment, a transflective layer 151 is formed on the transparent conductive layer 150 (FIG. 15B). A protective layer 16 is formed to cover the second electrode 15 (FIG. 15C). Then, as in the first embodiment, the opposing substrate 18 is attached to the first surface side of the protective layer 16 via the filling resin layer 17 (not shown). Thus, the display device 10 is obtained.
  • the refractive index adjustment layers 20 can be collectively formed, so the number of steps can be easily reduced.
  • FIG. 17A shows an example of the display device 10 according to Modification 1 of the second embodiment.
  • the placement of the refractive index adjustment layer 20 is avoided in the sub-pixels 101 corresponding to at least one color type different from the color type of the sub-pixels 101 in which the refractive index adjustment layer 20 is arranged.
  • the formation of the refractive index adjustment layer 20 is avoided in the sub-pixel 101B, that is, the arrangement of the optical adjustment layer 21 is avoided.
  • Refractive index adjusting layers 20G and 20R are formed for the sub-pixels 101G and 101R.
  • the refractive index adjustment layer 20 may include the optical adjustment layer 21 for some of the sub-pixels 101 .
  • the sub-pixel 101G does not include the optical adjustment layer 21 as described in the first embodiment, but has a refractive index adjustment layer 20G formed of a single layer.
  • the refractive index adjustment layer 20R includes the optical adjustment layer 21 as described in the second embodiment.
  • the configuration of the display device 10 is simplified compared to the example shown in the second embodiment, thereby reducing the number of steps and facilitating manufacturing. Moreover, the degree of freedom in designing the display device 10 is improved.
  • FIG. 17B shows an example of the display device 10 according to Modification 2 of the second embodiment.
  • refractive index adjustment layers 20B, 20G, and 20R are formed for each of the sub-pixels 101B, 101G, and 101R, and all are formed in multiple layers. At least one layer of each of the refractive index adjustment layers 20B, 20G, and 20R is formed of a plurality of optical adjustment layers 21 . In the example of FIG. 17B , each of the refractive index adjustment layers 20B, 20G, and 20R is laminated in two layers above and below. It's becoming In the sub-pixel 101B, a plurality of optical adjustment layers 21B are stacked on the first surface side of the first layer 122 to form the second layer 121B.
  • a plurality of optical adjustment layers 21G are stacked on the first surface side of the first layer 122 to form the second layer 121G.
  • a plurality of optical adjustment layers 21R are stacked on the first surface side of the first layer 122 to form the second layer 121R.
  • the first layer 122 may be a layer of the same material in any sub-pixel 101, or may be a different layer.
  • the plurality of optical adjustment layers 21B, 21G, and 21R forming the second layers 121B, 121G, and 121R are separated from each other along the light emitting surface direction of the light emitting element 104 as described in the second embodiment. placed in a state.
  • the size and pitch of the optical adjustment layer 21 are determined according to the color type of the sub-pixel 101, and are set to predetermined values in consideration of the resonance condition and the effective refractive index neff.
  • the material of the optical adjustment layer 21 is selected in consideration of the effective refractive index neff determined when the resonator structure 19 of the sub-pixel 101 satisfies the resonance condition.
  • the degree of freedom in design can be improved by increasing the layer configuration of the refractive index adjustment layer 20 .
  • the shape of the optical adjustment layer 21 may be chamfered with rounded corners (Modification 3).
  • optical adjustment layer 21 When the optical adjustment layer 21 is cut, it is easy to form the shape of the optical adjustment layer 21 with rounded corners. be able to manufacture.
  • the second electrode 15 has a transparent conductive layer 150 and a transflective layer 151, and the plurality of optical adjustment layers 21 are transparent. It may be arranged at a position between the conductive layer 150 and the transflective layer 151 (Modification 4).
  • the step of further forming the transparent conductive layer 150 after forming the optical adjustment layer 21 as shown in FIG. 15A can be omitted.
  • the manufacturing process is simplified along with the simplification of the configuration of the display device 10, and the number of manufacturing processes can be reduced.
  • the organic layers 14 provided in the sub-pixels 101B, 101G, and 101R all emit light of the same color. It is not limited to the same color white.
  • the emission color (first emission color) of the organic layer 14 provided in the sub-pixel 101 corresponding to at least one color type is The luminescent color (second luminescent color) of the organic layer 14 provided in the sub-pixel 101 corresponding to a plurality of other color species may be different (Modification 5).
  • the organic layer 14 provided in the sub-pixel 101B is the organic layer 14B that emits blue light (first emission color).
  • the optical adjustment layer 21B is included in the second electrode 15 (transparent conductive layer 150) to form the resonator structure 19.
  • the optical adjustment layer 21B is not limited to this. 21B may be omitted.
  • the second emission color of the organic layer 14 provided in the sub-pixels 101 corresponding to a plurality of other color types is the second emission color of the sub-pixels 101 corresponding to a plurality of other color types. common among them.
  • the organic layers 14 provided in the sub-pixels 101G and 101R are both organic layers 14Y emitting yellow light (second emission color).
  • optical adjustment layers 21G and 21R are included in the second electrode 15 (transparent conductive layer 150).
  • the optical adjustment layers 21G and 21R have different sizes and pitches so that the resonator structures 19G and 19R formed in the sub-pixels 101G and 101R respectively resonate green and red light (to satisfy resonance conditions). is defined (effective refractive index neff is defined).
  • the optical adjustment layer 21 may be included in the first electrode 13 (Modification 6).
  • FIG. 19B shows an example of the display device 10 according to Modification 6 of the second embodiment.
  • the first electrode 13 is an anode electrode having a transparent conductive layer 130 and a reflective layer 131, and the transparent conductive layer 130 is arranged closer to the organic layer 14.
  • a metal such as Al is preferably used for the reflective layer 131 .
  • a metal oxide film such as ITO or IZO is preferably used.
  • the second electrode 15 is not only provided with the structure in which the transparent conductive layer 150 and the semi-transmissive reflective layer 151 are stacked as shown in FIG. may
  • the optical adjustment layer 21 is included in the transparent conductive layer 130 .
  • Various conditions (arrangement conditions) such as the pitch, size and material of the optical adjustment layer 21 are the same as in the case where the optical adjustment layer 21 is included in the second electrode 15 . That is, even when the refractive index adjusting layer 20 is included in the first electrode 13, the refractive index adjusting layer 20 is determined based on the optical distances that satisfy the resonance condition in each of the resonator structures 19B, 19G, and 19R. It is preferable that the arrangement condition of the optical adjustment layer 21 is determined such that the effective refractive index neff of is a predetermined value.
  • FIG. 20A shows an example of the display device 10 according to Modification 7 of the second embodiment.
  • the optical adjustment layers 21 (21B, 21G, 21R) provided in each sub-pixel 101 have the density reduction structure 23.
  • the density reduction structure 23 can be, for example, a porous structure, as shown in the example of FIG. 20A. Since the optical adjustment layer 21 has the density-reducing structure 23, it becomes a sparse layer (a layer with low density) and can lower the refractive index. The action and effect of the density reduction structure 23 are the same as those described in the first embodiment.
  • the display device 10 according to Modification 7 can be similarly applied to the case where the first electrode 13 includes the transparent conductive layer 130 . That is, when the optical adjustment layer 21 is provided on the transparent conductive layer 130 , the optical adjustment layer 21 may have the density reduction structure 23 .
  • FIG. 20B shows an example of the display device 10 according to Modification 8 of the second embodiment.
  • the transparent conductive layer 150 provided in each sub-pixel 101 has voids 24 .
  • a gap 24 is formed between adjacent optical adjustment layers 21 in the sub-pixels 101B and 101G.
  • the sub-pixel 101R avoids forming a gap 24 between adjacent optical adjustment layers 21 .
  • the size of the gap 24 may be determined according to the color type of the sub-pixel 101 . Since the gap 24 is formed between the adjacent optical adjustment layers 21 in this manner, the value of the effective refractive index neff can be suppressed, and the degree of freedom in adjusting the optical distance L is further improved.
  • the value of the effective refractive index neff can be adjusted according to the size of the air gap 24 . Specifically, in the example of FIG. 20B, the size of each gap 24 formed in the sub-pixel 101B is larger than the size of the gap 24 formed in the sub-pixel 101G.
  • the optical adjustment layer 21B, the optical adjustment layer 21G, and the optical adjustment layer 21R decrease in size (the optical adjustment layer 21B is the largest).
  • the size is not limited to this.
  • a material having a high refractive index as a material forming the optical adjustment layers 21B, 21G, and 21R and appropriately selecting the resonance order when satisfying the resonance conditions of the resonator structures 19B, 19G, and 19R, the structure shown in FIG. As shown, the order of sizes of the optical adjustment layer 21B, the optical adjustment layer 21G, and the optical adjustment layer 21R is changed.
  • the size decreases in the order of the optical adjustment layer 21R, the optical adjustment layer 21G, and the optical adjustment layer 21B. The same applies to the pitch of the optical adjustment layer 21 .
  • the refractive index adjustment layer 20 is formed on the first electrode 13 or the second electrode 15.
  • the examples given can also be applied to the case where the refractive index adjustment layer 20 is formed on both the first electrode 13 and the second electrode 15 .
  • the sub-pixels 101 forming one pixel are arranged side by side as shown in FIG. 2 and the like.
  • the shape of each sub-pixel 101 is not particularly limited to the example shown in FIG. 2 (third embodiment).
  • 21 and 22 are plan views showing examples of the layout of sub-pixels forming one pixel.
  • the shape of the sub-pixel 101 may be striped as shown in FIG. 21B, polygonal as shown in FIG. 22A, or circular as shown in FIG. 22B.
  • the layout of the sub-pixels 101 forming one pixel may be a square arrangement as shown in FIG. 21A. In FIG.
  • the layout pattern of the sub-pixels 101 forming one pixel is three sub-pixels 101B, 101G, and 101R arranged in a triangular shape when the centers of the sub-pixels 101 are connected. It may be a delta array configured.
  • the organic layer 14 is individually separated (divided) for each sub-pixel 101, but the display device 10 is not limited to this. As shown in FIG. 23A, the organic layer 14 may be formed continuously regardless of the sub-pixels 101 (fourth embodiment).
  • FIG. 23A is a cross-sectional view showing an example of the display device 10 according to the fourth embodiment.
  • the organic layer 14 is a common layer common to all of the sub-pixels 101B, 101G, and 101R. Since the organic layer 14 is a common layer, the number of manufacturing steps can be reduced and the ease of manufacture can be improved.
  • FIG. 23A is a cross-sectional view showing an example of the display device 10 according to the fourth embodiment.
  • the organic layer 14 is a common layer common to all of the sub-pixels 101B, 101G, and 101R. Since the organic layer 14 is a common layer, the number of manufacturing steps can be reduced and the ease of manufacture can be improved.
  • FIG. 23A is a cross-sectional view showing an example of the display device 10 according
  • the second electrode 15 also serves as a common electrode common to all of the sub-pixels 101B, 101G, and 101R.
  • Refractive index adjustment layers 20B, 20G, and 20R corresponding to the sub-pixels 101 are included at predetermined positions of the common electrode.
  • the organic layer 14 is separated for each sub-pixel 101 .
  • the thickness of the transparent conductive layer 150 in the second electrode 15 may be a constant value between different sub-pixels 101 (fifth embodiment).
  • the thickness of the transparent conductive layer 150 in the second electrode 15 is uniform among different sub-pixels 101, it becomes easy to uniform the resistance state among the sub-pixels 101, and optically Adjustment of the distance L becomes easy.
  • the fifth embodiment as shown in FIG.
  • FIG. 23B is a cross-sectional view showing an example in which the refractive index adjustment layer 20 has a multilayer structure and the thickness of the transparent conductive layer 150 is uniform in the display device 10 (fifth embodiment). .
  • FIG. 24A is a cross-sectional view showing an example of the display device 10 according to the sixth embodiment.
  • the color filter 25 is provided on the first surface side (upper side, +Z direction side) of the protective layer 16 .
  • the color filter 25 is an on-chip color filter (OCCF).
  • the color filters 25 are provided according to the color type of the sub-pixels 101 .
  • Examples of the color filters 25 include a red color filter (red filter 25R), a green color filter (green filter 25G), and a blue color filter (blue filter 25B) in the example of FIG. 24A.
  • a red filter 25R, a green filter 25G, and a blue filter 25B are provided in the sub-pixels 101R, 101G, and 101B, respectively.
  • a flattening layer may be formed on the color filter 25, and a counter substrate 18 may be provided on the flattening layer with a filling resin layer 17 interposed therebetween (not shown).
  • the planarization layer may be made of the same material as the filling resin layer 17 .
  • a lens 26 may be further formed in the display device 10 shown in the first to sixth embodiments, as shown in FIG. 24B (seventh embodiment).
  • FIG. 24B is a cross-sectional view showing an example of the display device 10 according to the seventh embodiment.
  • the lens 26 is provided on the first surface side (upper side, +Z direction side) of the protective layer 16 .
  • the lens 26 is an on-chip lens (On Chip Lens: OCL).
  • a lens 26 is provided on the first surface side of each sub-pixel 101 .
  • the lens 26 is arranged in each sub-pixel 101 and is formed in a convex shape that is convex in the direction away from the drive substrate 11 .
  • the light extraction efficiency can be improved by providing the display device 10 with the lens 26 .
  • the lens 26 may be formed in part of the sub-pixel 101 .
  • the display device 10 may be provided in various electronic devices.
  • FIG. 25A is a front view showing an example of the appearance of the digital still camera 310.
  • FIG. 25B is a rear view showing an example of the appearance of the digital still camera 310.
  • This digital still camera 310 is of an interchangeable single-lens reflex type, and has an interchangeable photographing lens unit (interchangeable lens) 312 in approximately the center of the front of a camera main body (camera body) 311, and on the left side of the front. It has a grip portion 313 for a photographer to hold.
  • interchangeable photographing lens unit interchangeable lens
  • a monitor 314 is provided at a position shifted to the left from the center of the back surface of the camera body 311 .
  • An electronic viewfinder (eyepiece window) 315 is provided above the monitor 314 . By looking through the electronic viewfinder 315, the photographer can view the optical image of the subject guided from the photographing lens unit 312 and determine the composition.
  • the electronic viewfinder 315 any one of the display devices 10 according to the above-described embodiment and modifications can be used.
  • FIG. 26 is a perspective view showing an example of the appearance of the head mounted display 320.
  • the head-mounted display 320 has, for example, ear hooks 322 on both sides of an eyeglass-shaped display 321 to be worn on the user's head.
  • the display unit 321 any one of the display devices 10 according to the above-described embodiment and modifications can be used.
  • FIG. 27 is a perspective view showing an example of the appearance of the television device 330.
  • This television device 330 has, for example, an image display screen portion 331 including a front panel 332 and a filter glass 333.
  • This image display screen portion 331 is the display device 10 according to the above-described embodiment and modifications. Consists of either
  • the display devices and application examples according to the first to seventh embodiments and modifications of the present disclosure have been specifically described above.
  • the present invention is not limited to the display devices according to the embodiments and modifications of 1 and application examples, and various modifications are possible based on the technical concept of the present disclosure.
  • the present disclosure can also employ the following configuration.
  • a refractive index adjustment layer is included, display device.
  • (2) The refractive index adjustment layer has a different composition for each color type of the sub-pixel.
  • the second electrode is a cathode electrode having a transparent conductive layer and a transflective layer; wherein the refractive index adjusting layer is provided on the transparent conductive layer;
  • the second electrode is a cathode electrode having a transparent conductive layer and a transflective layer; wherein the refractive index adjusting layer is positioned between the transparent conductive layer and the transflective layer;
  • the display device according to any one of (1) to (3) above.
  • the display device according to any one of (1) to (5) above.
  • the first emission color of the organic layers provided in the sub-pixels corresponding to at least one color type is the second emission color of the organic layers provided in the sub-pixels corresponding to a plurality of other color types. It is a color species different from the color, a second emission color of the organic layer provided in the sub-pixels corresponding to the plurality of other color types is common among the sub-pixels corresponding to the plurality of other color types;
  • the resonator structure is formed in each of the sub-pixels corresponding to the plurality of other color types, and the refractive index adjustment layer is provided.
  • the first electrode is an anode electrode having a transparent conductive layer and a reflective layer; wherein the transparent conductive layer is provided with the refractive index adjusting layer;
  • the display device according to any one of (1) to (7) above.
  • one or both of the first electrode and the second electrode are provided with a transparent conductive layer, and the refractive index adjustment layer is provided on the transparent conductive layer;
  • the refractive index adjustment layer has a density-reduced structure, The display device according to any one of (1) to (8) above.
  • the second electrode is a cathode electrode having a transparent conductive layer and a transflective layer; A plurality of the optical adjustment layers are provided on the transparent conductive layer, The display device according to (10) or (11) above. (13) In the sub-pixels corresponding to each color type, the pitch of the plurality of optical adjustment layers is set to a value equal to or less than the peak wavelength of light corresponding to the color type of the sub-pixels.
  • the display device according to any one of (10) to (12) above.
  • one or both of the first electrode and the second electrode includes a transparent conductive layer, and a plurality of the optical adjustment layers are provided on the transparent conductive layer;
  • the refractive indices of the plurality of optical adjustment layers and the refractive index of the transparent conductive layer are different from each other,
  • the display device according to any one of (10) to (13) above.
  • Arrangement of a plurality of the optical adjustment layers is avoided in the sub-pixels corresponding to at least one color type different from the color type of the sub-pixels in which the refractive index adjustment layers are arranged.
  • the display device according to any one of (10) to (14) above.
  • the first electrode is an anode electrode having a transparent conductive layer and a reflective layer; wherein the transparent conductive layer is provided with a plurality of the optical adjustment layers;
  • the display device according to any one of (10) to (15) above.
  • one or both of the first electrode and the second electrode includes a transparent conductive layer, and a plurality of the optical adjustment layers are provided on the transparent conductive layer;
  • the transparent conductive layer has voids, The display device according to any one of (10) to (16) above.
  • one or both of the first electrode and the second electrode includes a transparent conductive layer, and a plurality of the optical adjustment layers are provided on the transparent conductive layer; wherein the optical tuning layer has a density-reduced structure;
  • the display device according to any one of (10) to (17) above. (19) Equipped with the display device according to any one of (1) to (18) above, Electronics. (20) forming an optical adjustment layer on the transparent conductive layer; a step of collectively dividing the optical adjustment layer at a pitch corresponding to each sub-pixel; forming a transflective layer so as to cover the divided optical adjustment layer; A method for manufacturing a display device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

