WO2022206535A1 - 显示面板、显示面板驱动方法及电子设备 - Google Patents

显示面板、显示面板驱动方法及电子设备 Download PDF

Info

Publication number
WO2022206535A1
WO2022206535A1 PCT/CN2022/082693 CN2022082693W WO2022206535A1 WO 2022206535 A1 WO2022206535 A1 WO 2022206535A1 CN 2022082693 W CN2022082693 W CN 2022082693W WO 2022206535 A1 WO2022206535 A1 WO 2022206535A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
layer
electrochromic
display panel
electrochromic layer
Prior art date
Application number
PCT/CN2022/082693
Other languages
English (en)
French (fr)
Inventor
苏子鹏
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Publication of WO2022206535A1 publication Critical patent/WO2022206535A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F1/153Constructional details
    • G02F1/155Electrodes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F1/1514Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect characterised by the electrochromic material, e.g. by the electrodeposited material
    • G02F1/1516Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect characterised by the electrochromic material, e.g. by the electrodeposited material comprising organic material
    • G02F1/15165Polymers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F1/153Constructional details
    • G02F1/1533Constructional details structural features not otherwise provided for
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F1/163Operation of electrochromic cells, e.g. electrodeposition cells; Circuit arrangements therefor
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B44/00Circuit arrangements for operating electroluminescent light sources

