WO2022209462A1 - 磁気センサ - Google Patents

磁気センサ Download PDF

Info

Publication number
WO2022209462A1
WO2022209462A1 PCT/JP2022/007591 JP2022007591W WO2022209462A1 WO 2022209462 A1 WO2022209462 A1 WO 2022209462A1 JP 2022007591 W JP2022007591 W JP 2022007591W WO 2022209462 A1 WO2022209462 A1 WO 2022209462A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic
sensor
magnetic field
collecting
bodies
Prior art date
Application number
PCT/JP2022/007591
Other languages
English (en)
French (fr)
Inventor
泰樹 悪七
多聞 笠島
Original Assignee
Tdk株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tdk株式会社 filed Critical Tdk株式会社
Priority to US18/549,713 priority Critical patent/US20240151785A1/en
Priority to CN202280026374.3A priority patent/CN117099007A/zh
Publication of WO2022209462A1 publication Critical patent/WO2022209462A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/09Magnetoresistive devices
    • G01R33/091Constructional adaptation of the sensor to specific applications
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux

Definitions

  • the present invention relates to a magnetic sensor, and in particular to a magnetic sensor capable of detecting a weak magnetic field from a position distant from the magnetic field source.
  • Patent Literature 1 discloses a magnetic sensor whose detection sensitivity is enhanced by using a rod-shaped magnetic body to collect magnetic flux in a sensor chip.
  • Patent Document 1 the magnetic sensor described in Patent Document 1 needs to be measured by bringing the magnetic collector close to the magnetic field source, and it was not easy to detect a weak magnetic field at a position distant from the magnetic field source.
  • an object of the present invention is to provide a magnetic sensor capable of detecting a weak magnetic field at a position distant from the magnetic field source.
  • a magnetic sensor includes first and second magnetic bodies arranged such that their magnetic collecting surfaces face opposite sides, and a magnetic detection section for detecting magnetic flux passing between the first and second magnetic bodies. It is characterized by having
  • the magnetic flux collected from the magnetic collecting surface of the first magnetic body passes through the magnetic collecting surface of the second magnetic body via the magnetic detection section, the magnetic field spreading in the space can be efficiently collected. can do. As a result, even if the distance from the magnetic field source is long, it is possible to collect the magnetic field under the condition that the uniformity of the magnetic field is high.
  • the magnetic collecting surface of the first magnetic body and the magnetic collecting surface of the second magnetic body may be parallel to each other. According to this, by making the magnetic collecting surfaces of the first and second magnetic bodies perpendicular to the magnetic flux, it is possible to detect a weak magnetic field with high sensitivity.
  • the magnetic collecting surface extends in a first direction and a second direction perpendicular to the first direction, and the first and second magnetic bodies are magnetically coupled to the magnetic detection unit. and a magnetism collecting portion extending in the first direction from the magnetic coupling portion and forming a magnetism collecting surface.
  • the magnetic flux collecting portions of the first and second magnetic bodies may extend from the magnetic coupling portion to both sides in the first direction. According to this, it becomes possible to further improve the magnetic collection efficiency.
  • the magnetic flux collectors of the first and second magnetic bodies may have a portion extending in the second direction from the magnetic coupling portion. Also in this case, it is possible to further improve the magnetic collection efficiency.
  • FIG. 1A and 1B are schematic diagrams for explaining the structure of a magnetic sensor 1 according to a first embodiment of the present invention, where (a) is an xy plan view and (b) is a yz plan view.
  • FIG. 2(a) is a schematic diagram for explaining a magnetic field detection method using the magnetic sensor 1, and FIG. 2(b) is an enlarged view thereof.
  • FIG. 3 is a schematic perspective view for explaining the structure of the magnetic sensor 2 according to the second embodiment of the invention.
  • FIG. 4 is a schematic perspective view for explaining the structure of the magnetic sensor 2 according to the second embodiment of the invention.
  • FIG. 5 is a schematic exploded perspective view showing a state in which the sensor chip and the magnetic bodies 10 and 20 constituting the magnetic detection section 30 are separated.
  • FIG. 6 is a schematic plan view of a sensor chip that constitutes the magnetic detection section 30.
  • FIG. 7 is a schematic cross-sectional view taken along line BB of FIG. 6.
  • FIG. 8 is a schematic perspective view for explaining the structure of the magnetic sensor 3 according to the third embodiment of the invention.
  • FIG. 9 is a schematic perspective view for explaining the structure of the magnetic sensor 4 according to the fourth embodiment of the invention.