共振器構造を有しても表副画素の間の段座を抑制できる表示装置、電子機器、および表示装置の製造方法を提供する。 表示装置が、複数の色種に対応した複数の副画素を有し、それぞれの前記副画素に、第1の電極と有機層と第2の電極とを有する発光素子を備えており、少なくとも1つの色種に対応した前記副画素には、前記有機層からの出射光を共振する共振器構造が形成され、且つ、前記第1の電極と前記第2の電極の少なくともいずれか一方に屈折率調整層が内包されている。

Description

表示装置、電子機器、ならびに表示装置の製造方法
 本開示は、表示装置、電子機器、ならびに表示装置の製造方法に関する。
 有機ELディスプレイのような表示装置では、副画素の色種に応じた色再現性や高効率化に貢献する技術として、特許文献1に示すように、マイクロキャビティ構造(共振器構造)が知られている。特許文献1に示す共振器構造では、反射板と下部透明電極との間の層間絶縁膜(光路長調整層)の膜厚みが、副画素の色種に応じて定められる共振条件を満たす値とされる。
特開2015-26561号公報
 特許文献1に開示されたような共振器構造では副画素の色種の違いに応じて、光路調整層の膜厚みが異なるため、光路調整層よりも上層に形成される各層において、副画素の間に光路調整層の膜厚み差に基づく段差が生じることがある。副画素の間に生じた段差が大きくなると光取出効率及び色純度に影響が生じること懸念される。したがって、共振器構造を有する表示装置においては、副画素間の段差を抑制する点で改善の余地がある。
 本開示は、上述した点に鑑みてなされたものであり、共振器構造を有しても副画素の間の段座を抑制できる表示装置、電子機器、ならびに表示装置の製造方法の提供を目的の一つとする。
 本開示は、例えば、(1)複数の色種に対応した複数の副画素を有し、
 それぞれの前記副画素に、第1の電極と有機層と第2の電極とを有する発光素子を備えており、
 少なくとも1つの色種に対応した前記副画素には、前記有機層からの出射光を共振する共振器構造が形成され、且つ、前記第1の電極と前記第2の電極の少なくともいずれか一方に屈折率調整層が内包されている、
 表示装置である。
 本開示は、例えば、(2)上記(1)記載の表示装置を備えた電子機器であってもよい。
 また、本発明は、例えば、(3)光学調整層を透明導電層上に形成する工程と、
 前記光学調整層をそれぞれの副画素に対応したピッチで一括して分断する工程と、
 分断された前記光学調整層を覆うように半透過反射層を形成する工程と、を備える、
 表示装置の製造方法である。
図1は、第1の実施形態にかかる表示装置の一実施例を説明するための断面図である。 図2Aは、表示装置の実施例の一つを説明するための平面図である。図2Bは、図2Aにおける破線で囲まれた領域XSの副画素の配列を示す平面図である。 図3A、図3Bは、発光素子の例を示す断面図である。 図4Aから図4Eは、第1の実施形態にかかる表示装置の製造方法を説明するための断面図である。 図5Aから図5Eは、第1の実施形態にかかる表示装置の製造方法を説明するための断面図である。 図6Aは、第1の実施形態にかかる表示装置の一実施例を説明するための断面図である。図6Bは、第1の実施形態にかかる表示装置の変形例を説明するための断面図である。 図7A、図7Bは、第1の実施形態にかかる表示装置の変形例を説明するための断面図である。 図8A、図8Bは、第1の実施形態にかかる表示装置の変形例を説明するための断面図である。 図9A、図9Bは、第1の実施形態にかかる表示装置の変形例を説明するための断面図である。 図10は、第2の実施形態にかかる表示装置の一実施例を説明するための断面図である。 図11Aは、第2の実施形態にかかる表示装置の副画素の配列を説明するための平面図である。図11Bは、第2の実施形態にかかる表示装置の一実施例を説明するための断面図である。 図12は、第2の実施形態にかかる表示装置と同等の表示装置を説明するための図である。 図13Aから図13Cは、第2の実施形態にかかる光学調整層の一実施例を説明するための断面図である。 図14Aから図14Cは、第2の実施形態にかかる表示装置の製造方法を説明するための断面図である。 図15Aから図15Cは、第2の実施形態にかかる表示装置の製造方法を説明するための断面図である。 図16は、第2の実施形態にかかる表示装置の変形例を説明するための断面図である。 図17A、図17Bは、第2の実施形態にかかる表示装置の変形例を説明するための断面図である。 図18A、図18Bは、第2の実施形態にかかる表示装置の変形例を説明するための断面図である。 図19A、図19Bは、第2の実施形態にかかる表示装置の変形例を説明するための断面図である。 図20A、図20Bは、第2の実施形態にかかる表示装置の変形例を説明するための断面図である。 図21A、図21Bは、表示装置の副画素のレイアウトの一実施例(第3の実施形態)を説明するための図である。 図22A、図22Bは、表示装置の副画素のレイアウトの一実施例(第3の実施形態)を説明するための図である。 図23Aは、第4の実施形態にかかる表示装置の一実施例を説明するための断面図である。図23Bは、第5の実施形態にかかる表示装置の一実施例を説明するための断面図である。 図24Aは、第6の実施形態にかかる表示装置の一実施例を説明するための断面図である。図24Bは、第7の実施形態にかかる表示装置の一実施例を説明するための断面図である。 図25A、図25Bは、表示装置を用いた電子機器の一実施例を説明するための図である。 図26は、表示装置を用いた電子機器の一実施例を説明するための図である。 図27は、表示装置を用いた電子機器の一実施例を説明するための図で
 以下、本開示にかかる一実施例等について図面を参照しながら説明する。なお、説明は以下の順序で行う。本明細書及び図面において、実質的に同一の機能構成を有する構成については、同一の符号を付することにより重複説明を省略する。
 なお、説明は以下の順序で行うものとする。
1.第1の実施形態
2.第2の実施形態
3.第3の実施形態
4.第4の実施形態
5.第5の実施形態
6.第6の実施形態
7.第7の実施形態
8.応用例
 以下の説明は本開示の好適な具体例であり、本開示の内容は、これらの実施の形態等に限定されるものではない。また、以下の説明において、説明の便宜を考慮して前後、左右、上下等の方向を示すが、本開示の内容はこれらの方向に限定されるものではない。図1、図2の例では、Z軸方向を上下方向(上側が+Z方向、下側が-Z方向)、X軸方向を前後方向(前側が+X方向、後ろ側が-X方向)、Y軸方向を左右方向(右側が+Y方向、左側が-Y方向)であるものとし、これに基づき説明を行う。これは、図3から図11、図14から図24についても同様である。図1等の各図に示す各層の大きさや厚みの相対的な大小比率は便宜上の記載であり、実際の大小比率を限定するものではない。これらの方向に関する定めや大小比率については、図2から図24の各図についても同様である。
[1 第1の実施形態]
[1-1 表示装置の構成]
 図1は、本開示の一実施形態に係る有機EL(Electroluminescence)表示装置10(以下、単に「表示装置10」という。)の一構成例を示す断面図である。表示装置10は、駆動基板11と、複数の発光素子104とを備える。また、表示装置10は、共振器構造19を有する。なお、図1では、後述する充填樹脂層17及び対向基板18の記載をしている。図2から図24については、説明の便宜上、充填樹脂層17及び対向基板18を省略する。
 表示装置10は、トップエミッション方式の表示装置である。表示装置10は、駆動基板11が表示装置10の裏面側に位置し、駆動基板11から発光素子104に向かう方向(+Z方向)が表示装置10の表面側(表示領域10Aでの表示面側、上面側)方向となっている。以下の説明において、表示装置10を構成する各層において、表示装置10の表示領域10Aでの表示面側となる面を第1の面(上面)といい、表示装置10の裏面側となる面を第2の面(下面)という。
(副画素の構成)
 図1に示す表示装置10の例では、1つの画素が、複数の色種に対応した複数の副画素の組み合わせで形成されている。この例では、複数の色種として赤色、緑色、青色の3色が定められ、副画素として、副画素101R、副画素101G、副画素101Bの3種が設けられる。副画素101R、副画素101G、副画素101Bは、それぞれ赤色の副画素、緑色の副画素、青色の副画素であり、それぞれ赤色、緑色、青色の表示を行う。ただし、図1の例は、一例であり、複数の副画素の色種を限定するものではない。また、赤色、緑色、青色の各色種に対応する光の波長は、例えば、それぞれ610nmから650nmの範囲、510nmから590nmの範囲、440nmから480nmの範囲にある波長として定めることができる。また、個々の副画素101R、101G、101Bのレイアウトは、図2Bの例では、横並びのレイアウトとなっている。そして副画素101R、101G、101Bが、二次元的に設けられている。図2Bは、図2Aの表示領域10Aに形成される表示面内の一部の領域を拡大した状態を説明した図である。図2Aは、表示装置10の表示領域10Aを説明するための図である。
 以下の説明では、副画素101R、101G、101Bを特に区別しない場合、副画素101R、101G、101Bは副画素101という語で総称される。
(駆動基板)
 駆動基板11は、基板11Aに複数の発光素子104を駆動する各種回路を設けている。各種回路としては、発光素子104の駆動を制御する駆動回路、複数の発光素子104に電力を供給する電源回路(いずれも図示せず)を例示することができる。
 基板11Aは、例えば、水分および酸素の透過性が低いガラスまたは樹脂で構成されていてもよく、トランジスタ等の形成が容易な半導体で形成されてもよい。具体的には、基板11Aは、ガラス基板、半導体基板または樹脂基板等であってもよい。ガラス基板は、例えば、高歪点ガラス、ソーダガラス、ホウケイ酸ガラス、フォルステライト、鉛ガラスまたは石英ガラス等を含む。半導体基板は、例えば、アモルファスシリコン、多結晶シリコンまたは単結晶シリコン等を含む。樹脂基板は、例えば、ポリメチルメタクリレート、ポリビニルアルコール、ポリビニルフェノール、ポリエーテルスルホン、ポリイミド、ポリカーボネート、ポリエチレンテレフタラートおよびポリエチレンナフタレート等からなる群より選ばれる少なくとも1種を含む。
 駆動基板11の第1の面には、発光素子104と基板11Aに設けられた各種回路とを接続するための複数のコンタクトプラグ(図示せず)が設けられる。
(発光素子)
 表示装置10では、駆動基板11の第1の面上に、複数の発光素子104が設けられている。図1の例では、発光素子104は、有機エレクトロルミネッセンス素子となっている。また、この例では、複数の発光素子104として、個々の副画素101R、101G、101Bに対応するように個々の発光素子104R、104G、104Bが形成される。発光素子104R、104G、104Bは、それぞれ赤色、緑色、青色の光をそれぞれの発光面からの出射光とする。本明細書において、発光素子104R、104G、104Bといった種類が特に区別されない場合、発光素子104という語が使用される。複数の発光素子104は、例えば、マトリクス状等の規定の配置パターンで2次元配置されている。図2Aの例では複数の発光素子104は、所定の2方向(図2AではX軸方向及びY軸方向)に二次元的に配列したレイアウトとなっている。図2Aは、表示装置10の表示領域10Aの形成面(表示面)の一実施例を説明するための平面図である。図2Aにおいて、符号10Bは、表示領域10Aの外側となる領域を示す。
 発光素子104は、第1の電極13と、有機層14と、第2の電極15とを備える。第1の電極13、有機層14および第2の電極15は、駆動基板11側からこの順序で、第2の面から第1の面に向かう方向に積層されている。
(第1の電極)
 第1の電極13は、駆動基板11の第1の面側に複数設けられる。第1の電極13は、後述する絶縁層12で副画素101毎に、電気的に分離されている。第1の電極13は、アノード電極である。図1の例では、第1の電極13は、反射層としての機能も兼ねている。この場合、第1の電極13は、できるだけ反射率が高いことが好ましい。さらに、第1の電極13は、仕事関数が大きい材料によって構成されることが、発光効率を高める上で好ましい。
 第1の電極13は、金属層および金属酸化物層のうちの少なくとも一層により構成されている。第1の電極13は、金属層もしくは金属酸化物層の単層膜、または金属層と金属酸化物層の積層膜により構成されていてもよい。第1の電極13が積層膜により構成されている場合、金属酸化物層が有機層14側に設けられていてもよいし、金属層が有機層14側に設けられていてもよいが、高い仕事関数を有する層を有機層14に隣接させる観点からすると、金属酸化物層が有機層14側に設けられていることが好ましい。      
 第1の電極13は、反射板と透明導電層で形成されていてもよい。これは、例えば、第1の電極13を、反射板として、光反射性を有する金属層を用い、透明導電層として、光透過性を有する金属酸化膜で形成することで実現することができる。また、第1の電極13を透明導電層130で形成し、第1の電極13とは別途に反射板を設けてもよい。
 金属層は、例えば、クロム(Cr)、金(Au)、白金(Pt)、ニッケル(Ni)、銅(Cu)、モリブデン(Mo)、チタン(Ti)、タンタル(Ta)、アルミニウム(Al)、マグネシウム(Mg)、鉄(Fe)、タングステン(W)および銀(Ag)からなる群より選ばれる少なくとも1種の金属元素を含む。金属層は、上記少なくとも1種の金属元素を合金の構成元素として含んでいてもよい。合金の具体例としては、アルミニウム合金または銀合金が挙げられる。アルミニウム合金の具体例としては、例えば、AlNdまたはAlCuが挙げられる。
 金属酸化物層は、例えば、インジウム酸化物と錫酸化物の混合体(ITO)、インジウム酸化物と亜鉛酸化物の混合体(IZO)および酸化チタン(TiO)のうちの少なくとも1種を含む。
(絶縁層)
 表示装置10においては、図1に示すように、絶縁層12が、駆動基板11の第1の面側に設けられていることが好適である。絶縁層12は、隣り合う第1の電極13の間に設けられており、各第1の電極13を発光素子104毎(すなわち副画素101毎)に電気的に分離する。また、絶縁層12は、複数の開口部12Aを有し、第1の電極13の第1の面(第2の電極15との対向面)が開口部12Aから露出している。なお、図1等の例では、絶縁層12は、分離された第1の電極13の第1の面の周縁部から側面(端面)にかけての領域を覆っている。そして、この場合、それぞれの開口部12Aは、それぞれの第1の電極13の第1の面上に配置される。このとき、第1の電極13は、開口部12Aから露出し、この露出した領域が、発光素子104の発光領域を規定する。本明細書において、第1の電極13の第1の面の周縁部とは、個々の第1の電極13の第1の面側の外周端縁からその第1の面の内側に向かって、所定の幅を有する領域をいう。
 絶縁層12は、例えば有機材料または無機材料により構成される。有機材料は、例えば、ポリイミドおよびアクリル樹脂のうちの少なくとも1種を含む。無機材料は、例えば、酸化シリコン、窒化シリコン、酸窒化シリコンおよび酸化アルミニウムのうちの少なくとも1種を含む。
(有機層)
 有機層14は、第1の電極13と第2の電極15の間に設けられている。有機層14は、それぞれの色種に対応する副画素101ごとに電気的に分離された層として設けられている。有機層14は、図1の例では、白色光を発光可能に構成されている。ただし、このことは、有機層14の発光色が白色以外であることを禁止するものではなく、赤色、青色、緑色などの色が採用されてもよい。すなわち、有機層14の発光色は、例えば白色、赤色、青色及び緑色のいずれか1種類であってよい。