Definitions

  • the present application belongs to the field of display technology, and in particular relates to a display panel, a display panel driving method and an electronic device.
  • the display screen of an electronic device is generally in a monotonous black state when the screen is off.
  • the purpose of the embodiments of the present application is to provide a display panel, a method for driving the display panel, and an electronic device, which can solve the problem that the existing display screen cannot display colors with low power consumption when it is not needed.
  • an embodiment of the present application provides a display panel, wherein the display panel includes a display substrate, and the display substrate includes a substrate and a pixel definition layer disposed on the substrate;
  • the pixel defining layer includes a plurality of pixel defining portions arranged at intervals, and at least part of the regions between the pixel defining portions are arranged with an organic light-emitting functional layer and a second electrochromic layer at intervals;
  • a first electrode, a first electrochromic layer and a second electrode are stacked on each of the organic light-emitting functional layers; the first electrochromic layer can be applied to the electric field of the first electrode and the second electrode. Under the action of discoloration reaction;
  • Each of the second electrochromic layers is provided with a third electrode on the side facing the substrate, and each of the first electrochromic layers is provided with a fourth electrode on the side away from the first substrate; the The first electrochromic layer can undergo a discoloration reaction under the action of the electric field of the third electrode and the fourth electrode.
  • an embodiment of the present application provides a display panel driving method, the driving method is used for driving the above-mentioned display panel, wherein the driving method includes:
  • a second voltage is applied between the third electrode and the fourth electrode, so that the second electrochromic layer changes from a primary color to a second target color, wherein the primary color is black or grey.
  • embodiments of the present application provide an electronic device, the electronic device includes a processor, a memory, and a program or instruction stored on the memory and executable on the processor, the program or instruction being The processor implements the steps of the method according to the first aspect when executed.
  • an embodiment of the present application provides a readable storage medium, where a program or an instruction is stored on the readable storage medium, and when the program or instruction is executed by a processor, the steps of the method according to the first aspect are implemented .
  • an embodiment of the present application provides a chip, the chip includes a processor and a communication interface, the communication interface is coupled to the processor, and the processor is configured to run a program or an instruction, and implement the first aspect the method described.
  • the display panel includes a display substrate, the display substrate includes a substrate and a pixel defining layer disposed on the substrate; the pixel defining layer includes a plurality of pixel defining portions arranged at intervals, at least part of the pixel defining portions.
  • An organic light-emitting functional layer and a second electrochromic layer are arranged at intervals between them; a first electrode, a first electrochromic layer and a second electrode are stacked on each of the above-mentioned organic light-emitting functional layers; the above-mentioned first electrochromic layer
  • the layer can have a discoloration reaction under the action of the electric field of the first electrode and the second electrode; each of the second electrochromic layers is provided with a third electrode on the side facing the substrate, and each of the first electrochromic layers is provided with a third electrode.
  • a fourth electrode is disposed on the side of the layer away from the substrate; the first electrochromic layer can undergo a color changing reaction under the action of the electric field of the third electrode and the fourth electrode.
  • the organic light-emitting functional layer and the second electrochromic layer are arranged at least in the regions between the pixel defining portions, because the first electrochromic layer and the second electrochromic layer can be generated under the action of an electric field Reversible color change reaction, so when the screen of the display panel is closed, the first electrochromic layer can be adjusted by applying a voltage on the first electrode and the second electrode, and a voltage can be applied on the third electrode and the fourth electrode.
  • the second electrochromic layer is adjusted to change color, so that the entire display panel presents a colorful state; in addition, because the electrochromic layer does not consume electricity when the color does not change, the function of the above-mentioned colorful pattern presentation mode The power consumption is much lower than that of the existing screen saver.
  • FIG. 1 is a schematic diagram of the overall structure of a display panel provided by an embodiment of the present application.
  • Fig. 2 is a partial enlarged view of part A in Fig. 1;
  • Fig. 3 is the B-direction cross-sectional schematic diagram in Fig. 2;
  • Fig. 4 is the light transmission effect schematic diagram of the part C where the under-screen camera in Fig. 1 is located;
  • Fig. 5 is the D-direction cross-sectional schematic diagram in Fig. 4;
  • Fig. 6 is the light transmission effect schematic diagram of A part in Fig. 1;
  • Fig. 7 is the schematic diagram of the partition discoloration effect of the part C where the under-screen camera in Fig. 1 is located;
  • FIG. 8 is a schematic structural diagram of an electronic device provided by an embodiment of the present application.
  • the display panel 20 includes a display substrate 10 , and the display substrate 10 includes a substrate 101 and a pixel defining layer 102 disposed on the substrate 101 ;
  • the pixel defining layer 102 includes a plurality of pixel defining portions 103 arranged at intervals, and at least part of the regions between the pixel defining portions 103 are provided with an organic light-emitting functional layer 104 and a second electrochromic layer 108 at intervals;
  • a first electrode 105 , a first electrochromic layer 106 and a second electrode 107 are stacked on the layer 104 ;
  • the first electrochromic layer 106 is formed under the action of the electric field of the first electrode 105 and the second electrode 107 Discoloration reaction;
  • each of the second electrochromic layers 108 is provided with a third electrode 109 on the side facing the substrate 101, and each of the first electrochromic layers 106 is provided with a fourth electrode 110 on the side away from the substrate 101 ;
  • the first electrochromic layer 106 undergoes a discoloration reaction under the action of the electric field of the third electrode 109 and the fourth electrode 110 .
  • the pixel defining portions 103 are all over the pixel defining layer, and at least part of the regions between the pixel defining portions 103 are provided with the organic light-emitting functional layer 104 and the second electrochromic layer 108 at intervals, that is, only part of the pixel defining portions may be provided.
  • the organic light-emitting functional layer 104 and the second electrochromic layer 108 are arranged in the area between 103, or the organic light-emitting functional layer 104 and the second electrochromic layer 108 are arranged in the area between all the above-mentioned pixel defining parts 103; Among them, the organic light-emitting functional layer 104 is used for emitting light to present a corresponding color when the display panel needs to display a picture, and the first electrochromic layer 106 is used for the first electrode 105 and the second electrode 107 in the screen-off state.
  • the color-changing reaction occurs to present the corresponding color, and when the display panel needs to display the screen, it is transformed into a transparent state under the action of the electric field between the first electrode 105 and the second electrode 107; the second electrochromic The layer 108 is used to display the corresponding target color under the action of the electric field between the third electrode 109 and the fourth electrode 110 under the action of the electric field between the third electrode 109 and the fourth electrode 110, and when the display panel needs to display the screen, the third electrode Under the action of the electric field between the 109 and the fourth electrode 110, it is converted into black or gray, so as to shield the lines such as the bottom electrode from light, enhance the color purity, and improve the display effect of the picture.
  • the first electrochromic layer 106 and the second electrochromic layer 108 can undergo a reversible color changing reaction under the action of an electric field, when the screen of the display panel is off, the A voltage is applied to the electrode 105 and the second electrode 107 to adjust the color change of the first electrochromic layer 106, and a voltage is applied to the third electrode 109 and the fourth electrode 110 to adjust the color of the second electrochromic layer 108.
  • the entire display panel 20 can be rendered colorful;
  • the power consumption of the above-mentioned colorful pattern presentation mode is far lower than that of the existing screen saver mode.
  • the above-mentioned display substrate 10 further includes a plurality of thin film transistors 112, and the plurality of thin film transistors 112 are located between the above-mentioned substrate 101 and the above-mentioned pixel defining layer 102;
  • the electrode 111 is electrically connected to one of the above-mentioned thin film transistors 112, denoted as the first thin-film transistor 112, the above-mentioned first thin-film transistor is used to apply a driving signal to the above-mentioned seventh electrode 111, and each of the above-mentioned organic light-emitting functional layers 104 is away from the above-mentioned substrate 101.
  • the cathode combined with the switching function of the first thin film transistor, can realize the control of the sub-pixel unit corresponding to the corresponding organic light-emitting functional layer 104 to emit light or not to emit light.
  • the organic light-emitting functional layer 104 is an OLED pixel sub-unit, which may be a red-light pixel sub-unit, a green-light pixel sub-unit, or a blue-light pixel sub-unit.
  • each of the second electrochromic layers 108 is electrically connected to one of the thin film transistors 112 via the corresponding fourth electrode 110 , which is referred to as a second thin film transistor, and the second thin film transistor is used to apply a voltage to the third electrode 109 .
  • the side of each second electroluminescent layer 104 away from the substrate 101 is conductive or in contact with the fourth electrode 110, and then one of the third electrode 109 and the fourth electrode 110 is used as the anode , and the other of the third electrode 109 and the fourth electrode 110 is used as a cathode, and combined with the switching function of the second thin film transistor, the second electrochromic layer 108 can be applied on the second electrochromic layer 108 to perform a color changing reaction. of the electric field.
  • each of the third electrodes 109 is electrically connected to a second thin film transistor, the color changing reaction of each second electrochromic layer 108 can be individually controlled.
  • the layer 108 can meet different color display requirements; specifically, the three second electrochromic layers 108 that can change to display red, green, and blue colors are arranged adjacent to each other to form a pixel unit, because red, green The three colors of blue and blue can be combined to form various colors, so by controlling the discoloration reaction or non-discoloration of the three second electrochromic layers 108 contained in the pixel unit, the required colors can be combined to show the desired color, and then the display panel After the screen is closed, the pattern display is performed with low power consumption, showing the display of the screen pattern and the color appearance, such as the clock pattern.
  • the material of the cathode and the touch driving electrode may be one or more of metal silver Ag, copper Cu, magnesium Mg, aluminum Al, metal mesh Metal Mesh, metal oxide ITO, and indium tin oxide.
  • the above-mentioned thin film transistor 112 includes a buffer layer 21 , an IGZO (Indium Gallium Zinc Oxide, Indium Gallium Zinc Oxide) active layer 22 , a gate insulating layer 23 , a gate electrode 24 , and an interlayer dielectric, which are sequentially located on the substrate 101 .
  • the seventh electrode 111 is connected to the drain 24 of the first thin film transistor, the third electrode 109 is connected to the drain 94 of the second thin film transistor, and the fifth electrode is connected to the drain 94 of the third thin film transistor.
  • the material of the active layer 22 can be semiconductor a-Si amorphous silicon (a-Si), semiconductor low temperature polysilicon (LTPS) or metal oxide indium gallium zinc oxide IGZO, etc.;
  • the material of the pole 27 can be metal titanium Ti, aluminum Al, molybdenum Mo, silver Ag, magnesium Mg, etc.;
  • the material of the buffer layer 21 and the planarization layer 298 can be resin-negative photoresist, etc.;
  • the material of the interlayer dielectric layer 25 It can be silicon nitride SiNx, silicon dioxide SiO2, silicon oxynitride SiNOx, or the like.
  • one thin film transistor 112 includes N units consisting of the above-mentioned source electrodes 26, drain electrodes 27, and gate electrodes 24, and the drain electrode 27 of the previous unit is connected to the gate electrode 24 of the next unit, and The source 26 of the first cell is connected to the anode of the control circuit, and the drain 24 of the Nth cell is connected to the third electrode 109 described above.
