WO2022208988A1 - 検体検査システム、及び搬送方法 - Google Patents

検体検査システム、及び搬送方法 Download PDF

Info

Publication number
WO2022208988A1
WO2022208988A1 PCT/JP2021/043172 JP2021043172W WO2022208988A1 WO 2022208988 A1 WO2022208988 A1 WO 2022208988A1 JP 2021043172 W JP2021043172 W JP 2021043172W WO 2022208988 A1 WO2022208988 A1 WO 2022208988A1
Authority
WO
WIPO (PCT)
Prior art keywords
carrier
transport
speed
conveying
unit
Prior art date
Application number
PCT/JP2021/043172
Other languages
English (en)
French (fr)
Inventor
茂 矢野
信二 東
健史 松家
Original Assignee
株式会社日立ハイテク
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立ハイテク filed Critical 株式会社日立ハイテク
Priority to US18/275,448 priority Critical patent/US20240036068A1/en
Priority to JP2023510215A priority patent/JPWO2022208988A1/ja
Priority to EP21935141.8A priority patent/EP4317036A1/en
Priority to CN202180093701.2A priority patent/CN116888477A/zh
Publication of WO2022208988A1 publication Critical patent/WO2022208988A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/02Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations
    • G01N35/04Details of the conveyor system
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G54/00Non-mechanical conveyors not otherwise provided for
    • B65G54/02Non-mechanical conveyors not otherwise provided for electrostatic, electric, or magnetic
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/00584Control arrangements for automatic analysers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N2035/00178Special arrangements of analysers
    • G01N2035/00326Analysers with modular structure
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/02Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations
    • G01N35/04Details of the conveyor system
    • G01N2035/0474Details of actuating means for conveyors or pipettes
    • G01N2035/0475Details of actuating means for conveyors or pipettes electric, e.g. stepper motor, solenoid
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/02Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations
    • G01N35/04Details of the conveyor system
    • G01N2035/0474Details of actuating means for conveyors or pipettes
    • G01N2035/0482Transmission
    • G01N2035/0484Belt or chain
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/02Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations
    • G01N35/04Details of the conveyor system
    • G01N2035/0474Details of actuating means for conveyors or pipettes
    • G01N2035/0491Position sensing, encoding; closed-loop control