 有機層14は、例えば、図3Aに示すように、第1の電極13から第2の電極15に向かって正孔注入層140、正孔輸送層141、発光層142、電子輸送層143がこの順序で設けられた構成を有する。電子輸送層143と第2の電極15との間には、電子注入層144を設けてもよい。電子注入層144は、電子注入効率を高めるためのものである。電子注入層144の材料としては、リチウムやフッ化リチウム等、アルカリ金属やアルカリ土類金属の単体やそれらを含む化合物を例示することができる。なお、有機層14の構成はこれに限定されるものではなく、発光層142以外の層は必要に応じて設けられるものである。
 正孔注入層140は、発光層142への正孔注入効率を高めるためのものであると共に、リークを抑制するためのバッファ層である。正孔注入層140の材料としては、ヘキサアザトリフェニレン(HAT)を例示することができる。正孔輸送層141は、発光層142への正孔輸送効率を高めるためのものである。正孔輸送層141の材料としては、N,N’-ジ(1-ナフチル)-N,N’-ジフェニル-1,1’-ビフェニル-4,4’-ジアミン(α-NPD)を例示することができる。電子輸送層143は、発光層142への電子輸送効率を高めるためのものである。電子輸送層143の材料としては、アルミキノリノールやバソフェナントロリン等を例示することができる。
 発光層142は、電界をかけることにより電子と正孔との再結合が起こり、光を発生するものである。発光層142は、有機発光材料を含む有機発光層である。発光層142は、例えば、赤色発光層142R、青色発光層142B及び緑色発光層142Gを積層した積層構造(1stack構造)である。ただし、図3Aに示すように、赤色発光層142R、青色発光層142Bの間には発光分離層145が配置される。
 赤色発光層142Rは、電界をかけることにより、第1の電極13から正孔注入層140、正孔輸送層141を介して注入されたホール(正孔)の一部と、第2の電極15から電子輸送層143を介して注入された電子の一部とが再結合して、赤色の光を発生するものである。赤色発光層142Rは、例えば、赤色発光材料、正孔輸送材料、電子輸送材料および両電荷輸送材料のうち少なくとも1種を含んでいる。赤色発光材料は、蛍光性のものでも燐光性のものでもよい。具体的には、赤色発光層は、例えば、4,4-ビス(2,2-ジフェニルビニン)ビフェニル(DPVBi)に2,6-ビス[(4’-メトキシジフェニルアミノ)スチリル]-1,5-ジシアノナフタレン(BSN)を30重量%混合したものにより構成されてよい。
 発光分離層145は、キャリアの発光層142への注入を調整するための層であり、発光分離層145を介して発光層142を構成する各層に電子やホールが注入されることにより各色の発光バランスが調整される。発光分離層145は、例えば、4,4’-ビス[N-(1-ナフチル)-N-フェニル-アミノ]ビフェニル誘導体等で構成される。
 青色発光層142Bは、電界をかけることにより、第1の電極13から正孔注入層140、正孔輸送層141および発光分離層145を介して注入された正孔の一部と、第2の電極15から電子輸送層143を介して注入された電子の一部とが再結合して、青色の光を発生するものである。青色発光層142Bは、例えば、青色発光材料,正孔輸送材料,電子輸送材料および両電荷輸送材料のうち少なくとも1種を含んでいる。青色発光材料は、蛍光性のものでも燐光性のものでもよい。具体的には、青色発光層142Bは、例えば、DPVBiに4,4’-ビス[2-{4-(N,N-ジフェニルアミノ)フェニル}ビニル]ビフェニル(DPAVBi)を2.5重量%混合したものにより構成されている。
 緑色発光層142Gは、電界をかけることにより、第1の電極13から正孔注入層140、正孔輸送層141および発光分離層145を介して注入された正孔の一部と、第2の電極15から電子輸送層143を介して注入された電子の一部とが再結合して、緑色の光を発生するものである。緑色発光層142Gは、例えば、緑色発光材料、正孔輸送材料、電子輸送材料および両電荷輸送材料のうち少なくとも1種を含んでいる。緑色発光材料は、蛍光性のものでも燐光性のものでもよい。具体的には、緑色発光層142Gは、例えば、DPVBiにクマリン6を5重量%混合したものにより構成されている。
 なお、有機層14が、白色光を発光可能に構成されている場合、有機層14の構成は上記に限定されず、例えば図3Bに示すような構成を備えてもよい。図3Bの例では、有機層14は、正孔注入層140、正孔輸送層141、青色発光層142B、電子輸送層146、電荷発生層147、正孔輸送層148、黄色発光層142Y、電子輸送層143を積層した構造を有する。この構造は、発光層142として青色発光層142Bと黄色発光層142Yとを有する構造であり、いわゆる2stack構造である。なお、図3Bについても、図3Aの場合と同様に、電子輸送層143と第2の電極15との間に電子注入層144を設けてもよい。
(第2の電極)
 発光素子104において、第2の電極15は、第1の電極13と対向して設けられている。第2の電極15は、副画素101に共通の電極として設けられている。第2の電極15は、カソード電極である。第2の電極15は、有機層14で発生した光に対して透過性を有する透明電極であることが好適である。ここでいう透明電極は、透明導電層150で形成されたもの、及び透明導電層150と半透過反射層151を有する積層構造で形成されたものを含む。図1、図6A等の例では、第2の電極15は、透明導電層150と半透過反射層151を有する積層構造で形成されている。なお、半透過反射層151については、第2の電極15とは別途分離されて形成されていてもよい。
 第2の電極15は、金属層および金属酸化物層のうちの少なくとも一層により構成されている。より具体的には、第2の電極15は、金属層もしくは金属酸化物層の単層膜、または金属層と金属酸化物層の積層膜により構成されている。第2の電極15が積層膜により構成されている場合、金属層が有機層14側に設けられてもよいし、金属酸化物層が有機層14側に設けられてもよい。
 透明導電層150は、光透過性が良好で仕事関数が小さい透明導電材料が好適に用いられる。透明導電層150は、例えば、金属酸化物で形成することができる。具体的に、透明導電層150の材料としては、インジウム酸化物と錫酸化物の混合体(ITO)、インジウム酸化物と亜鉛酸化物の混合体(IZO)および酸化亜鉛(ZnO)のうちの少なくとも1種を含むものを例示することができる。
 半透過反射層151は、例えば金属層で形成することができる。具体的には、半透過反射層151の材料は、マグネシウム(Mg)、アルミニウム(Al)、銀(Ag)、金(Au)および銅(Cu)からなる群より選ばれる少なくとも1種の金属元素を含むものを例示することができる。金属層は、上記少なくとも1種の金属元素を合金の構成元素として含んでいてもよい。合金の具体例としては、MgAg合金、AgPdCu合金等が挙げられる。
(屈折率調整層)
 第2の電極15は、屈折率調整層20を内包している。図1、図6A等の例では、第2の電極15の透明導電層150に内包されている。また、この例では、屈折率調整層20は、副画素101ごとに透明導電層150内部に配置される。例えば副画素101Bにおいては屈折率調整層20B、副画素101Gにおいては屈折率調整層20G、副画素101Rにおいては屈折率調整層20Rが、それぞれの第2の電極15に内包されている。なお、屈折率調整層20R、20G、20Bを区別しない場合には、屈折率調整層20R、20G、20Bは、屈折率調整層20と総称する。
 屈折率調整層20は、光透過性を有する材料から形成されており、好ましくは透明な材料から形成される。
 また、屈折率調整層20の材料は、副画素101の構造に応じた材質及び屈折率を有するものを用いられる。この場合、それぞれの色種に対応した副画素101における屈折率調整層20R、20G、20Bの組成が、互いに異なる。ここにいう組成が異なるとは、材質、屈折率及び構成比率の少なくとも一種以上が異なることを示す。
 屈折率調整層20の材料として、高い屈折率を有する材料については、例えば、Al、SiNx、HfO、Ta、Nb、TiO等の屈折率1.9以上2.4以下程度の材料が例示される。
 屈折率調整層20の材料として、低い屈折率を有する材料については、例えば、SiO2、LiF、MgF、SiON等の屈折率1.4以上1.9以下程度の材料が例示される。
また、屈折率調整層20の材料としては、有機層14で使用される各種の有機材料やその他の有機化合物が例示される。
 透明導電層150及び屈折率調整層20は、合わせて、例えば10nmから500nmの厚みの範囲になるように設定されることが好ましい。なお、他の層の厚みについては、例えば第1の電極13が100nmから300nm程度、有機層14の厚みは、20から500nm程度に設定されることが好ましい。
(共振器構造)
 表示装置10には、共振器構造19が形成されている。共振器構造19は、キャビティ構造であり、有機層14からの出射光を共振する構造である。表示装置10において、共振器構造19は、発光素子104に形成されており、図1、図6A等の例では、共振器構造19は、第1の電極13、有機層14及び第2の電極15を含み、屈折率調整層20も含まれる。有機層14からの出射光を共振するとは、出射光に含まれる特定波長の光を共振することを示す。
 図6Aに示すように、有機層14からの出射光Jのうち、第1の電極13と第2の電極(半透過反射層151)との間で反射し共振する成分が強調され、発光面側(第1の面側)から強調された光が外部に向けて(図6の太矢印F方向に)放出される。図6Aは、図1の表示装置の各副画素101の要部を抜き出した断面図である。図6A等において太矢印Fは、発光素子104から発せられる出射光の方向である。これは、図6B、図7から図9、図11、および図16から図20についても同様である。図1、図6A等に示す表示装置10の例では、有機層14は、白色光を出射光としており、共振器構造19は、白色光に含まれる特定波長の光を共振する。このとき、有機層14からの白色光のうち所定波長の光が強調される。そして、発光素子104の第2の電極15側(すなわち発光面側)から、所定波長の光を強調した状態で、外部に向けて光が放出される。なお、所定波長の光は、予め定められ色種に対応する光であり、副画素101に応じて定められる色種に対応する光を示す。図1、図6A等の例では、表示装置10は、副画素101R、101G、101Bを有し、それぞれの副画素101R、101G、101Bに応じた発光素子104R、104G、104Bを有している。また、それぞれの発光素子104R、104G、104Bに対応して、それぞれ共振器構造19R、19G、19Bが形成されている。共振器構造19Rでは、有機層14からの出射光のうち赤色光が共振する。発光素子104Rの第2の電極15からは、赤色光を強調した状態で、外部に向けて光が放出される。共振器構造19G、19Bについては、それぞれ有機層14からの出射光のうち緑色光、青色光が共振する。副画素101G、101Bでは、発光素子104G、104Bの第2の電極15から、緑色光、青色光を強調した状態で、外部に向けて光が放出される。なお、本明細書において、共振器構造19R、19G、19Bを特に区別しない場合、共振器構造19R、19G、19Bは、共振器構造19という語で総称される。
(光路長)
 有機層14からの出射光の共振は、第2の電極15と第1の電極13との間の光反射で形成される。図6の例では、上記したように出射光の共振は、半透過反射層151と第1の電極13との間の光反射で形成される。半透過反射層151と第1の電極13との間の光路長(光学的距離と呼ぶことがある)は、予め定めた色種の光に応じて設定される。予め定めた色種は、副画素101で発光させたい色種である。例えば、副画素101Rに形成される共振器構造19Rでは、第1の電極13と第2の電極15との間の光路長は、赤色光の共振を生じるように設定される。副画素101G、101Bに形成される共振器構造19G、19Bについては、第1の電極13と第2の電極15との間の光路長は、それぞれ緑色光、青色光の共振を生じるように設定される。図1,図6等の例では、副画素101ごとに共振条件を満たすように、屈折率調整層20が設けられ、且つ、共振器構造19が形成されている。
(共振条件)
 共振器構造19では、共振条件が満たされることが好適である。共振条件とは、下記の数式1が満たされることを示す。
2L/λ+φ/2π=m  ・・・(数式1)
 上記数式1において、Lは、第1の電極13と第2の電極15との間の光学的距離[nm]、λは、予め定められた色種に対応する光のスペクトルのピーク波長[nm]、φは、第1の電極13及び第2の電極15での光の反射により生じる位相シフトの大きさ[rad](radian)、mは、整数(共振次数)を示す。予め定められた色種に対応する光は、外部に取り出したい光に対応する。
 光学的距離Lは、第1の電極13と第2の電極15と間に形成された各層の厚みと屈折率との積の総和を示す。したがって、屈折率調整層20の屈折率を副画素101の色種に応じた値とすることで光学的距離Lを調整することができる。そして、副画素101の色種に応じて、上記した共振条件の数式1が満たされるように、屈折率調整層20の材質、厚みが調整され、各層の厚みが調整される。屈折率調整層20Bの屈折率N1、厚みD1とし、屈折率調整層20Gの屈折率N2、厚みD2とし、屈折率調整層20Rの屈折率N3、厚みD3とすると、屈折率N1、N2、N3及び厚みD1、D2、D3に応じて、光学的距離Lが調整される。したがって、屈折率調整層20の屈折率N1、N2、N3の選び方によって厚みD1、D2、D3を調整することができ、色種の異なる副画素101の間での物理的な厚みの差(具体的に副画素101の間の段差)を抑制することができる。
(保護層)
 第2の電極15の第1の面上には、保護層16が形成されている。保護層16は、発光素子104を外気と遮断し、外部環境から発光素子104への水分浸入を抑制する。また、第2の電極15の半透過反射層151が金属層により構成されている場合には、保護層16は、この金属層の酸化を抑制する機能を有していてもよい。
 保護層16は、絶縁材料で形成される。絶縁材料としては、例えば、熱硬化性樹脂などを用いることができる。そのほかにも、絶縁材料としては、SiO、SiON、AlO、TiO等でもよい。この場合、保護層16として、SiO、SiON等を含むCVD膜や、AlO、TiO、SiO等を含むALD膜等を例示することができる。保護層16は、単層で形成されてもよいし、複数の層を積層した状態で形成されていてもよい。なお、CVD膜は、化学気相成長法(chemical vapor deposition)を用いて形成された膜を示す。ALD膜は、原子層堆積法(Atomic layer deposition) を用いて形成された膜を示す。
(充填樹脂層)
 保護層16の第1の面側には、充填樹脂層17が形成されていてもよい。充填樹脂層17は、保護層16の形成面となる第1の面の表面を平滑化する機能を発揮させることができる。また、充填樹脂層17は、後述の対向基板18を接着する接着層としての機能を有することができる。充填樹脂層17は、紫外線硬化型樹脂や熱硬化型樹脂等を例示することができる。
(対向基板)
 対向基板18は、充填樹脂層17上に、駆動基板11に対向させた状態で設けられている。対向基板18は、充填樹脂層17とともに発光素子104を封止する。対向基板18は、駆動基板11を形成する基板11Aと同様の材料で形成されてよく、ガラス等の材料により構成されることが好ましい。
[1-2 作用及び効果]
 共振器構造19を有する表示装置においては、副画素101ごとに光学的距離Lが共振条件を満たすように、例えば、副画素101の色種に応じて第2の電極15と有機層14までの距離が調整されていた。また、共振器構造19では、共振条件を満たすための他の調整方法として、第1の電極13の第2の面側に反射板を別途配置し、反射板と第2の電極15までの距離を調整することが行われてきた。これらのいずれにおいても、それぞれの色種の副画素101で光学的距離が共振条件を満たすように各層の厚みが調整されることから、隣接する異なる色種の副画素101の間で大きな段差(副画素101間の第1の面側の段差)が生じることがあった。そこで、表示装置においては、色純度や光の有効利用の点からこのような段差の軽減が要請されてきた。