  • the above-mentioned N is a positive integer, such as 1, 2 or 9.
  • the above-mentioned first electrode 105 and the above-mentioned fourth electrode 110 are integrally provided. Because the first electrode 105 and the fourth electrode 110 do not need to be connected to a control switch circuit, they can be arranged in the same layer to simplify the structure and facilitate fabrication.
  • the display panel provided by the embodiment of the present application is applied to an electronic device with an under-screen camera, please refer to FIGS. 1 to 3 and 4 to 5 , and some of the above pixels are
  • the organic light-emitting functional layer 104 and the second electrochromic layer 108 are arranged in the regions between the defining portions 103, and the third electrochromic layer 113 is arranged in the regions between the remaining pixel defining portions 103.
  • the pixel defining layer area corresponding to the projection position of the under-screen camera is the area where the organic light-emitting functional layer 104 and the second electrochromic layer 108 are not provided, but only provided
  • the above-mentioned third electrochromic layer 113 is formed; wherein, each above-mentioned third electrochromic layer 113 is provided with a fifth electrode 114 on the side facing the above-mentioned substrate 101, and each above-mentioned third electrochromic layer 113 is far away from the above-mentioned substrate.
  • a sixth electrode 115 is disposed on one side of the 101 ; the third electrochromic layer 113 undergoes a discoloration reaction under the action of the electric field of the fifth electrode 114 and the sixth electrode 115 .
  • each of the fifth electrodes 114 is electrically connected to a thin film transistor 112 , referred to as a third thin film transistor, and the third thin film transistor is used to apply a driving signal to the fifth electrode 114 to control the voltage of the fifth electrode 114
  • the size of the electric field can be applied to the third electrochromic layer 113 to make the color change reaction.
  • the above-mentioned third electrochromic layer 113 is in a transparent state before electrochromic, or can be changed to a transparent state under the action of an electric field. Control the action of the voltage applied between the fifth electrode 114 and the sixth electrode 115, so that the third electrochromic layer 113 is changed to a transparent state, which is convenient for the camera under the screen to light up;
  • the third thin film transistor controls the voltage applied between the fifth electrode 114 and the sixth electrode 115, so that the third electrochromic layer 113 changes to the target color, thereby controlling the display panel to display the desired pattern and color.
  • the fifth electrode 114 and the sixth electrode 115 are transparent electrodes, so as to further reduce the blocking of the light path and meet the light transmission requirements of the camera under the screen.
  • the light transmission effect of the under-screen camera projection position area is shown in FIG. 5
  • the light transmission effect of the non-under-screen camera projection position area is shown in FIG. 6
  • the third electrochromic layer 113 and The corresponding fifth electrode 114, the sixth electrode 115 and the third thin film transistor form an electrochromic sub-pixel unit, and adjacent electrochromic sub-pixel units are separated by a pixel defining portion 103, and the pixel defining portion 103 has a width Can be designed according to demand.
  • the density of the electrochromic sub-pixel unit can be twice that of the OLED pixel to improve the display effect.
  • the density of the electrochromic sub-pixel unit can be designed to be the same as that of the OLED, or three times, four times, etc., according to requirements.
  • each of the fifth electrodes 114 is electrically connected to a third thin film transistor, the color-changing reaction of each third electrochromic layer 113 can be individually controlled.
  • the third electrochromic layer 113 can satisfy different color display requirements; specifically, three third electrochromic layers 113 that can display red, green and blue colors respectively are arranged adjacent to each other to form a pixel unit, Because red, green, and blue colors can be combined into various colors, the desired color can be displayed in combination by controlling the discoloration reaction or non-discoloration of the three second electrochromic layers 108 included in the pixel unit. Then, the screen-off pattern display is performed with low power consumption after the display panel is off-screen, and the screen pattern display is performed when normal display is required, so as to realize the non-perforated and full-screen display of the display panel.
  • the remaining pixel defining portions 103 include a pixel defining portion 103 located in the projection area of the under-screen camera and a pixel defining portion 103 located in the projection area of the fill light.
  • the projection area where the fill light for the under-screen camera is located is also included in the area where the third electrochromic layer 113 is arranged, and the projection area of the fill light can be controlled when the under-screen camera is used
  • the corresponding third electrochromic layer 113 becomes a transparent state, so as to facilitate the passage of light for the under-screen camera to fill light and take pictures.
  • the third electrochromic layer 113 in different positions can be located between the fifth electrode 114 and the sixth electrode 115 .
  • the third electrochromic layer 113 in different positions can be located between the fifth electrode 114 and the sixth electrode 115 .
  • it changes to a transparent state or a black state, so as to realize the aperture design that precisely adjusts the amount of light entering the camera under the screen.
  • the third electrochromic layer 113 in the peripheral area is controlled to turn black for shading, and the third electrochromic layer 113 in the inner area is controlled to be in a transparent state to transmit light, so that the third electrochromic layer 113 in the inner area is controlled to transmit light.
  • Partitions of the electrochromic layer 113 are discolored, thereby obtaining a more suitable amount of incoming light and improving the photographing or videography effect.
  • the corresponding discoloration effects of the subregions are shown in FIG. 7 for the amount of incoming light from large to small.
  • the pixel unit composed of the third electrochromic layer 113 in the camera area under the screen is controlled by the thin film transistor 112, and transparent or black display is performed according to the requirements of different lighting intensity scenarios, forming an aperture pattern, circular, square, Irregular shapes, etc. can be realized without pre-designing patterns.
  • the first electrochromic layer 106 is covered with the second electrode 107
  • the second electrochromic layer 108 is covered with the fourth electrode 110
  • the third electrochromic layer 113 is covered with the fourth electrode 110 .
  • Six electrodes 115, and a thin film encapsulation layer 116 and a polyimide film layer 117 are stacked on the second electrode 107, the fourth electrode 110, the sixth electrode 115 and the pixel defining part 103 in sequence, so as to realize the organic light emitting function layer 104 , Encapsulation of each emitting sub-pixel unit such as the first electrochromic layer 106 and the second electrochromic layer 108 .
  • the first electrode 105 is the inherent electrode structure of the existing display substrate 10, and because the first electrode 105 does not need to be used to supply power for the display panel 20 to display images when the display panel 20 is in an off-screen state, the above-mentioned first electrode 105
  • the second electrodes 107 are separately provided electrodes for providing an electric field for the first electrochromic layer 106 to perform a color changing reaction. Therefore, the above-mentioned adjustment of the color change of the electrochromic layer 106 will not affect the original display function of the display panel 20 .
  • the structures of the first electrochromic layer 106 , the second electrochromic layer 108 and the third electrochromic layer 113 are similar.
  • the second electrochromic layer 108 is taken as an example for further explanation below.
  • the above-mentioned first electrochromic layer 106 , the above-mentioned second electrochromic layer 108 and the above-mentioned third electrochromic layer 113 all include electrochromic material sub-layers 81 and ion-conducting sub-layers that are stacked in sequence. 82 and ion storage sublayer 83.
  • the ion conduction sublayer 82 is located between the electrochromic material sublayer 81 and the ion storage sublayer 83 , and the ion conduction sublayer 82 is in direct contact with the electrochromic material sublayer 81 and the ion storage sublayer 83 .
  • the optical properties of the material of the electrochromic material layer 81 undergo a stable and reversible color change phenomenon under the action of an external electric field, which may be an inorganic electrochromic material or an organic electrochromic material.
  • Electrochromic materials may specifically be a polypyrrole-based electrochromic material, a polythiophene-based electrochromic material, a polyfuran-based electrochromic material, and a polybenzdole-based electrochromic material.
  • Polyaniline can be formed by electrochemical processes or chemical oxidation of aniline; in different oxidation states, polyaniline can appear as pale yellow or dark green/black.
  • the ion-conducting sub-layer 82 allows ions to move between the electrochromic sub-layer 81 and the ion-storing sub-layer 83, but prevents electrons from passing through, that is, the ion-conducting sub-layer 82 conducts ions but does not conduct electrons.
  • the ion storage sub-layer 83 has the function of storing ions and supplying required ions in the process of discoloration, so as to balance the total amount of electric charges.
  • the ion storage sub-layer 83 can also use an electrochromic material whose performance is opposite to that of the electrochromic material of the electrochromic material sub-layer 81, which can play a role of ion complementation in the process of color change.
  • the above-mentioned electrochromic material sublayer 81 in the second electrochromic layer 108 is electrically connected 105 to the third electrode 109 , and the above-mentioned ion storage electrons in the second electrochromic layer 108
  • the layer 83 is electrically connected to the fourth electrode 110 described above.
  • the electrochromic material sub-layer 81 is in contact with the third electrode 109, and the ion storage sub-layer 83 is in contact with the fourth electrode 110, so that when the electrochromic layer 106 is adjusted for discoloration, it is close to the third electrode.
  • the 109 side undergoes a discoloration reaction.
  • the above-mentioned ion storage sublayer 83 in the second electrochromic layer 108 is electrically connected to the third electrode 109 , and the above-mentioned electrochromic material in the second electrochromic layer 108
  • the sublayer 81 is electrically connected to the above-mentioned fourth electrode 110 .
  • the electrochromic material sub-layer 81 is in contact with the fourth electrode 110, and the ion storage sub-layer 83 is in contact with the third electrode 109, so that when the second electrochromic layer 108 is adjusted for discoloration, it is far away from the third electrode 109.
  • One side of the four electrodes 110 undergoes a color change reaction.
  • the above-mentioned electrochromic material sub-layer 81 included in the second electrochromic layer 108 is black or gray before electrochromic.
  • the electrochromic material sub-layer 81 in the embodiment of the present application is black or gray before electrochromic, so that when the display panel 20 including the above-mentioned display substrate 10 is powered on and displayed, the second electrochromic layer that is black or gray is used.
  • 108 shields the projection area of the second electrochromic layer 108 from light to prompt the screen display effect.
  • the above-mentioned electrochromic material sub-layers 81 included in the electrochromic material sub-layers 81 are in a transparent state before electrochromic, so that the above-mentioned display panel 20 is powered on and displayed.
  • the third electrochromic layer 113 forms the aperture for the under-screen camera to light.
  • the above-mentioned display panel 20 further includes a cover plate 118 and a touch layer 119; the above-mentioned cover plate 118, the above-mentioned touch layer 119 and the above-mentioned display substrate 10 are stacked in sequence, and the above-mentioned cover plate 118 It is bonded with the above-mentioned touch layer 119 by an optically transparent adhesive 120 .
  • the second electrochromic layer 108 When the display panel 20 is in the display state, the second electrochromic layer 108 is in a dark color state such as black or gray, which can shield the underlying thin film transistors 112 and other circuits from light, so the existing micro-LED display panel or quantum dot display can be displayed.
  • a dark color state such as black or gray
  • the touch layer 119 includes touch drive electrodes and touch sensing electrodes, the touch drive electrodes are located on the side of the touch layer 119 facing the substrate 101 , and the touch sensing electrodes It is located on the side of the touch layer 119 away from the substrate 101; when a touch occurs, the distance between the touch driving electrodes and the touch sensing electrodes near the touch point will change, so that the capacitive coupling between the two is affected. The sensing signal is generated, and then the position of the touch point can be calculated.
