WO2022206714A1 - 红外线吸收剂分散液、透明隔热有机玻璃及其制造方法 - Google Patents

红外线吸收剂分散液、透明隔热有机玻璃及其制造方法 Download PDF

Info

Publication number
WO2022206714A1
WO2022206714A1 PCT/CN2022/083519 CN2022083519W WO2022206714A1 WO 2022206714 A1 WO2022206714 A1 WO 2022206714A1 CN 2022083519 W CN2022083519 W CN 2022083519W WO 2022206714 A1 WO2022206714 A1 WO 2022206714A1
Authority
WO
WIPO (PCT)
Prior art keywords
infrared absorber
dispersion
infrared
plexiglass
transparent heat
Prior art date
Application number
PCT/CN2022/083519
Other languages
English (en)
French (fr)
Inventor
屈洁昊
殷胜炯
范琴琴
许王杰
Original Assignee
浙江华帅特新材料科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江华帅特新材料科技有限公司 filed Critical 浙江华帅特新材料科技有限公司
Priority to US18/038,005 priority Critical patent/US20230416432A1/en
Publication of WO2022206714A1 publication Critical patent/WO2022206714A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/14Methyl esters, e.g. methyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F120/00Homopolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F120/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F120/10Esters
    • C08F120/12Esters of monohydric alcohols or phenols
    • C08F120/14Methyl esters, e.g. methyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/44Polymerisation in the presence of compounding ingredients, e.g. plasticisers, dyestuffs, fillers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
    • C08L33/10Homopolymers or copolymers of methacrylic acid esters
    • C08L33/12Homopolymers or copolymers of methyl methacrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2255Oxides; Hydroxides of metals of molybdenum
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2258Oxides; Hydroxides of metals of tungsten
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/005Additives being defined by their particle size in general
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/10Transparent films; Clear coatings; Transparent materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/22Mixtures comprising a continuous polymer matrix in which are dispersed crosslinked particles of another polymer