 本開示によれば、第2の電極15が屈折率調整層20を内包している。屈折率調整層20は、副画素101の色種に応じて形成されているため、屈折率調整層20によって副画素101ごとに光学的距離Lを調整することが可能となる。すなわち、副画素101の色種に応じて所定の屈折率等を有する屈折率調整層20を配置することで隣接する副画素101の間で発光素子104の第1の面側の段差を軽減することができる。また、屈折率調整層20の屈折率によって光学的距離Lの調製ができるため、表示装置10の厚みが必要以上に厚くならないように抑えることができ、光取り出し効率の低下を抑制することもできる。
[1-3 表示装置の製造方法]
 次に、表示装置10の製造方法の一例について、図4Aから図4E、図5Aから図5Eを用いて、詳細に説明する。なお、副画素101の色種によらず有機層14の発光色が白色である場合を例として説明を続ける。
 シリコン等の半導体材料から成る基板11Aにトランジスタや各種配線を形成することで駆動基板11が形成される。
 駆動基板11上に、例えば、第1の電極13のパターンに応じてAl合金等の材料をスパッタリングすることによって第1の電極13がパターニングされる。次いで、隣接する第1の電極13の間に絶縁層12が形成される。すなわち、例えば第1の電極13上を含む全面に、リソグラフィやエッチングなどのパターニング技術を用いて絶縁層12をパターニングする。また、このとき開口部12Aを形成して第1の電極13の上面を露出させる。
 第1の電極13上に、正孔注入層140、正孔輸送層141、赤色発光層142R、発光分離層145、青色発光層142B、緑色発光層142G、電子輸送層143等を順次、形成する。これらの層の形成には、例えば蒸着法等が用いられる。さらに第2の電極15の透明導電層150(例えば、IZO)を、スパッタ法等を用いて形成する。
 次に、透明導電層150上に屈折率調整層20Bを形成する(図4A)。さらに副画素101Bに対応する部分に屈折率調整層20Bを形成する。これは、例えばCVD法、ALD法またはスパッタ法のような方法を適宜用いて形成された屈折率調整層20Bを、ドライエッチング法によって加工することで実現することができる(図4B)。
 屈折率調整層20Bの形成と同様に、屈折率調整層20Gを形成し(図4C)、副画素101Gに対応する部分を残すようにドライエッチング法によって加工する(図4D)。さらに、屈折率調整層20Rを形成し(図4E)、副画素101Gに対応する部分を残すようにドライエッチング法によって加工する(図5A)。こうして、副画素101G、101Rに対応する部分にも、屈折率調整層20G、20Rを形成する。
 次いで、副画素101の配置パターンに応じて、透明導電層150及び有機層14を副画素101ごとに分断加工する。分断加工は、例えば、ドライエッチング法が用いられる。そして、透明導電層150及び有機層14の側端面には側壁層22が形成される(図5B)。側壁層22は、例えば、分断加工時のデポ等(エッチング時の再生成物)で形成されてよい。側壁層22が形成されていることで、斜め方向への出射光が生じても隣接副画素へ光が漏れにくくなる。
 そして、第2の電極15の透明導電層150がスパッタ法等を適宜用いてさらに形成される(図5C)。このとき、透明導電層150に屈折率調整層20が内包された状態となる。さらに、透明導電層150の上に半透過反射層151が形成される(図5D)。これは、例えば、Ag合金等の半透過反射層151の材料を透明導電層150上にスパッタリングすることで実現することができる。第2の電極15は、副画素101に共通する共通カソード電極として機能することができる。
 第2の電極15を被覆するように保護層16が形成される(図5E)。保護層16の形成は、例えば、SiN等の材料をCVD法で全面形成することで具体的に実現することができる。
 そして、対向基板18を保護層16の第1の面側に貼りあわせる。このとき、対向基板18と保護層16とを接着する接着樹脂が充填樹脂層17となる。こうして表示装置10が得られる。
[1-4 変形例]
 次に、上記第1の実施形態にかかる表示装置10の変形例について説明する。
(変形例1)
 第1の実施形態にかかる表示装置10においては、図6Bに示すように、副画素101のうち少なくとも1つの色種に対応した副画素101について、屈折率調整層20の配置がさけられていてもよい(変形例1)。図6Bは、第1の実施形態の変形例1にかかる表示装置10の一実施例の要部を示す断面図である。
 図6Bに示す例では、屈折率調整層20を配置された副画素101の色種とは異なる少なくとも1つの色種に対応した副画素101では、屈折率調整層20の配置が避けられている。すなわち、副画素101Bについて、屈折率調整層20が配置されておらず、他の色種の副画素101G、101Rについて屈折率調整層20G、20Rが形成されている。この場合、構成が簡素化されることになり、製造工程数を削減することができ製造容易性が向上する。なお、この観点から、屈折率調整層20が、副画素101B、101G、101Rのいずれか1種類のみ形成されていてもよい(図示しない)。
(変形例2)
 第1の実施形態にかかる表示装置10においては、図7Aに示すように、副画素101のうち少なくとも1つの色種に対応した副画素101について、屈折率調整層20が多層構造を有してもよい(変形例2)。図7Aは、第1の実施形態の変形例2にかかる表示装置10の一実施例を示す。
 図7Aに示す例では、屈折率調整層20G、20Rが多層構造を有している。副画素101Bについての屈折率調整層20Bが単層構造を有し、屈折率調整層20G、20Rがそれぞれ2層の積層構造、3層の積層構造で形成されている。また、この例では、屈折率調整層20Bを形成する第1層120Aは、屈折率調整層20G、20Rにも形成されており、屈折率調整層20Gと屈折率調整層20Rは、第1層120A及び第2層120Bを形成している。屈折率調整層20Rは、さらに第3層120Cを有している。第1層120A、第2層120B、第3層120Cは、それぞれに屈折率調整層20を形成する材料として使用できる材料で形成された層である。図7Aの場合、第1層120A、第2層120B、第3層120Cは、それぞれの副画素101の共振器構造19で、副画素101の色種に応じた共振条件が満たされるように、材質、屈折率及び厚みが選ばれる。変形例2の表示装置10によれば、積層数が増えることで設計の自由度が向上する。
(変形例3)
 第1の実施形態にかかる表示装置10においては、図7Bに示すように、屈折率調整層20は、透明導電層150と半透過反射層151との間に形成されていてもよい(変形例3)。図7Bは、第1の実施形態の変形例1にかかる表示装置10の一実施例を示す。
 図7Bの例では、透明導電層150上に形成された屈折率調整層20B、20G、20R全体を半透過反射層151が被覆している。この場合、透明導電層150上に形成された屈折率調整層20B、20G、20R上にさらに透明導電層150を形成する工程(図5Cに示す工程)を省略することができるため、工程数の削減が可能となる。
(変形例4)
  第1の実施形態にかかる表示装置10の例においては副画素101B、101G,101Rに設けられた有機層14は、いずれも発光色を同色の白色としていたが、有機層14の組み合わせはこれに限定されない。第1の実施形態にかかる表示装置10においては、図8Aに示すように、少なくとも1つの色種に対応した副画素101に設けられた有機層14の発光色(第1の発光色)が、他の複数の色種に対応した副画素101に設けられた有機層14の発光色(第2の発光色)とは異なる色種とされていてもよい。
 図8Aの例では、副画素101Bに設けられた有機層14は、青色を第1の発光色としている有機層14Bである。この例では、副画素101Bについては、屈折率調整層20Bが第2の電極15(透明導電層150)に内包され、共振器構造19が形成されているが、これに限定されず、屈折率調整層20Bが省略されてもよい。
 変形例4にかかる表示装置10では、他の複数の色種に対応した副画素101に設けられた有機層14の第2の発光色は、他の複数の色種に対応した副画素101の間で共通している。図8Aの例では、副画素101G、101Rに設けられた有機層14は、黄色を第2の発光色としている有機層14Yである。黄色を発光色とする有機層14は、赤色発光層と緑色発光層を積層した構造を有してもよい。また、副画素101G、101Rには、第2の電極15(透明導電層150)に屈折率調整層20G、20Rが内包されている。副画素101G、101Rそれぞれに形成される共振器構造19G、19Rが緑色、赤色の光を共振するように、屈折率調整層20G、20Rは、互いに異なる屈折率や厚みを定められている。
 変形例4にかかる表示装置10によれば、所定の一色(図8Aの例では青色)については、高い発光効率を実現することができる。また、他の色(図8Aの例では、赤色と緑色)については、副画素101に応じて異なる屈折率調整層20を設けることで、副画素101に応じた色種の光を効率的に取り出すことができる。
(変形例5)
 第1の実施形態にかかる表示装置10においては、図8Bに示すように、屈折率調整層20は、第1の電極13に内包されてもよい(変形例5)。図8Bは、第1の実施形態の変形例5にかかる表示装置10の一実施例を示す。
 図8Bの例では、第1の電極13は、透明導電層130と反射層131とを有するアノード電極となっており、有機層14に近い方に透明導電層130が配置されている。反射層131は、Al等の金属を好適に用いられる。また、透明導電層130としては、ITO、IZO等の金属酸化膜が好適に用いられる。
 変形例5にかかる表示装置10においては、屈折率調整層20が透明導電層130に内包されている。屈折率調整層20の屈折率、材質及び厚み等の諸条件は、第2の電極15に屈折率調整層20が内包されている場合と同様である。すなわち、第1の電極13に屈折率調整層20が内包された場合においても、それぞれの副画素101B、101G,101Rにおける共振器構造19B、19G、19Rで共振条件が満たされるような光学的距離Lに基づき、屈折率調整層20の屈折率、材質及び厚み等の条件が定められることが好適である。
 なお、変形例5の場合では、第2の電極15は、図8Bでは、透明導電層150と半透過反射層151で形成されているが、これに限定されず、第2の電極15が半透過反射層151で形成されていてもよい。第2の電極15が半透過反射層151で形成されている場合、第2の電極15は、光透過性が良好で仕事関数の小さい材料により形成されていることが好ましい。例えば、第2の電極15は、例えば、マグネシウム(Mg)、銀(Ag)あるいはそれらの合金などの金属層で構成される。また、第2の電極15は半透過反射層151を多層として形成されてもよい。この場合、第2の電極15は、例えば、第1層としてカルシウム(Ca)、バリウム(Ba)、リチウム(Li)、セシウム(Cs)、インジウム(In)、マグネシウム(Mg)、銀(Ag)、第2層としてマグネシウム(Mg)、銀(Ag)あるいはそれらの合金などの金属層の積層構造で構成されてもよい。なお、第2の電極15が半透過反射層151で形成されている場合、第2の電極15を形成する半透過反射層151は3~20nmの範囲に設定されることが好ましい。
 変形例5にかかる表示装置10のように、屈折率調整層20が第1の電極13に内包された場合においても、屈折率調整層20が第2の電極15に内包されている場合と同様に副画素101間の段差軽減の効果を得ることができる。
 なお、第1の実施形態にかかる表示装置10では、第2の電極15に屈折率調整層20が形成されている場合を例として表示装置10が説明され、変形例5では、第1の電極に屈折率調整層20が内包されている場合が説明された。第1の実施形態にかかる表示装置10はこれらに限定されず、第1の電極13に内包された屈折率調整層20と、第2の電極15に内包された屈折率調整層20の両方が設けられてもよい(図9B)。この場合においても、屈折率調整層20が第1の電極13に内包された場合や、屈折率調整層20が第2の電極15に内包されている場合と同様に、副画素101間の段差軽減の効果を得ることができる。
(変形例6)
 第1の実施形態にかかる表示装置10においては、図9Aに示すように、第2の電極15が透明導電層150を備え、且つ、屈折率調整層20が透明導電層150に設けられている場合に、屈折率調整層20が、密度低減化構造を有してもよい(変形例6)。図9Aは、第1の実施形態の変形例1にかかる表示装置10の一実施例を示す。
 図9Aの例では。透明導電層150に屈折率調整層20が内包されている。そして副画素101Bに設けられた屈折率調整層20が、密度低減化構造23を有する。
 密度低減化構造23は、図9Aの例に示すように、例えば、ポーラス構造を挙げることができる。屈折率調整層20が 密度低減化構造23を有することで、疎状態の層(密度が低い層)となり屈折率を下げることができる。例えば、SiOxを用いた膜(シリコン酸化膜等)をポーラスな膜状にして屈折率調整層20とすることで、屈折率調整層20を屈折率1.4以下まで低屈折率化させた層とすることができる。この場合、光学的距離が短くなるように調整することができる。このため副画素101のうち共振条件を満たす光学的距離の短いものについて、屈折率調整層20に密度低減化構造23を形成することで、副画素101間の段差をより効果的に低減することができる。このように、屈折率調整層20に密度低減化構造23を形成することで、設計の自由度を向上させることができる。
 なお、変形例6にかかる表示装置10は、第1の電極13が透明導電層130を備える場合についても同様に適用できる。すなわち、屈折率調整層20が透明導電層130に設けられている場合に、屈折率調整層20が、密度低減化構造23を有してもよい。
[2 第2の実施形態]
[2-1 表示装置の構成]
 上記第1の実施形態にかかる表示装置10の説明では、屈折率調整層20が、発光面の面方向(表示領域10Aの形成面の面方向)に一面に広がる層として形成されている場合を例として採り上げた。第1の実施形態にかかる表示装置10における屈折率調整層20は、これに限定されず、図10に示すように、屈折率調整層20が複数の光学調整層21を備えてもよい(第2の実施形態)。図10は、第2の実施形態にかかる表示装置10の一実施例を示す断面図である。図10に示すように、屈折率調整層20B、20G、20Rのそれぞれについて、複数の光学調整層21B、21G、21Rが設けられている。なお、光学調整層21B、21G、21Rを特に区別しない場合には、光学調整層21B、21G、21Rを、光学調整層21と総称する。
(光学調整層)
 光学調整層21は、屈折率調整層20の単位層となる構成単位となる。表示装置10では、図11Aに示すように、副画素101ごとに、複数の光学調整層21が発光素子104の発光面方向(表示領域10Aの形成面の広がり方向(XY平面に沿った方向))に沿って互いに離間した状態で配置されている。図11Aの例では、副画素101B、101G、101Rそれぞれに、所定の大きさとピッチで光学調整層21B、21G、21Rが格子状に整列配置されている。そして、この場合、屈折率調整層20は、格子状に配置された光学調整層21の群構造で形成される。
 図10の例では、図11Bにも示すように、第2の電極15は、透明導電層150と半透過反射層151とを有しており、複数の光学調整層21は透明導電層150に内包されている。また、光学調整層21B、21G、21Rそれぞれについて、複数の光学調整層21の屈折率と透明導電層150の屈折率が互いに異なっている。図11Bは、図10の要部を示す断面図である。
 それぞれの色種に対応した副画素101では、複数の光学調整層21の大きさ(図13において符号Wで示す)は、副画素101の色種に対応した光のピーク波長以下の値に定められていることが好ましく、ピーク波長の1/2以下であることがより好ましい。