  • An embodiment of the present application further provides a method for driving a display panel, which is applied to driving the above-mentioned display panel, wherein the method may include steps 100 to 200 .
  • the method is applied to an electronic device with an under-screen camera
  • the electronic device may be a mobile phone, a tablet computer, a notebook computer, a palmtop computer, a vehicle-mounted electronic device, a wearable device, an ultra-mobile personal computer (ultra-mobile personal computer) mobile electronic devices such as personal computer (UMPC), netbook or personal digital assistant (PDA), or non-mobile devices such as personal computer (PC), television (television, TV), teller machine or self-service machine Electronic equipment.
  • UMPC personal computer
  • PDA personal digital assistant
  • PC personal computer
  • TV television
  • teller machine teller machine or self-service machine Electronic equipment
  • Step 100 applying a first voltage between the first electrode and the second electrode in a screen-off state, so that the first electrochromic layer changes from a transparent state to a first target color.
  • the first voltage is the color changing voltage of the electrochromic material in the electrochromic layer. This is because during normal display, the first electrochromic layer needs to be controlled to be in a transparent state for the normal light-emitting display of the organic light-emitting functional layer, while in the off-screen state, the first electrode does not need to supply power to the display panel, and can be used for the first electrochromic layer.
  • the color changing reaction of an electrochromic layer provides an electric field effect, and by applying a first voltage between the second electrode and the first electrode that causes the first electrochromic layer to undergo a color changing reaction, the first electrochromic layer is changed from a transparent state to a transparent state.
  • Step 200 In the closed screen state, apply a second voltage between the third electrode and the fourth electrode, so that the second electrochromic layer changes from a primary color to a second target color, wherein the The primary color is black or gray.
  • the second voltage is the color change voltage of the electrochromic material in the second electrochromic layer.
  • the second electrochromic layer changes from the primary color state of black or gray to the target.
  • the power consumption of the above-mentioned colorful pattern presentation method is much lower than that of the existing screen saver method. power consumption.
  • step 200 specifically includes steps 211-213:
  • Step 211 in the screen-off state, determine the target color
  • Step 212 determining a second voltage according to the corresponding relationship between the target color and the voltage value
  • Step 213 applying the second voltage between the third electrode and the fourth electrode to change the electrochromic layer from a primary color to a second target color, and the primary color is black or gray.
  • the second target color is the screen-on-screen display color preset by the user, that is, when entering the screen-off state, the color preset by the user is acquired as the second target color.
  • the above-mentioned corresponding relationship is the corresponding relationship between the voltage value and the color determined in advance according to the electrochromic performance of the second electrochromic layer, indicating that the second electrochromic layer changes from the value to the target color to the desired color. required voltage value. Therefore, after the second target color is determined, the target voltage can be determined as the second voltage according to the above-mentioned corresponding relationship.
  • the second electrochromic layer between the third electrode and the fourth electrode can be subjected to a color change reaction under the action of the electric field, and Change to the second target color.
  • the above-mentioned embodiment is suitable for the scene where a single second electrochromic layer can change the value of different colors through the action of different electric fields, according to the corresponding relationship between the target color and the voltage value to be changed, between the third electrode and the fourth electrode By applying the corresponding second voltage, the second electrochromic layer can be changed to different color states.
  • the above driving method further includes steps 300 to 400:
  • Step 300 In the case of receiving a bright screen signal, continuously apply a third voltage for a preset duration between the first electrode and the second electrode, so that the first electrochromic layer is replaced by the The first target color is restored to the transparent state; wherein, the third voltage and the first voltage are equal in magnitude and opposite in direction.
  • step 300 in the case of receiving the bright screen signal, it means that the user needs to use the display panel, but because the first electrochromic layer is still in the first target color state at this time, and the first target color is generally in the color state.
  • the first electrochromic layer After the first electrochromic layer returns to a transparent state, the first electrochromic layer will not affect the display of the display panel, so the first electrode can be reused to supply power to each organic light-emitting functional layer, and the display panel enters a normal display state , to avoid the problem of affecting the display of the organic light-emitting functional layer due to the electrochromic layer changing to a colored state when the display panel is normally displayed.
  • the electrochromic layer needs to continue to act under the color changing voltage for a preset period of time to complete the color-changing reaction
  • the above-mentioned third voltage needs to be controlled to continue for the first preset period of time , so that the first electrochromic layer can receive the electric field action corresponding to the third voltage of the first preset duration to complete the color changing reaction.
  • the above-mentioned first preset time period is determined by the electrochromic material in the first electrochromic layer.
  • Step 400 In the case of receiving a bright-screen signal, continuously apply a fourth voltage for a second preset duration between the third electrode and the fourth electrode, so that the second electrochromic layer is made of The second target color is restored to the primary color; wherein, the fourth voltage and the second voltage are equal in magnitude and opposite in direction.
  • step 400 in the case of receiving the bright screen signal, it means that the user needs to use the display panel, but because the second electrochromic layer is still in the second target color state at this time, and the second target color is generally in the color state.
  • the second electrochromic layer needs to be restored to the primary color state of black or gray, so the fourth voltage between the third electrode and the fourth electrode lasts for a preset period of time, because The fourth voltage and the third voltage are equal in magnitude and opposite in direction, that is, the second electrochromic layer can be restored from the second target color state to the primary color state, avoiding the conversion of the second electrochromic layer when the display panel is normally displayed. To other colors other than black and gray, the display effect is affected.
  • the electrochromic layer needs to continue to act under the color changing voltage for a preset period of time to complete the color-changing reaction, when the electrochromic layer is controlled to return to the primary color, it is necessary to control the above-mentioned fourth voltage to continue for the second preset period of time, so that the electrical The photochromic layer can receive the electric field action corresponding to the fourth voltage for the second preset duration to complete the color changing reaction.
  • the above-mentioned second preset time period is determined by the electrochromic material in the second electrochromic layer.
  • the first electrochromic layer when the screen bright signal is received, the first electrochromic layer is controlled to return to a transparent state, and the second electrochromic layer is controlled to return to a black or gray state, and then the organic light-emitting functional layer is driven. Entering the light-emitting display state avoids the problem that the display effect of the display panel is affected by the display color of the first electrochromic layer and the display of colors other than black and gray by the second electrochromic layer when the display panel is normally displayed.
  • an embodiment of the present application further provides an electronic device, including the above-mentioned display panel, a processor, a memory, a program or instruction stored in the memory and executable on the processor, and the program or instruction is executed by the processor.
  • an electronic device including the above-mentioned display panel, a processor, a memory, a program or instruction stored in the memory and executable on the processor, and the program or instruction is executed by the processor.
  • the electronic devices in the embodiments of the present application include the aforementioned mobile electronic devices and non-mobile electronic devices.
  • FIG. 8 is a schematic diagram of a hardware structure of an electronic device implementing an embodiment of the present application.
  • the electronic device 800 includes but is not limited to: a radio frequency unit 8001, a network module 8002, an audio output unit 8003, an input unit 8004, a sensor 8005, a display unit 8006, a user input unit 8007, an interface unit 8008, a memory 8009, and a processor 8010, etc. part.
  • the electronic device 800 may also include a power source (such as a battery) for supplying power to various components, and the power source may be logically connected to the processor 8010 through a power management system, so as to manage charging, discharging, and power management through the power management system. consumption management and other functions.
  • a power source such as a battery
  • the structure of the electronic device shown in FIG. 8 does not constitute a limitation on the electronic device.
  • the electronic device may include more or less components than the one shown, or combine some components, or arrange different components, which will not be repeated here. .
  • the display panel 80061 included in the display unit 8006 includes the above-mentioned display substrate in the embodiment of the present application;
  • the processor 8010 is configured to apply a first voltage between the first electrode and the second electrode in a screen-off state, so that the first electrochromic layer changes from a transparent state to a first target color ; In the closed screen state, a second voltage is applied between the third electrode and the fourth electrode, so that the second electrochromic layer changes from a primary color to a second target color, wherein the primary color in black or grey.
  • the first electrochromic layer in the screen-off state, by applying a voltage to the first electrode and the second electrode, the first electrochromic layer is adjusted to change color, and the third electrode and the fourth electrode are applied voltage, so that the second electrochromic layer is adjusted to change color, so that the entire display panel presents a colorful state; in addition, because the electrochromic layer will not consume electricity when the color does not change, the above-mentioned colorful patterns are presented in a different way. The power consumption is much lower than that of the existing screen saver.
  • the processor 8010 is further configured to continuously apply a third voltage of a first preset duration between the first electrode and the second electrode in the case of receiving a bright screen signal, to restoring the first electrochromic layer from the first target color to the transparent state; wherein, the third voltage is equal to the first voltage in magnitude and opposite in direction; after receiving the bright screen signal
  • a fourth voltage for a second preset duration is continuously applied between the third electrode and the fourth electrode, so that the second electrochromic layer is restored from the second target color to the The primary color; wherein, the fourth voltage and the second voltage are equal in magnitude and opposite in direction.
  • Embodiments of the present application further provide a readable storage medium, where a program or an instruction is stored on the readable storage medium, and when the program or instruction is executed by a processor, each process of the above-mentioned embodiment of the display panel driving method is implemented, and can achieve The same technical effect, in order to avoid repetition, will not be repeated here.
  • the processor is the processor in the electronic device described in the foregoing embodiments.
  • the readable storage medium includes a computer-readable storage medium, such as a computer read-only memory (Read-Only Memory, ROM), a random access memory (Random Access Memory, RAM), a magnetic disk or an optical disk, and the like.
  • An embodiment of the present application further provides a chip, the chip includes a processor and a communication interface, the communication interface is coupled to the processor, and the processor is used for running a program or an instruction to implement the above embodiment of the display panel driving method and can achieve the same technical effect, in order to avoid repetition, it will not be repeated here.
  • the chip mentioned in the embodiments of the present application may also be referred to as a system-on-chip, a system-on-chip, a system-on-a-chip, or a system-on-a-chip, or the like.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)