Definitions

  • the present application relates to the technical field of transparent heat insulating materials, in particular to an infrared absorber dispersion liquid, a transparent heat insulating organic glass and a manufacturing method thereof.
  • infrared absorber has important application value in optical materials, laser protection, building heat insulation, near-infrared stealth and other fields because it can meet the unique function of heat blocking on the basis of moderate light transmittance.
  • plexiglass As a key member of transparent materials, plexiglass, if endowed with infrared absorption function, is expected to obtain specific applications in the field of transparent heat insulation to suppress temperature rise on the basis of fully satisfying transparency. Taking plant cultivation as an example, researchers hope to achieve effective Heat shielding does not affect the visible light transmission required for plant growth.
  • the existing infrared absorbers are mainly based on inorganic powders, which are difficult to be homogeneously dispersed in the intrinsic oily system of plexiglass and firmly bonded at the interface, which affects the overall efficiency of heat blocking, uniformity of light transmission, and product appearance. , when used for plexiglass prepared by casting process, this interference is more obvious.
  • the existing infrared absorbers are mainly based on inorganic powders, which are difficult to be homogeneously dispersed in the intrinsic oily system of plexiglass and firmly combined with the interface, which affects the overall efficiency of heat blocking, the uniformity of light transmission, and the appearance of the product. This kind of interference is more obvious when the plexiglass is prepared by the casting process.
  • the present application provides an infrared absorber dispersion, a transparent heat-insulating organic glass and a manufacturing method thereof, which can effectively impart uniform transparency under visible light and uniform blocking function under infrared light to the organic glass.
  • the present application provides an infrared absorbing agent dispersion liquid, which includes an infrared absorbing agent, a dispersing agent and an organic solvent.
  • an infrared absorbing agent dispersion liquid which includes an infrared absorbing agent, a dispersing agent and an organic solvent.
  • the organic solvent is an organic solvent that is mutually soluble with the methyl methacrylate monomer and the polymethyl methacrylate.
  • the mass ratio of the infrared absorber is 10%-60%, the mass ratio of the dispersant is ⁇ 5%, and the mass ratio of the organic solvent is ⁇ 30%.
  • the infrared absorber is inorganic powder particles
  • the inorganic powder particles include one or more of WO 3 , MoO 3 , ATO, ITO, BTO, GTO, CsxWO 3 , and the particle size ranges from 5 -100 nm.
  • the dispersing agent is silicone-modified acrylate, polyester-modified polydimethylsiloxane containing hydroxyl functional groups, polyether-modified polydimethylsiloxane, polysiloxane-containing copolymer
  • the application also provides a method for manufacturing transparent heat-insulating plexiglass, comprising:
  • the homogeneous mixed liquid is cured, and the base material is polymerized to form a base, and the infrared absorber undergoes a free radical copolymerization reaction with the base material through the dispersant located in the outer layer and/or an intermolecular force occurs. distributed in the matrix;
  • step a includes:
  • the polymethyl methacrylate resin particles are formulated into a precursor mixture with methyl methacrylate as a solvent to obtain the matrix material.
  • the conversion rate of methyl methacrylate is 10%-50%; or, preparing the precursor mixture using methyl methacrylate as a solvent , the mass proportion of polymethyl methacrylate resin particles is 5%-50%.
  • step a includes:
  • the infrared absorber, the dispersant, and the organic solvent are mixed to obtain a premixed solution;
  • the premixed solution is treated with nano-dispersion technology and filtered to obtain the infrared absorbing agent dispersion.
  • the mass ratio of the infrared absorber dispersion liquid is ⁇ 5%
  • the mass ratio of the matrix material is ⁇ 90%
  • the mass ratio of the initiator is ⁇ 0.5%.
  • the agent includes one or more of BPO, AIBN, and ABVN.
  • the present application also provides a transparent heat-insulating organic glass, which is manufactured by the above-mentioned manufacturing method of the transparent heat-insulating organic glass.
  • the infrared absorber dispersion liquid of the present application the outer layer of the infrared absorber distributes the dispersant, and forms an independent unit dispersed in the organic solvent, and the molecular structure of the dispersant can carry out a free radical copolymerization reaction with methyl methacrylate monomer. active units and/or groups that generate intermolecular forces with polymethyl methacrylate.
  • the infrared absorbing agent is distributed in the matrix through the free-radical copolymerization reaction and/or the generation of intermolecular force between the dispersant in the outer layer and the matrix material.
  • the dispersion uniformity of the infrared absorber in the organic glass is improved.
  • the infrared absorber is distributed in the matrix through the free radical copolymerization reaction of the dispersant located in the outer layer and the matrix material and/or the occurrence of intermolecular forces, and the combination is tight, effectively giving the plexiglass uniform transparency and infrared light under visible light. under the uniform barrier function.
  • the plexiglass can be prepared by the traditional casting and curing process, and the cost is low.
  • the infrared absorber dispersion liquid of the present application the outer layer of the infrared absorber distributes the dispersant, and forms an independent unit dispersed in the organic solvent, and the molecular structure of the dispersant can carry out a free radical copolymerization reaction with methyl methacrylate monomer. active units and/or groups that generate intermolecular forces with polymethyl methacrylate.
  • the infrared absorbing agent is distributed in the matrix through the free-radical copolymerization reaction and/or the generation of intermolecular force between the dispersant in the outer layer and the matrix material.
  • the dispersion uniformity of the infrared absorber in the organic glass is improved.
  • the infrared absorber is distributed in the matrix through the free radical copolymerization reaction of the dispersant located in the outer layer and the matrix material and/or the occurrence of intermolecular forces, and the combination is tight, effectively giving the plexiglass uniform transparency and infrared light under visible light. under the uniform barrier function.
  • the plexiglass can be prepared by the traditional casting and curing process, and the cost is low.
  • FIG. 1 is a schematic diagram showing the composition of the infrared absorber dispersion liquid according to the first embodiment.
  • FIG. 2 is a schematic flowchart of a method for manufacturing transparent heat-insulating plexiglass according to a second embodiment.
  • FIG. 3 is a schematic diagram of the composition of the transparent heat-insulating plexiglass according to the second embodiment.
  • FIG. 4 is the performance comparison data of the processes 1-3 shown according to the second embodiment and the control group.
  • A, B or C or “A, B and/or C” means “any of the following: A; B; C; A and B; A and C; B and C; A, B and C” . Exceptions to this definition arise only when combinations of elements, functions, steps, or operations are inherently mutually exclusive in some way.
  • FIG. 1 is a schematic diagram showing the composition of the infrared absorber dispersion liquid according to the first embodiment.
  • the infrared absorbing agent dispersion liquid of this embodiment includes an infrared absorbing agent 12 , a dispersing agent 13 and an organic solvent 11 , and the outer layer of the infrared absorbing agent 12 distributes the dispersing agent 13 to form a dispersion medium dispersed in the organic solvent 11 .
  • Standalone unit 14 14.
  • the infrared absorber 12 is inorganic powder particles, and the inorganic powder particles include one or more of WO 3 , MoO 3 , ATO, ITO, BTO, GTO, and CsxWO 3 , and the particle size ranges from 5 to 100 nm.
  • ATO is tin antimony oxide
  • ITO is indium tin oxide
  • BTO is bismuth tin oxide
  • GTO is tungsten vanadium tin antimony oxide
  • CsxWO 3 is cesium tungsten bronze.
  • the dispersant 13 is an oil-soluble surfactant, and in the molecular structure of the dispersant 13, there are active units that can undergo free radical copolymerization with methyl methacrylate monomers and/or intermolecular forces with polymethyl methacrylate.
  • the active unit is a kind of ethylenic bond, silicon-hydrogen bond
  • the group is a polybutyl acrylate segment, a polyethyl methacrylate segment, a polymethylphenylsiloxane segment, a poly Ethyl acrylate segment, polypropyl acrylate segment, polystyrene segment, polyvinyl chloride segment, bisphenol A polycarbonate segment, polymethyl methacrylate segment, polymethyl acrylate segment, Polybutyl methacrylate segment, polypropyl methacrylate segment, polyvinyl acetate segment, epoxy resin segment, polysulfide rubber segment, polybutadiene segment, polychloroprene chain One of the segment, the nitrocellulose segment, the polybutadiene-acrylonitrile segment, and the polybutadiene-styrene segment.
  • the dispersing agent 13 is distributed on the outer layer of the infrared absorbing agent 12, and based on the electric double layer theory and the steric hindrance effect, the infrared absorbing agent 12 can be prevented from settling and agglomerating to form a stable suspension.
  • the dispersant 13 is silicone-modified acrylate, polyester-modified polydimethylsiloxane containing hydroxyl functional groups, polyether-modified polydimethylsiloxane, or polysiloxane-containing copolymer
  • organic salts include alkyl phosphoric acid mono/diester salt, fatty alcohol polyoxyethylene ether and its phosphoric acid mono/diester salt, alkylphenol polyoxyethylene ether and its phosphoric acid mono/diester salt, primary alkane Alkyl sulfate, secondary alkyl sulfate, alkyl benzene sulfonate, ⁇ -olefin sulfonate, alkyl sulfonate, succinate
  • the organic solvent 11 is an organic solvent that can be mutually dissolved with polymethyl methacrylate, methyl methacrylate monomer and organic initiator (including one or more of BPO, AIBN, ABVN), specifically a hydrocarbon solvent , one of ester solvents, ketone solvents, alcohol solvents, ether solvents, alcohol ether solvents, such as n-butyl acetate, methyl isopropyl ketone, xylene, dimethyl ether, toluene, ethyl acetate Glycol monobutyl ether, ethyl acetate, methyl ethyl ketone, methyl ethyl ketone, methyl isobutyl ketone, methyl acetate, ethyl formate, ethyl benzoate, acetone, cyclohexanone, ethylene glycol monoethyl ether, amyl acetate, Isobutanol.
  • the organic solvent 11
  • the mass ratio of the infrared absorber 12 is 10%-60%, the mass ratio of the dispersant 13 is ⁇ 5%, and the mass ratio of the organic solvent 11 is ⁇ 30%.
  • the infrared absorbing agent dispersion liquid When preparing the infrared absorbing agent dispersion liquid, firstly adopt the rotation speed ⁇ 500 rpm, and the duration is 1-5 Mixing the infrared absorber 12, the dispersant 13 and the organic solvent 11 at a low speed of 1 min to obtain a premix; then use nano-dispersion technology, such as a planetary ball mill, to grind and disperse the premix and filter to obtain an infrared absorber dispersion .
  • nano-dispersion technology such as a planetary ball mill
  • the specific process of planetary ball mill dispersion technology is as follows: the tank is made of nylon material/volume 250 mL, the grinding ball is made of zirconia, and the three-stage ball distribution method is adopted. The diameters of large, medium and small are divided into three diameter grades in turn.
  • the mass ratio is 20% for large balls, 50% for medium balls, and 30% for small balls.
  • the mass ratio of grinding balls to the above premix is 0.5-2.
  • the rotation rate is set to Set 200-800 rpm, the grinding time is 30-180 min. Then, filter 2-3 times through a 250-600 mesh nylon filter to finally form an infrared absorbing agent dispersion.
  • a premix is formed by a simple mixing method. For example, a low-speed agitation with a rotation speed of ⁇ 500 rpm and a duration of 1-5 min can be used, so that the infrared absorber 12 can be assisted by the dispersant 13 in the organic solvent 11 to form a suspension with preliminary wetting of the interface. It can prevent the formation of local adhesion areas in the subsequent grinding and stirring, and avoid the problem of low concentration or heterogeneous phase of the dispersion.
  • the infrared absorber 12 is further dispersed by nano-dispersion technology. Nano-dispersion technology can be one of mechanical dispersion and ultrasonic dispersion.
  • roller type dispersion In addition to planetary ball mill dispersion technology, other mechanical dispersions including roller type dispersion can also be used.
  • the working principle of the non-intrusive homogeneous dispersion is as follows: under the combined action of the rotation and revolution, the material forms a vortex flow and is fully stirred; with the vacuum system, the bubbles extruded by the operation are completely removed from the material. Extraction is performed to complete the homogenization of the material, and those skilled in the art can select an appropriate nano-dispersion technology according to the actual situation. After being treated by nano-dispersion technology and fully filtered, a homogeneous and stable infrared absorber dispersion can be formed.
  • the above-mentioned infrared absorber dispersion liquid is suitable for use when preparing plexiglass by casting process.
  • the infrared absorber can carry out free radical copolymerization with methyl methacrylate monomer of plexiglass through the characteristic molecular structure and function of the dispersant.
  • the reaction or intermolecular force occurs with polymethyl methacrylate, so that the infrared absorber/plexiglass interface is tightly combined at the molecular scale through covalent bonding or intermolecular force binding.
  • the infrared absorber can be uniformly or relatively uniformly distributed between the polymethyl methacrylates, giving the formed
  • the plexiglass has uniform transparency under visible light and uniform barrier function under infrared light.
  • FIG. 2 is a schematic flowchart of a method for manufacturing transparent heat-insulating plexiglass according to a second embodiment. As shown in Figure 2, the manufacturing method of the transparent heat-insulating organic glass of the present embodiment includes the following steps:
  • Step 210 providing a matrix material and an infrared absorber dispersion.
  • step 210 includes:
  • the polymethyl methacrylate resin particles are formulated into a precursor mixture with methyl methacrylate as a solvent to obtain a matrix material.
  • the conversion rate of methyl methacrylate is 10%-50%, mainly composed of methyl methacrylate monomer and initiator (including BPO, AIBN, ABVN in the One or more), radical bulk polymerization reaction occurs under suitable temperature conditions to form polymethyl methacrylate solution with methyl methacrylate as solvent with moderate conversion rate.
  • the mass proportion of polymethyl methacrylate resin particles added is 5%-50%.
  • the content of polymethyl methacrylate is positively correlated with the viscosity. The lower the content of polymethyl methacrylate, the lower the viscosity.
  • step 210 further includes:
  • the infrared absorber, the dispersant and the organic solvent are mixed to obtain a premixed liquid;
  • the premix is ground and filtered by nano-dispersion technology to obtain an infrared absorbing agent dispersion.
  • the rotation speed is less than or equal to 500 rpm, and the duration is 1-5
  • nano-dispersion technology such as a planetary ball mill, to grind and disperse the premix and filter to obtain an infrared absorber dispersion.
  • the specific process of planetary ball mill dispersion technology is as follows: the tank is made of nylon material/volume 250 mL, the grinding ball is made of zirconia, and the three-stage ball distribution method is adopted. There are three diameter grades of large, medium and small in order between mm.
  • the mass ratio is 20% for large balls, 50% for medium balls, and 30% for small balls.
  • the mass ratio of grinding balls to the above premix is 0.5-2.0.
  • the rotation rate is set Set 200-600 rpm, the grinding time is 30-180 min. Then, filter 2-3 times through a 250-600 mesh nylon filter to finally form an infrared absorbing agent dispersion.
  • the premix is formed by simple mixing. Stirring at a low speed of min, the infrared absorber can form a suspension with preliminary wetting of the interface in the organic solvent with the aid of the dispersing agent, so as to prevent the formation of local adhesion areas in the subsequent grinding and stirring, and avoid the occurrence of low or non-uniform dispersion concentration. phase problem.
  • the infrared absorber is further dispersed by nano-dispersion technology.
  • Nano-dispersion technology can be one of mechanical dispersion and ultrasonic dispersion. In addition to planetary ball milling dispersion technology, other mechanical dispersion including roller milling can also be used.
  • Vibration ball mill, sand mill, colloid mill, air classification mill, emulsification dispersion, non-intrusive homogeneous dispersion The working principle of the non-intrusive homogeneous dispersion is as follows: under the combined action of the rotation and revolution, the material forms a vortex flow and is fully stirred; with the vacuum system, the bubbles extruded by the operation are completely removed from the material. Extraction is performed to complete the homogenization of the material, and those skilled in the art can select an appropriate nano-dispersion technology according to the actual situation. After being treated by nano-dispersion technology and fully filtered, a homogeneous and stable infrared absorber dispersion can be formed.
  • Step 220 preparing a homogeneous mixed solution including a matrix material, an infrared absorber dispersion, and an initiator;
  • the mass ratio of the infrared absorber dispersion liquid is ⁇ 5%
  • the mass ratio of the matrix material is ⁇ 90%
  • the mass ratio of the initiator is ⁇ 0.5%
  • the initiator includes one of BPO, AIBN, ABVN or several.
  • the initiator is dissolved in the matrix material (precursor mixture containing polymethyl methacrylate), and then the infrared absorber dispersion is added to form a homogeneous system in two steps.
  • the specific process of each step can be realized by the non-intrusive homogeneous dispersion in the nano-dispersion technology, and the revolution and rotation rates can be reasonably set and cooperated under negative pressure conditions, and the negative pressure conditions can form a bubble-free homogeneous system. Since the precursor mixture containing polymethyl methacrylate has a natural moderate viscosity, it is beneficial to the stable and homogeneous distribution of the infrared absorber, and the problem of sedimentation of the infrared absorber will not occur.
  • the initiator is first dissolved in the polymethyl methacrylate solution, which can ensure the full utilization of the initiator and avoid the formation of unstable aggregates with the infrared absorber dispersion.
  • Step 230 solidify the homogeneous mixed liquid, polymerize the matrix material to form a matrix, and the infrared absorber is distributed in the matrix through the free radical copolymerization reaction of the dispersant located in the outer layer and the matrix material and/or the generation of intermolecular force;
  • Step 240 obtaining transparent heat-insulating plexiglass.
  • the mold required for the curing of the transparent heat-insulating plexiglass is not particularly limited.
  • a dispersing agent 13 is distributed on the outer layer of the infrared absorbing agent 12 , and the infrared absorbing agent 12 can undergo free radical copolymerization with methyl methacrylate monomer through the characteristic molecular structure and function of the dispersing agent 13 to polymerize in the polymer Within the methyl methacrylate chain 16, or with the polymethyl methacrylate chain 16, intermolecular force occurs, so as to form an infrared absorber/plexiglass interface at the molecular scale through covalent bonding or intermolecular force. Tight junction below 15.
  • the infrared absorber 12 since the infrared absorber 12 is stably dispersed and suspended in the dispersion liquid, the infrared absorber 12 can be uniformly or relatively uniformly distributed between the polymethyl methacrylate substrates, thereby endowing the formed plexiglass with uniform transparency under visible light. Uniform blocking function under sexual and infrared light.
  • the present application simultaneously solves the problem of the dispersion difficulty and interfacial instability of the infrared absorber in the intrinsic oily plexiglass matrix, and can endow the plexiglass with a total solar energy blocking rate ⁇ 50% on the basis of satisfying the visible light transmittance ⁇ 70%.
  • the synergy of transparency and thermal insulation under sunlight enables the application of plexiglass as the main transparent material to expand into novel fields such as building thermal insulation, near-infrared stealth, plant cultivation, etc. A reliable solution and inspiration for ideas.
  • the preparation of infrared absorber dispersion includes the following steps:
  • A The step of forming a suitable proportion of premixed liquid among infrared absorbing agent, dispersing agent and organic solvent;
  • the infrared absorber is CsxWO 3 /30% by mass
  • the dispersant is polyester-modified polydimethylsiloxane containing hydroxyl functional groups /2% by mass
  • the organic solvent is n-butyl acetate /% by mass than 68%.
  • Step A is mainly to form a premix by simple mixing.
  • it can be a low-speed stirring with a rotation speed of ⁇ 500 rpm and a duration of 1-5 min, so that the infrared absorber can form a suspension with preliminary wetting of the interface in an organic solvent with the aid of a dispersant.
  • step B to prevent the formation of a local adhesion area in step B, and to avoid the problem of low concentration of dispersion or heterogeneous phase.
  • low-speed agitation with a rotation speed of 300 rpm and a duration of 1-5 min was used to form the premix.
  • a homogeneous and stable infrared absorbing agent dispersion liquid is formed through sufficient filtration through the planetary ball milling dispersion technology.
  • the tank is made of nylon / volume 250 mL
  • the grinding ball is made of zirconia, and the three-stage ball distribution method is adopted.
  • the mass ratio is 20% for large balls, 50% for medium balls, and 30% for small balls.
  • the mass ratio of grinding balls to the above premix is 0.5-2.0.
  • the rotation rate is set Set 200-600 rpm, the grinding time is 30-180 min.
  • filter 2-3 times through a 250-600 mesh nylon filter screen to finally form an infrared absorbing agent dispersion for use in the next step.
  • the moderate conversion rate can be specifically 10-30%, and this process selects 10%.
  • the suitable ratio represents the mass ratio, specifically, the dispersion liquid ⁇ 5%, the polymethyl methacrylate solution ⁇ 90%, and the supplementary initiator ⁇ 0.5%
  • the supplementary initiator includes BPO, AIBN, One or more of ABVN, this process selects dispersion liquid 0.5%, polymethyl methacrylate solution 99.3%, supplementary initiator ABVN 0.2%.
  • the curing step is followed by a water bath 45-85°C/1-5 h and air bath 100-130°C/1-5 h composition.
  • a water bath of 45-75 °C/5 h and an air bath of 100-130 °C/2 h are selected.
  • the mass ratio of the infrared absorber dispersion liquid is 1.0%, the polymethyl methacrylate solution 98.8%, and the supplementary initiator ABVN. 0.2%.
  • the difference is only in that in the process of manufacturing transparent heat-insulating plexiglass, the mass proportion of the infrared absorber dispersion liquid is 2.0%, the polymethyl methacrylate solution 97.8%, and the supplementary initiator ABVN. 0.2%.
  • Control group It is consistent with the existing manufacturing technology of ordinary plexiglass, and the specific process is not repeated.
  • the sample size is 60 mm ⁇ 30 mm ⁇ 4 mm;
  • Process 1-3 The sample size is 60 mm ⁇ 30 mm ⁇ 4 mm.
  • Solar radiation energy consists of approximately 7% ultraviolet energy, 43% infrared energy, and 50% visible light energy.
  • the total solar blocking rate is the ratio of the blocked solar energy (mainly visible light, infrared rays and ultraviolet rays) to the total solar energy irradiated on the surface of the object.
  • infrared blocking rate, visible light blocking rate, and ultraviolet blocking rate it is not Repeat. Based on this, we estimate the total solar blocking rate, that is, the total solar blocking rate ⁇ infrared blocking rate ⁇ 43% + visible light blocking rate ⁇ 50% + ultraviolet blocking rate ⁇ 7%.
  • Process 1 we take Process 1 as an example, and carry out the integral operation with the wavelength range as the independent variable interval for the UV-Vis spectral curves of Process 1 and the control group (respectively represented by f(x), g(x) as the curve function), and set the The result is divided by the integration result in the same wavelength range of the baseline (the curve function of the baseline is 100%), which is used to estimate the segmental blocking rate and the total solar blocking rate of process 1 (the result is rounded up). See Table 1.
  • the total solar blocking rate of the samples of Process 1 is estimated.
  • the present application also provides a transparent heat-insulating organic glass, which is prepared by using the above-mentioned manufacturing method of the transparent heat-insulating organic glass.
  • the invention provides an infrared absorbing agent dispersion suitable for manufacturing transparent and heat-insulating organic glass, a transparent and heat-insulating organic glass, and a method for manufacturing the transparent and heat-insulating organic glass.
  • the homogeneous dispersion in the acrylic glass is firmly combined with the interface, which endows the organic glass with the functional properties of high-efficiency infrared light blocking on the basis of high visible light transmittance.
  • the invention utilizes nano-dispersion technology to prepare oil-soluble dispersion liquid of infrared absorbing agent suitable for plexiglass system;
  • the problem of heterogeneous dispersion and interfacial instability in the intrinsic oily matrix gives plexiglass a solar energy barrier rate of ⁇ 50% on the basis of a visible light transmittance of ⁇ 70%, realizing the synergy of transparency and heat insulation under sunlight.
  • the solar heat blocking plexiglass provided by the present invention can be widely used in various lighting needs, such as: hotels, villas, railway stations, parking sheds, parks, overpasses, airports, shopping malls, hospitals and other fields .
  • the original inorganic glass it has better experience or more choices in terms of heat insulation, light transmission, light weight, sound insulation, construction speed, color selection, and appearance design.
  • the infrared absorber dispersion liquid of the present application the outer layer of the infrared absorber distributes the dispersant, and forms an independent unit dispersed in the organic solvent, and the molecular structure of the dispersant can carry out a free radical copolymerization reaction with methyl methacrylate monomer. active units and/or groups that generate intermolecular forces with polymethyl methacrylate.
  • the infrared absorbing agent is distributed in the matrix through the free radical copolymerization reaction and/or the generation of intermolecular force between the dispersant in the outer layer and the matrix material.
  • the dispersion uniformity of the infrared absorber in the organic glass is improved.
  • the infrared absorber is distributed in the matrix through the free radical copolymerization reaction of the dispersant in the outer layer and the matrix material and/or the occurrence of intermolecular forces, and the combination is tight, effectively giving the plexiglass uniform transparency under visible light and uniformity under infrared light. blocking function.
  • the plexiglass can be prepared by the traditional casting and curing process, and the cost is low.
  • the infrared absorber dispersion liquid of the present application the outer layer of the infrared absorber distributes the dispersant, and forms an independent unit dispersed in the organic solvent, and the molecular structure of the dispersant can carry out a free radical copolymerization reaction with methyl methacrylate monomer. active units and/or groups that generate intermolecular forces with polymethyl methacrylate.
  • the infrared absorbing agent is distributed in the matrix through the free-radical copolymerization reaction and/or the generation of intermolecular force between the dispersant in the outer layer and the matrix material.
  • the dispersion uniformity of the infrared absorber in the organic glass is improved.
  • the infrared absorber is distributed in the matrix through the free radical copolymerization reaction of the dispersant located in the outer layer and the matrix material and/or the occurrence of intermolecular forces, and the combination is tight, effectively giving the plexiglass uniform transparency and infrared light under visible light. under the uniform barrier function.
  • the plexiglass can be prepared by the traditional casting and curing process, and the cost is low.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Optical Filters (AREA)