Definitions

  • the present invention relates to a sample testing system, and more particularly to technology for transporting test tubes containing test samples.
  • a technique in which current is supplied to the windings of an electromagnetic circuit in the carrier line of this analysis system to generate an electromagnetic force between it and a carrier with a magnet that holds the test tube, thereby moving the carrier Patent Document 3
  • Patent Literature 1 discloses a technique of conveying an article by a mover that is moved by electromagnetic interaction. However, in Patent Document 1, the mover moves along the stator corresponding to the fixed conveying path.
  • Patent Document 2 describes that the transport element is moved along a predetermined path by the magnetic attraction of one or more magnets that are moved along the predetermined path.
  • the carrier moves on the conveying path.
  • the conventional automatic analysis system which consists of a belt conveyor line and an analysis unit, can be used in situations such as when the analysis unit breaks down or when the analysis unit cannot perform analysis due to insufficient reagents, etc., and the belt conveyor line is set to offline.
  • a situation arises in which carriers cannot be transported from the analysis unit to the analysis unit. If this state is short, it does not become a big problem, but if it is prolonged, the carrier to be carried into the analysis unit stays on the belt conveying line for a long time. This stagnation of one carrier hinders the transportation of carriers positioned upstream, increases the number of carriers in congestion, and affects carriers loaded with specimens for which measurement has been completed in the analysis unit.
  • this traffic jam also affects the dispensing location of the analysis unit, resulting in a decrease in analysis efficiency. Furthermore, if the stagnation of the carriers continues, the traffic jam will progress to the loading position of the analysis unit, and there is a possibility that it will progress to the left side of the belt transport section near the loading position of the automatic analysis system.
  • An object of the present invention is to solve the above problems and to provide a sample testing system and a transportation method that control the carrier transportation speed and do not reduce analysis efficiency.
  • a plurality of conveying surfaces on which a plurality of electromagnetic induction coils are arranged two-dimensionally are arranged, and a conveying unit that generates a magnetic force by applying an electric current to the electromagnetic induction coils
  • a specimen inspection system connected to a processing unit that performs specimen analysis and pretreatment comprising: carrier control means for incorporating a magnet into the carrier and conveying the carrier by applying a current to the electromagnetic induction coil; carrier detecting means for detecting the position of the carrier moving in the transporting section; and a transport speed calculation unit that calculates the transport speed, and that changes the transport speed of each of the carriers based on the calculated transport speed of the carrier.
  • a plurality of carrier conveying surfaces are arranged on which a plurality of electromagnetic induction coils are arranged two-dimensionally, and a magnetic force is generated by applying an electric current to the electromagnetic induction coils.
  • a transporting method by a transporting unit that allows the carrier to be transported by embedding a magnet in the carrier and applying a current to the electromagnetic induction coil to transport the carrier, and detecting the position of the carrier moving in the transporting unit.
  • a transport speed of the carrier is calculated according to a distance from the position of the carrier moving on the transport unit to an arrival position of the carrier, and the transport speed of each carrier is changed based on the calculated transport speed of the carrier.
  • FIG. 1 is a diagram showing an automatic analysis system using electromagnetic transport technology according to Example 1.
  • FIG. 1 is a diagram showing an automatic analysis system using electromagnetic transport technology according to Example 1.
  • FIG. 4A and 4B are diagrams showing an example of carrier transfer on a two-dimensional electromagnetic transfer line according to the first embodiment;
  • FIG. 4A and 4B are diagrams showing a transport example of a group of carriers on a two-dimensional electromagnetic transport line according to the first embodiment;
  • FIG. FIG. 4 is a diagram showing a configuration example of a processing unit of the electromagnetic transfer line according to the first embodiment;
  • FIG. 4 is a diagram for explaining speed calculation logic of a two-dimensional electromagnetic transfer line;
  • FIG. 1 shows an automatic analysis system using conventional belt transport technology.
  • the problems of the conventional automatic analysis system will be explained using FIG.
  • the conventional automatic analysis system composed of a belt conveying line and an analysis unit is offline because analysis unit 605 cannot perform analysis due to failure of analysis unit 605 or shortage of reagents.
  • the carrier 608 cannot be transported from the belt transport line to the analysis unit 605. This state is not a big problem if it is only for a short period of time. However, if this state is prolonged, the carrier 608 to be carried into the analysis unit 605 stays on the belt conveying line for a long time.
  • a plurality of transport surfaces on which a plurality of electromagnetic induction coils are arranged two-dimensionally are arranged, and sample analysis and pretreatment are performed on a transport unit that generates magnetic force by applying current to the electromagnetic induction coils.
  • a specimen inspection system connected to a processing unit comprising carrier control means for transporting the carrier by embedding a magnet in the carrier and applying a current to the electromagnetic induction coil, and a position of the carrier moving in the transport section. and a carrier detection means for detecting the position of the carrier moving in the transport section by the carrier detection means, and a transport speed calculation for calculating the transport speed of the carrier according to the distance to the arrival position of the carrier. , and changing the transport speed of each of the carriers based on the calculated transport speed of the carrier, and the transport method thereof.
  • Figures 1A and 1B show a configuration example of an automatic analysis system using the two-dimensional transfer line of this embodiment.
  • An automatic analysis unit that performs biochemical and immunological tests is connected in parallel with the two-dimensional transport line, and sample samples are carried in mainly from the sample transport system and sample pretreatment system connected to the interface section 103 .
  • emergency samples, quality control samples, calibration samples, and the like can be input from the sample input/storage unit 102 .
  • Specimens to be input to the automatic analysis system are filled with samples such as blood and urine collected from patients and mounted on specimen carriers equipped with magnets.
  • specimen identification information such as a one-dimensional barcode or two-dimensional barcode for identifying the patient, or an RFID tag with information for identifying the patient and specimen is attached to the container of the specimen sample. .
  • the automatic analysis system reads the sample identification information with an attached reader, searches for request information for the corresponding sample at the management terminal 401 shown in FIG. If there is no request information, an inquiry is made to Laboratory Information System (LIS) 108, which is the host of the laboratory, to obtain inspection request information. Based on the request information received from the LIS 108, the management terminal 401 calculates which item is to be measured by which analysis unit, calculates the order in which the samples are to be transported to the analysis unit, creates destination information, and transports the samples. The line management unit 402 is notified. The transport line management unit 402 generates route information from the destination information.
  • LIS Laboratory Information System
  • the position of the carrier on the two-dimensional transfer line is grasped by the carrier detection means 4033 in the transfer line control unit 403, and it is confirmed whether or not there is an obstructive carrier on the transfer path.
  • the detected information is also notified to the transport path management section 4021 via the carrier management section 4022 .
  • the transport route management unit 4021 When the transport route management unit 4021 generates route information, it is conceivable to calculate another transport route without selecting a transport route that becomes an obstacle.
  • there is a physical limit to the number of transport paths that can be created on a two-dimensional transport line and there is a possibility that the selection of another path will interfere with the transport of another carrier.
  • a plurality of two-dimensional electromagnetic transfer lines 101 located behind the analysis unit 104 are connected.
  • a position 201 with a carrier loaded with a test tube is indicated by a black circle, and a position 202 without a carrier is indicated by a white circle.
  • the management terminal 401 plans to transport the carrier 205 to the position 203 or the position 204 based on the request information.
  • Position 203 corresponds to the tail end of one of the left carrier groups (buffers) stagnant on the two-dimensional transport line connected to analysis unit 104, and position 204 corresponds to the tail end of another carrier group.
  • management terminal 401 instructs carrier 205 to use path 212 as the last carrier group on the right, where the number of waiting carriers is small. An attempt to locate it in the tail would interfere with transport of the carrier 206 and could lead to delays in the results of urgent analyte measurements.
  • the carrier 206 it is possible to transport the carrier 206 first and transport the carrier 205 after the carrier 206.
  • the carrier 205 is on standby until the carrier 206 is transported, and the carriers 207 and 208 following the carrier 205 are also on standby. Since these waiting times lead to traffic jams, more samples can be carried into the automatic analysis system if the carriers 205, 207, and 208 are transported even a little. For the above reasons, the carrier may be stopped at the end of the buffer.
  • the waiting time calculation unit 4024 of the transport line management unit 402 uses information detected by the carrier management unit 4022 to Based on this, the waiting time of the carrier at the end of the queue in which the carriers are stagnant is obtained from the number of stagnant carriers.
  • the travel time calculation unit 4023 determines the distance from the starting point to the arrival point, which is the end of the line in which the carriers are stagnant.
  • a moving speed of the carrier is calculated so as to move the carrier in time. Furthermore, by similarly changing the movement speed of subsequent carriers, the number of carriers that can be transported is increased without interfering with the movement of multiple carriers while avoiding stagnation of carriers and extension of stagnant carrier rows. can be made
  • the transport path management unit 4021 confirms the state of the transport path and detects the presence of an obstacle carrier. If not, the carrier to be transported can be transported at full speed.
  • the maximum speed is 0.5-1.0 m/s, which is the speed at which the test sample inside the test tube does not scatter or splash. The maximum speed may change depending on the transport surface, carrier material, and compatibility. If the normal transport speed is 0.5 m/s and the maximum speed is 1.0 m/s, the average transport time can be shortened by about 1.3 seconds. This shortened time corresponds to 75% of the moving distance of the two-dimensional electromagnetic transport tile when transported at the normal transport speed. It can be seen that there is also an advantage in increasing the speed in this way.
  • FIG. 5 shows an example of the processing flow of the transport speed calculation unit 4032 of the transport line control unit 403 having the transport speed calculation unit 4032, the carrier detection means 4033, the carrier empty time calculation unit 4044, and the like.
  • This processing flow is processed by the transfer line control unit 403, and the transfer route and waiting time are designated in advance.
  • step 502 first, the conveying speed coefficient as an initial value is set to 1.0.
  • step 503 the conveying route instructed by the conveying route management unit 4021 is confirmed, and the movement distance is calculated.
  • the acceleration time and the deceleration time must be accelerations that do not scatter the specimen filled in the test tube as described above, so fixed time can be considered.
  • step 505 it is determined whether or not the carrier can be transported in the transport section, that is, based on the information of the carrier detection means 4033, it is confirmed that there is no carrier up to the arrival point. In the unlikely event that a carrier exists on the transport path before reaching the arrival point, there is a method of setting the position in front of the carrier as the arrival point, and there is also a method of stopping the carrier on the spot. In the present embodiment, description will be given on the premise that the carrier buffer portion is conveyed to the tail end.
  • step 505 when the carrier exists in the middle of the transport route, the process proceeds to step 506. On the other hand, if it is determined in step 505 that there is no carrier in the middle of the conveying route, the process proceeds to step 508 .
  • step 506 in order to check whether there is any discrepancy from the information calculated by the waiting time calculation unit 4024, the carrier idle time calculation unit 4034 calculates the time until the position at the destination becomes available based on the latest information from the carrier detection unit 4033. Then, the idle time of the carrier explained with reference to FIG. 3 is calculated.
  • Carrier idle time (Number of waiting carriers - 1) x (1 position travel time x 2) + 1 position travel time.
  • step 508 the transfer speed coefficients obtained in steps 502 and 507 are used to determine the transfer speed, and in step 509, the two-dimensional electromagnetic transfer line 101 is instructed to drive the carrier. As a result, the carriers move by the time the rearmost position of the stagnant carrier group becomes vacant, so that the carriers can be conveyed without stopping.
  • the maximum speed must be such that the sample filled in the test tube does not scatter. Therefore, if the conveying speed obtained in step 508 exceeds the maximum speed, it must be set to the maximum speed.
  • Carriers 303, 304, and 305 shown in FIG. 3 are each ready for operation in 1.0 seconds. However, when the distance between carriers 303 and 304 is less than two positions, carrier 304 has a travel time of less than 1.0 seconds, eg, 0.8 seconds. However, in order to avoid collisions between carriers, the carrier 304 does not start moving until the position where the carrier 303, which is the destination position, becomes vacant. Therefore, the travel time calculation unit 4023 refers to the travel time of the moving carrier 303 and changes the speed of the carrier 304, thereby making it possible to avoid collisions between the carriers.
  • the present invention is not limited to the embodiments described above, and further includes various modifications.
  • the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the described configurations.
  • part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Non-Mechanical Conveyors (AREA)