Abstract

一种显示面板、显示面板驱动方法及电子设备。显示面板(20)包括显示基板(10),显示基板(10)包括衬底(101)及设置于衬底(101)上的像素界定层(102);像素界定层(102)包括间隔设置的多个像素界定部(103),至少部分像素界定部(103)之间的区域间隔设置有有机发光功能层(104)及第二电致变色层(108);每个有机发光功能层(104)上层叠设置有第一电极(105)、第一电致变色层(106)与第二电极(107);第一电致变色层(106)在第一电极(105)与第二电极(107)的电场作用下发生变色反应;每个第二电致变色层(108)朝向衬底(101)一侧设置有第三电极(109),每个第二电致变色层(108)远离衬底(101)一侧设置有第四电极(110);第二电致变色层(108)在第三电极(109)与第四电极(110)的电场作用下发生变色反应。在显示面板(20)息屏时,通过在第一电极(105)与第二电极(107)上施加电压,使得第一电致变色层(106)进行变色调整,以及在第三电极(109)与第四电极(110)上施加电压,使得第二电致变色层(108)进行变色调整,进而使得显示面板(20)呈现多彩状态。

Description

显示面板、显示面板驱动方法及电子设备
相关申请的交叉引用
本申请要求于2021年03月29日提交的申请号为2021103352286,发明名称为“一种显示面板及其驱动方法”的中国专利申请的优先权,其通过引用方式全部并入本申请。
技术领域
本申请属于显示技术领域,具体涉及一种显示面板、显示面板驱动方法及电子设备。
背景技术
现有技术中电子设备的显示屏在息屏状态时一般呈单调的黑色状态。
针对显示屏在息屏状态下显示过于单调的问题,虽然可以通过显示屏保的方式呈现多彩图案,但因为显示屏保时显示屏仍处于工作状态,上述方式势必会增加显示屏功耗,导致电池电量的使用时长缩短,进而影响用户体验。
发明内容
本申请实施例的目的是提供一种显示面板、显示面板驱动方法及电子设备,能够解决现有显示屏在不需要使用时无法低功耗呈现彩色的问题。
为了解决上述技术问题,本申请是这样实现的:
第一方面,本申请实施例提供了一种显示面板,其中,所述显示面板包括显示基板,所述显示基板包括衬底及设置于所述衬底上的像素界定层;
所述像素界定层包括间隔设置的多个像素界定部,至少部分所述像素界定部之间的区域间隔设置有有机发光功能层及第二电致变色层;
每个所述有机发光功能层上层叠设置有第一电极、第一电致变色层与第 二电极;所述第一电致变色层可在所述第一电极与所述第二电极的电场作用下发生变色反应;
每个所述第二电致变色层朝向所述衬底一侧设置有第三电极,每个所述第一电致变色层远离所述第一衬底一侧设置有第四电极;所述第一电致变色层可在所述第三电极与所述第四电极的电场作用下发生变色反应。
第二方面,本申请实施例提供了一种显示面板驱动方法,所述驱动方法用于对如上所述的显示面板进行驱动,其中,所述驱动方法包括:
在息屏状态下,在所述第一电极与所述第二电极之间施加第一电压,以使所述第一电致变色层由透明状态变化至第一目标色;
在息屏状态下,在所述第三电极与所述第四电极之间施加第二电压,以使所述第二电致变色层由原色变化至第二目标色,其中,所述原色为黑色或灰色。
第三方面,本申请实施例提供了一种电子设备,该电子设备包括处理器、存储器及存储在所述存储器上并可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如第一方面所述的方法的步骤。
第四方面,本申请实施例提供了一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如第一方面所述的方法的步骤。
第五方面,本申请实施例提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现如第一方面所述的方法。
在本申请实施例中,显示面板包括显示基板,显示基板包括衬底及设置于衬底上的像素界定层;上述像素界定层包括间隔设置的多个像素界定部,至少部分上述像素界定部之间的区域间隔设置有有机发光功能层及第二电致变色层;每个上述有机发光功能层上层叠设置有第一电极、第一电致变色层与第二电极;上述第一电致变色层可在上述第一电极与所述第二电极的电场作用下发生变色反应;每个上述第二电致变色层朝向上述衬底一侧设置有第 三电极,每个上述第一电致变色层远离上述衬底一侧设置有第四电极;上述第一电致变色层可在上述第三电极与所述第四电极的电场作用下发生变色反应。上述显示面板中,在至少部分像素界定部之间的区域间隔设置有有机发光功能层及第二电致变色层,因为第一电致变色层及第二电致变色层可在电场作用下发生可逆的变色反应,因而可以在显示面板息屏时,通过在第一电极与第二电极上施加电压,使得第一电致变色层进行变色调整,以及在第三电极与第四电极上施加电压,使得第二电致变色层进行变色调整,进而使得整个显示面板呈现多彩状态;另外,因为电致变色层在颜色不发生变化的情况下不会再消耗电能,上述多彩图案的呈现方式的功耗远低于现有屏保方式的功耗。
本申请的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本申请的实践了解到。
附图说明
图1是本申请实施例提供的显示面板的整体结构示意图;
图2是图1中A部分的局部放大图;
图3是图2中的B向截面示意图;
图4是图1中的屏下摄像头所在C部分的透光效果示意图;
图5是图4中的D向截面示意图;
图6是图1中A部分的透光效果示意图;
图7是图1中的屏下摄像头所在C部分的分区变色效果示意图;
图8是本申请实施例提供的电子设备的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员获得的所有其他实施 例,都属于本申请保护的范围。
本申请的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施。此外,说明书以及权利要求中“和/或”表示所连接对象的至少其中之一,字符“/”,一般表示前后关联对象是一种“或”的关系。
下面结合附图,通过具体的实施例及其应用场景对本申请实施例提供的显示面板进行详细地说明。
请参阅图1~3,上述显示面板20包括显示基板10,上述显示基板10包括衬底101及设置于上述衬底101上的像素界定层102;
上述像素界定层102包括间隔设置的多个像素界定部103,至少部分上述像素界定部103之间的区域间隔设置有有机发光功能层104及第二电致变色层108;每个上述有机发光功能层104上层叠设置有第一电极105、第一电致变色层106与第二电极107;上述第一电致变色层106在上述第一电极105与所述第二电极107的电场作用下发生变色反应;每个上述第二电致变色层108朝向上述衬底101一侧设置有第三电极109,每个上述第一电致变色层106远离上述衬底101一侧设置有第四电极110;上述第一电致变色层106在上述第三电极109与上述第四电极110的电场作用下发生变色反应。
因为像素界定部103遍布于像素界定层,且至少部分上述像素界定部103之间的区域间隔设置有有机发光功能层104及第二电致变色层108,也即可以仅是部分上述像素界定部103之间的区域间隔设置有有机发光功能层104及第二电致变色层108,或者全部上述像素界定部103之间的区域间隔设置有有机发光功能层104及第二电致变色层108;其中,有机发光功能层104用于在显示面板需要进行画面显示时发光呈现对应的颜色,而第一电致变色层106则用于在息屏状态下,在第一电极105与第二电极107之间的电场作用下发生变色反应呈现对应的颜色,以及在显示面板需要进行画面显示时, 在第一电极105与第二电极107之间的电场作用下变换为透明状态;第二电致变色层108则用于在息屏状态下,在第三电极109与第四电极110之间的电场作用下发生变色反应呈现对应的目标颜色,以及在显示面板需要进行画面显示时,在第三电极109与第四电极110之间的电场作用下变换为黑色或灰色,实现对底下电极等线路遮光,增强颜色纯净度,提升画面显示效果。
本申请实施例所提供的显示面板,因为第一电致变色层106及第二电致变色层108可在电场作用下发生可逆的变色反应,因而可以在显示面板息屏时,通过在第一电极105与第二电极107上施加电压,使得第一电致变色层106进行变色调整,以及在第三电极109与第四电极110上施加电压,使得第二电致变色层108进行变色调整,通过控制不同位置的第一电致变色层106及第二电致变色层108进行不同的颜色变换,即可以使得整个显示面板20呈现多彩状态;另外,因为电致变色层在颜色不发生变化的情况下不会再消耗电能,上述多彩图案的呈现方式的功耗远低于现有屏保方式的功耗。
本申请实施例中,上述显示基板10还包括多个薄膜晶体管112,多个薄膜晶体管112均位于上述衬底101与上述像素界定层102之间;每个有机发光功能层104经由对应的第七电极111电性连接一个上述薄膜晶体管112,记为第一薄膜晶体管112,上述第一薄膜晶体管用于给上述第七电极111施加驱动信号,且每个上述有机发光功能层104远离上述衬底101一侧与上述第一电极105导通或接触,然后将第一电极105与第七电极111中二者之一作为阳极,并将第一电极105与第七电极111中二者之另一作为阴极,并结合上述第一薄膜晶体管的开关作用,即可以实现控制相应有机发光功能层104对应的子像素单元的发光或不发光。其中,上述有机发光功能层104为OLED像素子单元,具体可以为红光像素子单元、绿光像素子单元或蓝光像素子单元。
同时,通过控制电路控制上述第二电极107的电压大小,即可以实现在第一电致变色层106上施加使其进行变色反应的电场作用;
另外,每个上述第二电致变色层108经由对应的上述第四电极110电性 连接一个上述薄膜晶体管112,记为第二薄膜晶体管,上述第二薄膜晶体管用于给上述第三电极109施加驱动信号;且每个上述第二电致发光层104远离上述衬底101一侧与上述第四电极110导通或接触,然后将第三电极109与第四电极110中二者之一作为阳极,并将第三电极109与第四电极110二者中之另一作为阴极,并结合上述第二薄膜晶体管的开关作用,即可以实现在第二电致变色层108上施加使其进行变色反应的电场作用。
因为每个上述第三电极109均与一个第二薄膜晶体管电连接,因而每个第二电致变色层108的变色反应可单独控制,通过选择不同的电致变色材料填充上述第二电致变色层108即可以满足不同的颜色显示需求;具体地,将分别可变化显示红、绿、蓝颜色的三种第二电致变色层108相邻排布,组成一个像素单元,因为由红、绿、蓝三种颜色可以组合出各种颜色,因而通过控制该像素单元所包含的三种第二电致变色层108的变色反应或不变色,即可以组合呈现出需要的颜色,进而在显示面板息屏后低功耗地进行图案显示,呈现息屏图案、彩色外观的显示,如时钟图案等。