 それぞれの色種に対応した副画素101では、複数の光学調整層21のピッチ(図13において符号Pで示す)は、副画素101の色種に対応した光のピーク波長以下の値に定められていることが好ましく、ピーク波長の1/2以下であることがより好ましい。例えば、副画素101Bでは、光学調整層21のピッチは、青色光のピーク波長以下の値が好ましく、副画素101Gでは、光学調整層21のピッチは、緑色光のピーク波長以下の値が好ましく、副画素101Rでは、光学調整層21のピッチは、赤色光のピーク波長以下の値が好ましい。なお、ピッチは、隣接する光学調整層21の中心間距離で定められる。また、このとき、光学調整層21の大きさも、副画素101の色種に対応した光のピーク波長以下の値に定められる。この場合、異なる色種の副画素101の間で、屈折率調整層20の実効屈折率neffが互いに異なる。
 実効屈折率neffは、透明導電層150と光学調整層21との体積割合によって設定される。体積割合は、透明導電層150の外観上の体積に占める光学調整層21の体積の割合で特定することができる。
 副画素101において、光学調整層21の屈折率をN1とし第2の電極15の透明導電層150の屈折率をN0とした場合、実効屈折率neffは、光学調整層21と透明導電層150の体積割合に応じて屈折率N1と屈折率N0との間の値をとる。すなわち、図12に示すように、屈折率調整層20が、複数の光学調整層21で形成されることで、屈折率の観点からは、屈折率調整層20が実効屈折率neffの値を屈折率とする屈折率調整層Nfと同等の層となる。なお、屈折率調整層Nfは、実効屈折率neffを屈折率として有する連続層である。図12において、近似を示す数学記号は、屈折率調整層20と屈折率調整層Nfとが同等であることを示す。
 光学調整層21の材料としては、上記第1の実施形態で説明した屈折率調整層20の材料と同様の材料を採用されてよい。
 光学調整層21の屈折率は、特に限定されず、光学調整層21を内包する層の屈折率よりも大きくてもよいし、同等でも、小さくてもよい。ただし、実効屈折率をより広範に調製できるようにする観点からは、光学調整層21の屈折率は、光学調整層21を内包する層の屈折率よりも大きいことが好ましい。例えば、第2の電極15が透明導電層150を有しており、透明導電層150に光学調整層21が内包されている場合には、光学調整層21の屈折率は、透明導電層150の屈折率よりも大きいことが好ましい。
 光学調整層21の立体形状は特に限定されず、角柱状(図13A)や円柱状(図13B)であってもよい。また、光学調整層21は、図13Cに示すように、一方向に連続的な形状であってもよい。なお、図13Aから図13Cでは、透明導電層150上に光学調整層21を形成している状態を図示しているが、これは便宜上の記載であり、表示装置10においては、光学調整層21は、透明導電層150又は半透過反射層151で上面側を覆われる。
 光学調整層21のピッチPは、副画素101の周縁近傍領域で副画素101の中央領域とは異なる値に変更されていても良い。これにより、副画素周縁や隣接副画素との境界での光学的影響を調整することができる。
 なお、表示装置10は、屈折率調整層20が複数の光学調整層21を備えることの他の構成については、第1の実施形態と同様でよい。
[2-2 作用及び効果]
 第2の実施形態にかかる表示装置10においては、第2の電極15が屈折率調整層20を内包している。そして、屈折率調整層20は、副画素101の色種に応じて複数の光学調整層21を備えている。このため、屈折率調整層20によって副画素101ごとに実効屈折率を調整することが可能となり、光学的距離Lを調整することが可能となる。したがって、第2の実施形態にかかる表示装置においては、第1の実施形態と同様に、所定のピッチや大きさを有する複数の光学調整層21が形成されることで隣接する副画素101の間で発光素子104の第1の面側の段差を軽減することができる。
 また、第2の実施形態にかかる表示装置10においては、副画素101の色種ごとに屈折率調整層20の材質を変更せずとも、光学調整層21のレイアウトパターンを変更することで、副画素101の色種に応じて屈折率を調整する(実効屈折率neffを調整する)ことが可能となるため、後述するように製造工程数の削減が容易となる。
[2-3 表示装置の製造方法]
 次に、第2の実施形態にかかる表示装置10の製造方法の一例について、図14Aから図14C、及び図15Aから図15Cを参照して、詳細に説明する。
 第1の実施形態と同様にして駆動基板11上に第1の電極13と有機層14を形成する。さらに、第1の実施形態と同様にして第2の電極15の透明導電層150を形成する。
 透明導電層150上に光学調整層21を、例えば、CVD法、ALD法またはスパッタ法等の方法を用いて全面形成する(図14A)。さらに光学調整層21が、一括的に分断加工される(図14B)。分断加工は、例えばドライエッチング法によって実現することができる。このとき、複数の光学調整層21がそれぞれの副画素101の色種に応じたピッチ及び大きさで形成され、副画素101Bに対応した領域では、光学調整層21Bが形成される。副画素101Gに対応した領域では、光学調整層21Gが形成される。副画素101Rに対応した領域では、光学調整層21Rが形成される。これにより、副画素101ごとに複数の光学調整層21を備えた屈折率調整層20(20B、20G、20R)が形成される。
 そして、第1の実施形態と同様に、ドライエッチング法等を用いて、透明導電層150と有機層14を副画素101ごとに分断加工する。さらに有機層14の側端面には側壁層22を形成する(図14C)。側壁層22は、例えば、分断加工時の再生成物(デポ)等で形成されてよい。
 第2の電極15の透明導電層150が、スパッタ法等を適宜用いてさらに形成される(図15A)。このとき、透明導電層150に光学調整層21が内包された状態が形成され、すなわち透明導電層150に屈折率調整層20が内包された状態が形成される。さらに、第1の実施形態と同様に、透明導電層150の上に半透過反射層151が形成される(図15B)。また第2の電極15を被覆するように保護層16が形成される(図15C)。そして、第1の実施形態と同様に、充填樹脂層17を介して対向基板18が保護層16の第1の面側に貼付される(図示しない)。これにより表示装置10が得られる。
 上記した表示装置10の製造方法では、副画素101の色種が複数であっても屈折率調整層20を一括的に形成することができるため、工程数の削減が容易となる。
[2-4 変形例]
 次に、上記第2の実施形態にかかる表示装置10の変形例について説明する。
(変形例1)
 第2の実施形態にかかる表示装置10においては、図17Aに示すように、副画素101のうち少なくとも1つの色種に対応した副画素101について、光学調整層21の配置がさけられていてもよい(変形例1)。図17Aは、第2の実施形態の変形例1にかかる表示装置10の一実施例を示す。
 変形例1では、屈折率調整層20を配置された副画素101の色種とは異なる少なくとも1つの色種に対応した副画素101では、屈折率調整層20の配置が避けられている。図17Aの例では、副画素101Bにおいては、屈折率調整層20の形成が避けられており、すなわち光学調整層21の配置が避けられている。副画素101G、101Rについては屈折率調整層20G、20Rが形成されている。
 なお、複数の副画素101について屈折率調整層20が形成されている場合にあっては、一部の副画素101について屈折率調整層20が光学調整層21を備えてもよい。図17Aの例では、副画素101Gにおいては、第1の実施形態で説明したような光学調整層21を備えずに一面の層で形成された屈折率調整層20Gを配置しており、副画素101Rにおいては、第2の実施形態で説明したように屈折率調整層20Rは光学調整層21を備えている。
 変形例1によれば、表示装置10の構成が上記第2の実施形態で示す例に比べて簡素化されることで、工程数が削減され、製造し易くなる。また、表示装置10の設計自由度が向上する。
(変形例2)
 第2の実施形態にかかる表示装置10においては、図17Bに示すように、屈折率調整層20が、多層構造を有している場合に、屈折率調整層20を形成する少なくとも1つの層が、複数の光学調整層21を有していてもよい(変形例2)。図17Bは、第2の実施形態の変形例2にかかる表示装置10の一実施例を示す。
 図17Bの例では、副画素101B、101G、101Rごとに屈折率調整層20B、20G、20Rが形成されており、いずれも多層に形成されている。そして、屈折率調整層20B、20G、20Rのそれぞれについて、少なくとも1層が複数の光学調整層21で形成されている。図17Bの例では、屈折率調整層20B、20G、20Rのいずれについても上下2層に積層されており、有機層14に近い位置に配置された第1層122が一面に形成された層となっている。副画素101Bでは、第1層122の第1の面側に複数の光学調整層21Bが積層されて第2層121Bが形成されている。副画素101Gでは、第1層122の第1の面側に複数の光学調整層21Gが積層されて第2層121Gが形成されている。副画素101Rでは、第1層122の第1の面側に複数の光学調整層21Rが積層されて第2層121Rが形成されている。
 第1層122は、いずれの副画素101においても同じ材質の層であってもよいし、異なる層であってもよい。また、第2層121B、121G、121Rを形成する複数の光学調整層21B、21G、21Rは、上記第2の実施形態で説明したように、発光素子104の発光面方向に沿って互いに離間した状態で配置されている。光学調整層21の大きさとピッチは、副画素101の色種に応じて定められおり、共振条件と実効屈折率neffを考慮した所定の値に定められている。光学調整層21の材質は、副画素101の共振器構造19が共振条件を満たす場合に定められる実効屈折率neffを考慮した材質を選択される。
 変形例2によれば、屈折率調整層20の層構成を増やすことができることで、設計自由度を向上させることができる。
(変形例3)
 第2の実施形態にかかる表示装置10においては、図18Aに示すように、光学調整層21の形状が角の位置に丸みを帯びた面取り形状となっていてもよい(変形例3)。
 光学調整層21を分断加工する際、光学調整層21の形状を角の位置に丸みを帯びた形状とすることが容易であることから、変形例3によれば、表示装置10をより容易に製造することができるようになる。
(変形例4)
 第2の実施形態にかかる表示装置10においては、図18Bに示すように、第2の電極15が、透明導電層150と半透過反射層151とを有し、複数の光学調整層21が透明導電層150と半透過反射層151との間の位置に配置されていてもよい(変形例4)。
 図18Bに示す変形例4にかかる表示装置10によれば、図15Aに示すような光学調整層21を分断形成した後にさらに透明導電層150を形成する工程を省略することができる。このように表示装置10の構成の簡素化にともない製造工程が簡素化され、製造工程数を削減することできる。
(変形例5)
  第2の実施形態にかかる表示装置10の例においても、第1の実施形態にかかる表示装置10と同様に、副画素101B、101G,101Rに設けられた有機層14は、いずれも発光色を同色の白色に限定されない。第2の実施形態にかかる表示装置10においては、図19Aに示すように、少なくとも1つの色種に対応した副画素101に設けられた有機層14の発光色(第1の発光色)が、他の複数の色種に対応した副画素101に設けられた有機層14の発光色(第2の発光色)とは異なる色種とされていてもよい(変形例5)。
 図19Aの例では、副画素101Bに設けられた有機層14は、青色を発光色(第1の発光色)とする有機層14Bである。この例では、副画素101Bについては、光学調整層21Bが第2の電極15(透明導電層150)に内包され、共振器構造19が形成されているが、これに限定されず、光学調整層21Bが省略されてもよい。
 変形例5にかかる表示装置10では、他の複数の色種に対応した副画素101に設けられた有機層14の第2の発光色は、他の複数の色種に対応した副画素101の間で共通している。図19Aの例では、副画素101G、101Rに設けられた有機層14は、いずれも黄色を発光色(第2の発光色)とする有機層14Yである。また、副画素101G、101Rには、第2の電極15(透明導電層150)に光学調整層21G、21Rが内包されている。副画素101G、101Rそれぞれに形成される共振器構造19G、19Rが緑色、赤色の光を共振するように(共振条件を満たすように)、光学調整層21G、21Rは、互いに異なる大きさやピッチを定められている(実効屈折率neffが定められる)。
 変形例5にかかる表示装置10によれば、所定の一色(図19Aの例では青色)については、高い発光効率を実現することができる。また、他の色(図19Aの例では、赤色と緑色)については、副画素101に応じて異なる光学調整層21を設けることで、副画素101に応じた色種の光を効率的に取り出すことができる。
(変形例6)
 第2の実施形態にかかる表示装置10においては、図19Bに示すように、光学調整層21は、第1の電極13に内包されてもよい(変形例6)。図19Bは、第2の実施形態の変形例6にかかる表示装置10の一実施例を示す。
 図19Bの例では、第1の電極13は、透明導電層130と反射層131とを有するアノード電極となっており、有機層14に近い方に透明導電層130が配置されている。反射層131は、Al等の金属を好適に用いられる。また、透明導電層130としては、ITO、IZO等の金属酸化膜が好適に用いられる。なお、変形例6では、第2の電極15は、図19Bに示すような透明導電層150と半透過反射層151を積層した構造を備える場合のみならず、半透過反射層151のみで形成されてもよい。
 変形例6にかかる表示装置10においては、光学調整層21が透明導電層130に内包されている。光学調整層21のピッチ、大きさ及び材質等の諸条件(配置条件)は、第2の電極15に光学調整層21が内包されている場合と同様である。すなわち、第1の電極13に屈折率調整層20が内包された場合においても、それぞれの共振器構造19B、19G、19Rで共振条件が満たされるような光学的距離に基づき、屈折率調整層20の実効屈折率neffが所定の値となるよう光学調整層21の配置条件が定められることが好適である。
(変形例7)
 第2の実施形態にかかる表示装置10においては、図20Aに示すように、第2の電極15が透明導電層150を備え、且つ、光学調整層21が透明導電層150に設けられている場合に、光学調整層21が、密度低減化構造23を有してもよい(変形例7)。図20Aは、第2の実施形態の変形例7にかかる表示装置10の一実施例を示す。
 図20Aの例では、それぞれの副画素101に設けられた光学調整層21(21B、21G、21R)が、密度低減化構造23を有する。
 密度低減化構造23は、図20Aの例に示すように、例えば、ポーラス構造を挙げることができる。光学調整層21が 密度低減化構造23を有することで、疎状態の層(密度が低い層)となり屈折率を下げることができる。密度低減化構造23の作用と効果は、第1の実施形態で説明したものと同様である。
 なお、変形例7にかかる表示装置10は、第1の電極13が透明導電層130を備える場合についても同様に適用できる。すなわち、光学調整層21が透明導電層130に設けられている場合に、光学調整層21が、密度低減化構造23を有してもよい。
(変形例8)
 第2の実施形態にかかる表示装置10においては、図20Bに示すように、第2の電極15が透明導電層150を備え、且つ、複数の光学調整層21が透明導電層150に内包されている場合に、透明導電層150が、空隙24を有していてもよい(変形例8)。図20Bは、第2の実施形態の変形例8にかかる表示装置10の一実施例を示す。