  • FIGS. 1A and 1B are schematic diagrams for explaining the structure of a magnetic sensor 1 according to a first embodiment of the present invention, where (a) is an xy plan view and (b) is a yz plan view.
  • the magnetic sensor 1 includes magnetic bodies 10 and 20 and a magnetic detection section 30.
  • the magnetic bodies 10 and 20 are made of a high magnetic permeability material such as ferrite, and are magnetically coupled to the magnetic flux collectors 11 and 21 that collect the magnetic field to be detected and the magnetic detection unit 30 to convert the collected magnetic flux into a magnetic field. It has the magnetic coupling part 12 and 22 which applies to the detection part 30, respectively.
  • the magnetic flux collecting portion 11 has a magnetic flux collecting surface 11a forming the yz plane and a back surface 11b positioned on the opposite side thereof, and the magnetic flux collecting portion 12 includes a magnetic flux collecting surface 21a forming the yz plane and a rear surface 21b positioned on the opposite side.
  • the magnetic collecting surfaces 11a and 21a face opposite sides, and the back surfaces 11b and 21b face each other.
  • the magnetic collecting surfaces 11a and 21a are parallel to each other.
  • the magnetic detecting section 30 is arranged between the magnetic coupling section 12 of the magnetic body 10 and the magnetic coupling section 22 of the magnetic body 20 so as to be sandwiched in the x direction. , the direction and strength of the magnetic flux passing between the magnetic coupling portions 22 are detected.
  • FIG. 2(a) is a schematic diagram for explaining a magnetic field detection method using the magnetic sensor 1
  • FIG. 2(b) is an enlarged view thereof.
  • the magnetic sensor 1 detects the magnetic flux ⁇ at a position distant from the magnetic field source A.
  • the magnetic flux density is lower than near the magnetic field source A, but the uniformity of the magnetic field is high.
  • Such a highly uniform magnetic flux ⁇ is collected using the magnetic collecting surfaces 11 a and 21 a and the collected magnetic flux ⁇ is applied to the magnetic detection section 30 . This makes it possible to efficiently detect the magnetic field spreading in a space away from the magnetic field source A.
  • the magnetic sensor 1 collects the magnetic field spreading in space using the magnetic collecting surfaces 11a and 21a facing opposite sides. A weak magnetic field can be detected at a position away from the magnetic field source A even if it is difficult to bring it close to A.
  • ⁇ Second embodiment> 3 and 4 are schematic perspective views for explaining the structure of the magnetic sensor 2 according to the second embodiment of the invention.
  • a sensor chip is used as the magnetic detection unit 30, and a substrate 40 on which the sensor chip is mounted, the substrate 40 and the magnetic body 20 It is different from the magnetic sensor 1 according to the first embodiment in that a support 50 for supporting the is provided. Since other basic configurations are the same as those of the magnetic sensor 1 according to the first embodiment, the same elements are denoted by the same reference numerals, and overlapping descriptions are omitted.
  • the main surface of the substrate 40 is the xz plane, on which the sensor chip constituting the magnetic detection section 30, the magnetic coupling section 12 of the magnetic body 10, and the magnetic coupling sections 22a and 22b of the magnetic body 20 are placed.
  • the magnetic body 20 is divided into two magnetic coupling portions 22a and 22b.
  • the supporting body 50 has the xy plane as a main surface, and supports the substrate 40 and the magnetic body 20 on the main surface.
  • FIG. 5 is a schematic exploded perspective view showing a state in which the sensor chip and the magnetic bodies 10 and 20 constituting the magnetic detection section 30 are separated.
  • the sensor chip that constitutes the magnetic detection unit 30 has an element forming surface 31 and a back surface 32 that constitute the yz plane, side surfaces 33 and 34 that constitute the xy plane, and a side surface 35 that constitutes the xz plane. , 36 .
  • Magneto-sensitive elements and magnetic layers M1 to M3, which will be described later, are formed on the element forming surface 31 of the sensor chip.
  • the side surface 36 of the sensor chip is the surface facing the substrate 40 .
  • the part of the magnetic body 10 that constitutes the magnetic coupling portion 12 is a rod-shaped body whose longitudinal direction is the x direction, and one end in the x direction extends from the element forming surface 31 in the z direction so as to cover a part of the magnetic layer M1. It is positioned approximately in the center.
  • the magnetic body 20 has a region 23 extending in the x direction.
  • the end portion of the region 23 on the sensor chip side is divided into two, extending in the x direction, and further bent in the z direction so as to face each other.
  • the portions bent in the z-direction constitute magnetic coupling portions 22 a and 22 b of the magnetic body 20 .