Abstract

本申请涉及红外线吸收剂分散液,红外线吸收剂的外层分布分散剂,形成分散于有机溶剂中的独立单元,分散剂的分子结构中存在可与甲基丙烯酸甲酯单体进行自由基共聚反应的活性单元和/或与聚甲基丙烯酸甲酯发生分子间作用力的基团,有机溶剂可与甲基丙烯酸甲酯单体、聚甲基丙烯酸甲酯相互溶解。还涉及有机玻璃及制造方法,红外线吸收剂通过位于外层的分散剂与基体材料进行自由基共聚反应和/或发生分子间作用力而分布在基体中。由于红外线吸收剂在分散液中稳定分散悬浮以及分散液与基体材料的高度相溶适配性,红外线吸收剂在有机玻璃中分散均匀。红外线吸收剂通过位于外层的分散剂与基体紧密结合,使有机玻璃可见光下均匀透明并可对红外光均匀阻隔。

Description

红外线吸收剂分散液、透明隔热有机玻璃及其制造方法
本专利申请要求 2021年03月30日提交的中国专利申请号为202110338268.6,申请人为浙江华帅特新材料科技有限公司,发明名称为“红外线吸收剂分散液、透明隔热有机玻璃及其制造方法”的申请的优先权,该申请的全文以引用的方式并入本申请中。
技术领域
本申请涉及透明隔热材料技术领域,具体涉及一种红外线吸收剂分散液、透明隔热有机玻璃及其制造方法。
背景技术
太阳光的辐射能大量分布在可见光和红外光,剩余的少部分为紫外光,其中红外光是热效应的主要来源。作为聚合物添加剂的红外线吸收剂,因其可满足在适度透光率基础上热量阻隔的独特功能,在光学材料、激光防护、建筑隔热、近红外隐身等领域具有重要的应用价值,是近年来兴起的一种前沿功能助剂。有机玻璃作为透明材料中的关键成员,若赋予红外线吸收功能,有望在透明隔热领域,获得在充分满足透明度基础上抑制温度上升的特异性应用,以植物栽培为例,研究人员就希望实现有效热量遮蔽而不影响植物生长所需的可见光透过。然而,现有红外吸收剂主要以无机粉体为主,难以在有机玻璃的本征油性体系中进行均相分散以及界面稳固结合,影响热量阻隔的总效率、透光均匀性,以及产品表观,用于浇注工艺制备的有机玻璃时,此种干扰表现的则更为明显。
前面的叙述在于提供一般的背景信息,并不一定构成现有技术。
技术问题
现有红外吸收剂主要以无机粉体为主,难以在有机玻璃的本征油性体系中进行均相分散以及界面稳固结合,影响热量阻隔的总效率、透光均匀性,以及产品表观,用于浇注工艺制备的有机玻璃时,此种干扰表现的则更为明显。
技术解决方案
针对上述技术问题,本申请提供一种红外线吸收剂分散液、透明隔热有机玻璃及其制造方法,可以有效赋予有机玻璃可见光下的均匀透明性和红外光下的均匀阻隔功能。
为解决上述技术问题,本申请提供一种红外线吸收剂分散液,包括红外线吸收剂、分散剂以及有机溶剂,所述红外线吸收剂的外层分布所述分散剂,形成分散于所述有机溶剂中的独立单元,所述分散剂的分子结构中存在可与甲基丙烯酸甲酯单体进行自由基共聚反应的活性单元和/或与聚甲基丙烯酸甲酯发生分子间作用力的基团,所述有机溶剂为可与所述甲基丙烯酸甲酯单体、所述聚甲基丙烯酸甲酯相互溶解的有机溶剂。
可选地,所述红外线吸收剂的质量占比为10%-60%、所述分散剂的质量占比≤5%、所述有机溶剂的质量占比≥30%。
可选地,所述红外线吸收剂为无机粉状颗粒,所述无机粉状颗粒包括WO 3、MoO 3、ATO、ITO、BTO、GTO、CsxWO 3中的一种或几种,粒径范围5-100 nm。
可选地,所述分散剂为有机硅改性丙烯酸酯、聚酯改性含羟基官能团的聚二甲基硅氧烷、聚醚改性聚二甲基硅氧烷、含有聚硅氧烷共聚物的低分子量不饱和酸性多元羧酸聚酯、有机盐类、酯类、酰胺类、聚氧乙烯类、烷基和/或磺基甜菜碱、烷基和/或羟基氧化胺中的一种或几种;和/或,所述有机溶剂为烃类溶剂、酯类溶剂、酮类溶剂、醇类溶剂、醚类溶剂、醇醚类溶剂、氯仿、四氢呋喃、二氯甲烷、三氯甲烷、二氯乙烷、二氧六环中的至少一种。
本申请还提供一种透明隔热有机玻璃的制造方法,包括:
a. 提供基体材料以及如上所述的红外线吸收剂分散液;
b. 制备包括所述基体材料、所述红外线吸收剂分散液、引发剂的均相混合液;
c. 对所述均相混合液进行固化,使所述基体材料聚合形成基体,红外线吸收剂通过位于外层的分散剂与所述基体材料进行自由基共聚反应和/或发生分子间作用力而分布在所述基体中;
d. 得到透明隔热有机玻璃。
可选地,步骤a,包括:
将甲基丙烯酸甲酯进行聚合,形成包含部分聚合前体的前体混合物以得到所述基体材料;或,
将聚甲基丙烯酸甲酯树脂颗粒配制成以甲基丙烯酸甲酯为溶剂的前体混合物以得到所述基体材料。
可选地,所述包含部分聚合前体的前体混合物中,甲基丙烯酸甲酯的转化率为10%-50%;或,配制所述以甲基丙烯酸甲酯为溶剂的前体混合物中,聚甲基丙烯酸甲酯树脂颗粒的质量占比为5%-50%。
可选地,步骤a,包括:
提供红外线吸收剂、分散剂、有机溶剂;
采用转速≤500 rpm,时长1-5 min的低速搅拌,将所述红外线吸收剂、所述分散剂、所述有机溶剂混合,得到预混液;
采用纳米分散技术对所述预混液进行处理后过滤,得到所述红外线吸收剂分散液。
可选地,步骤b中,所述红外线吸收剂分散液的质量占比≤5%、所述基体材料的质量占比≥90%、所述引发剂的质量占比≤0.5%,所述引发剂包括BPO、AIBN、ABVN中的一种或几种。
本申请还提供一种透明隔热有机玻璃,采用如上所述的透明隔热有机玻璃的制造方法制造得到。
本申请的红外线吸收剂分散液,红外线吸收剂的外层分布分散剂,形成分散于有机溶剂中的独立单元,分散剂的分子结构中存在可与甲基丙烯酸甲酯单体进行自由基共聚反应的活性单元和/或与聚甲基丙烯酸甲酯发生分子间作用力的基团。本申请的透明隔热有机玻璃及制造方法,红外线吸收剂通过位于外层的分散剂与基体材料进行自由基共聚反应和/或发生分子间作用力而分布在基体中。由于红外线吸收剂在分散液中稳定分散悬浮以及分散液与基体材料的高度相溶适配性,提高了红外线吸收剂在有机玻璃中的分散均匀性。同时,红外线吸收剂通过位于外层的分散剂与基体材料进行自由基共聚反应和/或发生分子间作用力而分布在基体中,结合紧密,有效赋予有机玻璃可见光下的均匀透明性和红外光下的均匀阻隔功能。并且,可以采用传统的浇注、固化工艺制备有机玻璃,成本低。
有益效果
本申请的红外线吸收剂分散液,红外线吸收剂的外层分布分散剂,形成分散于有机溶剂中的独立单元,分散剂的分子结构中存在可与甲基丙烯酸甲酯单体进行自由基共聚反应的活性单元和/或与聚甲基丙烯酸甲酯发生分子间作用力的基团。本申请的透明隔热有机玻璃及制造方法,红外线吸收剂通过位于外层的分散剂与基体材料进行自由基共聚反应和/或发生分子间作用力而分布在基体中。由于红外线吸收剂在分散液中稳定分散悬浮以及分散液与基体材料的高度相溶适配性,提高了红外线吸收剂在有机玻璃中的分散均匀性。同时,红外线吸收剂通过位于外层的分散剂与基体材料进行自由基共聚反应和/或发生分子间作用力而分布在基体中,结合紧密,有效赋予有机玻璃可见光下的均匀透明性和红外光下的均匀阻隔功能。并且,可以采用传统的浇注、固化工艺制备有机玻璃,成本低。
附图说明
图1是根据第一实施例示出的红外线吸收剂分散液的组成示意图。
图2是根据第二实施例示出的透明隔热有机玻璃的制造方法的流程示意图。
图3是根据第二实施例示出的透明隔热有机玻璃的组成示意图。
图4是根据第二实施例示出的工艺1-3与对照组的性能对比数据。
本申请的实施方式
以下由特定的具体实施例说明本申请的实施方式,熟悉此技术的人士可由本说明书所揭露的内容轻易地了解本申请的其他优点及功效。
在下述描述中,参考附图,附图描述了本申请的若干实施例。应当理解,还可使用其他实施例,并且可以在不背离本申请的精神和范围的情况下进行机械组成、结构、电气以及操作上的改变。下面的详细描述不应该被认为是限制性的,这里使用的术语仅是为了描述特定实施例,而并非旨在限制本申请。
虽然在一些实例中术语第一、第二等在本文中用来描述各种元件,但是这些元件不应当被这些术语限制。这些术语仅用来将一个元件与另一个元件进行区分。
再者,如同在本文中所使用的,单数形式“一”、“一个”和“该”旨在也包括复数形式,除非上下文中有相反的指示。应当进一步理解,术语“包含”、“包括”表明存在所述的特征、步骤、操作、元件、组件、项目、种类、和/或组,但不排除一个或多个其他特征、步骤、操作、元件、组件、项目、种类、和/或组的存在、出现或添加。此处使用的术语“或”和“和/或”被解释为包括性的,或意味着任一个或任何组合。因此,“A、B或C”或者“A、B和/或C”意味着“以下任一个:A;B;C;A和B;A和C;B和C;A、B和C”。仅当元件、功能、步骤或操作的组合在某些方式下内在地互相排斥时,才会出现该定义的例外。
第一实施例
图1是根据第一实施例示出的红外线吸收剂分散液的组成示意图。如图1所示,本实施例的红外线吸收剂分散液,包括红外线吸收剂12、分散剂13以及有机溶剂11,红外线吸收剂12的外层分布分散剂13,形成分散于有机溶剂11中的独立单元14。
红外线吸收剂12为无机粉状颗粒,无机粉状颗粒包括WO 3、MoO 3、ATO、ITO、BTO、GTO、CsxWO 3中的一种或几种,粒径范围5-100 nm。其中,ATO为氧化锡锑、ITO为氧化铟锡、BTO为氧化铋锡、GTO为钨钒锡锑氧化物、CsxWO 3为铯钨青铜。
分散剂13为油溶性界面活性剂,分散剂13的分子结构中存在可与甲基丙烯酸甲酯单体进行自由基共聚反应的活性单元和/或与聚甲基丙烯酸甲酯发生分子间作用力的基团,其中活性单元为烯键、硅氢键中的一种,基团为聚丙烯酸丁酯链段、聚甲基丙烯酸乙酯链段、聚甲基苯基硅氧烷链段、聚丙烯酸乙酯链段、聚丙烯酸丙酯链段、聚苯乙烯链段、聚氯乙烯链段、双酚A聚碳酸酯链段、聚甲基丙烯酸甲酯链段、聚丙烯酸甲酯链段、聚甲基丙烯酸丁酯链段、聚甲基丙烯酸丙酯链段、聚乙酸乙烯酯链段、环氧树脂链段、聚硫橡胶链段、聚丁二烯链段、聚氯丁二烯链段、硝酸纤维素链段、聚丁二烯-丙烯腈链段、聚丁二烯-苯乙烯链段中的一种。分散剂13分布在红外线吸收剂12的外层,基于双电层理论和空间位阻效应,可以防止红外线吸收剂12的沉降和凝集,形成稳定悬浮液。
可选地,分散剂13为有机硅改性丙烯酸酯、聚酯改性含羟基官能团的聚二甲基硅氧烷、聚醚改性聚二甲基硅氧烷、含有聚硅氧烷共聚物的低分子量不饱和酸性多元羧酸聚酯、有机盐类、酯类、酰胺类、聚氧乙烯类、烷基和/或磺基甜菜碱、烷基和/或羟基氧化胺中的一种或几种,其中有机盐类包括烷基磷酸单/双酯盐、脂肪醇聚氧乙烯醚及其磷酸单/双酯盐、烷基酚聚氧乙烯醚及其磷酸单/双酯盐、伯烷基硫酸酯盐、仲烷基硫酸酯盐、烷基苯磺酸盐、α-烯烃磺酸盐、烷基磺酸盐、琥珀酸酯磺酸盐、烷基萘磺酸盐、石油磺酸盐、木质素磺酸盐、烷基甘油醚磺酸盐、高级脂肪酸的钾/钠/铵盐、胺盐、季铵盐;酯类包括α-磺基单羧酸酯、脂肪酸磺烷基酯、脂肪酸聚氧乙烯酯;酰胺类包括聚氧乙烯烷基酰胺、两性离子聚丙烯酰胺;聚氧乙烯类包括聚氧乙烯烷基胺;烷基和/或磺基甜菜碱包括十二烷基乙氧基磺基甜菜碱、十二烷基二甲基羟丙基磺基甜菜碱、十二烷基二甲基磺丙基甜菜碱、十四烷酰胺丙基羟丙基磺基甜菜碱、癸烷基二甲基羟丙基磺基甜菜碱、烷基二甲基羟丙基磷酸脂甜菜碱;烷基和/或羟基氧化胺包括十八烷基二羟乙基氧化胺、十四烷基二羟乙基氧化胺、十八酰胺丙基氧化胺、椰油酰胺丙基氧化胺、月桂酰胺丙基氧化胺。
有机溶剂11为可与聚甲基丙烯酸甲酯、甲基丙烯酸甲酯单体以及有机引发剂(包括BPO、AIBN、ABVN中的一种或几种)相互溶解的有机溶剂,具体为烃类溶剂、酯类溶剂、酮类溶剂、醇类溶剂、醚类溶剂、醇醚类溶剂中的一种,如乙酸正丁酯、甲基异丙基甲酮、二甲苯、二甲醚、甲苯、乙二醇单丁醚、乙酸乙酯、甲乙酮、丁酮、甲基异丁酮、乙酸甲酯、甲酸乙酯、苯甲酸乙酯、丙酮、环己酮、乙二醇单乙醚、乙酸戊酯、异丁醇。实际实现时,有机溶剂11还可以为氯仿、四氢呋喃、二氯甲烷、三氯甲烷、二氯乙烷、二氧六环中的一种。
可选地,红外线吸收剂12的质量占比为10%-60%、分散剂13的质量占比≤5%、有机溶剂11的质量占比≥30%。
制备所述红外线吸收剂分散液时,先采用转速≤500 rpm,时长1-5 min的低速搅拌,将红外线吸收剂12、分散剂13、有机溶剂11混合,得到预混液;再采用纳米分散技术,如行星球磨仪,对预混液进行研磨分散后过滤,得到红外线吸收剂分散液。行星球磨分散技术的具体工艺为:罐体为尼龙材质/容积250 mL,研磨球材质选用氧化锆,采用三级配球方式,在直径1-30 mm之间依次划分大、中、小三个直径等级,质量占比为大球20%、中球50%、小球30%,研磨球与上述预混液的质量比为0.5-2,转速率设定200-800 rpm,研磨时间为30-180 min。然后,经过250-600目尼龙滤网过滤2-3次,最终形成红外线吸收剂分散液。
首先通过简易混合方式形成预混液,如可采用转速≤500 rpm,时长1-5 min的低速搅拌,使红外线吸收剂12在分散剂13辅助下,于有机溶剂11中形成界面初步润湿的悬浮体,防止在后续的研磨搅拌中形成局部粘连区域,避免出现分散液浓度偏低或非均相问题。形成预混液后,采用纳米分散技术进一步对红外线吸收剂12进行分散,纳米分散技术可以是机械分散、超声波分散中的一种,除了行星球磨分散技术之外,也可以采用其他机械分散包括辊式研磨、振动球磨、砂磨、胶体磨、空气分级磨、乳化分散、非介入式均质分散中的一种。所述非介入式均质分散的工作原理为:通过自转与公转相适配速率的共同作用下,材料形成漩涡式流动而充分搅拌;伴随真空系统,将运行所挤出的气泡从材料中彻底抽离,从而完成材料的均质化,本领域技术人员可根据实际情况,相应选择合适的纳米分散技术。通过纳米分散技术处理并经充分过滤后,可以形成均相、稳定的红外线吸收剂分散液。
如上所述的红外线吸收剂分散液,适宜在采用浇注工艺制备有机玻璃时使用,红外线吸收剂通过分散剂的特征分子结构与作用,可以和有机玻璃的甲基丙烯酸甲酯单体进行自由基共聚反应或与聚甲基丙烯酸甲酯发生分子间作用力,从而通过共价键结合或分子间作用力结合,实现红外线吸收剂/有机玻璃界面在分子尺度下的紧密结合。同时,由于红外线吸收剂在分散液中稳定分散悬浮以及分散液与基体材料的高度相溶适配性,红外线吸收剂可以均匀或相对均匀的分布于聚甲基丙烯酸甲酯之间,赋予所形成的有机玻璃以可见光下的均匀透明性和红外光下的均匀阻隔功能。
第二实施例
图2是根据第二实施例示出的透明隔热有机玻璃的制造方法的流程示意图。如图2所示,本实施例的透明隔热有机玻璃的制造方法,包括如下步骤:
步骤210,提供基体材料以及红外线吸收剂分散液。
可选地,步骤210,包括:
将甲基丙烯酸甲酯进行聚合,形成包含部分聚合前体的前体混合物以得到基体材料;或,
将聚甲基丙烯酸甲酯树脂颗粒配制成以甲基丙烯酸甲酯为溶剂的前体混合物以得到基体材料。
其中,在包含部分聚合前体的前体混合物中,甲基丙烯酸甲酯的转化率为10%-50%,主要由甲基丙烯酸甲酯单体和引发剂(包括BPO、AIBN、ABVN中的一种或几种),在适宜温度条件下发生自由基本体聚合反应,形成适度转化率的以甲基丙烯酸甲酯为溶剂的聚甲基丙烯酸甲酯溶液。以甲基丙烯酸甲酯为溶剂的前体混合物中,添加聚甲基丙烯酸甲酯树脂颗粒的质量占比为5%-50%。前体混合物中,聚甲基丙烯酸甲酯的含量与黏度呈正相关,聚甲基丙烯酸甲酯的含量越低,黏度越低,通过获得不同黏度的前体混合物,便于有机玻璃的厚度调控,黏度越低,适宜制备的厚度尺寸越小;反之,则适宜制备的厚度尺寸越大。
红外线吸收剂分散液的组分详见第一实施例的描述,可选地,步骤210,还包括:
提供红外线吸收剂、分散剂、有机溶剂;
采用转速≤500 rpm,时长1-5 min的低速搅拌,将红外线吸收剂、分散剂、有机溶剂混合,得到预混液;
采用纳米分散技术对预混液进行研磨处理后过滤,得到红外线吸收剂分散液。
其中,制备所述红外线吸收剂分散液时,先采用转速≤500 rpm,时长1-5 min的低速搅拌,将红外线吸收剂、分散剂、有机溶剂混合,得到预混液;再采用纳米分散技术,如行星球磨仪,对预混液进行研磨分散后过滤,得到红外线吸收剂分散液。行星球磨分散技术的具体工艺为:罐体为尼龙材质/容积250 mL,研磨球材质选用氧化锆,采用三级配球方式,在直径1-30 mm之间依次划分大、中、小三个直径等级,质量占比为大球20%、中球50%、小球30%,研磨球与上述预混液的质量比为0.5-2.0,转速率设定200-600 rpm,研磨时间为30-180 min。然后,经过250-600目尼龙滤网过滤2-3次,最终形成红外线吸收剂分散液。
首先通过简易混合方式形成预混液,如可采用转速≤500 rpm,时长1-5 min的低速搅拌,使红外线吸收剂在分散剂辅助下,于有机溶剂中形成界面初步润湿的悬浮体,防止在后续的研磨搅拌中形成局部粘连区域,避免出现分散液浓度偏低或非均相问题。形成预混液后,采用纳米分散技术进一步对红外线吸收剂进行分散,纳米分散技术可以是机械分散、超声波分散中的一种,除了行星球磨分散技术之外,也可以采用其他机械分散包括辊式研磨、振动球磨、砂磨、胶体磨、空气分级磨、乳化分散、非介入式均质分散中的一种。所述非介入式均质分散的工作原理为:通过自转与公转相适配速率的共同作用下,材料形成漩涡式流动而充分搅拌;伴随真空系统,将运行所挤出的气泡从材料中彻底抽离,从而完成材料的均质化,本领域技术人员可根据实际情况,相应选择合适的纳米分散技术。通过纳米分散技术处理并经充分过滤后,可以形成均相、稳定的红外线吸收剂分散液。
步骤220,制备包括基体材料、红外线吸收剂分散液、引发剂的均相混合液;
可选地,红外线吸收剂分散液的质量占比≤5%、基体材料的质量占比≥90%、引发剂的质量占比≤0.5%,引发剂包括BPO、AIBN、ABVN中的一种或几种。
首先,将引发剂溶解于基体材料(含聚甲基丙烯酸甲酯的前体混合物)中,然后,再加入红外线吸收剂分散液,两步法形成均相体系。具体的每步过程均可通过所述纳米分散技术中的非介入式均质分散,在负压条件下公转与自转速率合理设定与相互配合实现,负压条件可形成无气泡均相体系。由于含聚甲基丙烯酸甲酯的前体混合物具有天然的适度黏度,有利于红外线吸收剂分布稳定、均相,而不至发生红外线吸收剂的沉降问题。引发剂首先溶解于聚甲基丙烯酸甲酯溶液中,可保证引发剂的充分利用,避免与红外线吸收剂分散液间形成不稳定凝集体。
步骤230,对均相混合液进行固化,使基体材料聚合形成基体,红外线吸收剂通过位于外层的分散剂与基体材料进行自由基共聚反应和/或发生分子间作用力而分布在基体中;
步骤240,得到透明隔热有机玻璃。
可选地,透明隔热有机玻璃的固化所需的模具不做特别限定,对均相混合液进行固化时,先进行水浴,温度45-85℃,时长1-5 h,接着进行空气浴,温度100-130℃,时长1-5 h。
请参考图3,红外线吸收剂12的外层分布分散剂13,红外线吸收剂12通过分散剂13的特征分子结构与作用,可以和甲基丙烯酸甲酯单体进行自由基共聚反应而聚合于聚甲基丙烯酸甲酯链16之内,或与聚甲基丙烯酸甲酯链16发生分子间作用力,从而通过共价键结合或分子间作用力结合,形成红外线吸收剂/有机玻璃界面在分子尺度下的紧密结合点15。同时,由于红外线吸收剂12在分散液中稳定分散悬浮,红外线吸收剂12可以均匀或相对均匀的分布于聚甲基丙烯酸甲酯基体之间,从而赋予所形成的有机玻璃以可见光下的均匀透明性和红外光下的均匀阻隔功能。本申请同步解决了红外线吸收剂在本征油性有机玻璃基体中的分散困难与界面失稳问题,可赋予有机玻璃在满足可见光透过率≥70%的基础上太阳能总阻隔率≥50%,实现在太阳光照射下透明与隔热功能协同,使有机玻璃作为主要透明材料的应用拓展至建筑隔热、近红外隐身、植物栽培等新颖领域,为科研与生产活动中的透明隔热需求提供了一种可靠的解决方案与思路启示。
以下列举基于本实施例的制造方法实现的不同工艺:
工艺1:
制备红外线吸收剂分散液,包括如下步骤:
A.     形成红外线吸收剂、分散剂、有机溶剂间适宜比例预混液的步骤;
B.     形成均相、稳定的红外线吸收剂分散液的步骤;
其中,红外线吸收剂为CsxWO 3/质量占比30%、分散剂为聚酯改性含羟基官能团的聚二甲基硅氧烷/质量占比2%、有机溶剂为乙酸正丁酯/质量占比68%。步骤A主要通过简易混合方式形成预混液,如可为转速≤500 rpm,时长1-5 min的低速搅拌,使红外线吸收剂在分散剂辅助下,于有机溶剂中形成界面初步润湿的悬浮液,防止在步骤B中形成局部粘连区,避免出现分散液浓度偏低或非均相问题。本实施选用转速300 rpm,时长为1-5 min的低速搅拌以形成预混液。
所述步骤B中,通过行星球磨分散技术,经充分过滤,形成均相、稳定的红外线吸收剂分散液。具体为:罐体为尼龙材质/容积250 mL,研磨球材质选用氧化锆,采用三级配球方式,在直径1-30 mm之间依次划分大、中、小三个直径等级,质量占比为大球20%、中球50%、小球30%,研磨球与上述预混液的质量比为0.5-2.0,转速率设定200-600 rpm,研磨时间为30-180 min。然后,经过250-600目尼龙滤网过滤2-3次,最终形成红外线吸收剂分散液,以待下一步使用。
接着,进行如下步骤:
C.     形成甲基丙烯酸甲酯本体聚合时适度转化率的聚甲基丙烯酸甲酯溶液的步骤;
D.     形成所述分散液、聚甲基丙烯酸甲酯溶液以及补充引发剂间适宜比例复配体的步骤;
E.      形成太阳光热量阻隔有机玻璃的固化步骤;
其中,步骤C中,所述适度转化率,具体可为10-30%,本工艺选用10%。
步骤D中,所述适宜比例表示质量占比,具体可为分散液≤5%、聚甲基丙烯酸甲酯溶液≥90%、补充引发剂≤0.5%,所述补充引发剂包括BPO、AIBN、ABVN中的一种或几种,本工艺选用分散液0.5%、聚甲基丙烯酸甲酯溶液99.3%、补充引发剂ABVN 0.2%。
所述固化步骤依次由水浴45-85℃/1-5 h和空气浴100-130℃/1-5 h组成。本工艺选用水浴45-75℃/5 h和空气浴100-130℃/2 h。
工艺2:
与工艺1相比,差异仅在于制造透明隔热有机玻璃的过程中,所述红外线吸收剂分散液的质量占比为1.0%、聚甲基丙烯酸甲酯溶液98.8%、补充引发剂ABVN 0.2%。
工艺3:
与工艺1相比,差异仅在于制造透明隔热有机玻璃的过程中,所述红外线吸收剂分散液的质量占比为2.0%、聚甲基丙烯酸甲酯溶液97.8%、补充引发剂ABVN 0.2%。
以下对工艺1-3制造得到的透明隔热有机玻璃进行性能分析。
制样准备:
对照组:与普通有机玻璃的现有制造技术保持一致,具体过程不再赘述,样品尺寸为60 mm×30 mm×4 mm;工艺1-3:样品尺寸为60 mm×30 mm×4 mm。
太阳辐射能量大约由7%的紫外线能量、43%的红外线能量以及50%的可见光能量所组成。太阳能总阻隔率为被阻隔的太阳能量(主要是可见光、红外线和紫外线)和照射在物体表面的总太阳能量之比,对于红外线阻隔率、可见光阻隔率、紫外线阻隔率的概念以此类推,不再赘述。据此,我们对太阳能总阻隔率进行估算,即太阳能总阻隔率≈红外线阻隔率×43%+可见光阻隔率×50%+紫外线阻隔率×7%。
对以上对照组、工艺1、工艺2、工艺3进行UV-Vis光谱表征,波长范围200-1100 nm,采样频率每秒1次,其中可见光区透过率测试依据《GB/T 7134-2008 浇铸型工业有机玻璃板材》,取用420 nm波长处的透光率数据,具体结果见图4所示,对照组的420 nm透光率为93.15%,但对红外线的阻隔率<8%;工艺1-3的可见光透过率依次降低而红外线阻隔率依次升高,这与红外线吸收剂的添加比例逐步增加的理论结果一致,三者的红外线阻隔率均>90%,其中工艺1的可见光透过率为71.03%,能较好满足实际应用场景的透明度要求,而工艺2仅为54.38%,略偏低。因此,我们以工艺1为例,对工艺1与对照组的UV-Vis光谱曲线(分别以f(x)、g(x)表示曲线函数)进行以波长范围为自变量区间的积分运算,将结果与基线相同波长范围内的积分结果(基线的曲线函数为100%)进行相除运算,以用于估算工艺1的分段阻隔率与太阳能总阻隔率(结果取整),比值运算结果详见表1。
表1. 比值运算结果
Figure 701290dest_path_image001
Figure dest_path_image003
 
基于工艺1样品的UV-Vis光谱图结果,估算工艺1样品的太阳能总阻隔率,工艺1样品的太阳能总阻隔率≈红外线阻隔率×43%+可见光阻隔率×50%+紫外线阻隔率×7%=92%×43% +39%×50%+90%×7%=39.56%+19.5%+6.3%=65.36%。由此可见,本申请制备得到的透明隔热有机玻璃具有较好的太阳能阻隔效果。
本申请还提供一种透明隔热有机玻璃,采用如上所述的透明隔热有机玻璃的制造方法制备得到。
本发明提供的适宜制造透明隔热有机玻璃的红外线吸收剂分散液、透明隔热有机玻璃、以及透明隔热有机玻璃的制造方法,提出一种可同步实现红外线吸收剂在有机玻璃本征油性基体中的均相分散与界面稳固结合,赋予有机玻璃在可见光高透过率基础上的高效红外光阻隔的功能特性。本发明利用纳米分散技术制备适配有机玻璃体系的红外线吸收剂油溶性分散液,通过与适宜转化率聚甲基丙烯酸甲酯溶液的复配体系调控与固化过程优化,解决红外吸收剂在有机玻璃本征油性基体中的非均相分散与界面失稳问题,赋予有机玻璃在可见光透过率≥70%的基础上太阳能阻隔率≥50%,实现在太阳光照射下透明与隔热功能协同,使有机玻璃作为主要透明材料的应用拓展至建筑隔热、近红外隐身、植物栽培等新颖领域,为科研与生产活动中的透明隔热需求提供了一种可靠的解决方案与思路启示。以建筑隔热为例,本发明提供的太阳光热量阻隔有机玻璃可以广泛运用于各类采光需求处,例如:酒店、别墅、火车站、停车棚、公园、天桥、机场、商场和医院等领域,相比原有的无机玻璃,在隔热、透光、轻质、隔音、施工速度、颜色选择、外观设计方面具有更好的体验或更多的选择。
本申请的红外线吸收剂分散液,红外线吸收剂的外层分布分散剂,形成分散于有机溶剂中的独立单元,分散剂的分子结构中存在可与甲基丙烯酸甲酯单体进行自由基共聚反应的活性单元和/或与聚甲基丙烯酸甲酯发生分子间作用力的基团。本申请的透明隔热有机玻璃及其制造方法,红外线吸收剂通过位于外层的分散剂与基体材料进行自由基共聚反应和/或发生分子间作用力而分布在基体中。由于红外线吸收剂在分散液中稳定分散悬浮以及分散液与基体材料的高度相溶适配性,提高了红外线吸收剂在有机玻璃中的分散均匀性。同时,红外线吸收剂通过位于外层的分散剂与基体材料进行自由基共聚反应和/或发生分子间作用力而分布在基体中,结合紧密,有效赋予有机玻璃可见光下均匀透明和红外光下均匀阻隔的功能。并且,可以采用传统的浇注、固化工艺制备有机玻璃,成本低。
上述实施例仅例示性说明本申请的原理及其功效,而非用于限制本申请。任何熟悉此技术的人士皆可在不违背本申请的精神及范畴下,对上述实施例进行修饰或改变。因此,举凡所属技术领域中具有通常知识者在未脱离本申请所揭示的精神与技术思想下所完成的一切等效修饰或改变,仍应由本申请的权利要求所涵盖。
工业实用性
本申请的红外线吸收剂分散液,红外线吸收剂的外层分布分散剂,形成分散于有机溶剂中的独立单元,分散剂的分子结构中存在可与甲基丙烯酸甲酯单体进行自由基共聚反应的活性单元和/或与聚甲基丙烯酸甲酯发生分子间作用力的基团。本申请的透明隔热有机玻璃及制造方法,红外线吸收剂通过位于外层的分散剂与基体材料进行自由基共聚反应和/或发生分子间作用力而分布在基体中。由于红外线吸收剂在分散液中稳定分散悬浮以及分散液与基体材料的高度相溶适配性,提高了红外线吸收剂在有机玻璃中的分散均匀性。同时,红外线吸收剂通过位于外层的分散剂与基体材料进行自由基共聚反应和/或发生分子间作用力而分布在基体中,结合紧密,有效赋予有机玻璃可见光下的均匀透明性和红外光下的均匀阻隔功能。并且,可以采用传统的浇注、固化工艺制备有机玻璃,成本低。

Claims (10)

  1. 一种红外线吸收剂分散液,其特征在于,包括红外线吸收剂、分散剂及有机溶剂,所述红外线吸收剂的外层分布所述分散剂,形成分散于所述有机溶剂中的独立单元,所述分散剂的分子结构中存在可与甲基丙烯酸甲酯单体进行自由基共聚反应的活性单元和/或与聚甲基丙烯酸甲酯发生分子间作用力的基团,所述有机溶剂为可与所述甲基丙烯酸甲酯单体、所述聚甲基丙烯酸甲酯相互溶解的有机溶剂。
  2. 根据权利要求1所述的红外线吸收剂分散液,其特征在于,所述红外线吸收剂的质量占比为10%-60%、所述分散剂的质量占比≤5%、所述有机溶剂的质量占比≥30%。
  3. 根据权利要求1所述的红外线吸收剂分散液,其特征在于,所述红外线吸收剂为无机粉状颗粒,所述无机粉状颗粒包括WO 3、MoO 3、ATO、ITO、BTO、GTO、CsxWO 3中的一种或几种,粒径范围5-100 nm。
  4. 根据权利要求1所述的红外线吸收剂分散液,其特征在于,所述分散剂为有机硅改性丙烯酸酯、聚酯改性含羟基官能团的聚二甲基硅氧烷、聚醚改性聚二甲基硅氧烷、含有聚硅氧烷共聚物的低分子量不饱和酸性多元羧酸聚酯、有机盐类、酯类、酰胺类、聚氧乙烯类、烷基和/或磺基甜菜碱、烷基和/或羟基氧化胺中的一种或几种。
  5. 一种透明隔热有机玻璃的制造方法,其特征在于,包括:
    a. 提供基体材料以及如权利要求1-4中任一项所述的红外线吸收剂分散液;
    b. 制备包括所述基体材料、所述红外线吸收剂分散液、引发剂的均相混合液;
    c. 对所述均相混合液进行固化,使所述基体材料聚合形成基体,红外线吸收剂通过位于外层的分散剂与所述基体材料进行自由基共聚反应和/或发生分子间作用力而分布在所述基体中;
    d. 得到透明隔热有机玻璃。
  6. 根据权利要求5所述的透明隔热有机玻璃的制造方法,其特征在于,步骤a,包括:
    将甲基丙烯酸甲酯进行聚合,形成包含部分聚合前体的前体混合物以得到所述基体材料;或,
    将聚甲基丙烯酸甲酯树脂颗粒配制成以甲基丙烯酸甲酯为溶剂的前体混合物以得到所述基体材料。
  7. 根据权利要求6所述的透明隔热有机玻璃的制造方法,其特征在于,所述包含部分聚合前体的前体混合物中,甲基丙烯酸甲酯的转化率为10%-50%;或,配制所述以甲基丙烯酸甲酯为溶剂的前体混合物中,聚甲基丙烯酸甲酯树脂颗粒的质量占比为5%-50%。
  8. 根据权利要求5所述的透明隔热有机玻璃的制造方法,其特征在于,步骤a,包括:提供红外线吸收剂、分散剂、有机溶剂;
    采用转速≤500 rpm,时长1-5 min的低速搅拌,将所述红外线吸收剂、所述分散剂、所述有机溶剂混合,得到预混液;
    采用纳米分散技术对所述预混液进行处理后过滤,得到所述红外线吸收剂分散液。
  9. 根据权利要求5所述的透明隔热有机玻璃的制造方法,其特征在于,步骤b中,所述红外线吸收剂分散液的质量占比≤5%、所述基体材料的质量占比≥90%、所述引发剂的质量占比≤0.5%,所述引发剂包括BPO、AIBN、ABVN中的一种或几种。
  10. 一种透明隔热有机玻璃,其特征在于,采用如权利要求5-9中任一项所述的透明隔热有机玻璃的制造方法制造得到。
PCT/CN2022/083519 2021-03-30 2022-03-28 红外线吸收剂分散液、透明隔热有机玻璃及其制造方法 WO2022206714A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/038,005 US20230416432A1 (en) 2021-03-30 2022-03-28 Infrared absorbent dispersion, transparent heat-insulating organic glass, and manufacturing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110338268.6A CN113087966B (zh) 2021-03-30 2021-03-30 红外线吸收剂分散液、透明隔热有机玻璃及其制造方法
CN202110338268.6 2021-03-30

Publications (1)

Publication Number Publication Date
WO2022206714A1 true WO2022206714A1 (zh) 2022-10-06

Family

ID=76671042

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/083519 WO2022206714A1 (zh) 2021-03-30 2022-03-28 红外线吸收剂分散液、透明隔热有机玻璃及其制造方法

Country Status (3)

Country Link
US (1) US20230416432A1 (zh)
CN (1) CN113087966B (zh)
WO (1) WO2022206714A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113087966B (zh) * 2021-03-30 2022-04-26 浙江华帅特新材料科技有限公司 红外线吸收剂分散液、透明隔热有机玻璃及其制造方法
CN117510958A (zh) * 2023-11-10 2024-02-06 浙江华帅特新材料科技有限公司 超疏水pmma材料的制造方法及超疏水pmma材料

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103003342A (zh) * 2010-05-10 2013-03-27 拜耳知识产权有限责任公司 具有吸热性质和改进的颜色性质的聚合物组合物
CN103003343A (zh) * 2010-05-10 2013-03-27 拜耳知识产权有限责任公司 具有吸热性质和高稳定性的聚合物组合物
WO2014119618A1 (ja) * 2013-01-31 2014-08-07 株式会社クレハ 近赤外線吸収剤の製造方法、近赤外線吸収剤およびその用途
CN104272146A (zh) * 2012-05-08 2015-01-07 富士胶片株式会社 近红外吸收液体组合物、使用其的近红外截止滤光片、其制造方法以及相机模块及其制造方法
US20160282531A1 (en) * 2014-01-31 2016-09-29 Fujifilm Corporation Red coloring composition for use in color filter, colored film, color filter, and solid-state imaging device
CN113087966A (zh) * 2021-03-30 2021-07-09 浙江华帅特新材料科技有限公司 红外线吸收剂分散液、透明隔热有机玻璃及其制造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101519561A (zh) * 2009-04-03 2009-09-02 西安华泰有色金属实业有限责任公司 一种屏蔽紫外线透明隔热涂料的制备方法
CN102746781B (zh) * 2012-07-16 2015-04-22 惠州市彩田化工实业有限公司 一种全屏蔽红外线和紫外线聚氨酯纳米透明隔热涂料
CN102732138B (zh) * 2012-07-16 2016-01-27 惠州市彩田化工实业有限公司 一种屏蔽红外和紫外全波段的醇酸树脂纳米透明隔热涂料
US11008471B2 (en) * 2015-03-03 2021-05-18 Solaris Technology Ltd Waterborne light radiation absorbing polyurethane mixed polyester polymer coating system
EP3831600A4 (en) * 2018-07-27 2022-05-04 Kuraray Co., Ltd. INFRARED LIGHT SCREENING MULTILAYER FILM AND METHOD OF PRODUCTION

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103003342A (zh) * 2010-05-10 2013-03-27 拜耳知识产权有限责任公司 具有吸热性质和改进的颜色性质的聚合物组合物
CN103003343A (zh) * 2010-05-10 2013-03-27 拜耳知识产权有限责任公司 具有吸热性质和高稳定性的聚合物组合物
CN104272146A (zh) * 2012-05-08 2015-01-07 富士胶片株式会社 近红外吸收液体组合物、使用其的近红外截止滤光片、其制造方法以及相机模块及其制造方法
WO2014119618A1 (ja) * 2013-01-31 2014-08-07 株式会社クレハ 近赤外線吸収剤の製造方法、近赤外線吸収剤およびその用途
US20160282531A1 (en) * 2014-01-31 2016-09-29 Fujifilm Corporation Red coloring composition for use in color filter, colored film, color filter, and solid-state imaging device
CN113087966A (zh) * 2021-03-30 2021-07-09 浙江华帅特新材料科技有限公司 红外线吸收剂分散液、透明隔热有机玻璃及其制造方法

Also Published As

Publication number Publication date
CN113087966A (zh) 2021-07-09
US20230416432A1 (en) 2023-12-28
CN113087966B (zh) 2022-04-26

Similar Documents

Publication Publication Date Title
WO2022206714A1 (zh) 红外线吸收剂分散液、透明隔热有机玻璃及其制造方法
CN111690331B (zh) 基于光子准晶材料的透明隔热防紫外线薄膜及其制备方法
CN102030483B (zh) 由纳米聚合物中空粒子组成的多孔防反射薄膜的制备方法
CN105061700B (zh) 纳米二氧化硅/聚丙烯酸酯有机无机杂化水分散性树脂及其制备方法
CN106674852B (zh) 一种防蓝光镜片及其树脂原料
CN104178180B (zh) 一种具有大双折射率的向列相液晶材料及其应用
CN102492428A (zh) 一种均一荧光微球及其制备方法
CN101550217A (zh) 一种无皂核壳型硅丙乳液的制备方法
CN102241937B (zh) 一种poss改性水性纳米透明隔热涂料及其制备方法
CN104530302A (zh) 一种高硅含量的硅溶胶/聚丙烯酸酯乳液及其制备方法
CN105778608A (zh) 一种石墨烯复合涂料及其制备方法
CN102604135A (zh) 聚甲基丙烯酸甲酯/二氧化钛纳米复合材料的制备方法
CN108957825B (zh) 一种可调节近红外光透过率的反式电控调光膜及其制备方法
CN108508668A (zh) 二氧化钛纳米棒阵列薄膜/胆甾相液晶复合型宽波反射膜
CN106330084A (zh) 包含散射颗粒和荧光量子点的平面荧光聚光器及其制备方法
CN108084376B (zh) 核壳型纳米二氧化硅/含氟聚丙烯酸酯无皂乳液制备方法
CN110092875A (zh) 一种基于液晶/高分子复合材料体系的pdlc膜的制备方法
CN102241866A (zh) 一种透明丙烯酸硅树脂纳米复合材料及制备方法
CN111675784A (zh) 聚甲基丙烯酸甲酯/二氧化钛纳米复合材料及其制备方法
CN101724329A (zh) 一种环保型彩瓦涂料及其制备方法
CN106430222B (zh) 一种纳米二氧化硅微球及其制备方法
CN103665242B (zh) 一种硅溶胶/丙烯酸酯纳米核壳复合乳液及其制备方法
CN106632875A (zh) 一种无机纳米粒子改性含氟丙烯酸酯疏水乳液及其制备方法
CN108547009A (zh) 一种纳米荧光纤维材料及其制备方法
CN114940769B (zh) 基于结构色的无角度依赖电响应薄膜及其制备方法和应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22778896

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18038005

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22778896

Country of ref document: EP

Kind code of ref document: A1