Abstract

電磁搬送技術を採用した二次元搬送ラインにおいて、キャリアの停滞群の長さに連携したキャリア搬送をさせ、休遊ポジションを低減させながら、検体検査システムの搬送効率を確保しつつ、同時搬送数を最大化することにある。電磁回路の巻き線に電流を供給し、試験管を保持する磁石付きのキャリアとの間に電磁力を発生させて、キャリアを移動させる二次元電磁搬送ラインにおいて、電磁回路の電流を変更することで、検体試料を搭載したキャリアの搬送速度を可変とし、搬送時間の短縮と、渋滞時のキャリア迂回の代替としてキャリアの搬送速度を落としキャリアの同時搬送数を増加させることで、検体検査システムの処理効率を向上する。

Description

検体検査システム、及び搬送方法
 本発明は、検体検査システムに係り、特に検査試料の入った試験管の搬送技術に関する。
 血液、血漿、血清、尿など、ヒトから採取した生体試料の成分を分析するための分析システムは、こられ生体試料をいれた試験管を遠心、開栓し、分析ユニットまで搬送する搬送ラインが必要である。この分析システムの搬送ラインに電磁回路の巻き線に電流を供給し、試験管を保持する磁石付きのキャリアとの間に電磁力を発生させて、キャリアを移動させる技術がある(特許文献3)。この技術を採用し、電磁コイルを二次元に配置した二次元搬送ラインがある。
 一方で、電磁力の技術を、前述のキャリアのように対象物の移動に応用されている。特許文献1では、電磁相互作用により移動される可動子により物品の搬送を行う技術が開示されている。しかし、特許文献1では、固定の搬送路に相当する固定子に沿って可動子が動作することとなる。
 また、特許文献2も同様に、輸送要素は、あらかじめ定められた経路に沿って移動させられる1つ以上の磁石の磁気引力によって、経路に沿って移動させられる、との記載があり、固定の搬送路上をキャリアが動作することとなる。
特開2020―075780号公報 特表2014-520018号 特開2020―205698号公報 特開2015―017868号公報
 ベルト搬送ラインと分析ユニットから構成される従来の自動分析システムは、分析ユニットが故障した場合や、試薬不足などの理由により分析ユニットで分析できない状態にあるためオフライン設定をした場合など、ベルト搬送ラインから分析ユニットにキャリアを搬送することができない状況になる。この状態は短時間であれば大きな問題とはならないが、長期化する場合、分析ユニットへ搬入させるキャリアがベルト搬送ラインに停滞する時間が長くなる。この1つのキャリアの停滞が、上流に位置するキャリアの搬送を妨げ、渋滞するキャリア数が増加し、分析ユニットで測定が完了した検体を搭載したキャリアに影響が及ぶことになる。この渋滞は、キャリアが搬出できないことから、分析ユニットの分注箇所にも影響するようになり、分析効率を低下させることになる。さらにキャリアの停滞が続くことで、分析ユニットの搬入位置まで渋滞が進み、自動分析システムの投入位置の付近であるベルト搬送部の左側まで進む可能性がある。
 このように、渋滞は分析システム全体のパフォーマンスを低下させる可能性がある。また、ベルト搬送ラインは、ベルト駆動を一つのモーターで行うため、1本のベルトで搬送できるキャリア数を制限することからキャリアの集積率が高くなく、空きエリアを有効に活用できない。
 一方で、電磁搬送技術を採用した二次元搬送ラインを採用した場合、搬送ラインを複線化することで、キャリアの渋滞箇所を回避する迂回経路を選択して、渋滞回避ができる。しかしながら、渋滞を回避するために余剰な二次元搬送ラインを確保することは、二次元搬送ラインの休遊箇所が存在することとなり、十分に効率的な搬送を得られない。
 本発明の目的は、上記の課題を解決し、キャリアの搬送速度を制御し、分析効率を低下させることのない検体検査システム、及び搬送方法を提供することを目的とする。
 上記の目的を達成するため、本発明においては、複数の電磁誘導コイルを二次元に配置された搬送面を複数個配置し、電磁誘導コイルに電流を流すことにより磁力を発生させる搬送部に、検体の分析や前処理を行う処理ユニットを接続した検体検査システムであって、前記キャリアに磁石を組み込み、前記電磁誘導コイルに電流を印加することで前記キャリアを搬送させるキャリア制御手段と、前記搬送部を移動する前記キャリアの位置を検出するキャリア検出手段と、前記キャリア検出手段により、前記搬送部を移動する前記キャリアの位置を検出し、前記キャリアの到着位置までの距離に応じて前記キャリアの搬送速度を算出する搬送速度計算部と、を具備し、算出した前記キャリアの搬送速度に基づき前記キャリア各々の搬送速度を変化させる検体検査システムを提供する。
 また、上記の目的を達成するため、本発明においては、複数の電磁誘導コイルを二次元に配置された、キャリアの搬送面を複数個配置し、電磁誘導コイルに電流を流すことにより磁力を発生させる搬送部による搬送方法であって、前記キャリアに磁石を組み込み、前記電磁誘導コイルに電流を印加することで前記キャリアを搬送させ、前記搬送部を移動する前記キャリアの位置を検出し、検出した前記搬送部を移動する前記キャリアの位置から、前記キャリアの到着位置までの距離に応じて前記キャリアの搬送速度を算出し、算出した前記キャリアの搬送速度に基づき前記キャリア各々の搬送速度を変化させる搬送方法を提供する。
 本発明によれば、電磁搬送システムを採用した二次元搬送ラインの使用効率を向上させ、かつ二次元搬送ラインに接続された分析装置の処理効率を十分に発揮することができる。
実施例1に係る、電磁搬送技術を用いた自動分析システムを示す図。 実施例1に係る、電磁搬送技術を用いた自動分析システムを示す図。 実施例1に係る、二次元電磁搬送ラインのキャリア搬送例を示す図。 実施例1に係る、二次元電磁搬送ラインのキャリア群の搬送例を示す図。 実施例1に係る、電磁搬送ラインの処理部の一構成例を示す図。 二次元電磁搬送ラインの速度算出ロジックを説明する図。 従来のベルト搬送技術を用いた自動分析システムを示す図。
 以下、図面に従い、本発明の検体検査システム、及び方法を実施するための形態について説明する。特に、検体検査システムの一例として分析ユニットを有する自動分析システムを例示して説明するが、本発明は、分析ユニットを有さない、開栓や分注等の前処理ユニット(特許文献4参照)のみの検体検査自動化システムにも適用可能である。
 まず、図6を用いて従来の自動分析システムの課題を説明する。同図に示すように、ベルト搬送ラインと分析ユニットから構成される従来の自動分析システムは、分析ユニット605が故障した場合や、試薬不足などの理由により分析ユニット605で分析できない状態にあるためオフライン設定をした場合など、ベルト搬送ラインから分析ユニット605にキャリア608を搬送することができない状況になる。この状態は短時間であれば大きな問題とはならい。しかし、この状態が長期化する場合、分析ユニット605へ搬入させるキャリア608がベルト搬送ラインに停滞する時間が長くなる。この1つのキャリアの停滞が、上流に位置するキャリアの搬送を妨げ、渋滞するキャリア数が増加し、分析ユニット604で測定が完了した検体を搭載したキャリア609に影響が及ぶことになる。この渋滞は、キャリア609が搬出できないことから、分析ユニット604の分注箇所にも影響するようになり、分析ユニット604の分注動作、ひいては分析効率を低下させることになる。さらにキャリア608の停滞が続くことで、分析ユニット604の搬入位置まで渋滞が進み、さらにその渋滞は、自動分析システムの投入位置の付近であるベルト搬送部602の左側まで進む可能性がある。
 実施例1は、複数の電磁誘導コイルを二次元に配置された搬送面を複数個配置し、電磁誘導コイルに電流を流すことにより磁力を発生させる搬送部に、検体の分析や前処理を行う処理ユニットを接続した検体検査システムであって、前記キャリアに磁石を組み込み、前記電磁誘導コイルに電流を印加することで前記キャリアを搬送させるキャリア制御手段と、前記搬送部を移動する前記キャリアの位置を検出するキャリア検出手段と、前記キャリア検出手段により、前記搬送部を移動する前記キャリアの位置を検出し、前記キャリアの到着位置までの距離に応じて前記キャリアの搬送速度を算出する搬送速度計算部と、を具備し、算出した前記キャリアの搬送速度に基づき前記キャリア各々の搬送速度を変化させる検体検査システム、及びその搬送方法の実施例である。
 図1A、図1Bに、本実施例の二次元搬送ラインを用いた自動分析システムの構成例を示す。生化学や免疫の検査を行う自動分析ユニットを二次元搬送ラインと並行に接続され、主にインターフェース部103に接続される検体搬送システムや検体前処理システムから検体試料が搬入される。また、検体投入・収納部102から、緊急検体や精度管理検体、キャリブレーション検体などを投入することができる。自動分析システムに投入される検体は、患者から採取した血液や尿などの試料が充填されており、磁石を備え付けた検体キャリアに搭載されている。また検体試料の容器には、患者を特定するための1次元バーコードや2次元バーコード、もしくは患者、および試料を特定するための情報を書き込んだRFIDタグなどの検体特定情報が付属されている。
 これらの患者の検体が自動分析システムに投入されると、自動分析システムは検体特定情報を付属の読み取り機で読取り、図4に示す管理端末401で該当の検体の依頼情報があるか検索し、依頼情報がない場合、検査室ホストであるLaboratory Information System(LIS)108に問い合わせを行い、検査の依頼情報を入手する。管理端末401は、LIS108から受信した依頼情報に基づき、どの項目をどの分析ユニットで測定するかを計算し、検体を分析ユニットにどの順序で搬送するかを計算し、行先情報を作成し、搬送ライン管理部402へ通知する。搬送ライン管理部402は、行先情報から経路情報を生成する。
 しかし、搬送ライン制御部403内のキャリア検出手段4033により、二次元搬送ライン上のキャリアの位置を把握し、搬送路上に障害となるキャリアが存在するかを確認する。この検出した情報は、キャリア管理部4022を経由して搬送路管理部4021にも通知される。通常、搬送路管理部4021が経路情報を生成する際、障害となる搬送路を選択せずに、別の搬送経路を計算することが考えられる。しかし、二次元搬送ライン上に搬送路を作成するにも物理的に有限であり、別経路を選択することで、別キャリアの搬送を妨げる可能性がある。
 具体的には、図2に示すように、分析ユニット104の背面に位置する二次元電磁搬送ライン101が複数接続されている。試験管を搭載したキャリアの存在するポジション201のように黒丸で示し、キャリアの存在しないポジション202のように白丸で示す。管理端末401は、依頼情報に基づき、キャリア205が、ポジション203、もしくはポジション204に搬送させる計画をしている。ポジション203は、分析ユニット104に接続される二次元搬送ラインの上に停滞する左のキャリア群(バッファ)の一つの最後尾にあたり、ポジション204は、もう一つのキャリア群に最後尾にあたる。
 同時間帯に、キャリア206が緊急検体として、経路212を使用しようとした場合、管理端末401は、キャリア205が経路212を使用して、待機しているキャリア数の少ない右のキャリア群の最後尾に位置させようとした場合、キャリア206の搬送を妨げることになり、緊急検体の測定結果の遅延につながる可能性がある。
 この場合、キャリア206を先に搬送させ、キャリア205をキャリア206の後に搬送させることも可能である。しかし、キャリア206を搬送させるまで、キャリア205が待機することになり、キャリア205に続く、キャリア207、さらにはキャリア208も待機することとなる。これらの待機時間は、渋滞を招くことになるため、キャリア205、キャリア207、キャリア208は、少しでも搬送させたほうが、自動分析システムに多くの検体を搬入することができる。上記の理由により、バッファの最後尾にキャリアを停止させることがある。
 図3に示すようにキャリア303、キャリア304、キャリア305が選択する搬送路上にキャリア301からキャリア302のように複数のキャリアが停滞している場合、キャリア302が2ポジション移動するために1.0秒かかり、その後キャリア306が移動を開始する。言い換えると、隣り合うキャリアのうち下流に位置するキャリアが移動するには、1.5秒かかることになる。したがって、キャリア301の位置するポジションが空くのは、キャリア302の移動を開始してから4.5秒となる。
 そこで、本実施例においては、複数のキャリアが停滞する列に搬送する場合、停滞の列を長くさせないため、搬送ライン管理部402の待機時間計算部4024は、キャリア管理部4022が検出した情報に基づき、キャリアが停滞している個数から、キャリアが停滞する列の最後尾のキャリアが待機する時間を求める。
 次に移動時間計算部4023が、始点からキャリアが停滞する列の最後尾である到達点まで距離から、待機時間計算部4024が算出した最後尾のキャリアが到達点から移動するまでのキャリアの待機時間内に、キャリアを移動させるようキャリアの移動速度を算出する。更に、後続のキャリアに対しても、同様な移動速度の変化をさせることで、キャリアの停滞や停滞するキャリア列の延伸を避けつつ、複数キャリアの移動を妨げることなく、搬送できるキャリア数を増加させることができる。
 一方で、管理端末401が決定するキャリアの移動距離が複数の二次元電磁搬送ラインにまたがるような遠い行先の場合、搬送路管理部4021が搬送路上の状態を確認し、障害となるキャリアが存在しない場合、搬送するキャリアは最高速度で搬送することができる。最高速度は、試験管内部の検査試料が飛び散ったり、飛び跳ねたりしない速度となり、0.5-1.0m/sとなる。最高速度は、搬送面やキャリアの素材、相性により変更去る可能性がある。仮に通常の搬送速度が0.5m/s、最高速度が1.0m/sとした場合、平均で搬送時間が約1.3秒の短縮できる。この短縮される時間は、通常の搬送速度で搬送した場合の二次元電磁搬送タイルの75%の移動距離に相当する。このように速度を速めることの優位性もあることがわかる。
 図5に、搬送速度算出部4032、キャリア検出手段4033、キャリア空時間算出部4044などを有する搬送ライン制御部403の搬送速度算出部4032の処理フローの一例を示す。この処理フローは、搬送ライン制御部403で処理され、あらかじめ搬送経路、待機時間が指示されている。
 ステップ502は、まず初期値としての搬送速度係数を1.0として設定する。ステップ503では、搬送経路管理部4021から指示された搬送経路を確認し、移動距離を算出する。ステップ504は、ステップ503で算出した移動距離から、
  移動時間=加速時間+(搬送距離―加減速距離)÷速度+減速時間で求めることができる。ここで加速時間、減速時間は、先に説明した試験管に充填される検体試料の飛び散りのない加速度でなければならないため、固定時間を考えることができる。
 ステップ505では、搬送区の搬送可否判断、すなわち、キャリア検出手段4033の情報をもとに到達点までにキャリアが存在しないことを確認する。万が一、到達点までに搬送路にキャリアが存在した場合、当該キャリアの手前のポジションを到達点とする方法もあるし、その場で停止する方法もある。本実施例では、キャリアバッファ部の最後尾に搬送することを前提として説明する。ステップ505で、搬送経路の途中にキャリアが存在した場合、ステップ506へ進む。一方、ステップ505で搬送経路の途中にキャリアが存在しない場合、ステップ508に進む。ステップ506では、待機時間計算部4024で算出した情報との乖離がないかを確認するため、キャリア検出手段4033の最新の情報から、搬送先のポジションが空くまでの時間をキャリア空時間算出部4034で、図3で説明したキャリアの空く時間を算出する。
  キャリアの空き時間=(待機キャリア数-1)×(1ポジション移動時間×2)+1ポジションの移動時間となる。
 ステップ507では、ステップ504とステップ506で算出した時間を比較し、キャリアの空き時間>移動時間となるかを計算する。この計算には、前述の通り、加速時間、減速時間は固定時間と想定しているため、低速区間の時間を比較し、
  搬送速度係数=(移動時間―加速・減速時間)/(キャリア空き時間―加速・減速時間)で搬送速度係数を求める。ステップ508では、ステップ502とステップ507で求めた搬送速度係数を使用し、搬送速度を決定すし、ステップ509で二次元電磁搬送ライン101にキャリアの駆動指示を行う。これにより、停滞するキャリア群の最後尾ポジションが空く時間までに、キャリアが移動するため、キャリアが停止することなく搬送することが可能となる。なお、搬送先ポジションのキャリアが空くまでの時間が、キャリアの移動時間より短い状況では、搬送速度を規定値より高速に移動させることが可能である。しかし、前述した通り、試験管に充填される検体試料の飛び散りがない最高速度である必要がある。そのため、ステップ508で求めた搬送速度が最高速度を上回った場合、最高速度にする必要がある。
 図3に示すキャリア303、304、305は、夫々が1.0秒で動作可能な状態である。しかしながら、キャリア303とキャリア304の間隔が2ポジション以下となると、キャリア304は、移動時間は1.0秒未満、例えば0.8秒となる。しかし、キャリア同士の衝突回避のため、キャリア304が移動開始するためには、移動先のポジションであるキャリア303がいる位置が空き状態になるまで動作しない。そのため、移動時間計算部4023は、移動中のキャリア303の移動時間を参照し、キャリア304の速度を変化させることで、キャリア同士の衝突を回避することが可能となる。
  本発明は、以上に説明した実施例に限定されるものではなく、さらに、様々な変形例が含まれる。例えば、前記した実施例は、本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を、他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の実施例に含まれる構成を追加・削除・置換することも可能である。
101 二次元電磁搬送ライン
102 同時分析システムの投入・収納部
103 インターフェース部
104、105、106、107 分析ユニット
108 Laboratory Information System(LIS)
201 キャリアの存在するポジション
202 キャリアの存在しないポジション
203、204 キャリアの到達点
205、206 キャリアの始動点
207、208 移動中のキャリア
211、212、213 搬送路
301,302、306 停滞中のキャリア
304、305 移動待ちのキャリア
401 管理端末
4011 システム管理部
4012 トラブル監視部
4013 処理能力算定部
402 搬送ライン管理部
4021 搬送路管理部
4022 キャリア管理部
4023 移動時間計算部
4024 待機時間計算部
403 搬送ライン制御部
4031 キャリア制御手段
4032 搬送速度算出部
4033 キャリア検出手段
4044 キャリア空時間算出部
502 搬送速度係数セット
503 搬送路の確認処理
504 キャリアの移動時間算出処理
505 搬送区の搬送可否の判断処理
506 キャリア到達点のキャリア待機時間の算出処理
507 搬送速度係数の再計算処理
508 搬送速度係数からの搬送速度算出処理
509 搬送指示処理
601 ベルト搬送ライン行き
602 ベルト搬送ライン戻り
603 検体投入・収納部
604、605 分析ユニット
606、607 キャリアバッファ部
608 ベルト搬送用キャリア

Claims (10)

  1. 複数の電磁誘導コイルを二次元に配置された、キャリアの搬送面を複数個配置し、電磁誘導コイルに電流を流すことにより磁力を発生させる搬送部に、検体の分析や前処理を行う処理ユニットを接続した検体検査システムであって、
    前記キャリアに磁石を組み込み、前記電磁誘導コイルに電流を印加することで前記キャリアを搬送させるキャリア制御手段と、
    前記搬送部を移動する前記キャリアの位置を検出するキャリア検出手段と、
    前記キャリア検出手段により、前記搬送部を移動する前記キャリアの位置を検出し、前記キャリアの到着位置までの距離に応じて前記キャリアの搬送速度を算出する搬送速度計算部と、を具備し、算出した前記キャリアの搬送速度に基づき前記キャリア各々の搬送速度を変化させる、
    ことを特徴した検体検査システム。
  2. 請求項1記載の検体検査システムであって、
    前記搬送部の前記キャリアの位置、状態を管理するキャリア管理部と、
    前記キャリアの搬送元、搬送先、速度を管理する搬送管理部と、
    前記キャリアが移動先に存在することが可能になるまでの時間を算出する待機時間計算部と、
    前記キャリアが移動にかかる時間を計算する移動時間計算部と、を備え、
    前記キャリア管理部が前記キャリアの状態を把握したうえで、移動時間と待機時間を比較し、その比較結果に基づき前記キャリアが停滞しない搬送速度を算出し、変化させる、
    ことを特徴とする検体検査システム。
  3. 請求項2記載の検体検査システムであって、
    前記待機時間計算部の算出結果に基づき、搬送可と判断される場合、搬送速度を算出する、
    ことを特徴とする検体検査システム。
  4. 請求項2記載の検体検査システムであって、
    同一経路上路に複数のキャリアを同時に搬送させる場合において、移動先キャリアの移動時間と待機時間を参照し、移動元キャリアの待機時間と比較し、その比較結果に基づき前記移動元キャリアが停滞しない搬送速度を算出し、変化させる、
    ことを特徴とする検体検査システム。
  5. 請求項4記載の検体検査システムであって、
    同一経路上路に複数のキャリアを搬送させる場合において、各々のキャリアの移動時間と移動先の待機時間を比較し、その比較結果に基づき各キャリアが停滞しない搬送速度を算出し、変化させる、
    ことを特徴とする検体検査システム。
  6. 複数の電磁誘導コイルを二次元に配置された、キャリアの搬送面を複数個配置し、電磁誘導コイルに電流を流すことにより磁力を発生させる搬送部による搬送方法であって、
    前記キャリアに磁石を組み込み、前記電磁誘導コイルに電流を印加することで前記キャリアを搬送させ、
    前記搬送部を移動する前記キャリアの位置を検出し、
    検出した前記搬送部を移動する前記キャリアの位置から、前記キャリアの到着位置までの距離に応じて前記キャリアの搬送速度を算出し、算出した前記キャリアの搬送速度に基づき前記キャリア各々の搬送速度を変化させる、
    ことを特徴した搬送方法。
  7. 請求項6記載の搬送方法であって、
    前記搬送部の前記キャリアの位置、状態と、前記キャリアの搬送元、搬送先、速度を管理し、
    前記キャリアが移動先に存在することが可能になるまでの移動時間を算出し、
    前記キャリアが移動にかかる待機時間を算出し、
    前記キャリアの状態を把握したうえで、前記移動時間と前記待機時間を比較し、その比較結果に基づき前記キャリアが停滞しない搬送速度を算出し、変化させる、
    ことを特徴とする搬送方法。
  8. 請求項7記載の搬送方法であって、
    前記待機時間の算出結果に基づき、搬送可と判断される場合、搬送速度を算出する、
    ことを特徴とする搬送方法。
  9. 請求項7記載の搬送方法であって、
    同一経路上路に複数のキャリアを同時に搬送させる場合において、移動先キャリアの移動時間と待機時間を参照し、移動元キャリアの待機時間と比較し、その比較結果に基づき前記移動元キャリアが停滞しない搬送速度を算出し、変化させる、
    ことを特徴とする搬送方法。
  10. 請求項9記載の搬送方法であって、
    同一経路上路に複数のキャリアを搬送させる場合において、各々のキャリアの移動時間と移動先の待機時間を比較し、その比較結果に基づき各キャリアが停滞しない搬送速度を算出し、変化させる、
    ことを特徴とする搬送方法。
PCT/JP2021/043172 2021-03-29 2021-11-25 検体検査システム、及び搬送方法 WO2022208988A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US18/275,448 US20240036068A1 (en) 2021-03-29 2021-11-25 Specimen inspection system, and conveyance method
JP2023510215A JPWO2022208988A1 (ja) 2021-03-29 2021-11-25
EP21935141.8A EP4317036A1 (en) 2021-03-29 2021-11-25 Specimen inspection system, and conveyance method
CN202180093701.2A CN116888477A (zh) 2021-03-29 2021-11-25 检体检查系统和传送方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021055002 2021-03-29
JP2021-055002 2021-03-29

Publications (1)

Publication Number Publication Date
WO2022208988A1 true WO2022208988A1 (ja) 2022-10-06

Family

ID=83458327

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/043172 WO2022208988A1 (ja) 2021-03-29 2021-11-25 検体検査システム、及び搬送方法

Country Status (5)

Country Link
US (1) US20240036068A1 (ja)
EP (1) EP4317036A1 (ja)
JP (1) JPWO2022208988A1 (ja)
CN (1) CN116888477A (ja)
WO (1) WO2022208988A1 (ja)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61217434A (ja) * 1985-03-20 1986-09-27 Mitsubishi Chem Ind Ltd 搬送用装置
JPH06197411A (ja) * 1993-06-01 1994-07-15 Daifuku Co Ltd 移動車利用の搬送設備
JPH0748028A (ja) * 1993-08-06 1995-02-21 Daifuku Co Ltd 直流リニアモータ利用の移動設備
JP2000275251A (ja) * 1999-03-26 2000-10-06 Olympus Optical Co Ltd 自動分析装置および試薬容器
JP2016166890A (ja) * 2011-11-04 2016-09-15 エフ.ホフマン−ラ ロシュ アーゲーF. Hoffmann−La Roche Aktiengesellschaft 研究室試料配送システムおよび対応する動作方法
JP2016218060A (ja) * 2015-05-22 2016-12-22 エフ.ホフマン−ラ ロシュ アーゲーF. Hoffmann−La Roche Aktiengesellschaft 研究室サンプル配送システムを動作させる方法、研究室サンプル配送システム、および研究室自動化システム
JP2017522564A (ja) * 2014-07-24 2017-08-10 エフ.ホフマン−ラ ロシュ アーゲーF. Hoffmann−La Roche Aktiengesellschaft ラボラトリ試料分配システムおよびラボラトリ自動化システム
WO2019170488A1 (en) * 2018-03-07 2019-09-12 Technische Universität München Method of operating a laboratory sample distribution system, laboratory sample distribution system and laboratory automation system
JP2019194126A (ja) * 2014-03-19 2019-11-07 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated 物体を移動および/または位置決めするための搬送装置
JP2021010254A (ja) * 2019-07-02 2021-01-28 株式会社日立ハイテク 搬送装置

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61217434A (ja) * 1985-03-20 1986-09-27 Mitsubishi Chem Ind Ltd 搬送用装置
JPH06197411A (ja) * 1993-06-01 1994-07-15 Daifuku Co Ltd 移動車利用の搬送設備
JPH0748028A (ja) * 1993-08-06 1995-02-21 Daifuku Co Ltd 直流リニアモータ利用の移動設備
JP2000275251A (ja) * 1999-03-26 2000-10-06 Olympus Optical Co Ltd 自動分析装置および試薬容器
JP2016166890A (ja) * 2011-11-04 2016-09-15 エフ.ホフマン−ラ ロシュ アーゲーF. Hoffmann−La Roche Aktiengesellschaft 研究室試料配送システムおよび対応する動作方法
JP2019194126A (ja) * 2014-03-19 2019-11-07 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated 物体を移動および/または位置決めするための搬送装置
JP2017522564A (ja) * 2014-07-24 2017-08-10 エフ.ホフマン−ラ ロシュ アーゲーF. Hoffmann−La Roche Aktiengesellschaft ラボラトリ試料分配システムおよびラボラトリ自動化システム
JP2016218060A (ja) * 2015-05-22 2016-12-22 エフ.ホフマン−ラ ロシュ アーゲーF. Hoffmann−La Roche Aktiengesellschaft 研究室サンプル配送システムを動作させる方法、研究室サンプル配送システム、および研究室自動化システム
WO2019170488A1 (en) * 2018-03-07 2019-09-12 Technische Universität München Method of operating a laboratory sample distribution system, laboratory sample distribution system and laboratory automation system
JP2021010254A (ja) * 2019-07-02 2021-01-28 株式会社日立ハイテク 搬送装置

Also Published As

Publication number Publication date
JPWO2022208988A1 (ja) 2022-10-06
EP4317036A1 (en) 2024-02-07
CN116888477A (zh) 2023-10-13
US20240036068A1 (en) 2024-02-01

Similar Documents

Publication Publication Date Title
JP5796080B2 (ja) 自動分析装置
JP7052060B2 (ja) 研究室試料分配システムを動作させる方法、研究室試料分配システム、および研究室自動化システム
JP5557933B2 (ja) 検体処理システム
JP6509122B2 (ja) 検体移載装置及び検体処理システム
US10126318B2 (en) Mother daughter tube carrier for aliquoters
EP2834647B1 (en) Virtual sample queues
WO2020158264A1 (ja) 搬送装置および被搬送物の搬送方法
JP2000088860A (ja) 検体搬送システムおよび検体搬送方法
EP3905515B1 (en) Conveying device, sample analysis system and sample preprocessing device comprising same, and method for conveying sample to be conveyed
EP2669684B1 (en) Specimen transportation system and method for controlling same
WO2022208988A1 (ja) 検体検査システム、及び搬送方法
EP3502709B1 (en) Automated sample inspection system and method for controlling same
WO2021140788A1 (ja) 検体搬送装置、検体分析システム、および検体前処理システム、並びに検体の搬送方法
JP7459145B2 (ja) 検体搬送システム、および検体の搬送方法
JP6857733B2 (ja) 自動分析装置
JP7241881B2 (ja) 検体搬送システム
WO2022219975A1 (ja) 搬送装置、及び検体分析システム
WO2023026622A1 (ja) 検体搬送装置および検体搬送方法
WO2023026711A1 (ja) 搬送装置、搬送装置を備えた検体分析システム、および、搬送装置を備えた検体前処理装置
JP5638024B2 (ja) 検体搬送システム
JP2023077415A (ja) 分配システム
CN116635317A (zh) 检体搬送装置以及检体的搬送方法
JPWO2022208988A5 (ja)
CN117849365A (zh) 样本处理系统与样本调度方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21935141

Country of ref document: EP

Kind code of ref document: A1

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 18275448

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 202180093701.2

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2023510215

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2021935141

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021935141

Country of ref document: EP

Effective date: 20231030