其中,上述阴极及触控驱动电极的材质可以为金属银Ag、铜Cu、镁Mg、铝Al、金属网格Metal Mesh、金属氧化物ITO、氧化铟锡中的一种或多种。
具体地,上述薄膜晶体管112包括依次位于衬底101之上的缓冲层21、IGZO(Indium Gallium Zinc Oxide,铟镓锌氧化物)有源层22、栅绝缘层23、栅极24、层间介质层25,在层间介质层之上的源极(S极)26、漏极(D极)27,覆盖源极26、漏极(G极)27、栅极24的平坦化层28;上述第七电极111与第一薄膜晶体管的上述漏极24连接,第三电极109与第二薄膜晶体管的上述漏极94连接,第五电极与第三薄膜晶体管的上述漏极94连接。
上述有源层22的材料可以为半导体a-Si非晶硅(Amorphous silicon,a-Si)、半导体低温多晶硅(low temperature poly silicon,LTPS)或金属氧化物铟镓锌氧化物IGZO等;上述漏极27的材料可以为金属钛Ti、铝Al、钼Mo、银Ag、镁Mg等;缓冲层21及平坦化层298的材料可以为树脂-负性光阻等;层间介质层25的材料可以为氮化硅SiNx、二氧化硅SiO2、氮氧化硅SiNOx 等。
可选地,在一个薄膜晶体管112中,包括由N个上述源极26、漏极27、栅极24组成的单元,且前一个单元的漏极27与下一个单元的栅极24连接,且第一个单元的源极26与控制电路的阳极连接,而第N个单元的漏极24与上述第三电极109连接。其中,上述N为正整数,例如为1、2或9。
可选地,在一种具体实施方式中,上述第一电极105与上述第四电极110一体化设置。因为上述第一电极105及第四电极110无需连接控制开关电路,因而可以同层设置,以简化结构,也便于制作。
可选地,在一种实施方式中,将本申请实施例所提供的显示面板应用于具有屏下摄像头的电子设备,请参阅图1~图3及图4~图5,此时部分上述像素界定部103之间的区域间隔设置有有机发光功能层104及第二电致变色层108,而其余上述像素界定部103之间的区域间隔设置有第三电致变色层113,上述屏下摄像头与设置有第三电致变色层113的区域相对应,该屏下摄像头投影位置对应的像素界定层区域为未设置有机发光功能层104及第二电致变色层108的区域,而仅是设置了上述第三电致变色层113;其中,每个上述第三电致变色层113朝向上述衬底101一侧设置有第五电极114,每个上述第三电致变色层113远离上述衬底101一侧设置有第六电极115;上述第三电致变色层113在上述第五电极114与上述第六电极115的电场作用下发生变色反应。
其中,每个上述第五电极114电性连接一个薄膜晶体管112,记为第三薄膜晶体管,上述第三薄膜晶体管用于给上述第五电极114施加驱动信号,从而控制上述第五电极114的电压大小,即可以实现在第三电致变色层113上施加使其进行变色反应的电场作用。
需要特别说明的是,上述第三电致变色层113在电致变色前呈透明状态,或可在电场作用下变化至呈透明状态,因而可以在需要使用屏下摄像头时,通过第三薄膜晶体管控制在第五电极114与第六电极115之间施加的电压作用,使得上述第三电致变色层113变化至透明状态,便于屏下摄像头采光; 同时,在息屏或需要进行显示时,通过第三薄膜晶体管控制在第五电极114与第六电极115之间施加的电压作用,使得上述第三电致变色层113变化至目标色,进而控制显示面板显示需要的图案及颜色。
其中,上述第五电极114及第六电极115为透明电极,以进一步减少对光路遮挡,满足屏下摄像头的透光需求。
本实施方式中,屏下摄像头投影位置区域的透光效果如图5所示,而非屏下摄像头投影位置区域的透光效果如图6所示;其中,由第三电致变色层113及对应的第五电极114、第六电极115和第三薄膜晶体管组成一个电致变色子像素单元,而相邻的电致变色子像素单元之间使用像素界定部103隔开,像素界定部103宽度可根据需求设计。电致变色子像素单元密度可以为OLED像素密度的两倍,以提高显示效果,当然可根据需求设计电致变色子像素单元密度与OLED的一样,或者三倍、四倍等。
本实施方式中,因为每个上述第五电极114均与一个第三薄膜晶体管电连接,因而每个第三电致变色层113的变色反应可单独控制,通过选择不同的电致变色材料填充上述第三电致变色层113即可以满足不同的颜色显示需求;具体地,将分别可变化显示红、绿、蓝颜色的三种第三电致变色层113相邻排布,组成一个像素单元,因为由红、绿、蓝三种颜色可以组合出各种颜色,因而通过控制该像素单元所包含的三种第二电致变色层108的变色反应或不变色,即可以组合呈现出需要的颜色,进而在显示面板息屏后低功耗地进行息屏图案显示,以及在需要进行正常的显示时进行屏幕图案显示,实现显示面板的无孔、全面屏显示。
可选地,在一种具体实施方式中,上述其余像素界定部103,包括位于上述屏下摄像头投影区域的像素界定部103以及位于补光灯投影区域的像素界定部103。该具体实施方式中,将为屏下摄像头进行补光的补光灯所在位置投影区域也纳入设置第三电致变色层113的区域,可以在使用屏下摄像头时,控制该补光灯投影区域对应的第三电致变色层113变为透明状态,以便于为屏下摄像头进行补光拍照的光线通过。
可选地,在一种具体实施方式中,在具体使用屏下摄像头时,根据外界环境的光线强度,不同位置的上述第三电致变色层113可在第五电极114与第六电极115之间施加的不同电压作用下,变化至透明状态或黑色状态,从而实现精确调整屏下摄像头进光量的光圈设计。例如光线太强时,控制处于外围区域的第三电致变色层113变黑色进行遮光,而控制处于内部区域的第三电致变色层113处于透明状态进行透光,实现设置有所述第三电致变色层113的区域的分区变色,从而获得更合适的进光量,提升拍照或摄像效果,其中,由大到小的进光量需要对应的分区变色效果如图7所示。
上述具体实施方式中,通过薄膜晶体管112控制屏下摄像头区域的由第三电致变色层113组成的像素单元,根据不同光照强度场景需求进行透明或黑色显示,形成光圈图案,圆形、方形、不规则形状等均可以实现,且无需预先设计图案。
本申请实施例中,上述第一电致变色层106上覆盖有第二电极107,上述第二电致变色层108上覆盖有第四电极110,上述第三电致变色层113上覆盖有第六电极115,且在第二电极107、第四电极110、第六电极115及像素界定部103上依次层叠设置有薄膜封装层116及聚酰亚胺薄膜层117,实现对有机发光功能层104、第一电致变色层106、第二电致变色层108等各发光的子像素单元的封装。
其中,因为上述第一电极105为现有显示基板10的固有电极结构,且因为在显示面板20处于息屏状态下时,上述第一电极105无需用于为显示面板20显示画面供电,上述第二电极107为单独设置的用于为第一电致变色层106进行变色反应提供电场作用的电极,因而上述电致变色层106变色调整的实现不会影响显示面板20的原有显示功能。
本申请实施例中,第一电致变色层106、第二电致变色层108及第三电致变色层113的结构类似。下面以第二电致变色层108为例作进一步解释说明。
本申请实施例中,上述第一电致变色层106、上述第二电致变色层108 及上述第三电致变色层113均包括依次层叠设置的电致变色材料子层81、离子传导子层82及离子储存子层83。其中,离子传导子层82位于电致变色材料子层81及离子储存子层83之间,且离子传导子层82与电致变色材料子层81及离子储存子层83均直接接触。
其中,电致变色材料层81的材料的光学属性如反射率、透过率、吸收率等在外加电场的作用下发生稳定、可逆的颜色变化的现象,其可以为无机电致变色材料或有机电致变色材料。可选地,上述电致变色材料子层81的材料具体可以为聚吡咯类电致变色材料、聚噻吩类电致变色材料、聚呋喃类电致变色材料和聚吲哚类电致变色材料中的一种或多种。聚苯胺可以通过电化学过程或者苯胺的化学氧化形成;在不同的氧化态下,聚苯胺可以呈现为浅黄色或者深绿/黑色。
其中,离子传导子层82允许离子在电致变色子层81和离子储存子层83之间移动,但是会阻止电子通过,也即上述离子传导子层82导离子而不导电子,其型态可以为固态、液态或胶态。
其中,离子储存子层83有储存离子的功用,并在变色过程中供应所需的离子,起到平衡电荷总量的作用。离子储存子层83也可以使用与电致变色材料子层81的电致变色材料性能相反的电致变色材料,可以在变色过程中起到离子互补的作用。
可选地,在一种实施方式中,第二电致变色层108中的上述电致变色材料子层81与第三电极109电连接105,第二电致变色层108中的上述离子储存子层83与上述第四电极110电连接。在本实施方式中,电致变色材料子层81与第三电极109接触,而离子储存子层83与第四电极110接触,使得在电致变色层106进行变色调整时,于靠近第三电极109一侧进行变色反应。
可选地,在另一种实施方式中,第二电致变色层108中的上述离子储存子层83与第三电极109电105连接,第二电致变色层108中的上述电致变色材料子层81与上述第四电极110电连接。在本实施方式中,电致变色材料子层81与第四电极110接触,而离子储存子层83与第三电极109接触,使得 在第二电致变色层108进行变色调整时,于远离第四电极110一侧进行变色反应。
可选地,对于第二电致变色层108,其所包括的上述电致变色材料子层81在电致变色前呈黑色或灰色。本申请实施例中的电致变色材料子层81在电致变色前呈黑色或灰色,使得包括上述显示基板10的显示面板20进行通电显示时,利用呈黑色或灰色的第二电致变色层108对第二电致变色层108的投影区域进行遮光,提示画面显示效果。
可选地,对于第一电致变色层106及第三电致变色层113,其所包括的上述电致变色材料子层81在电致变色前呈透明状态,使得上述显示面板20进行通电显示时,第一电致变色层106不会对有机发光功能层104的显示造成遮挡,以及在需要使用屏下摄像头时,由上述第三电致变色层113形成供上述屏下摄像头采光的光圈。
可选地,如图3或4所示,上述显示面板20还包括盖板118和触控层119;上述盖板118、上述触控层119以及上述显示基板10依次层叠设置,上述盖板118与上述触控层119之间通过光学透明胶120粘结。因为在显示面板20处于显示状态时,第二电致变色层108呈黑色或灰色等暗颜色状态,可以对底下薄膜晶体管112等线路遮光,因而可将现有微发光二极管显示面板或量子点显示面板等显示面板中的偏光片取消掉,既不影响显示面板的显示效果,又使得整个显示面板更为纤薄。
本申请实施例所提供的显示面板20中,上述触控层119包括触控驱动电极及触控感应电极,上述触控驱动电极位于触控层119朝向衬底101一侧,上述触控感应电极位于触控层119远离衬底101一侧;当触控发生时,触控点附近的触控驱动电极与触控感应电极之间的距离会发生变化,使得二者之间的电容耦合受到影响而产生感应信号,进而可计算出触控点位置。