 図20Bの例では、それぞれの副画素101に設けられた透明導電層150が、空隙24を有する。副画素101B、101Gでは、隣接する光学調整層21の間に空隙24が形成されている。この例では、副画素101Rでは、隣接する光学調整層21の間に空隙24の形成が避けられている。ただし、これは、副画素101の全てに空隙24を設けることを禁止するものではない。空隙24の大きさは副画素101の色種に応じて定められてよい。このように隣り合う光学調整層21の間に空隙24が形成されていることで、実効屈折率neffの値を抑制することができ、光学的距離Lの調整の自由度がより向上する。また、空隙24の大きさに応じて実効屈折率neffの値を調整することができる。具体的に、図20Bの例では、副画素101Bに形成された個々の空隙24の大きさが副画素101Gに形成された空隙24の大きさよりも大きくなっている。
(変形例9)
 上記第2の実施形態にかかる表示装置の例では、光学調整層21B、光学調整層21G、光学調整層21Rの順に、大きさが小さくなっている場合(光学調整層21Bが最も大きい)について例示したが、大きさはこれに限定されない。たとえば、光学調整層21B、21G、21Rを構成する材料として屈折率の高いものを用い、共振器構造19B、19G、19Rの共振条件を満たす場合の共振次数を適宜選択することで、図16に示すように、光学調整層21B、光学調整層21G、光学調整層21Rの大きさの順は変更される。図16では、光学調整層21R、光学調整層21G、光学調整層21Bの順に、大きさが小さくなっている。これは、光学調整層21のピッチについても同様である。
 上記第1の実施形態、及び第2の実施形態、並びにそれらの各実施形態に付随した各変形例で、第1の電極13又は第2の電極15に屈折率調整層20が形成されている例を挙げているものについては、第1の電極13及び第2の電極15の両方に屈折率調整層20が形成されている場合についても同様に適用することができる。
[3.第3の実施形態]
 上記第1の実施形態及び第2の実施形態に示す表示装置10では、図2等に示すように1画素を形成する副画素101が横並び状に形成されていた。各副画素101の形状は、図21、図22等に示すように、図2等の例には特に限定されない(第3の実施形態)。図21、図22は、1画素を形成する副画素のレイアウトの実施例を示す平面図である。表示装置10では、副画素101の形状は、図21Bに示すようにストライプ状でもよし、図22Aに示すような多角形状でもよいし、図22Bに示すような円形状でもよい。また、表示装置10においては、1画素を形成する副画素101のレイアウトは、図21Aに示すように、正方配列であってもよい。図21Aでは、各副画素101の中心を結ぶと四角形状になるように並ぶ4つの副画素101のうち対角線上にならぶ2つの副画素101が副画素101Bであり、もう一つの対角線上にならぶ2つの副画素101が副画素101R、101Gである。また、1画素を形成する副画素101のレイアウトパターンは、図22A、図22Bに示すように各副画素101の中心を結ぶと三角形状になるように並ぶ3つの副画素101B、101G、101Rで構成されるデルタ配列となっていてもよい。
[4.第4の実施形態]
 上記第1の実施形態から第3の実施形態に示す表示装置10では、有機層14が副画素101ごとに個別に分離(分断)されていたが、表示装置10はこれに限定されない。図23Aに示すように、有機層14が副画素101によらず連続的に形成されていてもよい(第4の実施形態)。図23Aは、第4の実施形態にかかる表示装置10の一実施例を示す断面図である。図23Aでは、有機層14は、副画素101B、101G、101Rの全体に共通する共通層となる。有機層14が共通層となっていることで製造工程数を削減することができ製造容易性を向上することができる。また、図23Aでは、第2の電極15も副画素101B、101G、101Rの全体に共通する共通電極となる。この共通電極の所定の位置に、各副画素101に対応した屈折率調整層20B、20G、20Rが内包される。
 ただし、副画素101間でのリーク電流の抑制性の観点や副画素101の間に形成される側端面での反射による光取り出し効率の向上性の観点からは、第1の実施形態のように有機層14が副画素101ごとに分離していることがより好ましい。
[5.第5の実施形態]
 上記第1の実施形態から第4の実施形態に示す表示装置10では、第2の電極15における透明導電層150の厚みが、異なる副画素101間で一定の値とされてもよい(第5の実施形態)。第5の実施形態では、異なる副画素101間で第2の電極15における透明導電層150の厚みが揃えられていることで、副画素101間で抵抗状態を揃えることが容易となり、また光学的距離Lの調整が容易となる。第5の実施形態では、図23Bに示すように、特に屈折率調整層20が多層構造を有するような場合等には、副画素101間の段差が生じることもあるが、屈折率調整層20を備えていない場合に比較すれば、副画素101間の段差を低減することができる。なお、図23Bは、表示装置10において屈折率調整層20が多層構造を有し且つ透明導電層150の厚みを均一とした場合(第5の実施形態)の一実施例を示す断面図である。
[6.第6の実施形態]
 上記第1の実施形態から第5の実施形態に示す表示装置10には、図24Aに示すように、さらにカラーフィルタ25が形成されてもよい(第6の実施形態)。図24Aは第6の実施形態にかかる表示装置10の一実施例を示す断面図である。
(カラーフィルタ)
 カラーフィルタ25は、保護層16の第1の面側(上側、+Z方向側)に設けられている。カラーフィルタ25は、オンチップカラーフィルタ(On Chip Color Filter:OCCF)である。カラーフィルタ25は、副画素101の色種に応じて設けられる。カラーフィルタ25は、例えば、図24Aの例では、赤色のカラーフィルタ(赤色フィルタ25R)、緑色のカラーフィルタ(緑色フィルタ25G)および青色のカラーフィルタ(青色フィルタ25B)を挙げることができる。赤色フィルタ25R、緑色フィルタ25G、青色フィルタ25Bはそれぞれ、副画素101R、101G、101Bに設けられる。表示装置10にカラーフィルタ25が設けられていることで、色純度をより向上させることができる。なお、カラーフィルタ25の上には、平坦化層が形成され、さらに平坦化層上に、充填樹脂層17を介して対向基板18が設けられてよい(図示しない)。平坦化層は、充填樹脂層17と同様の材料で形成されてよい。
[7 第7の実施形態]
 上記第1の実施形態から第6の実施形態に示す表示装置10には、図24Bに示すように、さらにレンズ26が形成されてもよい(第7の実施形態)。図24Bは第7の実施形態にかかる表示装置10の一実施例を示す断面図である。
(レンズ)
 レンズ26は、保護層16の第1の面側(上側、+Z方向側)に設けられている。レンズ26は、オンチップレンズ(On Chip Lends:OCL)である。レンズ26は、それぞれの副画素101の第1の面側に設けられる。
 図24Bの例では、レンズ26が、それぞれの副画素101に配置されており、駆動基板11から離れる方向に凸型となる凸状形状に形成されている。表示装置10がレンズ26を備えることで光取り出し効率を向上させることができる。なお、レンズ26は、副画素101の一部に形成されてもよい。
[8 応用例]
(電子機器)
 上述の一実施形態に係る表示装置10は、種々の電子機器に備えられてもよい。特にビデオカメラや一眼レフカメラの電子ビューファインダまたはヘッドマウント型ディスプレイ等の高解像度が要求され、目の近くで拡大して使用されるものに備えられることが好ましい。
(具体例1)
 図25Aは、デジタルスチルカメラ310の外観の一例を示す正面図である。図25Bは、デジタルスチルカメラ310の外観の一例を示す背面図である。このデジタルスチルカメラ310は、レンズ交換式一眼レフレックスタイプのものであり、カメラ本体部(カメラボディ)311の正面略中央に交換式の撮影レンズユニット(交換レンズ)312を有し、正面左側に撮影者が把持するためのグリップ部313を有している。
 カメラ本体部311の背面中央から左側にずれた位置には、モニタ314が設けられている。モニタ314の上部には、電子ビューファインダ(接眼窓)315が設けられている。撮影者は、電子ビューファインダ315を覗くことによって、撮影レンズユニット312から導かれた被写体の光像を視認して構図決定を行うことが可能である。電子ビューファインダ315としては、上述の一実施形態および変形例に係る表示装置10のいずれかを用いることができる。
(具体例2)
 図26は、ヘッドマウントディスプレイ320の外観の一例を示す斜視図である。ヘッドマウントディスプレイ320は、例えば、眼鏡形の表示部321の両側に、使用者の頭部に装着するための耳掛け部322を有している。表示部321としては、上述の一実施形態および変形例に係る表示装置10のいずれかを用いることができる。
(具体例3)
 図27は、テレビジョン装置330の外観の一例を示す斜視図である。このテレビジョン装置330は、例えば、フロントパネル332およびフィルターガラス333を含む映像表示画面部331を有しており、この映像表示画面部331は、上述の一実施形態および変形例に係る表示装置10のいずれかにより構成される。
 以上、本開示の第1の実施形態から第7の実施形態及び各変形例にかかる表示装置、及び応用例について具体的に説明したが、本開示は、上述の第1の実施形態から第7の実施形態及び各変形例にかかる表示装置、及び応用例に限定されるものではなく、本開示の技術的思想に基づく各種の変形が可能である。
 例えば、上述の第1の実施形態から第7の実施形態及び各変形例にかかる表示装置、及び応用例において挙げた構成、方法、工程、形状、材料および数値等はあくまでも例に過ぎず、必要に応じてこれと異なる構成、方法、工程、形状、材料および数値等を用いてもよい。
 上述の第1の実施形態から第7の実施形態及び各変形例にかかる表示装置、及び応用例の構成、方法、工程、形状、材料および数値等は、本開示の主旨を逸脱しない限り、互いに組み合わせることが可能である。
 上述の第1の実施形態から第7の実施形態及び各変形例にかかる表示装置、及び応用例に例示した材料は、特に断らない限り、1種を単独でまたは2種以上を組み合わせて用いることができる。
 また、本開示は以下の構成を採用することもできる。
(1)
 複数の色種に対応した複数の副画素を有し、
 それぞれの前記副画素に、第1の電極と有機層と第2の電極とを有する発光素子を備えており、
 少なくとも1つの色種に対応した前記副画素には、前記有機層からの出射光を共振する共振器構造が形成され、且つ、前記第1の電極と前記第2の電極の少なくともいずれか一方に屈折率調整層が内包されている、
 表示装置。
(2)
 前記副画素の色種ごとに、前記屈折率調整層の組成が異なる、
 上記(1)に記載の表示装置。
(3)
 前記屈折率調整層が、多層構造を有する、
 上記(1)または(2)に記載の表示装置。
(4)
 前記第2の電極は、透明導電層と半透過反射層とを有するカソード電極であり、
 前記屈折率調整層が前記透明導電層に設けられている、
 上記(1)から(3)のいずれか1項に記載の表示装置。
(5)
 前記第2の電極は、透明導電層と半透過反射層とを有するカソード電極であり、
 前記屈折率調整層が前記透明導電層と前記半透過反射層との間の位置に配置されている、
 上記(1)から(3)のいずれか1項に記載の表示装置。
(6)
 前記屈折率調整層を配置された前記副画素の色種とは異なる少なくとも1つの色種に対応した前記副画素では、前記屈折率調整層の配置が避けられている、
 上記(1)から(5)のいずれか1項に記載の表示装置。
(7)
 少なくとも1つの色種に対応した前記副画素に設けられた前記有機層の第1の発光色は、他の複数の色種に対応した前記副画素に設けられた前記有機層の第2の発光色とは異なる色種であり、
 前記他の複数の色種に対応した前記副画素に設けられた前記有機層の第2の発光色は、前記他の複数の色種に対応した前記副画素の間で共通しており、
 前記他の複数の色種に対応した前記副画素のそれぞれに、前記共振器構造が形成され、且つ、前記屈折率調整層が設けられている、
 上記(1)から(6)のいずれか1項に記載の表示装置。
(8)
 前記第1の電極は、透明導電層と反射層とを有するアノード電極であり、
 前記透明導電層に前記屈折率調整層が設けられている、
 上記(1)から(7)のいずれか1項に記載の表示装置。
(9)
 前記第1の電極及び前記第2の電極の一方または両方が透明導電層を備え、且つ、前記屈折率調整層が前記透明導電層に設けられており、
 前記屈折率調整層は、密度低減化構造を有する、
 上記(1)から(8)のいずれか1項に記載の表示装置。
(10)
 前記屈折率調整層は、複数の光学調整層を備え、
 複数の前記光学調整層が前記発光素子の発光面方向に沿って互いに離間した状態で配置されている、
 上記(1)に記載の表示装置。
(11)
 複数の前記屈折率調整層が、多層構造を有し、
 複数の前記屈折率調整層を形成する少なくとも1つの層が、複数の光学調整層を備えており、
 複数の前記光学調整層が前記発光素子の発光面方向に沿って互いに離間した状態で配置されている、
 上記(1)に記載の表示装置。
(12)
 前記第2の電極は、透明導電層と半透過反射層とを有するカソード電極であり、
 複数の前記光学調整層が前記透明導電層に設けられている、
 上記(10)または(11)に記載の表示装置。
(13)
 それぞれの色種に対応した前記副画素では、複数の前記光学調整層のピッチは、前記副画素の色種に対応した光のピーク波長以下の値に定められている、
 上記(10)から(12)のいずれか1項に記載の表示装置。
(14)
 前記第1の電極及び前記第2の電極の一方または両方が透明導電層を備え、且つ、複数の前記光学調整層が前記透明導電層に設けられており、
 複数の前記光学調整層の屈折率と前記透明導電層の屈折率が互いに異なる、
 上記(10)から(13)のいずれか1項に記載の表示装置。
(15)
 前記屈折率調整層を配置された前記副画素の色種とは異なる少なくとも1つの色種に対応した前記副画素では、複数の前記光学調整層の配置が避けられている、
 上記(10)から(14)のいずれか1項に記載の表示装置。
(16)
 前記第1の電極は、透明導電層と反射層とを有するアノード電極であり、
 前記透明導電層に、複数の前記光学調整層が設けられている、
 上記(10)から(15)のいずれか1項に記載の表示装置。
(17)
 前記第1の電極及び前記第2の電極の一方または両方が透明導電層を備え、且つ、複数の前記光学調整層が前記透明導電層に設けられており、
 前記透明導電層が、空隙を有する、
 上記(10)から(16)のいずれか1項に記載の表示装置。
(18)
 前記第1の電極及び前記第2の電極の一方または両方が透明導電層を備え、且つ、複数の前記光学調整層が前記透明導電層に設けられており、
 前記光学調整層が、密度低減化構造を有する、
 上記(10)から(17)のいずれか1項に記載の表示装置。
(19)
 上記(1)から(18)のいずれか1項に記載の表示装置を備えた、
 電子機器。
(20)
 光学調整層を透明導電層上に形成する工程と、
 前記光学調整層をそれぞれの副画素に対応したピッチで一括して分断する工程と、
 分断された前記光学調整層を覆うように半透過反射層を形成する工程と、を備える、
 表示装置の製造方法。
10   :表示装置
11   :駆動基板
12   :絶縁層
13   :第1の電極
14   :有機層
15   :第2の電極
16   :保護層
17   :充填樹脂層
18   :対向基板
19B  :共振器構造
19G  :共振器構造
19R  :共振器構造
20B  :屈折率調整層
20G  :屈折率調整層
20R  :屈折率調整層
21B  :光学調整層
21G  :光学調整層
21R  :光学調整層
22   :側壁層
23   :密度低減化構造
24   :空隙
101  :副画素
101B :副画素
101G :副画素
101R :副画素
104  :発光素子
104B :発光素子
104G :発光素子
104R :発光素子
130  :透明導電層
131  :反射層
150  :透明導電層
151  :半透過反射層
Nf   :屈折率調整層

Claims (20)

  1.  複数の色種に対応した複数の副画素を有し、
     それぞれの前記副画素に、第1の電極と有機層と第2の電極とを有する発光素子を備えており、
     少なくとも1つの色種に対応した前記副画素には、前記有機層からの出射光を共振する共振器構造が形成され、且つ、前記第1の電極と前記第2の電極の少なくともいずれか一方に屈折率調整層が内包されている、
     表示装置。
  2.  前記副画素の色種ごとに、前記屈折率調整層の組成が異なる、
     請求項1に記載の表示装置。
  3.  前記屈折率調整層が、多層構造を有する、
     請求項1に記載の表示装置。
  4.  前記第2の電極は、透明導電層と半透過反射層とを有するカソード電極であり、
     前記屈折率調整層が前記透明導電層に設けられている、
     請求項1に記載の表示装置。
  5.  前記第2の電極は、透明導電層と半透過反射層とを有するカソード電極であり、
     前記屈折率調整層が前記透明導電層と前記半透過反射層との間の位置に配置されている、
     請求項1に記載の表示装置。
  6.  前記屈折率調整層を配置された前記副画素の色種とは異なる少なくとも1つの色種に対応した前記副画素では、前記屈折率調整層の配置が避けられている、
     請求項1に記載の表示装置。
  7.  少なくとも1つの色種に対応した前記副画素に設けられた前記有機層の第1の発光色は、他の複数の色種に対応した前記副画素に設けられた前記有機層の第2の発光色とは異なる色種であり、
     前記他の複数の色種に対応した前記副画素に設けられた前記有機層の前記第2の発光色は、前記他の複数の色種に対応した前記副画素の間で共通しており、
     前記他の複数の色種に対応した前記副画素のそれぞれに、前記共振器構造が形成され、且つ、前記屈折率調整層が設けられている、
     請求項1に記載の表示装置。
  8.  前記第1の電極は、透明導電層と反射層とを有するアノード電極であり、
     前記透明導電層に前記屈折率調整層が設けられている、
     請求項1に記載の表示装置。
  9.  前記第1の電極及び前記第2の電極の一方または両方が透明導電層を備え、且つ、前記屈折率調整層が前記透明導電層に設けられており、
     前記屈折率調整層は、密度低減化構造を有する、
     請求項1に記載の表示装置。
  10.  前記屈折率調整層は、複数の光学調整層を備え、
     複数の前記光学調整層が前記発光素子の発光面方向に沿って互いに離間した状態で配置されている、
     請求項1に記載の表示装置。
  11.  前記屈折率調整層が、多層構造を有しており、
     前記屈折率調整層を形成する少なくとも1つの層が、複数の光学調整層を備えており、
     複数の前記光学調整層が前記発光素子の発光面方向に沿って互いに離間した状態で配置されている、
     請求項1に記載の表示装置。
  12.  前記第2の電極は、透明導電層と半透過反射層とを有するカソード電極であり、
     複数の前記光学調整層が前記透明導電層に設けられている、
     請求項10に記載の表示装置。
  13.  それぞれの色種に対応した前記副画素では、複数の前記光学調整層のピッチは、前記副画素の色種に対応した光のピーク波長以下の値に定められている、
     請求項10に記載の表示装置。
  14.  前記第1の電極及び前記第2の電極の一方または両方が透明導電層を備え、且つ、複数の前記光学調整層が前記透明導電層に設けられており、
     複数の前記光学調整層の屈折率と前記透明導電層の屈折率が互いに異なる、
     請求項10に記載の表示装置。
  15.  前記屈折率調整層を配置された前記副画素の色種とは異なる少なくとも1つの色種に対応した前記副画素では、複数の前記光学調整層の配置が避けられている、
     請求項10に記載の表示装置。
  16.  前記第1の電極は、透明導電層と反射層とを有するアノード電極であり、
     前記透明導電層に、複数の前記光学調整層が設けられている、
     請求項10に記載の表示装置。
  17.  前記第1の電極及び前記第2の電極の一方または両方が透明導電層を備え、且つ、複数の前記光学調整層が前記透明導電層に設けられており、
     前記透明導電層が、空隙を有する、
     請求項10に記載の表示装置。
  18.  前記第1の電極及び前記第2の電極の一方または両方が透明導電層を備え、且つ、複数の前記光学調整層が前記透明導電層に設けられており、
     前記光学調整層が、密度低減化構造を有する、
     請求項10に記載の表示装置。
  19.  請求項1記載の表示装置を備えた、
     電子機器。
  20.  光学調整層を透明導電層上に形成する工程と、
     前記光学調整層をそれぞれの副画素に対応したピッチで一括して分断する工程と、
     分断された前記光学調整層を覆うように半透過反射層を形成する工程と、を備える、
     表示装置の製造方法。
PCT/JP2022/009435 2021-03-31 2022-03-04 表示装置、電子機器、ならびに表示装置の製造方法 WO2022209588A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN202280023527.9A CN117044399A (zh) 2021-03-31 2022-03-04 显示装置、电子设备和制造显示装置的方法
DE112022001918.2T DE112022001918T5 (de) 2021-03-31 2022-03-04 Anzeigevorrichtung, elektronische einrichtung und verfahren zum produzieren der anzeigevorrichtung
JP2023510727A JPWO2022209588A1 (ja) 2021-03-31 2022-03-04
US18/551,644 US20240180002A1 (en) 2021-03-31 2022-03-04 Display device, electronic device, and method of manufacturing display device
KR1020237031072A KR20230163374A (ko) 2021-03-31 2022-03-04 표시 장치, 전자 기기, 그리고 표시 장치의 제조 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021061660 2021-03-31
JP2021-061660 2021-03-31

Publications (1)

Publication Number Publication Date
WO2022209588A1 true WO2022209588A1 (ja) 2022-10-06

Family

ID=83458530

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/009435 WO2022209588A1 (ja) 2021-03-31 2022-03-04 表示装置、電子機器、ならびに表示装置の製造方法

Country Status (7)

Country Link
US (1) US20240180002A1 (ja)
JP (1) JPWO2022209588A1 (ja)
KR (1) KR20230163374A (ja)
CN (1) CN117044399A (ja)
DE (1) DE112022001918T5 (ja)
TW (1) TW202245250A (ja)
WO (1) WO2022209588A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115942784A (zh) * 2022-12-22 2023-04-07 深圳市华星光电半导体显示技术有限公司 显示面板及其制作方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005197011A (ja) * 2003-12-26 2005-07-21 Sanyo Electric Co Ltd 表示装置及びその製造方法
JP2006173092A (ja) * 2004-11-16 2006-06-29 Kyocera Corp 発光装置
JP2006173114A (ja) * 2004-12-13 2006-06-29 Samsung Sdi Co Ltd 電界発光ディスプレイ装置
JP2011210678A (ja) * 2010-03-30 2011-10-20 Fujifilm Corp 有機電界発光装置
WO2013047331A1 (ja) * 2011-09-26 2013-04-04 シャープ株式会社 表示装置の製造方法
JP2013145700A (ja) * 2012-01-16 2013-07-25 Canon Inc 有機el素子及びこれを用いた表示装置
WO2014185392A1 (ja) * 2013-05-15 2014-11-20 コニカミノルタ株式会社 有機エレクトロルミネッセンス素子
JP2018098137A (ja) * 2016-12-16 2018-06-21 株式会社ジャパンディスプレイ 有機el表示装置
US20190198817A1 (en) * 2017-12-22 2019-06-27 Samsung Electronics Co., Ltd. Light emitting device and display apparatus including the same
WO2020149151A1 (ja) * 2019-01-15 2020-07-23 ソニーセミコンダクタソリューションズ株式会社 表示装置、表示装置の製造方法、及び、電子機器

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6186993B2 (ja) 2013-07-29 2017-08-30 セイコーエプソン株式会社 発光装置および電子機器

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005197011A (ja) * 2003-12-26 2005-07-21 Sanyo Electric Co Ltd 表示装置及びその製造方法
JP2006173092A (ja) * 2004-11-16 2006-06-29 Kyocera Corp 発光装置
JP2006173114A (ja) * 2004-12-13 2006-06-29 Samsung Sdi Co Ltd 電界発光ディスプレイ装置
JP2011210678A (ja) * 2010-03-30 2011-10-20 Fujifilm Corp 有機電界発光装置
WO2013047331A1 (ja) * 2011-09-26 2013-04-04 シャープ株式会社 表示装置の製造方法
JP2013145700A (ja) * 2012-01-16 2013-07-25 Canon Inc 有機el素子及びこれを用いた表示装置
WO2014185392A1 (ja) * 2013-05-15 2014-11-20 コニカミノルタ株式会社 有機エレクトロルミネッセンス素子
JP2018098137A (ja) * 2016-12-16 2018-06-21 株式会社ジャパンディスプレイ 有機el表示装置
US20190198817A1 (en) * 2017-12-22 2019-06-27 Samsung Electronics Co., Ltd. Light emitting device and display apparatus including the same
WO2020149151A1 (ja) * 2019-01-15 2020-07-23 ソニーセミコンダクタソリューションズ株式会社 表示装置、表示装置の製造方法、及び、電子機器

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115942784A (zh) * 2022-12-22 2023-04-07 深圳市华星光电半导体显示技术有限公司 显示面板及其制作方法

Also Published As

Publication number Publication date
KR20230163374A (ko) 2023-11-30
US20240180002A1 (en) 2024-05-30
JPWO2022209588A1 (ja) 2022-10-06
DE112022001918T5 (de) 2024-01-11
CN117044399A (zh) 2023-11-10
TW202245250A (zh) 2022-11-16

Similar Documents

Publication Publication Date Title
CN107852787B (zh) 显示装置
US11063243B2 (en) Display apparatus and electronic device
JP6379347B2 (ja) 有機発光パネルおよびその製造方法
US8102118B2 (en) White organic light emitting device and color display apparatus employing the same
WO2016031679A1 (ja) 有機エレクトロルミネッセンス装置、有機エレクトロルミネッセンス装置の製造方法、照明装置、および表示装置
JP4431125B2 (ja) 平板ディスプレイ装置及びその製造方法
TWI699022B (zh) 發光裝置、顯示設備以及照明設備
WO2017043242A1 (ja) 有機エレクトロルミネッセンス装置、照明装置および表示装置
WO2022078138A1 (zh) 有机发光二极管和显示面板
WO2016084759A1 (ja) 有機エレクトロルミネッセンス装置、照明装置および表示装置
JP2004355975A (ja) 表示装置の製造方法
US20090096358A1 (en) White organic light emitting device and color display apparatus employing the same
JP2010263155A (ja) 有機el表示装置
JP7495401B2 (ja) 複数個の青色放射層を有するマルチモーダルマイクロキャビティoled
US8188500B2 (en) Organic light-emitting element and light-emitting device using the same
JP7030253B1 (ja) 表示装置および電子機器
WO2016031757A1 (ja) 有機エレクトロルミネッセンス装置、有機エレクトロルミネッセンス装置の製造方法、照明装置、および表示装置
CN110447308B (zh) 发光元件、显示设备以及电子装置
WO2022209588A1 (ja) 表示装置、電子機器、ならびに表示装置の製造方法
WO2016076221A1 (ja) 有機エレクトロルミネッセンス装置、照明装置および表示装置
KR102604263B1 (ko) 표시장치
WO2022131255A1 (ja) 表示装置及び電子機器
WO2022239576A1 (ja) 表示装置及び電子機器
WO2023281853A1 (ja) 発光装置及び電子機器
KR20130066743A (ko) 유기발광다이오드표시장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22779813

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023510727

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 18551644

Country of ref document: US

Ref document number: 202280023527.9

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 112022001918

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22779813

Country of ref document: EP

Kind code of ref document: A1