  • the magnetic coupling portions 22a and 22b cover portions of the magnetic layers M2 and M3, respectively.
  • FIG. 6 is a schematic plan view of a sensor chip that constitutes the magnetic detection section 30, and FIG. 7 is a schematic cross-sectional view taken along line BB in FIG.
  • magneto-sensitive elements R1 to R4 are formed on the element forming surface 31 of the sensor chip.
  • the magneto-sensitive elements R1 to R4 are not particularly limited as long as they are elements whose electric resistance changes depending on the direction of the magnetic flux, and for example, MR elements can be used.
  • the fixed magnetization directions of the magneto-sensitive elements R1 to R4 are aligned in the same direction (for example, the plus side in the z-direction).
  • the magneto-sensitive elements R1 to R4 are covered with an insulating layer 37, and magnetic layers M1 to M3 made of permalloy or the like are formed on the surface of the insulating layer 37. As shown in FIG.
  • the magnetic layers M1 to M3 are covered with an insulating layer .
  • portions positioned on one side in the y direction are defined as magnetic layers M11, M21, and M31, and the other side in the y direction (lower side in FIG. 7) ) are defined as the magnetic layers M12, M22, and M32
  • the magneto-sensitive element R1 is positioned between the magnetic layers M11 and M21 in plan view (viewed from the x direction)
  • the magneto-sensitive element R2 is positioned between the magnetic layers M12 and M22
  • the magneto-sensitive element R3 is positioned between the magnetic layers M11 and M31
  • the magneto-sensitive element R4 is positioned between the magnetic layers M12 and M12.
  • the magneto-sensitive elements R1 to R4 it is not essential to arrange the magneto-sensitive elements R1 to R4 between the two magnetic layers. It is sufficient that the magneto-sensitive elements R1 to R4 are arranged on the magnetic path formed by. Further, the width of the magnetic gaps G1-G4 need not be wider than the width of the magneto-sensitive elements R1-R4, and the width of the magnetic gaps G1-G4 may be narrower than the width of the magneto-sensitive elements R1-R4.
  • the region indicated by reference numeral 12 indicates the region covered by the magnetic coupling portion 12 of the magnetic body 10
  • the regions indicated by reference numerals 22a and 22b are the regions covered by the magnetic coupling portions 22a and 22b of the magnetic substance 20. is shown.
  • the magnetic coupling portion 12 of the magnetic body 10 covers the magnetic layer M1
  • the magnetic coupling portions 22a and 22b of the magnetic body 20 cover the magnetic layers M2 and M3.
  • the magnetic flux collected via the magnetic collecting surface 11a of the magnetic body 10 passes through the magnetic collecting surface 21a of the magnetic body 20 via the magnetic layers M1 to M3. Since the magnetosensitive elements R1 to R4 are arranged in the magnetic gaps G1 to G4 formed by the magnetic layers M1 to M3, it is possible to efficiently detect the magnetic field spreading in the space away from the magnetic field source A. Become.
  • FIG. 8 is a schematic perspective view for explaining the structure of the magnetic sensor 3 according to the third embodiment of the invention.
  • the magnetic flux collecting portions 11 and 21 of the magnetic bodies 10 and 20 extend from the magnetic coupling portions 12 and 22 to both sides in the y direction. It differs from the magnetic sensor 2 according to the embodiment of No. 2. Since other basic configurations are the same as those of the magnetic sensor 2 according to the second embodiment, the same elements are denoted by the same reference numerals, and overlapping descriptions are omitted.
  • the magnetic flux collecting portions 11 and 21 of the magnetic bodies 10 and 20 are extended to both sides in the y direction, the areas of the magnetic flux collecting surfaces 11a and 21a are increased. , the magnetic field spreading in a space away from the magnetic field source A can be detected with higher sensitivity.
  • FIG. 9 is a schematic perspective view for explaining the structure of the magnetic sensor 4 according to the fourth embodiment of the invention.
  • the magnetic flux collecting portions 11 and 21 of the magnetic bodies 10 and 20 extend from the magnetic coupling portions 12 and 22 not only in the y direction but also in the z direction. It is different from the magnetic sensor 2 according to the second embodiment in that Since other basic configurations are the same as those of the magnetic sensor 2 according to the second embodiment, the same elements are denoted by the same reference numerals, and overlapping descriptions are omitted.
  • the magnetic sensor 4 shown in FIG. 9 if the widths of the magnetic flux collecting portions 11 and 21 of the magnetic bodies 10 and 20 in the z direction are increased, the areas of the magnetic flux collecting surfaces 11a and 21a increase. It becomes possible to detect the magnetic field spreading in the space away from the source A with higher sensitivity.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Magnetic Variables (AREA)