本申请实施例还提供的一种显示面板驱动方法,应用于对上述显示面板进行驱动,其中,该方法可以包括步骤100~步骤200。
本申请实施例中,该方法应用于具有屏下摄像头的电子设备,该电子设 备可以是手机、平板电脑、笔记本电脑、掌上电脑、车载电子设备、可穿戴设备、超级移动个人计算机(ultra-mobile personal computer,UMPC)、上网本或者个人数字助理(personal digital assistant,PDA)等移动电子设备,也可以是个人计算机(personal computer,PC)、电视机(television,TV)、柜员机或者自助机等非移动电子设备。
步骤100、在息屏状态下,在所述第一电极与所述第二电极之间施加第一电压,以使所述第一电致变色层由透明状态变化至第一目标色。
上述步骤200中,第一电压为电致变色层中电致变色材料的变色电压。因为在正常显示时,为了有机发光功能层的正常发光显示,需要控制第一电致变色层处于透明状态,而在息屏状态下,第一电极无需给显示面板显示画面供电,可用于为第一电致变色层的变色反应提供电场作用,并通过在第二电极及第一电极之间施加使第一电致变色层进行变色反应的第一电压,使得第一电致变色层由透明状态变化为目标色状态,从而使整个显示面板呈现多彩状态;另外,因为第一电致变色层在颜色不发生变化的情况下不会再消耗电能,上述多彩图案的呈现方式的功耗远低于现有屏保方式的功耗。
步骤200、在息屏状态下,在所述第三电极与所述第四电极之间施加第二电压,以使所述第二电致变色层由原色变化至第二目标色,其中,所述原色为黑色或灰色。
上述步骤200中,第二电压为第二电致变色层中电致变色材料的变色电压。在息屏状态下,通过在第三电极及第四电极之间施加使第二电致变色层进行变色反应的第二电压,使得第二电致变色层由黑色或灰色的原色状态变化为目标色状态,从而使整个显示面板呈现多彩状态;另外,因为电致变色层在颜色不发生变化的情况下不会再消耗电能,上述多彩图案的呈现方式的功耗远低于现有屏保方式的功耗。
可选地,在一种实施方式中,在第二电致变色层可由原色经不同的强度的电场作用变化至多种颜色的情况下,上述步骤200具体包括步骤211~213:
步骤211、在息屏状态下,确定目标色;
步骤212、根据所述目标色与电压值之间的对应关系,确定第二电压;
步骤213、在所述第三电极与所述第四电极之间施加所述第二电压,以使所述电致变色层由原色变化至第二目标色,所述原色为黑色或灰色。
上述步骤211中,第二目标色为用户预先设置的息屏显示颜色,即在进入息屏状态时,获取用户预先设置的颜色,作为上述第二目标色。
上述步骤212中,上述对应关系为预先根据第二电致变色层的电致变色性能确定的电压值与颜色之间的对应关系,表明了第二电致变色层在变化值至目标色至所需的电压值。因而在确定了第二目标色后,可以根据上述对应关系,确定目标电压,作为上述第二电压。
上述步骤113中,通过在第三电极与第四电极之间施加第二电压,即可以使得位于第三电极与第四电极之间的第二电致变色层接受电场作用下进行变色反应,并变化至第二目标色。
上述实施方式适用于单个第二电致变色层可通过不同电场作用变化值不同颜色的场景,根据所需变化的目标色与电压值之间的对应关系,在第三电极与第四电极之间施加对应的第二电压,即可以将第二电致变色层变化至不同的颜色状态。
可选地,在一种实施方式中,上述驱动方法还包括步骤300~步骤400:
步骤300、在接收到亮屏信号的情况下,在所述第一电极与所述第二电极之间持续施加预设时长的第三电压,以使所述第一电致变色层由所述第一目标色恢复至所述透明状态;其中,所述第三电压与所述第一电压大小相等,且方向相反。
上述步骤300中,在接收到亮屏信号的情况下,说明用户需要使用显示面板,但因为此时第一电致变色层还处于第一目标色状态,而该第一目标色一般为彩色状态,为了不影响显示面板的正常显示,需要将第一电致变色层恢复至黑色或灰色的原色状态,因而在第二电极与第一电极之间持续之间预设时长的第二电压,因为该第二电压与第一电压大小相等且方向相反,即可以将电致变色层从目标色状态恢复至原色状态。在第一电致变色层恢复至透 明状态后,第一电致变色层不会影响显示面板的显示,因而第一电极即可以复用为向各有机发光功能层供电,显示面板进入正常显示状态,避免了在显示面板正常显示时因电致变色层变换至有色状态而影响有机发光功能层显示的问题。
其中,因为电致变色层需要在变色电压下持续作用预设时长才会完成变色反应,因而在控制第一电致变色层恢复至透明状态时,需要控制上述第三电压持续第一预设时长,使得第一电致变色层可以接收第一预设时长的第三电压对应的电场作用完成变色反应。上述第一预设时长由第一电致变色层中的电致变色材料确定。
步骤400、在接收到亮屏信号的情况下,在所述第三电极与所述第四电极之间持续施加第二预设时长的第四电压,以使所述第二电致变色层由所述第二目标色恢复至所述原色;其中,所述第四电压与所述第二电压大小相等,且方向相反。
上述步骤400中,在接收到亮屏信号的情况下,说明用户需要使用显示面板,但因为此时第二电致变色层还处于第二目标色状态,而该第二目标色一般为彩色状态,为了不影响显示面板的正常显示,需要将第二电致变色层恢复至黑色或灰色的原色状态,因而在第三电极与第四电极之间持续之间预设时长的第四电压,因为该第四电压与第三电压大小相等且方向相反,即可以将第二电致变色层从第二目标色状态恢复至原色状态,避免了在显示面板正常显示时因第二电致变色层变换至除黑色和灰色外的其他颜色而影响显示效果的问题。
其中,因为电致变色层需要在变色电压下持续作用预设时长才会完成变色反应,因而在控制电致变色层恢复至原色时,需要控制上述第四电压持续第二预设时长,使得电致变色层可以接收第二预设时长的第四电压对应的电场作用完成变色反应。上述第二预设时长由第二电致变色层中的电致变色材料确定。
上述实施方式中,在接收到亮屏信号的情况下,先控制第一电致变色层 恢复至透明状态,以及控制第二电致变色层恢复至黑色或灰色状态,然后再驱动有机发光功能层进入发光显示状态,避免了在显示面板正常显示时因第一电致变色层显示颜色、以及第二电致变色层显示除黑色和灰色外的其他颜色而影响显示面板的显示效果的问题。
可选地,本申请实施例还提供一种电子设备,包括上述显示面板,处理器,存储器,存储在存储器上并可在所述处理器上运行的程序或指令,该程序或指令被处理器执行时实现上述显示面板驱动方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
需要注意的是,本申请实施例中的电子设备包括上述所述的移动电子设备和非移动电子设备。
图8为实现本申请实施例的一种电子设备的硬件结构示意图。
该电子设备800包括但不限于:射频单元8001、网络模块8002、音频输出单元8003、输入单元8004、传感器8005、显示单元8006、用户输入单元8007、接口单元8008、存储器8009、以及处理器8010等部件。
本领域技术人员可以理解,电子设备800还可以包括给各个部件供电的电源(比如电池),电源可以通过电源管理系统与处理器8010逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。图8中示出的电子设备结构并不构成对电子设备的限定,电子设备可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置,在此不再赘述。
其中,显示单元8006包括的显示面板80061,在本申请实施例中包括上述显示基板;
处理器8010,用于在息屏状态下,在所述第一电极与所述第二电极之间施加第一电压,以使所述第一电致变色层由透明状态变化至第一目标色;在息屏状态下,在所述第三电极与所述第四电极之间施加第二电压,以使所述第二电致变色层由原色变化至第二目标色,其中,所述原色为黑色或灰色。
本申请实施例提供的电子设备,在息屏状态下,通过在第一电极与第二电极上施加电压,使得第一电致变色层进行变色调整,以及在第三电极与第 四电极上施加电压,使得第二电致变色层进行变色调整,进而使得整个显示面板呈现多彩状态;另外,因为电致变色层在颜色不发生变化的情况下不会再消耗电能,上述多彩图案的呈现方式的功耗远低于现有屏保方式的功耗。
可选地,所述处理器8010,还用于在接收到亮屏信号的情况下,在所述第一电极与所述第二电极之间持续施加第一预设时长的第三电压,以使所述第一电致变色层由所述第一目标色恢复至所述透明状态;其中,所述第三电压与所述第一电压大小相等,且方向相反;在接收到亮屏信号的情况下,在所述第三电极与所述第四电极之间持续施加第二预设时长的第四电压,以使所述第二电致变色层由所述第二目标色恢复至所述原色;其中,所述第四电压与所述第二电压大小相等,且方向相反。
本申请实施例还提供一种可读存储介质,所述可读存储介质上存储有程序或指令,该程序或指令被处理器执行时实现上述显示面板驱动方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
其中,所述处理器为上述实施例中所述的电子设备中的处理器。所述可读存储介质,包括计算机可读存储介质,如计算机只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等。
本申请实施例另提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现上述显示面板驱动方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片、系统芯片、芯片系统或片上系统芯片等。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情 况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。此外,需要指出的是,本申请实施方式中的方法和装置的范围不限按示出或讨论的顺序来执行功能,还可包括根据所涉及的功能按基本同时的方式或按相反的顺序来执行功能,例如,可以按不同于所描述的次序来执行所描述的方法,并且还可以添加、省去、或组合各种步骤。另外,参照某些示例所描述的特征可在其他示例中被组合。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以计算机软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服务器,或者网络设备等)执行本申请各个实施例所述的方法。
上面结合附图对本申请的实施例进行了描述,但是本申请并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本申请的启示下,在不脱离本申请宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本申请的保护之内。