Abstract

【課題】微弱な磁界を磁場源から離れた位置で検出可能な磁気センサを提供する。 【解決手段】磁気センサ1は、集磁面11a,21aが互いに反対側を向くよう配置された磁性体10,20と、磁性体10,20間を通る磁束を検出する磁気検出部30とを備える。これにより、磁性体10の集磁面11aから集磁した磁束が磁気検出部30を介して磁性体20の集磁面21aを通ることから、空間に広がる磁界を効率良く集磁することができる。これにより、磁場源からの距離が離れていても、磁場の一様性が高い条件で集磁することが可能となる。

Description

磁気センサ
 本発明は磁気センサに関し、特に、微弱な磁界を磁場源から離れた位置から検出可能な磁気センサに関する。
 特許文献1には、棒状の磁性体を用いてセンサチップに磁束を集めることにより検出感度を高めた磁気センサが開示されている。
特許6610178号公報
 しかしながら、特許文献1に記載の磁気センサは、集磁体を磁場源に近づけることによって測定を行う必要があり、微弱な磁界を磁場源から離れた位置で検出することは容易ではなかった。
 したがって、本発明は、微弱な磁界を磁場源から離れた位置で検出可能な磁気センサを提供することを目的とする。
 本発明による磁気センサは、集磁面が互いに反対側を向くよう配置された第1及び第2の磁性体と、第1及び第2の磁性体間を通る磁束を検出する磁気検出部とを備えることを特徴とする。
 本発明によれば、第1の磁性体の集磁面から集磁した磁束が磁気検出部を介して第2の磁性体の集磁面を通ることから、空間に広がる磁界を効率良く集磁することができる。これにより、磁場源からの距離が離れていても、磁場の一様性が高い条件で集磁することが可能となる。
 本発明において、第1の磁性体の集磁面と第2の磁性体の集磁面が互いに平行であっても構わない。これによれば、第1及び第2の磁性体の集磁面を磁束に対して垂直とすることにより、微弱な磁界を感度良く検出することが可能となる。
 この場合、集磁面は、第1の方向及び第1の方向に対して垂直な第2の方向に延在し、第1及び第2の磁性体は、磁気検出部と磁気結合する磁気結合部と、磁気結合部から第1の方向に延在し、集磁面を構成する集磁部とをそれぞれ含むものであっても構わない。これによれば、集磁部のサイズを調整することによって集磁効率を調整することが可能となる。さらにこの場合、第1及び第2の磁性体の集磁部は、磁気結合部から第1の方向の両側に延在していても構わない。これによれば、集磁効率をより高めることが可能となる。また、第1及び第2の磁性体の集磁部は、磁気結合部から第2の方向に延在する部分を有していても構わない。この場合も、集磁効率をより高めることが可能となる。
 このように、本発明によれば、微弱な磁界を磁場源から離れた位置で検出可能な磁気センサを提供することが可能となる。
図1は、本発明の第1の実施形態による磁気センサ1の構造を説明するための模式図であり、(a)はxy平面図、(b)はyz平面図である。 図2(a)は、磁気センサ1を用いた磁界の検出方法を説明するための模式図であり、図2(b)はその拡大図である。 図3は、本発明の第2の実施形態による磁気センサ2の構造を説明するための略斜視図である。 図4は、本発明の第2の実施形態による磁気センサ2の構造を説明するための略斜視図である。 図5は、磁気検出部30を構成するセンサチップと磁性体10,20を分離した状態を示す略分解斜視図である。 図6は、磁気検出部30を構成するセンサチップの略平面図である。 図7は、図6のB-B線に沿った略断面図である。 図8は、本発明の第3の実施形態による磁気センサ3の構造を説明するための略斜視図である。 図9は、本発明の第4の実施形態による磁気センサ4の構造を説明するための略斜視図である。
 以下、添付図面を参照しながら、本発明の好ましい実施形態について詳細に説明する。
<第1の実施形態>
 図1は、本発明の第1の実施形態による磁気センサ1の構造を説明するための模式図であり、(a)はxy平面図、(b)はyz平面図である。
 図1に示すように、第1の実施形態による磁気センサ1は、磁性体10,20と磁気検出部30とを備えている。磁性体10,20は、フェライトなどの高透磁率材料によって構成され、検出対象となる磁界を集磁する集磁部11,21と、磁気検出部30と磁気結合し、集磁した磁束を磁気検出部30に印加する磁気結合部12,22をそれぞれ有している。
 集磁部11はyz平面を構成する集磁面11aとその反対側に位置する裏面11bを有し、集磁部12はyz平面を構成する集磁面21aとその反対側に位置する裏面21bを有する。集磁面11a,21aは互いに反対側を向き、裏面11b,21bは互いに向かい合っている。このように、集磁面11a,21aは互いに平行である。磁気検出部30は、磁性体10の磁気結合部12と磁性体20の磁気結合部22の間においてx方向に挟まれるように配置され、これにより磁性体10の磁気結合部12と磁性体20の磁気結合部22の間を通る磁束の向き及び強度を検出する。
 図2(a)は、磁気センサ1を用いた磁界の検出方法を説明するための模式図であり、図2(b)はその拡大図である。
 図2に示すように、本実施形態による磁気センサ1は、磁場源Aから離れた位置で磁束φを検出する。磁場源Aから離れた位置においては、磁場源Aの近傍と比べて磁束密度は低いものの、磁場の一様性が高い。このような一様性の高い磁束φを集磁面11a,21aを用いて集磁し、集磁した磁束φを磁気検出部30に印加する。これにより、磁場源Aから離れた空間に広がる磁界を効率良く検出することが可能となる。
 このように、本実施形態による磁気センサ1は、互いに反対側を向いた集磁面11a,21aを用いて空間に広がる磁界を集磁していることから、例えば、障害物の存在により磁場源Aに近接させることが困難な場合であっても、微弱な磁界を磁場源Aから離れた位置で検出することが可能となる。
<第2の実施形態>
 図3及び図4は、本発明の第2の実施形態による磁気センサ2の構造を説明するための略斜視図である。
 図3及び図4に示すように、第2の実施形態による磁気センサ2は、磁気検出部30としてセンサチップが用いられているとともに、センサチップを搭載する基板40と、基板40及び磁性体20を支持する支持体50を備えている点において、第1の実施形態による磁気センサ1と相違している。その他の基本的な構成は第1の実施形態による磁気センサ1と同一であることから、同一の要素には同一の符号を付し、重複する説明は省略する。
 基板40はxz面を主面とし、その主面に磁気検出部30を構成するセンサチップと、磁性体10の磁気結合部12及び磁性体20の磁気結合部22a,22bが載置される。磁性体20は、磁気結合部22a,22bが2つに分割されている。支持体50はxy面を主面とし、主面に基板40及び磁性体20が支持される。
 図5は、磁気検出部30を構成するセンサチップと磁性体10,20を分離した状態を示す略分解斜視図である。
 図5に示すように、磁気検出部30を構成するセンサチップは、yz面を構成する素子形成面31及び裏面32と、xy面を構成する側面33,34と、xz面を構成する側面35,36とを有している。センサチップの素子形成面31上には、後述する感磁素子及び磁性体層M1~M3が形成されている。センサチップの側面36は、基板40と向かい合う面である。
 磁性体10の磁気結合部12を構成する部分はx方向を長手方向とする棒状体であり、そのx方向における一端は、磁性体層M1の一部を覆うよう素子形成面31のz方向における略中央部に位置決めされている。磁性体20は、x方向に延在する領域23を有している。領域23のセンサチップ側における端部は、2つに分割されてx方向に延在し、さらに互いに向かい合うようz方向に折れ曲がる形状を有している。z方向に折れ曲がった部分は、磁性体20の磁気結合部22a,22bを構成する。磁気結合部22a,22bは、それぞれ磁性体層M2,M3の一部を覆う。
 図6は磁気検出部30を構成するセンサチップの略平面図であり、図7は図6のB-B線に沿った略断面図である。
 図6及び図7に示すように、センサチップの素子形成面31には、4つの感磁素子R1~R4が形成されている。感磁素子R1~R4は、磁束の向きによって電気抵抗が変化する素子であれば特に限定されず、例えばMR素子などを用いることができる。感磁素子R1~R4の固定磁化方向は、互いに同じ向き(例えばz方向におけるプラス側)に揃えられている。感磁素子R1~R4は絶縁層37で覆われており、絶縁層37の表面には、パーマロイなどからなる磁性体層M1~M3が形成されている。磁性体層M1~M3は絶縁層38で覆われている。そして、磁性体層M1~M3のうち、y方向における一方側(図7における上側)に位置する部分を磁性体層M11,M21,M31と定義し、y方向における他方側(図7における下側)に位置する部分を磁性体層M12,M22,M32と定義した場合、平面視で(x方向から見て)、感磁素子R1は磁性体層M11と磁性体層M21の間に位置し、感磁素子R2は磁性体層M12と磁性体層M22の間に位置し、感磁素子R3は磁性体層M11と磁性体層M31の間に位置し、感磁素子R4は磁性体層M12と磁性体層M32の間に位置している。これにより、磁気ギャップG1~G4を通過する磁界が感磁素子R1~R4に印加される。ここで、感磁素子R1,R2に印加される磁界の向きと、感磁素子R3,R4に印加される磁界の向きは、互いに180°異なることから、感磁素子R1~R4をブリッジ接続することにより、磁性体10を介して印加される磁束の向き及び強度を検出することができる。
 但し、本発明において、各感磁素子R1~R4を2つの磁性体層間に配置することは必須でなく、2つの磁性体層からなる磁気ギャップG1~G4の近傍、つまり、磁気ギャップG1~G4によって形成される磁路上に各感磁素子R1~R4が配置されていれば足りる。また、磁気ギャップG1~G4の幅が感磁素子R1~R4の幅よりも広い必要はなく、磁気ギャップG1~G4の幅が感磁素子R1~R4よりも狭くても構わない。
 図6及び図7において、符号12で示す領域は磁性体10の磁気結合部12によって覆われる領域を示し、符号22a,22bで示す領域は磁性体20の磁気結合部22a,22bによって覆われる領域を示している。図6及び図7に示すように、磁性体10の磁気結合部12は磁性体層M1を覆い、磁性体20の磁気結合部22a,22bは磁性体層M2,M3を覆う。
 このような構成により、磁性体10の集磁面11aを介して集磁した磁束は、磁性体層M1~M3を介して磁性体20の集磁面21aへと通る。そして、磁性体層M1~M3によって構成される磁気ギャップG1~G4に感磁素子R1~R4が配置されることから、磁場源Aから離れた空間に広がる磁界を効率良く検出することが可能となる。
<第3の実施形態>
 図8は、本発明の第3の実施形態による磁気センサ3の構造を説明するための略斜視図である。
 図8に示すように、第3の実施形態による磁気センサ3は、磁性体10,20の集磁部11,21が磁気結合部12,22からy方向の両側に延在する点において、第2の実施形態による磁気センサ2と相違している。その他の基本的な構成は第2の実施形態による磁気センサ2と同一であることから、同一の要素には同一の符号を付し、重複する説明は省略する。
 図8に示す磁気センサ2が例示するように、磁性体10,20の集磁部11,21をy方向の両側に延在させれば、集磁面11a,21aの面積が増大することから、磁場源Aから離れた空間に広がる磁界をより高感度に検出することが可能となる。
<第4の実施形態>
 図9は、本発明の第4の実施形態による磁気センサ4の構造を説明するための略斜視図である。
 図9に示すように、第4の実施形態による磁気センサ4は、磁性体10,20の集磁部11,21が磁気結合部12,22からy方向だけでなく、z方向にも延在する点において、第2の実施形態による磁気センサ2と相違している。その他の基本的な構成は第2の実施形態による磁気センサ2と同一であることから、同一の要素には同一の符号を付し、重複する説明は省略する。
 図9に示す磁気センサ4が例示するように、磁性体10,20の集磁部11,21のz方向における幅を拡大すれば、集磁面11a,21aの面積が増大することから、磁場源Aから離れた空間に広がる磁界をより高感度に検出することが可能となる。
 以上、本発明の好ましい実施形態について説明したが、本発明は、上記の実施形態に限定されることなく、本発明の主旨を逸脱しない範囲で種々の変更が可能であり、それらも本発明の範囲内に包含されるものであることはいうまでもない。
1~4  磁気センサ
10,20  磁性体
11,21  集磁部
11a,21a  集磁面
11b,21b  裏面
12,22,22a,22b  磁気結合部
23  領域
30  磁気検出部
31  素子形成面
32  裏面
33~36  側面
37,38  絶縁層
40  基板
50  支持体
A  磁場源
G1~G4  磁気ギャップ
M1~M3,M11,M21,M31,M12,M22,M32  磁性体層
R1~R4  感磁素子
φ  磁束

Claims (5)

  1.  集磁面が互いに反対側を向くよう配置された第1及び第2の磁性体と、
     前記第1及び第2の磁性体間を通る磁束を検出する磁気検出部と、を備えることを特徴とする磁気センサ。
  2.  前記第1の磁性体の前記集磁面と前記第2の磁性体の前記集磁面が互いに平行であることを特徴とする請求項1に記載の磁気センサ。
  3.  前記集磁面は、第1の方向及び前記第1の方向に対して垂直な第2の方向に延在し、
     前記第1及び第2の磁性体は、前記磁気検出部と磁気結合する磁気結合部と、前記磁気結合部から前記第1の方向に延在し、前記集磁面を構成する集磁部とをそれぞれ含むことを特徴とする請求項2に記載の磁気センサ。
  4.  前記第1及び第2の磁性体の前記集磁部は、前記磁気結合部から前記第1の方向の両側に延在することを特徴とする請求項3に記載の磁気センサ。
  5.  前記第1及び第2の磁性体の前記集磁部は、前記磁気結合部から前記第2の方向に延在する部分を有することを特徴とする請求項3又は4に記載の磁気センサ。
PCT/JP2022/007591 2021-03-29 2022-02-24 磁気センサ WO2022209462A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US18/549,713 US20240151785A1 (en) 2021-03-29 2022-02-24 Magnetic sensor
CN202280026374.3A CN117099007A (zh) 2021-03-29 2022-02-24 磁传感器

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-054652 2021-03-29
JP2021054652A JP2022152037A (ja) 2021-03-29 2021-03-29 磁気センサ

Publications (1)

Publication Number Publication Date
WO2022209462A1 true WO2022209462A1 (ja) 2022-10-06

Family

ID=83455880

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/007591 WO2022209462A1 (ja) 2021-03-29 2022-02-24 磁気センサ

Country Status (4)

Country Link
US (1) US20240151785A1 (ja)
JP (1) JP2022152037A (ja)
CN (1) CN117099007A (ja)
WO (1) WO2022209462A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011068146A1 (ja) * 2009-12-02 2011-06-09 アルプス電気株式会社 磁気センサ
JP2018004618A (ja) * 2016-06-23 2018-01-11 Tdk株式会社 磁気センサ
JP2019215311A (ja) * 2018-06-07 2019-12-19 Tdk株式会社 磁気センサ
JP2020071096A (ja) * 2018-10-30 2020-05-07 Tdk株式会社 磁気センサ
US20200142010A1 (en) * 2018-04-05 2020-05-07 Mando Corporation Non-contact linear position sensor
JP2020106309A (ja) * 2018-12-26 2020-07-09 Tdk株式会社 磁気センサ
JP2020112448A (ja) * 2019-01-11 2020-07-27 Tdk株式会社 磁気センサ

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011068146A1 (ja) * 2009-12-02 2011-06-09 アルプス電気株式会社 磁気センサ
JP2018004618A (ja) * 2016-06-23 2018-01-11 Tdk株式会社 磁気センサ
US20200142010A1 (en) * 2018-04-05 2020-05-07 Mando Corporation Non-contact linear position sensor
JP2019215311A (ja) * 2018-06-07 2019-12-19 Tdk株式会社 磁気センサ
JP2020071096A (ja) * 2018-10-30 2020-05-07 Tdk株式会社 磁気センサ
JP2020106309A (ja) * 2018-12-26 2020-07-09 Tdk株式会社 磁気センサ
JP2020112448A (ja) * 2019-01-11 2020-07-27 Tdk株式会社 磁気センサ

Also Published As

Publication number Publication date
US20240151785A1 (en) 2024-05-09
JP2022152037A (ja) 2022-10-12
CN117099007A (zh) 2023-11-21

Similar Documents

Publication Publication Date Title
US11644517B2 (en) Magnetic sensor
CN104204835B (zh) 磁性传感器装置
CN103748474A (zh) 电流传感器
US10859642B2 (en) Magnetic sensor
US11567148B2 (en) Magnetic sensor
WO2021036867A1 (zh) 一种基于电隔离隧道磁阻敏感元件的氢气传感器
US20220137157A1 (en) Magnetic sensor and its manufacturing method
JP7095350B2 (ja) 磁気センサ
WO2022209462A1 (ja) 磁気センサ
CN116859298A (zh) 多轴磁场传感器
JP5053532B2 (ja) 磁気検出装置
JP5678285B2 (ja) 電流センサ
JP2020115104A (ja) 電流センサ
WO2018198901A1 (ja) 磁気センサー
WO2018198627A1 (ja) 磁界センサ
JP3961265B2 (ja) 磁気センサ
CN108780130A (zh) 磁传感器
JP2022152036A (ja) 磁気センサ
US20220299581A1 (en) Magnetic sensor
WO2022190853A1 (ja) 磁気センサ
US20230296700A1 (en) Magnetic sensor and its manufacturing method
WO2021059751A1 (ja) 磁気センサ
JP2021101168A (ja) 磁気センサ
JP2004039837A (ja) 磁界検出素子
JP2022142942A (ja) 磁気センサ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22779687

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18549713

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 202280026374.3

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22779687

Country of ref document: EP

Kind code of ref document: A1