Claims (16)

  1. 一种显示面板,所述显示面板包括显示基板,所述显示基板包括衬底及设置于所述衬底上的像素界定层;
    所述像素界定层包括间隔设置的多个像素界定部,至少部分所述像素界定部之间的区域间隔设置有有机发光功能层及第二电致变色层;
    每个所述有机发光功能层上层叠设置有第一电极、第一电致变色层与第二电极;所述第一电致变色层在所述第一电极与所述第二电极的电场作用下发生变色反应;
    每个所述第二电致变色层朝向所述衬底一侧设置有第三电极,每个所述第一电致变色层远离所述衬底一侧设置有第四电极;所述第一电致变色层在所述第三电极与所述第四电极的电场作用下发生变色反应。
  2. 根据权利要求1所述的显示面板,其中,所述第二电致变色层包括依次层叠设置的电致变色材料层、离子传导层及离子储存层。
  3. 根据权利要求2所述的显示面板,其中,所述电致变色材料层与所述第三电极电连接,所述离子储存层与所述第四电极电连接。
  4. 根据权利要求2所述的显示面板,其中,所述离子储存层与所述第三电极电连接,所述电致变色材料层与所述第四电极电连接。
  5. 根据权利要求2所述的显示面板,其中,所述第一电极与所述第四电极一体化设置。
  6. 根据权利要求2所述的显示面板,其中,所述电致变色材料层的材料为聚苯胺、聚吡咯类电致变色材料、聚噻吩类电致变色材料、聚呋喃类电致变色材料和聚吲哚类电致变色材料中的一种或多种。
  7. 根据权利要求1所述的显示面板,其中,应用于具有屏下摄像头的电子设备,部分所述像素界定部之间的区域间隔设置有有机发光功能层及第二电致变色层,其余所述像素界定部之间的区域间隔设置有第三电致变色层,所述屏下摄像头与设置有所述第三电致变色层的区域相对应;
    每个所述第三电致变色层朝向所述衬底一侧设置有第五电极,每个所述第三电致变色层远离所述衬底一侧设置有第六电极;所述第三电致变色层在所述第五电极与所述第六电极的电场作用下发生变色反应。
  8. 根据权利要求7所述的显示面板,其中,所述其余所述像素界定部,包括位于所述屏下摄像头投影区域的像素界定部以及位于补光灯投影区域的像素界定部。
  9. 根据权利要求8所述的显示面板,其中,在息屏或需要进行显示时,所述第三电致变色层可在所述第五电极与所述第六电极之间施加的电压作用下变化至目标色;
    在使用所述屏下摄像头时,所述第三电致变色层可在所述第五电极与所述第六电极之间施加的电压作用下变化至透明状态。
  10. 根据权利要求7所述的显示面板,其中,所述显示基板还包括多个薄膜晶体管,所述多个薄膜晶体管位于所述衬底与所述像素界定层之间;
    每个所述有机发光功能层均与所述第一电极电性连接,且每个所述有机发光功能层经由对应的第七电极电性连接一个第一薄膜晶体管,所述第一薄膜晶体管用于给所述第七电极施加驱动信号;
    每个所述第二电致变色层经由对应的所述第三电极电性连接一个第二薄膜晶体管,所述第二薄膜晶体管用于给所述第三电极施加驱动信号;
    每个所述第三电致变色层经由对应的所述第五电极电性连接一个第三薄膜晶体管,所述第三薄膜晶体管用于给所述第五电极施加驱动信号。
  11. 根据权利要求1所述的显示面板,其中,所述显示面板还包括盖板和触控层;
    所述盖板、所述触控层及所述显示基板依次层叠设置,所述盖板与所述触控层之间通过透明绝缘胶粘结。
  12. 一种显示面板驱动方法,所述驱动方法用于对权利要求1~11中任一项所述的显示面板进行驱动,所述显示面板驱动方法包括:
    在息屏状态下,在所述第一电极与所述第二电极之间施加第一电压,以 使所述第一电致变色层由透明状态变化至第一目标色;
    在息屏状态下,在所述第三电极与所述第四电极之间施加第二电压,以使所述第二电致变色层由原色变化至第二目标色,其中,所述原色为黑色或灰色。
  13. 根据权利要求12所述的显示面板驱动方法,其中,还包括:
    在接收到亮屏信号的情况下,在所述第一电极与所述第二电极之间持续施加第一预设时长的第三电压,以使所述第一电致变色层由所述第一目标色恢复至所述透明状态;其中,所述第三电压与所述第一电压大小相等,且方向相反;
    在接收到亮屏信号的情况下,在所述第三电极与所述第四电极之间持续施加第二预设时长的第四电压,以使所述第二电致变色层由所述第二目标色恢复至所述原色;其中,所述第四电压与所述第二电压大小相等,且方向相反。
  14. 一种电子设备,包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如权利要求12或13所述的显示面板驱动方法的步骤。
  15. 一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如权利要求12或13所述的显示面板驱动方法的步骤。
  16. 一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现如如权利要求12或13所述的显示面板驱动方法。
PCT/CN2022/082693 2021-03-29 2022-03-24 显示面板、显示面板驱动方法及电子设备 WO2022206535A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110335228.6A CN112965314B (zh) 2021-03-29 2021-03-29 一种显示面板及其驱动方法
CN202110335228.6 2021-03-29

Publications (1)

Publication Number Publication Date
WO2022206535A1 true WO2022206535A1 (zh) 2022-10-06

Family

ID=76278873

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/082693 WO2022206535A1 (zh) 2021-03-29 2022-03-24 显示面板、显示面板驱动方法及电子设备

Country Status (2)

Country Link
CN (1) CN112965314B (zh)
WO (1) WO2022206535A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112965314B (zh) * 2021-03-29 2023-04-18 维沃移动通信有限公司 一种显示面板及其驱动方法
CN115167052A (zh) * 2022-07-18 2022-10-11 重庆长安汽车股份有限公司 基于光线控制的显示基板、制作方法、显示屏及车辆

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011035087A (ja) * 2009-07-31 2011-02-17 Nippon Seiki Co Ltd 有機elパネル
CN109148544A (zh) * 2018-08-30 2019-01-04 合肥鑫晟光电科技有限公司 一种透明显示面板及其制备方法、显示装置
CN109459902A (zh) * 2018-11-20 2019-03-12 Oppo(重庆)智能科技有限公司 电子设备的显示屏盖板、电子设备及电子设备的控制方法
CN111142302A (zh) * 2018-11-02 2020-05-12 京东方科技集团股份有限公司 显示面板及其制作方法及调整其环境光反射强度的方法
CN210723032U (zh) * 2019-10-28 2020-06-09 昆山国显光电有限公司 透明显示面板、显示装置及其显示面板
CN112014989A (zh) * 2019-05-31 2020-12-01 北京小米移动软件有限公司 显示模组、显示设备、显示设备控制方法及存储介质
CN112419879A (zh) * 2020-11-30 2021-02-26 武汉天马微电子有限公司 一种显示面板及显示装置
CN112965314A (zh) * 2021-03-29 2021-06-15 维沃移动通信有限公司 一种显示面板及其驱动方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101833932B (zh) * 2009-03-13 2016-10-05 北京京东方光电科技有限公司 显示区域可控的显示器及其制造和控制方法
CN108987451B (zh) * 2018-08-01 2021-09-24 京东方科技集团股份有限公司 显示面板及其控制方法和显示装置
CN109326222A (zh) * 2018-09-28 2019-02-12 合肥鑫晟光电科技有限公司 一种显示基板及其制备方法、调节方法、显示装置
CN110676300B (zh) * 2019-10-30 2022-02-22 武汉天马微电子有限公司 一种显示面板及其驱动方法、显示装置
CN111308772B (zh) * 2020-02-28 2022-10-11 合肥鑫晟光电科技有限公司 阵列基板及其制备方法、显示面板及其驱动方法
CN111863922A (zh) * 2020-07-30 2020-10-30 福建华佳彩有限公司 一种提高显示效果的面板结构及制作驱动方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011035087A (ja) * 2009-07-31 2011-02-17 Nippon Seiki Co Ltd 有機elパネル
CN109148544A (zh) * 2018-08-30 2019-01-04 合肥鑫晟光电科技有限公司 一种透明显示面板及其制备方法、显示装置
CN111142302A (zh) * 2018-11-02 2020-05-12 京东方科技集团股份有限公司 显示面板及其制作方法及调整其环境光反射强度的方法
CN109459902A (zh) * 2018-11-20 2019-03-12 Oppo(重庆)智能科技有限公司 电子设备的显示屏盖板、电子设备及电子设备的控制方法
CN112014989A (zh) * 2019-05-31 2020-12-01 北京小米移动软件有限公司 显示模组、显示设备、显示设备控制方法及存储介质
CN210723032U (zh) * 2019-10-28 2020-06-09 昆山国显光电有限公司 透明显示面板、显示装置及其显示面板
CN112419879A (zh) * 2020-11-30 2021-02-26 武汉天马微电子有限公司 一种显示面板及显示装置
CN112965314A (zh) * 2021-03-29 2021-06-15 维沃移动通信有限公司 一种显示面板及其驱动方法

Also Published As

Publication number Publication date
CN112965314A (zh) 2021-06-15
CN112965314B (zh) 2023-04-18

Similar Documents

Publication Publication Date Title
US10714557B2 (en) Substrate for display device and display device including the same
US10903291B2 (en) Terminals and display screens
US20200066816A1 (en) Display screens, display devices and methods for manufacturing display screens
US11005064B2 (en) Transparent display substrate and driving method thereof and transparent display device
WO2022206535A1 (zh) 显示面板、显示面板驱动方法及电子设备
WO2020093692A1 (zh) 显示屏及集成有该显示屏的显示装置、盖板
WO2022206541A1 (zh) 显示基板、显示面板、显示面板驱动方法及电子设备
WO2018192408A1 (zh) 显示面板、显示装置和驱动显示面板的方法
JP4887585B2 (ja) 表示パネルおよびそれを用いた情報表示装置
CN108257514A (zh) 显示屏、显示屏驱动方法及其显示装置
WO2022206539A1 (zh) 显示基板、显示面板、显示面板驱动方法及电子设备
US20140159021A1 (en) Array substrate, method for fabricating the same, and oled display device
KR20180076661A (ko) 표시 장치용 기판과 그를 포함하는 표시 장치
US11778886B2 (en) Display substrate and preparation method thereof, and display apparatus
WO2019062187A1 (zh) 显示屏以及电子设备
KR101352118B1 (ko) 발광 표시장치 및 이의 제조방법
US9711576B2 (en) Display, method of manufacturing display and electronic device
CN109411522A (zh) 一种透明显示面板及其制备方法、显示装置
JP5764185B2 (ja) El表示装置
JP5316590B2 (ja) El表示装置
CN113725233A (zh) 一种透明显示面板、透明显示装置及制作方法
KR101616368B1 (ko) 산화물 박막 트랜지스터의 제조방법
KR102508916B1 (ko) 유기 발광 표시 장치 및 그 제조 방법
JP2013068964A (ja) El表示装置
WO2024098247A1 (zh) 显示面板及其制备方法、显示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22778718

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE