WO2022206443A1 - 上行复用传输方法、装置及存储介质 - Google Patents

上行复用传输方法、装置及存储介质 Download PDF

Info

Publication number
WO2022206443A1
WO2022206443A1 PCT/CN2022/081822 CN2022081822W WO2022206443A1 WO 2022206443 A1 WO2022206443 A1 WO 2022206443A1 CN 2022081822 W CN2022081822 W CN 2022081822W WO 2022206443 A1 WO2022206443 A1 WO 2022206443A1
Authority
WO
WIPO (PCT)
Prior art keywords
multiplexing
time unit
multiplexing process
pucch
uplink
Prior art date
Application number
PCT/CN2022/081822
Other languages
English (en)
French (fr)
Inventor
司倩倩
高雪娟
Original Assignee
大唐移动通信设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大唐移动通信设备有限公司 filed Critical 大唐移动通信设备有限公司
Priority to EP22778626.6A priority Critical patent/EP4319418A1/en
Priority to US18/552,673 priority patent/US20240155576A1/en
Publication of WO2022206443A1 publication Critical patent/WO2022206443A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/1607Details of the supervisory signal
    • H04L1/1671Details of the supervisory signal the supervisory signal being transmitted together with control information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1854Scheduling and prioritising arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0078Timing of allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/56Allocation or scheduling criteria for wireless resources based on priority criteria
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0057Physical resource allocation for CQI
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/56Allocation or scheduling criteria for wireless resources based on priority criteria
    • H04W72/563Allocation or scheduling criteria for wireless resources based on priority criteria of the wireless resources

Definitions

  • the present disclosure relates to the field of communication technologies, and in particular, to an uplink multiplexing transmission method, device, and storage medium.
  • the uplink supports two physical channels with different physical layer priorities.
  • the terminal discards the low-priority physical channel and transmits only the high-priority physical channel, which affects the transmission of uplink control information.
  • the present disclosure provides an uplink multiplexing transmission method, device, and storage medium, so as to reduce the impact of discarding uplink channels when the uplink channels overlap in time domain.
  • the present disclosure provides an uplink multiplexing transmission method, which is applied to a terminal or a base station, and the method includes:
  • Uplink channel transmission is performed based on the processing result of the multiplexing process.
  • the multiplexing process is sequentially performed in each time unit overlapping the target uplink channel time domain until a preset multiplexing end condition is met, including:
  • the multiplexing process is performed in the first time unit overlapping the low-priority PUCCH time domain;
  • the multiplexing process is sequentially performed in each time unit overlapping the target uplink channel time domain, including:
  • All PUCCHs in the time unit of the current multiplexing process are determined as the Q set, and the multiplexing process is performed according to the multiplexing rule in the case of overlapping time domains to obtain PUCCHs that do not overlap in the time domain in the time unit of the current multiplexing process.
  • the process of sequentially performing the multiplexing process in each time unit overlapping the target uplink channel time domain further includes:
  • a discard operation is performed on at least one uplink channel in the Q set, and the preset condition includes:
  • the uplink channel obtained through the multiplexing process still spans multiple time units;
  • the uplink channel obtained through the multiplexing process is located in another time unit;
  • the starting position of the uplink channel obtained through the multiplexing process is earlier than the starting position of the time unit of the current multiplexing process.
  • the performing a discarding operation on at least one uplink channel in the Q set includes:
  • the uplink channels carrying the low-priority UCI types are discarded.
  • the preset priority order of the UCI type is: hybrid automatic repeat request acknowledgement information HARQ-ACK>scheduling request information SR>channel state information CSI.
  • the method further includes:
  • the at least two uplink channels are at least two uplink channels with different physical layer priorities
  • Described determining the time unit of the multiplexing process including:
  • the time unit of the multiplexing process is determined according to the transmission time units of HARQ-ACKs of different physical layer priorities.
  • the transmission time unit of HARQ-ACK according to different physical layer priorities is determined as the time unit of the multiplexing process, including:
  • the transmission time unit of the high-priority HARQ-ACK in different physical layer priorities is determined as the time unit of the multiplexing process.
  • the at least two uplink channels are at least two uplink channels of different types
  • Described determining the time unit of the multiplexing process including:
  • a transmission time unit of an uplink channel of the target type in the at least two uplink channels is determined as a time unit of the multiplexing process.
  • the at least two uplink channels of different types include MBS PUCCH and unicast PUCCH.
  • the method further includes:
  • the PUCCH and the physical uplink shared channel PUSCH in the processing result of the multiplexing process overlap in the time domain, if it is determined that the terminal supports parallel transmission of the PUCCH and the PUSCH, the PUCCH and the PUSCH are simultaneously transmitted;
  • the terminal does not support the parallel transmission of the PUCCH and the PUSCH, the PUCCH and the PUSCH are multiplexed for transmission, or one of the uplink channels is discarded.
  • the present disclosure provides an uplink multiplexing transmission device, including a memory, a transceiver, and a processor:
  • a memory for storing a computer program
  • a transceiver for sending and receiving data under the control of the processor
  • a processor for reading the computer program in the memory and performing the following operations:
  • Uplink channel transmission is performed based on the processing result of the multiplexing process.
  • the processor sequentially performs the multiplexing process in each time unit overlapping the target uplink channel time domain until a preset multiplexing end condition is met, and is used for:
  • the multiplexing process is performed in the first time unit overlapping the low-priority PUCCH time domain;
  • the processor when the processor sequentially performs the multiplexing process in each time unit overlapping the target uplink channel time domain, the processor is configured to:
  • All PUCCHs in the time unit of the current multiplexing process are determined as the Q set, and the multiplexing process is performed according to the multiplexing rule in the case of overlapping time domains to obtain PUCCHs that do not overlap in the time domain in the time unit of the current multiplexing process.
  • the processor in the process of sequentially performing the multiplexing process in each time unit overlapping the target uplink channel time domain, is further configured to:
  • a discard operation is performed on at least one uplink channel in the Q set, and the preset condition includes:
  • the uplink channel obtained through the multiplexing process still spans multiple time units;
  • the uplink channel obtained through the multiplexing process is located in another time unit;
  • the starting position of the uplink channel obtained through the multiplexing process is earlier than the starting position of the time unit of the current multiplexing process.
  • the processor when the processor performs a discarding operation on at least one uplink channel in the Q set, the processor is configured to:
  • the uplink channels carrying the low-priority UCI types are discarded.
  • the preset priority order of the UCI type is: hybrid automatic repeat request acknowledgement information HARQ-ACK>scheduling request information SR>channel state information CSI.
  • the processor is also used to:
  • the at least two uplink channels are at least two uplink channels with different physical layer priorities
  • the processor When determining the time unit of the multiplexing process, the processor is used for:
  • the time unit of the multiplexing process is determined according to the transmission time units of HARQ-ACKs of different physical layer priorities.
  • the processor determines the transmission time unit of HARQ-ACK according to different physical layer priorities as the time unit of the multiplexing process, it is used to:
  • the transmission time unit of the high-priority HARQ-ACK in different physical layer priorities is determined as the time unit of the multiplexing process.
  • the at least two uplink channels are at least two uplink channels of different types
  • the processor When determining the time unit of the multiplexing process, the processor is used for:
  • a transmission time unit of an uplink channel of the target type in the at least two uplink channels is determined as a time unit of the multiplexing process.
  • the at least two uplink channels of different types include MBS PUCCH and unicast PUCCH.
  • the processor is also used to:
  • the PUCCH and the physical uplink shared channel PUSCH in the processing result of the multiplexing process overlap in the time domain, if it is determined that the terminal supports parallel transmission of the PUCCH and the PUSCH, the PUCCH and the PUSCH are simultaneously transmitted;
  • the terminal does not support the parallel transmission of the PUCCH and the PUSCH, the PUCCH and the PUSCH are multiplexed for transmission, or one of the uplink channels is discarded.
  • the uplink multiplexing transmission device is a terminal or a base station.
  • the present disclosure provides an uplink multiplexing transmission device, which is applied to a terminal or a base station, and the device includes:
  • a determining unit configured to determine the time unit of the multiplexing process when at least two uplink channels of different physical layer priorities or different types overlap in time domain;
  • the multiplexing unit is configured to, for a target uplink channel spanning a plurality of time units in the at least two uplink channels, if the preset multiplexing end condition is not satisfied, sequentially perform the time domain overlap with the target uplink channel in each of the target uplink channels in the time domain.
  • the multiplexing process is performed in the time unit until the preset multiplexing end condition is met, and the final processing result of the multiplexing process is obtained;
  • the transmission unit is used for uplink channel transmission based on the processing result of the multiplexing process.
  • the present disclosure provides a processor-readable storage medium, where the processor-readable storage medium stores a computer program for causing the processor to execute the method according to the first aspect.
  • the present disclosure provides a computer program product comprising a computer program for causing the processor to perform the method of the first aspect.
  • the present disclosure provides an uplink multiplexing transmission method, device and storage medium, which are applied to a terminal or a base station, and determine the time domain of the multiplexing process by determining the time domain of at least two uplink channels of different physical layer priorities or different types of overlap.
  • Time unit for a target uplink channel spanning multiple time units in at least two uplink channels, if the preset multiplexing end condition is not met, the multiplexing process is sequentially performed in each time unit overlapping with the target uplink channel in the time domain , until the preset multiplexing end condition is satisfied, and the final multiplexing process processing result is obtained; uplink channel transmission is performed based on the processing result of the multiplexing process.
  • the multiplexing process is sequentially performed in the time units of each multiplexing process until the preset multiplexing end condition is met, and the uplink control carried by the uplink channels whose time domain overlaps can be performed.
  • the information is multiplexed to other channels, which can effectively perform uplink multiplexing and transmission, and reduce the impact of discarding the uplink channel.
  • FIG. 1a is a schematic diagram of an application scenario of an uplink multiplexing transmission method provided by an embodiment of the present disclosure
  • FIG. 1b is a schematic diagram of an application scenario of an uplink multiplexing transmission method provided by another embodiment of the present disclosure
  • FIG. 2 is a flowchart of an uplink multiplexing transmission method provided by an embodiment of the present disclosure
  • FIG. 3 is a flowchart of an uplink multiplexing transmission method provided by another embodiment of the present disclosure.
  • FIG. 4 is a schematic diagram of a multiplexing process of an uplink multiplexing transmission method provided by an embodiment of the present disclosure
  • FIG. 5 is a schematic diagram of a multiplexing process of an uplink multiplexing transmission method provided by another embodiment of the present disclosure.
  • FIG. 6 is a schematic diagram of a multiplexing process of an uplink multiplexing transmission method provided by another embodiment of the present disclosure.
  • FIG. 7 is a schematic diagram of a multiplexing process of an uplink multiplexing transmission method provided by another embodiment of the present disclosure.
  • FIG. 8 is a schematic diagram of a multiplexing process of an uplink multiplexing transmission method provided by another embodiment of the present disclosure.
  • FIG. 9 is a schematic diagram of a multiplexing process of an uplink multiplexing transmission method provided by another embodiment of the present disclosure.
  • FIG. 10 is a schematic diagram of a multiplexing process of an uplink multiplexing transmission method provided by another embodiment of the present disclosure.
  • FIG. 11 is a schematic diagram of a multiplexing process of an uplink multiplexing transmission method provided by another embodiment of the present disclosure.
  • FIG. 12 is a schematic diagram of a multiplexing process of an uplink multiplexing transmission method provided by another embodiment of the present disclosure.
  • FIG. 13 is a schematic diagram of a multiplexing process of an uplink multiplexing transmission method provided by another embodiment of the present disclosure.
  • FIG. 14 is a schematic diagram of a multiplexing process of an uplink multiplexing transmission method provided by another embodiment of the present disclosure.
  • 15 is a structural diagram of an apparatus for uplink multiplexing and transmission provided by an embodiment of the present disclosure.
  • FIG. 16 is a structural diagram of an apparatus for uplink multiplexing transmission provided by another embodiment of the present disclosure.
  • the term "and/or” describes the association relationship of associated objects, and means that there can be three kinds of relationships, for example, A and/or B, which can mean that A exists alone, A and B exist at the same time, and B exists alone. a situation.
  • the character "/” generally indicates that the associated objects are an "or” relationship.
  • the term “plurality” refers to two or more than two, and other quantifiers are similar.
  • the terminal in order to avoid excessive PAPR (Peak to Average Power Ratio, peak-to-average power ratio), it does not support simultaneous transmission of multiple PUCCHs, nor does it support simultaneous transmission of PUCCH and PUSCH. Therefore, when the time domain resources of PUCCH and PUCCH overlap, the terminal can multiplex UCI on the same PUCCH for transmission; when the time domain resources of PUCCH and PUSCH overlap, the terminal can multiplex UCI on PUSCH for transmission, Thus, there is no need to transmit PUCCH.
  • PAPR Peak to Average Power Ratio, peak-to-average power ratio
  • the terminal takes the time slot as the unit, first handles the conflict between the uplink control channel PUCCHs in a time slot, and takes all the PUCCHs in a time slot as the Q set, according to Multiplexing is performed in a prescribed manner to obtain one or more non-overlapping PUCCHs. Then, the conflict between the PUCCH and the PUSCH is processed, and the UCI borne by the PUCCH is multiplexed on the PUSCH for transmission in a prescribed manner.
  • the above-mentioned time-domain resource overlap or conflict refers to the conflict in the same carrier group.
  • the MCG and SCG in the dual link are each in a carrier group.
  • Primary PUCCH Group and SCG will appear.
  • Secondary PUCCH Group each PUCCH group is a carrier group.
  • the definition of two-level physical layer priority is introduced for the uplink channel in the Rel-16 version of the 5G standard, that is, the uplink supports two physical channels with different physical layer priorities.
  • the terminal discards the low-priority physical channel and transmits only the high-priority physical channel.
  • HARQ-ACK Hybrid Automatic Repeat request-ACKnowledgment, hybrid automatic repeat request confirmation message
  • a Sub-slot transmission scheme is also introduced, and the PUCCH resources of HARQ-ACK are defined within the scope of Sub-slot.
  • a time slot is divided into multiple sub-slots, and HARQ-ACK configurations of different priorities can be different.
  • HARQ-ACK with high priority uses Sub-slot-based transmission
  • HARQ-ACK with low priority uses slot-based transmission.
  • transmission, or high-priority HARQ-ACK and low-priority HARQ-ACK use transmission based on different sub-slot lengths.
  • the terminal determines the multiplexed time unit based on the corresponding configuration information, and uses the time unit as the unit to perform the same operation within the time unit in the Rel-15 manner. Multiplex transmission of physical layer priority uplink channels.
  • the terminal When there is a conflict between uplink channels of the same and different physical layer priorities, the terminal first processes the multiplexing between low-priority uplink channels, then processes the time domain resource overlap between different priorities, and then processes high-priority uplink channels. After multiplexing, the time domain resource overlap between the multiplexed high-priority uplink channel and low-priority uplink channel is finally processed, that is, the terminal discards the low-priority physical channel and only transmits the high-priority physical channel. channel.
  • an embodiment of the present disclosure provides an uplink multiplexing transmission method.
  • the multiplexing process is determined first. For example, the time unit of the multiplexing process is determined based on the transmission time unit of the high-priority HARQ-ACK.
  • the target uplink channel spanning multiple time units, if the preset multiplexing end condition is not met, then the target The multiplexing process is performed in each time unit where the time domain of the uplink channel overlaps, until the preset multiplexing end condition is met, and the final multiplexing process processing result is obtained.
  • uplink channel multiplexing participate in the multiplexing process in each multiplexing process time unit that overlaps with the low-priority PUCCH time domain, and finally perform uplink channel transmission based on the processing result of the multiplexing process, which can be performed in the uplink channel time domain.
  • the impact of discarding some uplink channels is reduced, for example, the transmission of uplink control information is affected.
  • the uplink multiplexing transmission method provided by the embodiment of the present disclosure can be applied to the application scenario shown in FIG. 1a, or the application scenario shown in FIG. 1b, where these application scenarios include a base station and a terminal (Terminal/User Equipment , UE).
  • these application scenarios include a base station and a terminal (Terminal/User Equipment , UE).
  • the terminal UE determines the time unit of the multiplexing process in the case of different physical layer priorities or different types of at least two uplink channels overlapping in time domain; for at least two uplink channels spanning multiple time units If the target uplink channel does not meet the preset multiplexing end condition, then perform the multiplexing process in each time unit overlapping the target uplink channel time domain in turn, until the preset multiplexing end condition is met, and the final multiplexing process is obtained The processing result; based on the processing result of the multiplexing process, perform uplink channel transmission with the base station.
  • the base station determines the time unit of the multiplexing process under the condition that different physical layer priorities or different types of at least two uplink channels overlap in time domain; for the target spanning multiple time units in at least two uplink channels For the uplink channel, if the preset multiplexing end condition is not met, the multiplexing process is sequentially performed in each time unit overlapping the target uplink channel time domain until the preset multiplexing end condition is met, and the final multiplexing process is obtained. Processing result; the uplink information transmitted by the terminal UE through the uplink channel is received based on the processing result of the multiplexing process.
  • the method and the device are conceived based on the same application. Since the principles of the method and the device for solving the problem are similar, the implementation of the device and the method can be referred to each other, and repeated descriptions will not be repeated here.
  • FIG. 2 provides an uplink multiplexing transmission method according to an embodiment of the present disclosure.
  • the uplink multiplexing transmission method is applied to network equipment such as terminals or base stations.
  • network equipment such as terminals or base stations.
  • the specific steps of the method are as follows:
  • the 5G standard Rel-16 version introduces a definition of two levels of physical layer priorities for the uplink channel, that is, the uplink supports physical channels with two different physical layer priorities, including: high priority (High priority) Priority, HP) and low priority (Low Priority, LP) uplink channels.
  • the precondition of this embodiment is that the terminal is configured to support multiplexing transmission with different priorities; if there is a time domain overlap of uplink channels with different physical layer priorities, the multiplexing process needs to be performed, and the time unit of the multiplexing process can be determined first, so that Multiplexing of uplink channels is performed in time units of each multiplexing process.
  • the time unit of the multiplexing process when determining the time unit of the multiplexing process, due to the transmission time of HARQ-ACK in the uplink channels of different physical layer priorities.
  • the units may be different, so the time unit of the multiplexing process may be determined according to the transmission time units of HARQ-ACKs of different physical layer priorities.
  • the transmission time unit of HARQ-ACK may be a slot (Slot) or a sub-slot (Sub-slot).
  • the length of the sub-slot may be 7 or 6 OFDM symbols, or 2 OFDM symbols.
  • the transmission time unit of the high-priority HARQ-ACK in different physical layer priorities may be determined as the time unit of the multiplexing process.
  • time domain conflict between MBS PUCCH and unicast PUCCH requires a multiplexing process, and the multiplexing process can also be determined first.
  • Time unit so as to perform multiplexing of uplink channels in the time unit of each multiplexing process.
  • the transmission time unit of the at least two uplink channels may be compared with each other.
  • the transmission time unit of the short uplink channel is determined as the time unit of the multiplexing process; or, the transmission time unit of the uplink channel of the target type in the at least two uplink channels is determined as the time unit of the multiplexing process.
  • the time unit of the multiplexing process can be determined based on the transmission time corresponding to one of the uplink channels, such as selecting the smallest transmission time unit as the time unit of the multiplexing process.
  • Time unit or always select the transmission time unit of MBS PUCCH as the time unit of the multiplexing process, or always select the transmission time unit of unicast PUCCH as the time unit of the multiplexing process.
  • the time unit of the multiplexing process after the time unit of the multiplexing process is determined, there may be a target uplink channel spanning multiple time units in the at least two upstream channels.
  • the transmission time units between the uplink channels of the units are different, so when the preset multiplexing end condition is not met, the multiplexing process can be performed in each time unit overlapping the target uplink channel time domain in turn until the preset multiplexing end condition is met. Multiplexing end condition.
  • satisfying the preset multiplexing end condition may be that there currently does not exist an uplink channel that needs to undergo a multiplexing process, for example, there is no PUCCH time-domain overlap, and specifically, the preset multiplexing end condition may be time-domain overlap
  • the upstream channel is discarded or successfully multiplexed with other upstream channels.
  • the multiplexing process when sequentially performed in each time unit overlapping the target uplink channel time domain, it may specifically include:
  • All PUCCHs in the time unit of the current multiplexing process are determined as the Q set, and the multiplexing process is performed according to the multiplexing rule in the case of overlapping time domains to obtain PUCCHs that do not overlap in the time domain in the time unit of the current multiplexing process.
  • all PUCCHs may be determined as the Q set, and then according to the time domain overlap
  • the multiplexing rule in the case of performing multiplexing process on the PUCCH in the Q set, for example, transferring a preset type of UCI (Uplink Control Information, uplink control information) carried by at least one uplink channel in the Q set to another one in the Q set.
  • UCI Uplink Control Information, uplink control information
  • the UCI may include at least one of HARQ-ACK, SR (Scheduling Request, scheduling request), and CSI (Channel State Information, channel state information); alternatively, a new uplink can also be created.
  • channel and transfer the UCI of the preset type carried by at least one uplink channel in the Q set to a new uplink channel for multiplexing.
  • the UCI of the preset type is the UCI that supports multiplexing between uplink channels.
  • the UCI that supports multiplexing can be HARQ-ACK, and the SR and CSI do not support multiplexing, so only a certain uplink channel is used for multiplexing.
  • the HARQ-ACK is carried on another uplink channel for multiplexing, for example, the HARQ-ACK is transferred from the LP PUCCH to the HP PUCCH for multiplexing, and can be discarded for SR and CSI.
  • uplink channel transmission may be performed based on the processing result. Specifically, if the executing subject of the uplink multiplexing transmission method provided in this embodiment is a terminal, the terminal performs uplink channel transmission to the base station; if the executing subject of the uplink multiplexing transmission method provided in this embodiment is the base station, the base station receives the terminal The upstream channel for transmission.
  • the uplink multiplexing transmission method provided in this embodiment is applied to a terminal or a base station, by determining the time unit of the multiplexing process under the condition that different physical layer priorities or different types of at least two uplink channels overlap in time domain; If the target uplink channel spanning multiple time units in the two uplink channels does not meet the preset multiplexing end condition, the multiplexing process is performed in each time unit overlapping with the target uplink channel in sequence until the preset multiplexing end condition is met.
  • the multiplexing end condition is used to obtain the final processing result of the multiplexing process; uplink channel transmission is performed based on the processing result of the multiplexing process.
  • the multiplexing process is sequentially performed in the time units of each multiplexing process until the preset multiplexing end condition is met, and the uplink control information carried by the uplink channels whose time domains overlap can be converted into Multiplexing to other channels can effectively perform uplink multiplexing and transmission, reducing the impact of discarding uplink channels.
  • the multiplexing process is sequentially performed in each time unit overlapping with the target uplink channel time domain as described in S202 until the preset multiplexing end condition is met, Specifically, it can include:
  • the low-priority PUCCH when there is a low-priority PUCCH spanning multiple time units, when the low-priority PUCCH is not discarded and multiplexed with other uplink channels is successful, the low-priority PUCCH can be sequentially Participate in the multiplexing process in each time unit with overlapping domains until the low-priority PUCCH is discarded or successfully multiplexed with other uplink channels.
  • the multiplexing process is first performed in the first time unit overlapping the time domain of the low-priority PUCCH. If it is determined during the multiplexing process of the first time unit that the low-priority PUCCH is discarded or multiplexed with other uplink channels If the use is successful, stop the subsequent multiplexing process of the low-priority PUCCH in other time units overlapping the low-priority PUCCH time domain; if the low-priority PUCCH is not discarded and multiplexed with other uplink channels When successful, the multiplexing process is performed in the second time unit overlapping the time domain of the low-priority PUCCH.
  • the multiplexing process is performed in the third time unit overlapping the time domain of the low-priority PUCCH, and so on, until the low-priority PUCCH is discarded or successfully multiplexed with other uplink channels, Or, the multiplexing process is completed in the last time unit overlapping the time domain of the low-priority PUCCH.
  • the process may further include:
  • a discard operation is performed on at least one uplink channel in the Q set, and the preset condition includes:
  • the uplink channel obtained through the multiplexing process still spans multiple time units;
  • the uplink channel obtained through the multiplexing process is located in another time unit;
  • the starting position of the uplink channel obtained through the multiplexing process is earlier than the starting position of the time unit of the current multiplexing process.
  • the performing a discarding operation on at least one uplink channel in the Q set may specifically include:
  • the uplink channels carrying the low-priority UCI types are discarded.
  • the uplink channel with the lower priority is discarded;
  • the physical layer priority of each uplink channel is the same, then which uplink channel or channels to discard can be determined according to the UCI type carried by each uplink channel, wherein the preset priority of the UCI type can be preset.
  • the preset priority order is: HARQ-ACK>SR>CSI. If one of the two LP PUCCHs needs to be discarded, the UCI type carried by the first LP PUCCH is HARQ-ACK, and the UCI type carried by the second LP PUCCH is CSI. Since HARQ-ACK has a higher priority than CSI, it is discarded. Second LP PUCCH.
  • the above-mentioned embodiment describes the case where the time domains of uplink channels with different physical layer priorities overlap, and the implementation manner is similar to the case where there are at least two different types of uplink channels that overlap in time domains.
  • the multiplexing process is performed in each time unit overlapping the PUCCH time domain in turn. Use the process until the preset multiplexing end condition is met, and obtain the processing result of the final multiplexing process.
  • the multiplexing process can be performed in the first time unit that overlaps with the PUCCH time domain.
  • the current multiplexing process If it is determined that the PUCCH is discarded or successfully multiplexed with other uplink channels, then stop the subsequent multiplexing process of the PUCCH in other time units that overlap with the PUCCH time domain; otherwise, continue at the next time overlapping with the PUCCH time domain.
  • the multiplexing process of the PUCCH is performed in the unit, and the above process is repeated until the PUCCH is discarded or multiplexed with other uplink channels successfully.
  • uplink channel transmission is performed based on the processing result of the multiplexing process.
  • the preset conditions of the discarding operation are the same as those in the above-mentioned embodiments.
  • the discarding operation may be discarded according to the physical layer priority or the UCI type priority. Of course, the discarding operation may also be performed according to other orders or other preset rules, which is not limited here.
  • the uplink multiplexing transmission method further includes:
  • the PUCCH and the physical uplink shared channel PUSCH in the processing result of the multiplexing process overlap in the time domain, if it is determined that the terminal supports parallel transmission of the PUCCH and the PUSCH, the PUCCH and the PUSCH are simultaneously transmitted;
  • the terminal does not support the parallel transmission of the PUCCH and the PUSCH, the PUCCH and the PUSCH are multiplexed for transmission, or one of the uplink channels is discarded.
  • the time domain overlap of PUCCH and PUSCH may exist at the same time in the above embodiment. For example, if there are multiple PUCCH time domain overlaps and PUSCH overlap at the same time, the process of S201-S203 can be performed first to obtain the time domain For non-overlapping PUCCHs, if the time-domain non-overlapping PUCCH overlaps with PUSCH at this time, it can be determined first whether the terminal supports parallel transmission of PUCCH and PUSCH, and if the terminal supports parallel transmission of PUCCH and PUSCH, the PUCCH and the PUSCH are simultaneously transmitted; If the terminal does not support the parallel transmission of the PUCCH and the PUSCH, the PUCCH and the PUSCH are multiplexed for transmission, or one of the uplink channels is discarded.
  • the multiplexed transmission can transfer the UCI carried by the PUCCH to the PUSCH for multiplexing, of course, also The UCI carried on the PUSCH can be transferred to the PUCCH for multiplexing. It should be noted that whether the terminal supports parallel transmission of PUCCH and PUSCH can be controlled by the base station, or set by the terminal user, or controlled by other means.
  • the high-priority HARQ-ACK is configured for sub-slot transmission with a length of 7 symbols, and the low-priority HARQ-ACK is configured for slot-based transmission.
  • the transmission time unit Sub-slot of the priority HARQ-ACK is used as the time unit of the multiplexing process.
  • Case 1 As shown in Figure 4, a low-priority LP PUCCH and two high-priority Sub-slots overlap in the time domain, and within each high-priority Sub-slot are respectively associated with a high-priority HP PUCCH overlap in the time domain.
  • the Q set is defined to include HP PUCCH-1 and LP PUCCH. Based on the multiplexing rules in the case of overlapping time domains, the terminal may discard the LP PUCCH or carry the LP PUCCH.
  • the UCI information is transferred to HP PUCCH-1 for multiplexing transmission, then LP PUCCH no longer participates in the multiplexing process in the second Sub-slot, and an HP PUCCH is obtained by multiplexing in the time unit of the first multiplexing process. -1. In the time unit of the second multiplexing process, there is only one HP PUCCH-2, and there is no overlapping channel in the time domain, so one HP PUCCH-2 is also obtained. Finally, the terminal transmits an HP PUCCH-1 (which may contain the transferred LP UCI) in the time unit of the first multiplexing process, the LP PUCCH is discarded, and transmits an HP PUCCH-2 in the time unit of the second multiplexing process .
  • HP PUCCH-1 which may contain the transferred LP UCI
  • Case 2 As shown in Figure 5, a low-priority LP PUCCH and two high-priority Sub-slots overlap in the time domain, but do not overlap with the high-priority PUCCH in the first high-priority Sub-slot , which overlaps with a high-priority PUCCH in the second high-priority Sub-slot in the time domain.
  • the multiplexing process since there is no time domain overlap, the multiplexing process does not need to be performed, so the LP PUCCH is not discarded, nor multiplexed with other uplink channels, and can continue to participate in subsequent the reuse process.
  • the Q set is defined to include HP PUCCH-2 and LP PUCCH.
  • the terminal may discard the LP PUCCH or transfer the UCI information carried by the LP PUCCH.
  • the terminal transmits an HP PUCCH-1 in the time unit of the first multiplexing process, and transmits an HP PUCCH-2 in the time unit of the second multiplexing process (can contains the transferred LP UCI), the LP PUCCH is discarded.
  • Case 3 As shown in Figure 6, a low-priority LP PUCCH-2 and two high-priority Sub-slots overlap in the time domain, but within the first high-priority Sub-slot and a low-priority Sub-slot The LP PUCCH-1 overlaps in the second high-priority Sub-slot with a high-priority HP PUCCH in the time domain.
  • the Q set is defined to include LP PUCCH-1 and LP PUCCH-2.
  • the terminal may carry LP PUCCH-1.
  • the UCI information is transferred to LP PUCCH-2 for multiplexing transmission.
  • the LP PUCCH-2 resource carries LP HARQ after multiplexing -ACK and LP CSI.
  • the Q set is defined to include HP PUCCH and LP PUCCH-2. Based on the multiplexing rules in the case of overlapping time domains, the terminal may transfer the UCI information carried by LP PUCCH-2 to HP Multiplexing transmission is performed on PUCCH.
  • the terminal does not transmit any channel in the time unit of the first multiplexing process, and transmits an HP PUCCH-2 (which may include the transferred LP HARQ-ACK), LP PUCCH-1 in the time unit of the second multiplexing process and LP PUCCH-2 are discarded.
  • Case 4 As shown in Figure 7, a low-priority LP PUCCH-1 and two high-priority Sub-slots overlap in the time domain, but within the first high-priority Sub-slot and a high-priority Sub-slot
  • the HP PUCCH-2 overlaps
  • the high-priority HP PUCCH-2 overlaps with a high-priority HP PUCCH-1
  • a low-priority LP PUCCH-2 is in the second high-priority Sub-slot domain overlap.
  • the Q set is defined to include HP PUCCH-1, HP PUCCH-2 and LP PUCCH-1.
  • the terminal may The UCI information carried by HP PUCCH-2 is transferred to HP PUCCH-1 for multiplexing and transmission. After multiplexing, two channels, HP PUCCH-1 and LP PUCCH-1, are obtained, and LP PUCCH-1 can continue to participate in the subsequent multiplexing process. .
  • the Q set is defined to include LP PUCCH-1 and LP PUCCH-2.
  • the terminal may transfer the UCI information carried by LP PUCCH-1. To LP PUCCH-2 for multiplexing and transmission, the LP PUCCH-2 channel is obtained after multiplexing.
  • the terminal transmits HP PUCCH-1 (including the UCI information of the transferred HP PUCCH-2) in the time unit of the first multiplexing process, and transmits an LP PUCCH-2 (containing the UCI information of the transferred HP PUCCH-2) in the time unit of the second multiplexing process UCI information of the transferred LP PUCCH-1), HP PUCCH-2 and LP PUCCH-1 are all discarded.
  • the high-priority HARQ-ACK is configured for sub-slot transmission with a length of 7 symbols, and the low-priority HARQ-ACK is configured for slot-based transmission, then the sub-slot of the high-priority HARQ-ACK is used as The time unit of the multiplexing process.
  • Case 1 As shown in Figure 8, there is only one HP PUCCH in the first high-priority Sub-slot, and one LP PUCCH-1 and one LP PUCCH-2 overlap in the second high-priority Sub-slot.
  • the multiplexing process does not need to be performed since there is no overlap.
  • the Q set is defined to include LP PUCCH-1 and LP PUCCH-2. Based on the multiplexing rules in the case of overlapping time domains, the terminal may choose a new LP PUCCH-3.
  • LP PUCCH-1 and LP PUCCH-2 are not supported for Multiplexing, further optional, assuming that LP PUCCH-1 carries HARQ-ACK and LP PUCCH-2 carries CSI/SR, then LP PUCCH-2 and the UCI it carries are discarded, in the time unit of the second multiplexing process Only LP PUCCH-1 is transmitted in .
  • the terminal transmits an HP PUCCH in the time unit of the first multiplexing process, transmits an LP PUCCH-1 (excluding the transferred LP UCI) in the time unit of the second multiplexing process, and the LP PUCCH-2 is discarded .
  • Case 2 As shown in Figure 10, there is only one HP PUCCH in the first high-priority Sub-slot, and one LP PUCCH-1 and one LP PUCCH-2 overlap in the second high-priority Sub-slot.
  • the multiplexing process does not need to be performed since there is no overlap.
  • the Q set is defined to include LP PUCCH-1 and LP PUCCH-2. Based on the multiplexing rules in the case of overlapping time domains, the terminal may choose a new LP PUCCH-3.
  • LP PUCCH-3 since LP PUCCH-3 is located in the time unit of the current multiplexing process, LP PUCCH-1 and LP PUCCH-2 are supported for multiplexing, assuming that LP PUCCH-1 carries HARQ-ACK, LP PUCCH-1 PUCCH-2 carries CSI/SR, and both HARQ-ACK and CSI/SR are transferred to LP PUCCH-3 for transmission.
  • the terminal transmits one HP PUCCH in the time unit of the first multiplexing process, and transmits one LP PUCCH-3 (including the transferred LP HARQ-ACK and CSI/SR) in the time unit of the second multiplexing process.
  • Case 3 As shown in Figure 11, there is one LP PUCCH-1 and one LP PUCCH-2 overlapping in the first high-priority Sub-slot, and there is only one HP PUCCH in the second high-priority Sub-slot.
  • the Q set is defined to include LP PUCCH-1 and LP PUCCH-2.
  • the terminal may pass a new LP PUCCH -3 for multiplexing transmission, as shown in Figure 12- Figure 14.
  • Case 3-1 As shown in Figure 12, LP PUCCH-3 is located in the time unit of the current multiplexing process, and LP PUCCH-1 and LP PUCCH-2 are supported for multiplexing. Finally, the terminal transmits an LP PUCCH-3 (including the LP UCI transferred by LP PUCCH-1 and LP PUCCH-2) in the time unit of the first multiplexing process, and transmits an HP in the time unit of the second multiplexing process PUCCH.
  • Case 3-2 As shown in FIG. 13 or FIG. 14 , if the LP PUCCH-3 spans the time units of multiple multiplexing processes or is located in the time units of other multiplexing processes, any one of the following methods may be used.
  • Method 1 Multiplexing of LP PUCCH-1 and LP PUCCH-2 is not supported. Assuming that LP PUCCH-1 carries HARQ-ACK and LP PUCCH-2 carries CSI/SR, the LP PUCCH- 2 and the UCI it carries, only LP PUCCH-1 is transmitted in the time unit of the first multiplexing process. Finally, the terminal transmits an LP PUCCH-1 (excluding the transferred LP UCI) in the time unit of the first multiplexing process, the LP PUCCH-2 is discarded, and transmits an HP PUCCH in the time unit of the second multiplexing process .
  • Mode 2 Multiplexing of LP PUCCH-1 and LP PUCCH-2 is supported. Assuming that LP PUCCH-1 carries HARQ-ACK and LP PUCCH-2 carries CSI/SR, in the time unit of the first multiplexing process, the Use the process to get a new LP PUCCH-3. In the time unit of the second multiplexing process, the Q set is defined to include LP PUCCH-3 and HP PUCCH. Based on the multiplexing rules in the case of overlapping time domains, the terminal may perform multiplexing transmission through HP PUCCH. Finally, the terminal does not transmit any channel in the time unit of the first multiplexing process, and transmits an HP PUCCH (including the transferred LP HARQ-ACK) in the time unit of the second multiplexing process.
  • uplink multiplexing transmission can be effectively performed when the time domains of the uplink channels overlap, and the impact of discarding the uplink channels can be reduced.
  • FIG. 15 is a schematic structural diagram of an apparatus for uplink multiplexing and transmission provided by an embodiment of the present disclosure.
  • the uplink multiplexing transmission apparatus of the present disclosure may be network equipment such as a terminal or a base station.
  • the uplink multiplexing transmission apparatus 40 includes a transceiver 400 , a processor 410 and a memory 420 .
  • the transceiver 400 is used for receiving and transmitting data under the control of the processor 410 .
  • the bus architecture may include any number of interconnected buses and bridges, specifically one or more processors represented by processor 410 and various circuits of memory represented by memory 420 are linked together.
  • the bus architecture may also link together various other circuits, such as peripherals, voltage regulators, and power management circuits, which are well known in the art and, therefore, will not be described further herein.
  • the bus interface provides the interface.
  • Transceiver 400 may be multiple elements, ie, including transmitters and receivers, providing means for communicating with various other devices over transmission media including wireless channels, wired channels, fiber optic cables, and the like.
  • the processor 410 is responsible for managing the bus architecture and general processing, and the memory 420 may store data used by the processor 410 in performing operations.
  • the memory 420 is used to store computer programs, including but not limited to: a U disk, a mobile hard disk, a read-only memory (Read-Only Memory, ROM), a random access memory (Random Access Memory, RAM), a magnetic disk or an optical disk, etc.
  • a medium that can store program code including but not limited to: a U disk, a mobile hard disk, a read-only memory (Read-Only Memory, ROM), a random access memory (Random Access Memory, RAM), a magnetic disk or an optical disk, etc.
  • the processor 410 may be a central processor (CPU), an application specific integrated circuit (ASIC), a field programmable gate array (Field-Programmable Gate Array, FPGA) or a complex programmable logic device (Complex Programmable Logic Device). , CPLD), the processor can also use a multi-core architecture.
  • CPU central processor
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • FPGA field programmable gate array
  • CPLD Complex Programmable Logic Device
  • the processor 410 is configured to read the computer program in the memory and perform the following operations:
  • Uplink channel transmission is performed based on the processing result of the multiplexing process.
  • the processor 410 sequentially performs the multiplexing process in each time unit overlapping the target uplink channel time domain until a preset multiplexing end condition is satisfied, and performs the multiplexing process for :
  • the multiplexing process is performed in the first time unit overlapping the low-priority PUCCH time domain;
  • the processor 410 when the processor 410 sequentially performs the multiplexing process in each time unit overlapping the target uplink channel time domain, the processor 410 is configured to:
  • All PUCCHs in the time unit of the current multiplexing process are determined as the Q set, and the multiplexing process is performed according to the multiplexing rule in the case of overlapping time domains, to obtain PUCCHs that do not overlap in time domains in the time unit of the current multiplexing process.
  • the processor 410 is further configured to:
  • a discard operation is performed on at least one uplink channel in the Q set, and the preset condition includes:
  • the uplink channel obtained through the multiplexing process still spans multiple time units;
  • the uplink channel obtained through the multiplexing process is located in another time unit;
  • the starting position of the uplink channel obtained through the multiplexing process is earlier than the starting position of the time unit of the current multiplexing process.
  • the processor 410 when the processor 410 performs a discarding operation on at least one uplink channel in the Q set, it is configured to:
  • the uplink channels carrying the low-priority UCI types are discarded.
  • the preset priority order of the UCI type is: hybrid automatic repeat request acknowledgment information HARQ-ACK>scheduling request information SR>channel state information CSI.
  • the processor 410 is further configured to:
  • the at least two uplink channels are at least two uplink channels with different physical layer priorities
  • the processor 410 When determining the time unit of the multiplexing process, the processor 410 is configured to:
  • the time unit of the multiplexing process is determined according to the transmission time units of HARQ-ACKs of different physical layer priorities.
  • the processor 410 when the processor 410 is determined to be the time unit of the multiplexing process according to the transmission time unit of the HARQ-ACK with different physical layer priorities, the processor 410 is configured to:
  • the transmission time unit of the high-priority HARQ-ACK in different physical layer priorities is determined as the time unit of the multiplexing process.
  • the at least two uplink channels are at least two uplink channels of different types
  • the processor 410 When determining the time unit of the multiplexing process, the processor 410 is configured to:
  • a transmission time unit of an uplink channel of the target type in the at least two uplink channels is determined as a time unit of the multiplexing process.
  • the at least two uplink channels of different types include MBS PUCCH and unicast PUCCH.
  • the processor 410 is further configured to:
  • the PUCCH and the physical uplink shared channel PUSCH in the processing result of the multiplexing process overlap in the time domain, if it is determined that the terminal supports parallel transmission of the PUCCH and the PUSCH, the PUCCH and the PUSCH are simultaneously transmitted;
  • the terminal does not support the parallel transmission of the PUCCH and the PUSCH, the PUCCH and the PUSCH are multiplexed for transmission, or one of the uplink channels is discarded.
  • the uplink multiplexing transmission apparatus involved in the embodiments of the present disclosure may be a base station, and the base station may include a plurality of cells providing services for terminals.
  • the base station may also be called an access point, or may be a device in the access network that communicates with wireless terminal equipment through one or more sectors on the air interface, or other names.
  • the network device can be used to exchange received air frames with Internet Protocol (IP) packets, and act as a router between the wireless terminal device and the rest of the access network, which can include the Internet. Protocol (IP) communication network.
  • IP Internet Protocol
  • the network devices may also coordinate attribute management for the air interface.
  • the network device involved in the embodiments of the present disclosure may be a network device (Base Transceiver Station, BTS) in the Global System for Mobile Communications (GSM) or Code Division Multiple Access (Code Division Multiple Access, CDMA). ), it can also be a network device (NodeB) in Wide-band Code Division Multiple Access (WCDMA), or it can be an evolved network device in a long term evolution (LTE) system (evolutional Node B, eNB or e-NodeB), 5G base station (gNB) in 5G network architecture (next generation system), or Home evolved Node B (HeNB), relay node (relay node) , a home base station (femto), a pico base station (pico), etc., which are not limited in the embodiments of the present disclosure.
  • a network device may include a centralized unit (CU) node and a distributed unit (DU) node, and the centralized unit and the distributed unit may also be geographically separated.
  • the uplink multiplexing transmission device involved in the embodiments of the present disclosure may also be a terminal device, may be a device that provides voice and/or data connectivity to a user, a handheld device with a wireless connection function, or other processing devices connected to a wireless modem equipment, etc.
  • the name of the terminal device may be different.
  • the terminal device may be called user equipment (User Equipment, UE).
  • Wireless terminal equipment can communicate with one or more core networks (Core Network, CN) via a radio access network (Radio Access Network, RAN).
  • RAN Radio Access Network
  • "telephone) and computers with mobile terminal equipment eg portable, pocket-sized, hand-held, computer-built or vehicle-mounted mobile devices, which exchange language and/or data with the radio access network.
  • Wireless terminal equipment may also be referred to as system, subscriber unit, subscriber station, mobile station, mobile station, remote station, access point , a remote terminal device (remote terminal), an access terminal device (access terminal), a user terminal device (user terminal), a user agent (user agent), and a user device (user device), which are not limited in the embodiments of the present disclosure.
  • MIMO transmission can be single-user MIMO (Single User MIMO, SU-MIMO) or multi-user MIMO. (Multiple User MIMO, MU-MIMO). According to the form and number of root antenna combinations, MIMO transmission can be 2D-MIMO, 3D-MIMO, FD-MIMO, or massive-MIMO, or diversity transmission, precoding transmission, or beamforming transmission.
  • the apparatuses such as the above-mentioned base station and terminal equipment provided by the present disclosure can implement all the method steps implemented by the above-mentioned method embodiments, and can achieve the same technical effect, and the method in this embodiment and the method will not be discussed here. The same parts and beneficial effects of the embodiments are described in detail.
  • FIG. 16 is a schematic structural diagram of an apparatus for uplink multiplexing transmission provided by an embodiment of the present disclosure.
  • the uplink multiplexing and transmission apparatus provided in this embodiment is applied to a terminal or a base station.
  • the uplink multiplexing and transmission apparatus 50 includes: a determination unit 510 , a multiplexing unit 520 , and a transmission unit 530 .
  • a determining unit 510 configured to determine the time unit of the multiplexing process when at least two uplink channels of different physical layer priorities or different types overlap in time domain;
  • the multiplexing unit 520 is configured to, for the target uplink channel spanning multiple time units in the at least two uplink channels, if the preset multiplexing end condition is not satisfied, sequentially perform the multiplexing in each time domain overlapping with the target uplink channel.
  • the multiplexing process is performed in one time unit until the preset multiplexing end condition is met, and the final processing result of the multiplexing process is obtained;
  • the transmission unit 530 is configured to perform uplink channel transmission based on the processing result of the multiplexing process.
  • the multiplexing unit 520 sequentially performs the multiplexing process in each time unit overlapping the time domain of the target uplink channel until the preset multiplexing end condition is met, using At:
  • the multiplexing process is performed in the first time unit overlapping the low-priority PUCCH time domain;
  • the multiplexing unit 520 when the multiplexing unit 520 sequentially performs the multiplexing process in each time unit overlapping the target uplink channel time domain, the multiplexing unit 520 is configured to:
  • All PUCCHs in the time unit of the current multiplexing process are determined as the Q set, and the multiplexing process is performed according to the multiplexing rule in the case of overlapping time domains to obtain PUCCHs that do not overlap in the time domain in the time unit of the current multiplexing process.
  • the multiplexing unit 520 is further configured to:
  • a discard operation is performed on at least one uplink channel in the Q set, and the preset condition includes:
  • the uplink channel obtained through the multiplexing process still spans multiple time units;
  • the uplink channel obtained through the multiplexing process is located in another time unit;
  • the starting position of the uplink channel obtained through the multiplexing process is earlier than the starting position of the time unit of the current multiplexing process.
  • the multiplexing unit 520 when the multiplexing unit 520 performs a discarding operation on at least one uplink channel in the Q set, it is configured to:
  • the uplink channels carrying the low-priority UCI types are discarded.
  • the preset priority order of the UCI type is: hybrid automatic repeat request acknowledgment information HARQ-ACK>scheduling request information SR>channel state information CSI.
  • the multiplexing unit 520 is further configured to:
  • the at least two uplink channels are at least two uplink channels with different physical layer priorities
  • the determining unit 510 is configured to:
  • the time unit of the multiplexing process is determined according to the transmission time units of HARQ-ACKs of different physical layer priorities.
  • the determining unit 510 when the determining unit 510 is determined as the time unit of the multiplexing process according to the transmission time unit of the HARQ-ACK with different physical layer priorities, it is configured to:
  • the transmission time unit of the high-priority HARQ-ACK in different physical layer priorities is determined as the time unit of the multiplexing process.
  • the at least two uplink channels are at least two uplink channels of different types
  • the determining unit 510 is configured to:
  • a transmission time unit of an uplink channel of the target type in the at least two uplink channels is determined as a time unit of the multiplexing process.
  • the at least two uplink channels of different types include MBS PUCCH and unicast PUCCH.
  • the multiplexing unit 520 is further configured to:
  • the PUCCH and the physical uplink shared channel PUSCH in the processing result of the multiplexing process overlap in the time domain, if it is determined that the terminal supports parallel transmission of the PUCCH and the PUSCH, the PUCCH and the PUSCH are simultaneously transmitted;
  • the terminal does not support the parallel transmission of the PUCCH and the PUSCH, the PUCCH and the PUSCH are multiplexed for transmission, or one of the uplink channels is discarded.
  • the uplink multiplexing transmission device provided in this embodiment can be specifically used to execute the method process in any of the above method embodiments, and the specific functions and effects are not repeated here.
  • each functional unit in each embodiment of the present disclosure may be integrated into one processing unit, or each unit may exist physically alone, or two or more units may be integrated into one unit.
  • the above-mentioned integrated units may be implemented in the form of hardware, or may be implemented in the form of software functional units.
  • the integrated unit if implemented in the form of a software functional unit and sold or used as a stand-alone product, may be stored in a processor-readable storage medium.
  • the technical solutions of the present disclosure can be embodied in the form of software products in essence, or the part that contributes to the prior art, or all or part of the technical solutions, and the computer software product is stored in a storage medium , including several instructions for causing a computer device (which may be a personal computer, a server, or a network device, etc.) or a processor (processor) to execute all or part of the steps of the methods in the various embodiments of the present disclosure.
  • the aforementioned storage medium includes: U disk, mobile hard disk, read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disk and other media that can store program codes .
  • the present disclosure further provides a processor-readable storage medium, where the processor-readable storage medium stores a computer program, and the computer program is used to cause the processor to execute the method provided by any of the foregoing method embodiments.
  • a processor-readable storage medium can be any available medium or data storage device that can be accessed by a processor, including but not limited to magnetic storage (eg, floppy disk, hard disk, magnetic tape, magneto-optical disk (MO), etc.), optical storage (eg, CD, DVD, BD, HVD, etc.), and semiconductor memory (eg, ROM, EPROM, EEPROM, non-volatile memory (NAND FLASH), solid-state disk (SSD)), etc.
  • magnetic storage eg, floppy disk, hard disk, magnetic tape, magneto-optical disk (MO), etc.
  • optical storage eg, CD, DVD, BD, HVD, etc.
  • semiconductor memory eg, ROM, EPROM, EEPROM, non-volatile memory (NAND FLASH), solid-state disk (SSD)
  • the present disclosure also provides a computer program product, including a computer program, and the computer program is used to cause the processor to execute the method provided by any of the above method embodiments.
  • embodiments of the present disclosure may be provided as a method, system, or computer program product. Accordingly, the present disclosure may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment combining software and hardware aspects. Furthermore, the present disclosure may take the form of a computer program product embodied on one or more computer-usable storage media having computer-usable program code embodied therein, including but not limited to disk storage, optical storage, and the like.
  • processor-executable instructions may also be stored in a processor-readable memory capable of directing a computer or other programmable data processing apparatus to operate in a particular manner, such that the instructions stored in the processor-readable memory result in the manufacture of means including the instructions product, the instruction means implements the functions specified in the flow or flow of the flowchart and/or the block or blocks of the block diagram.
  • processor-executable instructions can also be loaded onto a computer or other programmable data processing device to cause a series of operational steps to be performed on the computer or other programmable device to produce a computer-implemented process that Execution of the instructions provides steps for implementing the functions specified in the flowchart or blocks and/or the block or blocks of the block diagrams.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开提供一种上行复用传输方法、装置及存储介质,应用于终端或基站,通过在不同物理层优先级或不同类型的至少两个上行信道时域重叠的情况下,确定复用过程的时间单元;对于跨越多个时间单元的目标上行信道,若未满足预设复用结束条件,则依次在与目标上行信道时域重叠的每一个时间单元中进行复用过程,直至满足预设复用结束条件,最终得到复用过程的处理结果;基于复用过程的处理结果进行上行信道传输。本公开实施例在上行信道时域重叠的情况下依次在各复用过程的时间单元中进行复用过程,直至满足预设复用结束条件,可将时域重叠的上行信道承载的上行控制信息复用到其他信道上,能够有效的进行上行复用传输,减少丢弃上行信道产生的影响。

Description

上行复用传输方法、装置及存储介质
本公开要求于2021年04月02日提交中国专利局、申请号为202110363231.9、申请名称为“上行复用传输方法、装置及存储介质”的中国专利申请的优先权,其全部内容通过引用结合在本公开中。
技术领域
本公开涉及通信技术领域,尤其涉及一种上行复用传输方法、装置及存储介质。
背景技术
在第五代新无线系统(5 Generation New RAT,5G NR)中,对于同一个终端会存在多个上行信道的时域资源重叠,例如PUCCH(Physical Uplink Control Channel,物理上行控制信道)和PUCCH存在时域资源重叠,或者PUCCH和PUSCH(Physical Uplink Shared Channel,物理上行共享信道)存在时域资源重叠。
在5G标准Rel-16版本中对于上行信道引入了两级物理层优先级的定义,也即上行支持两种不同物理层优先级的物理信道。当高优先级的物理信道和低优先级的物理信道在时域上重叠时,终端丢弃低优先级的物理信道,仅传输高优先级的物理信道,对上行控制信息的传输产生影响。
发明内容
本公开提供一种上行复用传输方法、装置及存储介质,以在上行信道时域重叠的情况下减少丢弃上行信道产生的影响。
第一方面,本公开提供一种上行复用传输方法,应用于终端或基站,该方法包括:
在不同物理层优先级或不同类型的至少两个上行信道时域重叠的情况下,确定复用过程的时间单元;
对于所述至少两个上行信道中跨越多个时间单元的目标上行信道,若未满足预设复用结束条件,则依次在与所述目标上行信道时域重叠的每一个时间单元中进行复用过程,直至满足预设复用结束条件,得到最终的复用过程的处理结果;
基于复用过程的处理结果进行上行信道传输。
在一种可能的设计中,所述依次在与所述目标上行信道时域重叠的每一个时间单元中进行复用过程,直至满足预设复用结束条件,包括:
对于跨越多个时间单元的低优先级PUCCH,在与所述低优先级PUCCH时域重叠的第一个时间单元中进行复用过程;
若当前复用过程中确定所述低优先级PUCCH被丢弃或与其他上行信道复用成功,则停止后续与所述低优先级PUCCH时域重叠的其他时间单元中进行所述低优先级PUCCH的复用过程;
否则,继续在下一个与所述低优先级PUCCH时域重叠的时间单元中进行所述低 优先级PUCCH的复用过程;
重复上述过程,直至所述低优先级PUCCH被丢弃或与其他上行信道复用成功。
在一种可能的设计中,所述依次在与所述目标上行信道时域重叠的每一个时间单元中进行复用过程,包括:
将当前复用过程的时间单元中所有PUCCH确定为Q集合,并根据时域重叠情况下的复用规则执行复用过程,得到当前复用过程的时间单元中时域不重叠的PUCCH。
在一种可能的设计中,所述依次在与所述目标上行信道时域重叠的每一个时间单元中进行复用过程的过程中,还包括:
若满足预设条件,则对所述Q集合中至少一个上行信道执行丢弃操作,所述预设条件包括:
在当前复用过程的时间单元中,经过复用过程得到的上行信道仍然跨多个时间单元;或者
在当前复用过程的时间单元中,经过复用过程得到的上行信道位于其它时间单元;或者
在当前复用过程的时间单元中,经过复用过程得到的上行信道的起始位置早于当前复用过程的时间单元的起始位置。
在一种可能的设计中,所述对所述Q集合中至少一个上行信道执行丢弃操作,包括:
若所述Q集合中各上行信道的物理层优先级不同,则丢弃其中低优先级的上行信道;或者
若所述Q集合中各上行信道的物理层优先级相同,则基于各上行信道承载的UCI类型的预设优先级,丢弃其中承载低优先级UCI类型的上行信道。
在一种可能的设计中,所述UCI类型的预设优先级顺序为:混合自动重传请求确认信息HARQ-ACK>调度请求信息SR>信道状态信息CSI。
在一种可能的设计中,所述方法还包括:
若当前复用过程的时间单元中不存在与所述目标上行信道时域重叠的上行信道,则继续在下一个与所述目标上行信道时域重叠的时间单元中进行复用过程。
在一种可能的设计中,所述至少两个上行信道为不同物理层优先级的至少两个上行信道;
所述确定复用过程的时间单元,包括:
根据不同物理层优先级的HARQ-ACK的传输时间单元,确定所述复用过程的时间单元。
在一种可能的设计中,所述根据不同物理层优先级HARQ-ACK的传输时间单元,确定为所述复用过程的时间单元,包括:
将不同物理层优先级中的高优先级HARQ-ACK的传输时间单元,确定为所述复用过程的时间单元。
在一种可能的设计中,所述至少两个上行信道为不同类型的至少两个上行信道;
所述确定复用过程的时间单元,包括:
将所述至少两个上行信道中传输时间单元较短的上行信道的传输时间单元确定为 复用过程的时间单元;或者
将所述至少两个上行信道中目标类型的上行信道的传输时间单元确定为复用过程的时间单元。
在一种可能的设计中,所述不同类型的至少两个上行信道包括MBS PUCCH和unicast PUCCH。
在一种可能的设计中,所述方法还包括:
在所述复用过程的处理结果中的PUCCH和物理上行共享信道PUSCH存在时域重叠的情况下,若确定终端支持PUCCH和PUSCH的并行传输,则同时传输该PUCCH和该PUSCH;
若确定终端不支持PUCCH和PUSCH的并行传输,则对该PUCCH和该PUSCH进行复用传输、或丢弃其中一个上行信道。
第二方面,本公开提供一种上行复用传输装置,包括存储器,收发机,处理器:
存储器,用于存储计算机程序;收发机,用于在所述处理器的控制下收发数据;处理器,用于读取所述存储器中的计算机程序并执行以下操作:
在不同物理层优先级或不同类型的至少两个上行信道时域重叠的情况下,确定复用过程的时间单元;
对于所述至少两个上行信道中跨越多个时间单元的目标上行信道,若未满足预设复用结束条件,则依次在与所述目标上行信道时域重叠的每一个时间单元中进行复用过程,直至满足预设复用结束条件,得到最终的复用过程的处理结果;
基于复用过程的处理结果进行上行信道传输。
在一种可能的设计中,所述处理器在依次在与所述目标上行信道时域重叠的每一个时间单元中进行复用过程,直至满足预设复用结束条件时,用于:
对于跨越多个时间单元的低优先级PUCCH,在与所述低优先级PUCCH时域重叠的第一个时间单元中进行复用过程;
若当前复用过程中确定所述低优先级PUCCH被丢弃或与其他上行信道复用成功,则停止后续与所述低优先级PUCCH时域重叠的其他时间单元中进行所述低优先级PUCCH的复用过程;
否则,继续在下一个与所述低优先级PUCCH时域重叠的时间单元中进行所述低优先级PUCCH的复用过程;
重复上述过程,直至所述低优先级PUCCH被丢弃或与其他上行信道复用成功。
在一种可能的设计中,所述处理器在依次在与所述目标上行信道时域重叠的每一个时间单元中进行复用过程时,用于:
将当前复用过程的时间单元中所有PUCCH确定为Q集合,并根据时域重叠情况下的复用规则执行复用过程,得到当前复用过程的时间单元中时域不重叠的PUCCH。
在一种可能的设计中,所述处理器在依次在与所述目标上行信道时域重叠的每一个时间单元中进行复用过程的过程中,还用于:
若满足预设条件,则对所述Q集合中至少一个上行信道执行丢弃操作,所述预设条件包括:
在当前复用过程的时间单元中,经过复用过程得到的上行信道仍然跨多个时间单 元;或者
在当前复用过程的时间单元中,经过复用过程得到的上行信道位于其它时间单元;或者
在当前复用过程的时间单元中,经过复用过程得到的上行信道的起始位置早于当前复用过程的时间单元的起始位置。
在一种可能的设计中,所述处理器在对所述Q集合中至少一个上行信道执行丢弃操作时,用于:
若所述Q集合中各上行信道的物理层优先级不同,则丢弃其中低优先级的上行信道;或者
若所述Q集合中各上行信道的物理层优先级相同,则基于各上行信道承载的UCI类型的预设优先级,丢弃其中承载低优先级UCI类型的上行信道。
在一种可能的设计中,所述UCI类型的预设优先级顺序为:混合自动重传请求确认信息HARQ-ACK>调度请求信息SR>信道状态信息CSI。
在一种可能的设计中,所述处理器还用于:
若当前复用过程的时间单元中不存在与所述目标上行信道时域重叠的上行信道,则继续在下一个与所述目标上行信道时域重叠的时间单元中进行复用过程。
在一种可能的设计中,所述至少两个上行信道为不同物理层优先级的至少两个上行信道;
所述处理器在确定复用过程的时间单元时,用于:
根据不同物理层优先级的HARQ-ACK的传输时间单元,确定所述复用过程的时间单元。
在一种可能的设计中,所述处理器在根据不同物理层优先级HARQ-ACK的传输时间单元,确定为所述复用过程的时间单元时,用于:
将不同物理层优先级中的高优先级HARQ-ACK的传输时间单元,确定为所述复用过程的时间单元。
在一种可能的设计中,所述至少两个上行信道为不同类型的至少两个上行信道;
所述处理器在确定复用过程的时间单元时,用于:
将所述至少两个上行信道中传输时间单元较短的上行信道的传输时间单元确定为复用过程的时间单元;或者
将所述至少两个上行信道中目标类型的上行信道的传输时间单元确定为复用过程的时间单元。
在一种可能的设计中,所述不同类型的至少两个上行信道包括MBS PUCCH和unicast PUCCH。
在一种可能的设计中,所述处理器还用于:
在所述复用过程的处理结果中的PUCCH和物理上行共享信道PUSCH存在时域重叠的情况下,若确定终端支持PUCCH和PUSCH的并行传输,则同时传输该PUCCH和该PUSCH;
若确定终端不支持PUCCH和PUSCH的并行传输,则对该PUCCH和该PUSCH进行复用传输、或丢弃其中一个上行信道。
在一种可能的设计中,所述上行复用传输装置为终端或基站。
第三方面,本公开提供一种上行复用传输装置,应用于终端或基站,所述装置包括:
确定单元,用于在不同物理层优先级或不同类型的至少两个上行信道时域重叠的情况下,确定复用过程的时间单元;
复用单元,用于对于所述至少两个上行信道中跨越多个时间单元的目标上行信道,若未满足预设复用结束条件,则依次在与所述目标上行信道时域重叠的每一个时间单元中进行复用过程,直至满足预设复用结束条件,得到最终的复用过程的处理结果;
传输单元,用于基于复用过程的处理结果进行上行信道传输。
第四方面,本公开提供一种处理器可读存储介质,所述处理器可读存储介质存储有计算机程序,所述计算机程序用于使所述处理器执行如第一方面所述的方法。
第五方面,本公开提供一种计算机程序产品,包括计算机程序,所述计算机程序用于使所述处理器执行如第一方面所述的方法。
本公开提供一种上行复用传输方法、装置及存储介质,应用于终端或基站,通过在不同物理层优先级或不同类型的至少两个上行信道时域重叠的情况下,确定复用过程的时间单元;对于至少两个上行信道中跨越多个时间单元的目标上行信道,若未满足预设复用结束条件,则依次在与目标上行信道时域重叠的每一个时间单元中进行复用过程,直至满足预设复用结束条件,得到最终的复用过程的处理结果;基于复用过程的处理结果进行上行信道传输。本公开实施例在上行信道时域重叠的情况下通过依次在各复用过程的时间单元中进行复用过程,直至满足预设复用结束条件,可以将时域重叠的上行信道承载的上行控制信息复用到其他信道上,能够有效的进行上行复用传输,减少丢弃上行信道产生的影响。
应当理解,上述发明内容部分中所描述的内容并非旨在限定本公开的实施例的关键或重要特征,亦非用于限制本公开的范围。本公开的其它特征将通过以下的描述变得容易理解。
附图说明
为了更清楚地说明本公开或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1a为本公开一实施例提供的上行复用传输方法的应用场景示意图;
图1b为本公开另一实施例提供的上行复用传输方法的应用场景示意图;
图2为本公开一实施例提供的上行复用传输方法的流程图;
图3为本公开另一实施例提供的上行复用传输方法的流程图;
图4为本公开一实施例提供的上行复用传输方法的复用过程示意图;
图5为本公开另一实施例提供的上行复用传输方法的复用过程示意图;
图6为本公开另一实施例提供的上行复用传输方法的复用过程示意图;
图7为本公开另一实施例提供的上行复用传输方法的复用过程示意图;
图8为本公开另一实施例提供的上行复用传输方法的复用过程示意图;
图9为本公开另一实施例提供的上行复用传输方法的复用过程示意图;
图10为本公开另一实施例提供的上行复用传输方法的复用过程示意图;
图11为本公开另一实施例提供的上行复用传输方法的复用过程示意图;
图12为本公开另一实施例提供的上行复用传输方法的复用过程示意图;
图13为本公开另一实施例提供的上行复用传输方法的复用过程示意图;
图14为本公开另一实施例提供的上行复用传输方法的复用过程示意图;
图15为本公开一实施例提供的上行复用传输装置的结构图;
图16为本公开另一实施例提供的上行复用传输装置的结构图。
具体实施方式
本公开中术语“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。本公开实施例中术语“多个”是指两个或两个以上,其它量词与之类似。
在第五代新无线系统(5 Generation New RAT,5G NR)中,对于同一个终端会存在多个上行信道的时域资源重叠,例如PUCCH(Physical Uplink Control Channel,物理上行控制信道)和PUCCH存在时域资源重叠,或者PUCCH和PUSCH(Physical Uplink Shared Channel,物理上行共享信道)存在时域资源重叠。
在5G标准Rel-15版本中,对于同一个终端,为了避免出现过大的PAPR(Peak to Average Power Ratio,峰值平均功率比),不支持多个PUCCH同时传输,也不支持PUCCH和PUSCH的同时传输,因此当PUCCH和PUCCH的时域资源重叠时,终端可以将UCI复用在同一个PUCCH上进行传输;当PUCCH和PUSCH的时域资源重叠时,终端可以将UCI复用在PUSCH上传输,从而不需要传输PUCCH。
当存在多个PUCCH和PUSCH的时域资源重叠时,终端以时隙为单位,首先处理一个时隙内的上行控制信道PUCCH之间的冲突,将一个时隙内所有的PUCCH作为Q集合,按照规定的方式进行复用,得到不重叠的一个或者多个PUCCH。然后再处理PUCCH和PUSCH的冲突,按照规定的方式将PUCCH承载的UCI复用在PUSCH上进行传输。
其中,上述时域资源重叠或冲突是指在同一个载波组中的冲突,例如双链接中的MCG和SCG各自为一个在载波组,例如支持PUCCH在SCG上传输时,会出现Primary PUCCH Group和Secondary PUCCH Group,每个PUCCH group为一个载波组。
而在5G标准Rel-16版本,在5G标准Rel-16版本中对于上行信道引入了两级物理层优先级的定义,也即上行支持两种不同物理层优先级的物理信道。当高优先级的物理信道和低优先级的物理信道在时域上重叠时,终端丢弃低优先级的物理信道,仅传输高优先级的物理信道。
对于HARQ-ACK(Hybrid Automatic Repeat request-ACKnowledgment,混合自动重传请求确认消息)传输,还引入了Sub-slot的传输方案,HARQ-ACK的PUCCH资源在Sub-slot范围内进行定义。一个时隙被划分为多个Sub-slot,不同优先级的 HARQ-ACK配置可以不同,比如,高优先级的HARQ-ACK使用基于Sub-slot的传输,低优先级的HARQ-ACK使用基于Slot的传输,或者高优先级的HARQ-ACK和低优先级的HARQ-ACK使用基于不同Sub-slot长度的传输。
当相同物理层优先级上行信道的时域资源重叠时,终端基于对应的配置信息确定复用的时间单元,并以该时间单元为单位,按照Rel-15的方式在该时间单元范围内进行相同物理层优先级上行信道的复用传输。
当同时存在相同和不同物理层优先级的上行信道冲突时,终端首先处理低优先级上行信道之间的复用,然后处理不同优先级之间的时域资源重叠,再处理高优先级上行信道之间的复用,最后再处理复用后的高优先级上行信道和低优先级上行信道之间的时域资源重叠,也即终端丢弃低优先级的物理信道,仅传输高优先级的物理信道。
为了降低不同物理层优先级的上行信道在时域重叠的情况下,丢弃低优先级上行信道的影响,目前正在研究将不同优先级的上行信道复用传输的方法,但是由于不同优先级的上行信道HARQ-ACK的传输时间单元可能不同,当多个不同传输时间单元的上行信道冲突时,目前还没有明确的复用传输方法。
针对上述技术问题,本公开实施例提供一种上行复用传输方法,对于终端或基站,在不同物理层优先级或不同类型的至少两个上行信道时域重叠的情况下,先确定复用过程的时间单元,例如基于高优先级HARQ-ACK的传输时间单元确定复用过程的时间单元,对于跨多个时间单元的目标上行信道,若未满足预设复用结束条件,则依次在与目标上行信道时域重叠的每一个时间单元中进行复用过程,直至满足预设复用结束条件,得到最终的复用过程的处理结果,例如对于低优先级PUCCH,在没有被丢弃且没有和其它上行信道复用的情况下参与和这个低优先级PUCCH时域重叠的每一个复用过程时间单元中的复用过程,最终基于复用过程的处理结果进行上行信道传输,可以在上行信道时域重叠的情况下减少丢弃某些上行信道产生的影响,例如对上行控制信息的传输产生影响。
本公开实施例提供的上行复用传输方法,可适用于如图1a所示的应用场景中,或者如图1b所示的应用场景中,该些应用场景中包括基站和终端(Terminal/User Equipment,UE)。
在图1a中,终端UE在不同物理层优先级或不同类型的至少两个上行信道时域重叠的情况下,确定复用过程的时间单元;对于至少两个上行信道中跨越多个时间单元的目标上行信道,若未满足预设复用结束条件,则依次在与目标上行信道时域重叠的每一个时间单元中进行复用过程,直至满足预设复用结束条件,得到最终的复用过程的处理结果;基于复用过程的处理结果与基站进行上行信道传输。
在图1b中,基站在不同物理层优先级或不同类型的至少两个上行信道时域重叠的情况下,确定复用过程的时间单元;对于至少两个上行信道中跨越多个时间单元的目标上行信道,若未满足预设复用结束条件,则依次在与目标上行信道时域重叠的每一个时间单元中进行复用过程,直至满足预设复用结束条件,得到最终的复用过程的处理结果;基于复用过程的处理结果接收终端UE通过上行信道传输的上行信息。
下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分实施例,并不是全部的实施例。 基于本公开中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
其中,方法和装置是基于同一申请构思的,由于方法和装置解决问题的原理相似,因此装置和方法的实施可以相互参见,重复之处不再赘述。
图2为本公开一实施例提供的上行复用传输方法,该上行复用传输方法应用于终端或基站等网络设备,如图2所示,该方法具体步骤如下:
S201、在不同物理层优先级或不同类型的至少两个上行信道时域重叠的情况下,确定复用过程的时间单元。
在本实施例中,在5G标准Rel-16版本中对于上行信道引入了两级物理层优先级的定义,也即上行支持两种不同物理层优先级的物理信道,包括:高优先级(High Priority,HP)和低优先级(Low Priority,LP)上行信道。本实施例的前提条件是终端被配置支持不同优先级复用传输;如果存在不同物理层优先级的上行信道时域重叠时,需要进行复用过程,可先确定复用过程的时间单元,以便于在各复用过程的时间单元中进行上行信道的复用。
可选的,在时域重叠的不同物理层优先级的至少两个上行信道的情况下,在确定复用过程的时间单元时,由于不同物理层优先级的上行信道中HARQ-ACK的传输时间单元可能不同,因此可根据不同物理层优先级的HARQ-ACK的传输时间单元,确定所述复用过程的时间单元。
其中,HARQ-ACK的传输时间单元可以是时隙(Slot)或者子时隙(Sub-slot),例如,HARQ-ACK的传输时间单元为子时隙时,子时隙长度可以是7个或6个OFDM符号,或者2个OFDM符号。
进一步的,本实施例中,可将不同物理层优先级中的高优先级HARQ-ACK的传输时间单元,确定为所述复用过程的时间单元。
在另一种实施例中,也可能存在不同类型的至少两个上行信道时域重叠的情况,例如MBS PUCCH和unicast PUCCH的时域冲突,需要进行复用过程,也可先确定复用过程的时间单元,以便于在各复用过程的时间单元中进行上行信道的复用。
具体的,在时域重叠的至少两个上行信道为不同类型的至少两个上行信道的情况下,在确定复用过程的时间单元时,可以将所述至少两个上行信道中传输时间单元较短的上行信道的传输时间单元确定为复用过程的时间单元;或者,将所述至少两个上行信道中目标类型的上行信道的传输时间单元确定为复用过程的时间单元。
举例来讲,对于MBS PUCCH和unicast PUCCH之间存在的时域重叠,可以基于其中一种上行信道对应的传输时间确定为复用过程的时间单元,比如选择最小的传输时间单元作为复用过程的时间单元,或者总是选择MBS PUCCH的传输时间单元作为复用过程的时间单元,或者总是选择unicast PUCCH的传输时间单元作为复用过程的时间单元。
S202、对于所述至少两个上行信道中跨越多个时间单元的目标上行信道,若未满足预设复用结束条件,则依次在与所述目标上行信道时域重叠的每一个时间单元中进行复用过程,直至满足预设复用结束条件,得到最终的复用过程的处理结果。
在本实施例中,在确定复用过程的时间单元后,所述至少两个上行信道中可能存 在跨越多个时间单元的目标上行信道,由于跨越多个时间单元的目标上行信道与未跨越时间单元的上行信道之间的传输时间单元不同,因此可在未满足预设复用结束条件时依次在与所述目标上行信道时域重叠的每一个时间单元中进行复用过程,直至满足预设复用结束条件。
其中,可选的,满足预设复用结束条件可以为当前不存在需要进行复用过程的上行信道,例如不存在PUCCH时域重叠,具体的,预设复用结束条件可以是时域重叠的上行信道被丢弃或与其他上行信道复用成功。
可选的,在依次在与所述目标上行信道时域重叠的每一个时间单元中进行复用过程时,具体可包括:
将当前复用过程的时间单元中所有PUCCH确定为Q集合,并根据时域重叠情况下的复用规则执行复用过程,得到当前复用过程的时间单元中时域不重叠的PUCCH。
在本实施例中,在依次进行复用过程中,对于当前复用过程的时间单元,可将其中所有PUCCH(包括相同优先级和不同优先级的PUCCH)确定为Q集合,然后根据时域重叠情况下的复用规则对Q集合中的PUCCH执行复用过程,例如将Q集合中至少一个上行信道承载的预设类型的UCI(Uplink Control Information,上行控制信息)转移到Q集合中的另一个上行信道上进行复用,其中UCI可包括HARQ-ACK、SR(Scheduling Request,调度请求)、CSI(Channel State Information,信道状态信息)中的至少一种;或者,也可将另外创建新的上行信道,将Q集合中至少一个上行信道承载的预设类型的UCI转移到新的上行信道进行复用。其中,预设类型的UCI为上行信道之间支持复用的UCI,例如支持复用的UCI可以为HARQ-ACK,而SR和CSI不支持复用,则在复用时仅仅将某一上行信道的HARQ-ACK承载到另一上行信道上进行复用,例如将HARQ-ACK由LP PUCCH转移到HP PUCCH上进行复用,而对于SR和CSI可进行丢弃。
S203、基于复用过程的处理结果进行上行信道传输。
在本实施例中,在完成复用过程得到最终的复用过程的处理结果后,可基于处理结果进行上行信道传输。具体的,若本实施例提供的上行复用传输方法执行主体为终端,则由终端向基站进行上行信道传输;若本实施例提供的上行复用传输方法执行主体为基站,则由基站接收终端传输的上行信道。
本实施例提供的上行复用传输方法,应用于终端或基站,通过在不同物理层优先级或不同类型的至少两个上行信道时域重叠的情况下,确定复用过程的时间单元;对于至少两个上行信道中跨越多个时间单元的目标上行信道,若未满足预设复用结束条件,则依次在与目标上行信道时域重叠的每一个时间单元中进行复用过程,直至满足预设复用结束条件,得到最终的复用过程的处理结果;基于复用过程的处理结果进行上行信道传输。本实施例在上行信道时域重叠的情况下通过依次在各复用过程的时间单元中进行复用过程,直至满足预设复用结束条件,可以将时域重叠的上行信道承载的上行控制信息复用到其他信道上,能够有效的进行上行复用传输,减少丢弃上行信道产生的影响。
在上述任一实施例的基础上,如图3所示,S202所述依次在与所述目标上行信道时域重叠的每一个时间单元中进行复用过程,直至满足预设复用结束条件,具体可包 括:
S301、对于跨越多个时间单元的低优先级PUCCH,在与所述低优先级PUCCH时域重叠的第一个时间单元中进行复用过程;
S302、若当前复用过程中确定所述低优先级PUCCH被丢弃或与其他上行信道复用成功,则停止后续与所述低优先级PUCCH时域重叠的其他时间单元中进行所述低优先级PUCCH的复用过程;
S303、否则,继续在下一个与所述低优先级PUCCH时域重叠的时间单元中进行所述低优先级PUCCH的复用过程;
重复上述过程,直至所述低优先级PUCCH被丢弃或与其他上行信道复用成功。
在本实施例中,在存在低优先级PUCCH跨越多个时间单元时,可在在该低优先级PUCCH未被丢弃且与未其他上行信道复用成功时,依次在与该低优先级PUCCH时域重叠的每一个时间单元中参与复用过程,直至该低优先级PUCCH被丢弃或与其他上行信道复用成功。
具体的,先在与该低优先级PUCCH时域重叠的第一个时间单元中进行复用过程,若第一个时间单元复用过程中确定该低优先级PUCCH被丢弃或与其他上行信道复用成功,则停止后续与所述低优先级PUCCH时域重叠的其他时间单元中进行所述低优先级PUCCH的复用过程;若该低优先级PUCCH未被丢弃且与未其他上行信道复用成功时,则在与该低优先级PUCCH时域重叠的第二个时间单元中进行复用过程,同样的,若第二个时间单元复用过程中确定该低优先级PUCCH被丢弃或与其他上行信道复用成功,则停止后续与所述低优先级PUCCH时域重叠的其他时间单元中进行所述低优先级PUCCH的复用过程;若该低优先级PUCCH未被丢弃且与未其他上行信道复用成功时,则在与该低优先级PUCCH时域重叠的第三个时间单元中进行复用过程,以此类推,直至该低优先级PUCCH被丢弃或与其他上行信道复用成功,或者直至最后一个与该低优先级PUCCH时域重叠的时间单元中进行复用过程完成。
需要说明的是,若当前复用过程的时间单元中不存在与所述目标上行信道时域重叠的上行信道,则继续在下一个与所述目标上行信道时域重叠的时间单元中进行复用过程。如上述实施例,若在第一个时间单元的复用过程中发现第一个时间单元中不存在与该低优先级PUCCH时域重叠的上行信道,则第一个时间单元中不需要进行复用过程,可继续进行第二个时间单元的复用过程,同样的,若第二个时间单元中也不存在与该低优先级PUCCH时域重叠的上行信道,则可继续进行第三个时间单元的复用过程,以此类推。
在上述实施例的基础上,在S202所述依次在与所述目标上行信道时域重叠的每一个时间单元中进行复用过程的过程中,还可包括:
若满足预设条件,则对所述Q集合中至少一个上行信道执行丢弃操作,所述预设条件包括:
在当前复用过程的时间单元中,经过复用过程得到的上行信道仍然跨多个时间单元;或者
在当前复用过程的时间单元中,经过复用过程得到的上行信道位于其它时间单元;或者
在当前复用过程的时间单元中,经过复用过程得到的上行信道的起始位置早于当前复用过程的时间单元的起始位置。
在本实施例中,在复用过程中通过对预设条件的判断,可以确定是否对上行信道执行丢弃操作,避免继续执行后续的复用过程。
在上述实施例的基础上,所述对所述Q集合中至少一个上行信道执行丢弃操作,具体可包括:
若所述Q集合中各上行信道的物理层优先级不同,则丢弃其中低优先级的上行信道;或者
若所述Q集合中各上行信道的物理层优先级相同,则基于各上行信道承载的UCI类型的预设优先级,丢弃其中承载低优先级UCI类型的上行信道。
在本实施例中,当确定需要对Q集合中至少一个上行信道执行丢弃操作时,若Q集合中各上行信道的物理层优先级不同,则丢弃其中低优先级的上行信道;若Q集合中各上行信道的物理层优先级相同,则可根据各上行信道承载的UCI类型来确定丢弃哪一个或哪些上行信道,其中可以预先设定UCI类型的预设优先级,可选的,UCI类型的预设优先级顺序为:HARQ-ACK>SR>CSI。若需要丢弃两个LP PUCCH中的一个上行信道,其中第一LP PUCCH承载的UCI类型为HARQ-ACK,第二LP PUCCH承载的UCI类型为CSI,由于HARQ-ACK优先级高于CSI,因此丢弃第二LP PUCCH。
上述实施例中描述了存在不同物理层优先级的上行信道时域重叠的情况,对于存在不同类型的至少两个上行信道时域重叠的情况,其实现方式与之类似。例如,在确定复用过程的时间单元后,若第一类型的PUCCH跨越多个时间单元,若未满足预设复用结束条件,依次在与该PUCCH时域重叠的每一个时间单元中进行复用过程,直至满足预设复用结束条件,得到最终的复用过程的处理结果,具体的,可在与该PUCCH时域重叠的第一个时间单元中进行复用过程,若当前复用过程中确定该PUCCH被丢弃或与其他上行信道复用成功,则停止后续与该PUCCH时域重叠的其他时间单元中进行该PUCCH的复用过程;否则,继续在下一个与该PUCCH时域重叠的时间单元中进行该PUCCH的复用过程,重复上述过程,直至该PUCCH被丢弃或与其他上行信道复用成功。最后基于复用过程的处理结果进行上行信道传输。其中,丢弃操作的预设条件同上述实施例,丢弃操作时可按照物理层优先级或者UCI类型优先级进行丢弃,当然也可按照其他顺序或其他预设规则进行丢弃,此处不做限制。
在上述任一实施例的基础上,所述上行复用传输方法还包括:
在所述复用过程的处理结果中的PUCCH和物理上行共享信道PUSCH存在时域重叠的情况下,若确定终端支持PUCCH和PUSCH的并行传输,则同时传输该PUCCH和该PUSCH;
若确定终端不支持PUCCH和PUSCH的并行传输,则对该PUCCH和该PUSCH进行复用传输、或丢弃其中一个上行信道。
在本实施例中,上述实施例中可能同时存在PUCCH和PUSCH的时域重叠情况,例如若存在多个PUCCH时域重叠,同时又和PUSCH重叠,则可先执行S201-S203的过程得到时域不重叠的PUCCH,若此时时域不重叠的PUCCH与PUSCH重叠,则可先确定终端是否支持PUCCH和PUSCH的并行传输,若终端支持PUCCH和PUSCH 的并行传输,则同时传输该PUCCH和该PUSCH;若终端不支持PUCCH和PUSCH的并行传输,则对该PUCCH和该PUSCH进行复用传输、或丢弃其中一个上行信道,其中复用传输可以将PUCCH承载的UCI转移到PUSCH上进行复用,当然也可将PUSCH承载的UCI转移到PUCCH上进行复用。需要说明的是,终端是否支持PUCCH和PUSCH的并行传输,可由基站进行控制,或者由终端用户进行设置,或者通过其他途径进行控制。
下面将结合具体示例,对上述各实施例中的上行复用传输方法进行详细说明。其中所描述的各示例仅仅是本公开提供一种上行复用传输方法的一部分实施例,而不是全部的实施例,基于本公开中的示例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
示例1:
在主载波(Master(primary)Cell Group,MCG)上,高优先级HARQ-ACK被配置基于7个符号长度的Sub-slot传输,低优先级HARQ-ACK被配置了基于Slot传输,则将高优先级HARQ-ACK的传输时间单元Sub-slot作为复用过程的时间单元。
情况1:如图4所示,一个低优先级的LP PUCCH和两个高优先级Sub-slot在时域上重叠,并且在每个高优先级Sub-slot内分别和一个高优先级HP PUCCH在时域上重叠。在图4中的第一个复用过程的时间单元中,定义Q集合包含HP PUCCH-1和LP PUCCH,基于时域重叠情况下的复用规则,终端可能会丢弃LP PUCCH或者将LP PUCCH承载的UCI信息转移到HP PUCCH-1上进行复用传输,则LP PUCCH不再参与第二个Sub-slot中的复用过程,第一个复用过程的时间单元中经过复用得到一个HP PUCCH-1。在第二个复用过程的时间单元中,只有一个HP PUCCH-2,没有时域上重叠的信道,因此也得到一个HP PUCCH-2。最终,终端在第一个复用过程的时间单元中传输一个HP PUCCH-1(可以包含转移的LP UCI),LP PUCCH被丢弃,在第二个复用过程的时间单元传输一个HP PUCCH-2。
情况2:如图5所示,一个低优先级的LP PUCCH和两个高优先级Sub-slot在时域上重叠,但是在第一个高优先级Sub-slot内不和高优先级PUCCH重叠,在第二个高优先级Sub-slot内和一个高优先级PUCCH在时域上重叠。在图5中的第一个复用过程的时间单元中,由于不存在时域重叠,不需要执行复用过程,则LP PUCCH没有被丢弃,也没有与其他上行信道复用,可以继续参与后续的复用过程。在第二个复用过程的时间单元中,定义Q集合包含HP PUCCH-2和LP PUCCH,基于时域重叠情况下的复用规则,终端可能会丢弃LP PUCCH或者将LP PUCCH承载的UCI信息转移到HP PUCCH-2上进行复用传输,最终,终端在第一个复用过程的时间单元中传输一个HP PUCCH-1,在第二个复用过程的时间单元传输一个HP PUCCH-2(可以包含转移的LP UCI),LP PUCCH被丢弃。
情况3:如图6所示,一个低优先级的LP PUCCH-2和两个高优先级Sub-slot在时域上重叠,但是在第一个高优先级Sub-slot内和一个低优先级的LP PUCCH-1重叠,在第二个高优先级Sub-slot内和一个高优先级HP PUCCH在时域上重叠。在图6中的第一个复用过程的时间单元中,定义Q集合包含LP PUCCH-1和LP PUCCH-2,基于时域重叠情况下的复用规则,终端可能会将LP PUCCH-1承载的UCI信息转移到LP  PUCCH-2上进行复用传输,假设LP PUCCH-1承载了LP HARQ-ACK,LP PUCCH-2承载了LP CSI,则复用后LP PUCCH-2资源上承载了LP HARQ-ACK和LP CSI。在第二个复用过程的时间单元中,定义Q集合包含HP PUCCH和LP PUCCH-2,基于时域重叠情况下的复用规则,终端可能会将LP PUCCH-2承载的UCI信息转移到HP PUCCH上进行复用传输,进一步可选的,假如仅支持LP HARQ-ACK和HP HARQ-ACK复用,不支持LP CSI和HP HARQ-ACK复用,则将LP PUCCH-2承载的LP HARQ-ACK转移到HP PUCCH传输,LP CSI无法转移到HP PUCCH传输,丢弃LP CSI。最终,终端在第一个复用过程的时间单元中不传输任何信道,在第二个复用过程的时间单元传输一个HP PUCCH-2(可以包含转移的LP HARQ-ACK),LP PUCCH-1和LP PUCCH-2均被丢弃。
情况4:如图7所示,一个低优先级的LP PUCCH-1和两个高优先级Sub-slot在时域上重叠,但是在第一个高优先级Sub-slot内和一个高优先级的HP PUCCH-2重叠,所述高优先级的HP PUCCH-2和一个高优先级HP PUCCH-1重叠,在第二个高优先级Sub-slot内和一个低优先级LP PUCCH-2在时域上重叠。在图7中的第一个复用过程的时间单元中,定义Q集合包含HP PUCCH-1、HP PUCCH-2和LP PUCCH-1,基于时域重叠情况下的复用规则,终端可能会将HP PUCCH-2承载的UCI信息转移到HP PUCCH-1上进行复用传输,则复用后得到HP PUCCH-1和LP PUCCH-1两个信道,LP PUCCH-1可以继续参与后续的复用过程。在第二个复用过程的时间单元中,定义Q集合包含LP PUCCH-1和LP PUCCH-2,基于时域重叠情况下的复用规则,终端可能会将LP PUCCH-1承载的UCI信息转移到LP PUCCH-2上进行复用传输,则复用后得到LP PUCCH-2信道。最终,终端在第一个复用过程的时间单元中传输HP PUCCH-1(包含转移的HP PUCCH-2的UCI信息),在第二个复用过程的时间单元传输一个LP PUCCH-2(包含转移的LP PUCCH-1的UCI信息),HP PUCCH-2和LP PUCCH-1均被丢弃。
示例2:
在主载波上,高优先级HARQ-ACK被配置基于7个符号长度的Sub-slot传输,低优先级HARQ-ACK被配置了基于Slot传输,则将高优先级HARQ-ACK的Sub-slot作为复用过程的时间单元。
情况1:如图8所示,在第一个高优先级Sub-slot内只有一个HP PUCCH,在第二个高优先级Sub-slot内有一个LP PUCCH-1和一个LP PUCCH-2重叠。在图8中的第一个复用过程的时间单元中,由于不存在重叠所以不需要执行复用过程。在第二个复用过程的时间单元中,定义Q集合包含LP PUCCH-1和LP PUCCH-2,基于时域重叠情况下的复用规则,终端可能会选择在一个新的LP PUCCH-3进行复用传输,如图8所示,由于LP PUCCH-3位于前一个复用过程的时间单元,满足上述实施例中提及的预设条件,则不支持LP PUCCH-1和LP PUCCH-2进行复用,进一步可选的,假设LP PUCCH-1承载HARQ-ACK,LP PUCCH-2承载CSI/SR,则丢弃LP PUCCH-2和它所承载的UCI,在第二个复用过程的时间单元中仅传输LP PUCCH-1。最终,终端在第一个复用过程的时间单元中传输一个HP PUCCH,在第二个复用过程的时间单元传输一个LP PUCCH-1(不包含转移的LP UCI),LP PUCCH-2被丢弃。
类似的,在本示例情况1中,如果在第二个复用过程的时间单元中,如图9所示,若确定复用后的LP PUCCH-3的起始位置早于当前复用过程的时间单元,或者确定复用后的LP PUCCH-3的资源跨出了当前复用过程的时间单元,都可以不支持LP PUCCH-2的传输,仅传输LP PUCCH-1。
情况2:如图10所示,在第一个高优先级Sub-slot内只有一个HP PUCCH,在第二个高优先级Sub-slot内有一个LP PUCCH-1和一个LP PUCCH-2重叠。在图10中的第一个复用过程的时间单元中,由于不存在重叠所以不需要执行复用过程。在第二个复用过程的时间单元中,定义Q集合包含LP PUCCH-1和LP PUCCH-2,基于时域重叠情况下的复用规则,终端可能会选择在一个新的LP PUCCH-3进行复用传输,如图10所示,由于LP PUCCH-3位于当前复用过程的时间单元,则支持LP PUCCH-1和LP PUCCH-2进行复用,假设LP PUCCH-1承载HARQ-ACK,LP PUCCH-2承载CSI/SR,则将HARQ-ACK和CSI/SR都转移到LP PUCCH-3上进行传输。最终,终端在第一个复用过程的时间单元中传输一个HP PUCCH,在第二个复用过程的时间单元传输一个LP PUCCH-3(包含转移的LP HARQ-ACK和CSI/SR)。
情况3:如图11所示,在第一个高优先级Sub-slot内有一个LP PUCCH-1和一个LP PUCCH-2重叠,在第二个高优先级Sub-slot内只有一个HP PUCCH。在图11中的第一个复用过程的时间单元中,定义Q集合包含LP PUCCH-1和LP PUCCH-2,基于时域重叠情况下的复用规则,终端可能会通过一个新的LP PUCCH-3进行复用传输,如图12-图14所示。
情况3-1:如图12所示,LP PUCCH-3位于当前复用过程的时间单元,则支持LP PUCCH-1和LP PUCCH-2进行复用。最终,终端在第一个复用过程的时间单元中传输一个LP PUCCH-3(包含LP PUCCH-1和LP PUCCH-2转移的LP UCI),在第二个复用过程的时间单元传输一个HP PUCCH。
情况3-2:如图13或图14所示,LP PUCCH-3跨多个复用过程的时间单元或者位于其它的复用过程的时间单元中,则可采用以下任意一种方式。
方式一:不支持LP PUCCH-1和LP PUCCH-2进行复用,假设LP PUCCH-1承载HARQ-ACK,LP PUCCH-2承载CSI/SR,则根据UCI类型的预设优先级丢弃LP PUCCH-2和它所承载的UCI,在第一个复用过程的时间单元中仅传输LP PUCCH-1。最终,终端在第一个复用过程的时间单元传输一个LP PUCCH-1(不包含转移的LP UCI),LP PUCCH-2被丢弃,在第二个复用过程的时间单元中传输一个HP PUCCH。
方式二:支持LP PUCCH-1和LP PUCCH-2进行复用,假设LP PUCCH-1承载HARQ-ACK,LP PUCCH-2承载CSI/SR,则在第一个复用过程的时间单元中通过复用过程得到新的LP PUCCH-3。在第二个复用过程的时间单元中,定义Q集合包含LP PUCCH-3和HP PUCCH,基于时域重叠情况下的复用规则,终端可能会通过HP PUCCH进行复用传输。最终,终端在第一个复用过程的时间单元不传输任何信道,在第二个复用过程的时间单元中传输一个HP PUCCH(包含转移的LP HARQ-ACK)。
通过上述各实施例提供的上行复用传输方法,在上行信道时域重叠的情况下能够有效的进行上行复用传输,减少丢弃上行信道产生的影响。
图15为本公开一实施例提供的上行复用传输装置的结构示意图。本公开的上行复用传输装置可以为终端或基站等网络设备。如图15所示,上行复用传输装置40包括收发机400,处理器410和存储器420。
其中收发机400,用于在处理器410的控制下接收和发送数据。
其中,在图15中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器410代表的一个或多个处理器和存储器420代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机400可以是多个元件,即包括发送机和接收机,提供用于在传输介质上与各种其他装置通信的单元,这些传输介质包括无线信道、有线信道、光缆等传输介质。处理器410负责管理总线架构和通常的处理,存储器420可以存储处理器410在执行操作时所使用的数据。
存储器420,用于存储计算机程序,包括但不限于:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
处理器410可以是中央处埋器(CPU)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)或复杂可编程逻辑器件(Complex Programmable Logic Device,CPLD),处理器也可以采用多核架构。
处理器410,用于读取所述存储器中的计算机程序并执行以下操作:
在不同物理层优先级或不同类型的至少两个上行信道时域重叠的情况下,确定复用过程的时间单元;
对于所述至少两个上行信道中跨越多个时间单元的目标上行信道,若未满足预设复用结束条件,则依次在与所述目标上行信道时域重叠的每一个时间单元中进行复用过程,直至满足预设复用结束条件,得到最终的复用过程的处理结果;
基于复用过程的处理结果进行上行信道传输。
在一种可选的实施方式中,所述处理器410在依次在与所述目标上行信道时域重叠的每一个时间单元中进行复用过程,直至满足预设复用结束条件时,用于:
对于跨越多个时间单元的低优先级PUCCH,在与所述低优先级PUCCH时域重叠的第一个时间单元中进行复用过程;
若当前复用过程中确定所述低优先级PUCCH被丢弃或与其他上行信道复用成功,则停止后续与所述低优先级PUCCH时域重叠的其他时间单元中进行所述低优先级PUCCH的复用过程;
否则,继续在下一个与所述低优先级PUCCH时域重叠的时间单元中进行所述低优先级PUCCH的复用过程;
重复上述过程,直至所述低优先级PUCCH被丢弃或与其他上行信道复用成功。
在一种可选的实施方式中,所述处理器410在依次在与所述目标上行信道时域重叠的每一个时间单元中进行复用过程时,用于:
将当前复用过程的时间单元中所有PUCCH确定为Q集合,并根据时域重叠情况 下的复用规则执行复用过程,得到当前复用过程的时间单元中时域不重叠的PUCCH。
在一种可选的实施方式中,所述处理器410在依次在与所述目标上行信道时域重叠的每一个时间单元中进行复用过程的过程中,还用于:
若满足预设条件,则对所述Q集合中至少一个上行信道执行丢弃操作,所述预设条件包括:
在当前复用过程的时间单元中,经过复用过程得到的上行信道仍然跨多个时间单元;或者
在当前复用过程的时间单元中,经过复用过程得到的上行信道位于其它时间单元;或者
在当前复用过程的时间单元中,经过复用过程得到的上行信道的起始位置早于当前复用过程的时间单元的起始位置。
在一种可选的实施方式中,所述处理器410在对所述Q集合中至少一个上行信道执行丢弃操作时,用于:
若所述Q集合中各上行信道的物理层优先级不同,则丢弃其中低优先级的上行信道;或者
若所述Q集合中各上行信道的物理层优先级相同,则基于各上行信道承载的UCI类型的预设优先级,丢弃其中承载低优先级UCI类型的上行信道。
在一种可选的实施方式中,所述UCI类型的预设优先级顺序为:混合自动重传请求确认信息HARQ-ACK>调度请求信息SR>信道状态信息CSI。
在一种可选的实施方式中,所述处理器410还用于:
若当前复用过程的时间单元中不存在与所述目标上行信道时域重叠的上行信道,则继续在下一个与所述目标上行信道时域重叠的时间单元中进行复用过程。
在一种可选的实施方式中,所述至少两个上行信道为不同物理层优先级的至少两个上行信道;
所述处理器410在确定复用过程的时间单元时,用于:
根据不同物理层优先级的HARQ-ACK的传输时间单元,确定所述复用过程的时间单元。
在一种可选的实施方式中,所述处理器410在根据不同物理层优先级HARQ-ACK的传输时间单元,确定为所述复用过程的时间单元时,用于:
将不同物理层优先级中的高优先级HARQ-ACK的传输时间单元,确定为所述复用过程的时间单元。
在一种可选的实施方式中,所述至少两个上行信道为不同类型的至少两个上行信道;
所述处理器410在确定复用过程的时间单元时,用于:
将所述至少两个上行信道中传输时间单元较短的上行信道的传输时间单元确定为复用过程的时间单元;或者
将所述至少两个上行信道中目标类型的上行信道的传输时间单元确定为复用过程的时间单元。
在一种可选的实施方式中,所述不同类型的至少两个上行信道包括MBS PUCCH 和unicast PUCCH。
在一种可选的实施方式中,所述处理器410还用于:
在所述复用过程的处理结果中的PUCCH和物理上行共享信道PUSCH存在时域重叠的情况下,若确定终端支持PUCCH和PUSCH的并行传输,则同时传输该PUCCH和该PUSCH;
若确定终端不支持PUCCH和PUSCH的并行传输,则对该PUCCH和该PUSCH进行复用传输、或丢弃其中一个上行信道。
本公开实施例涉及的上行复用传输装置,可以是基站,该基站可以包括多个为终端提供服务的小区。根据具体应用场合不同,基站又可以称为接入点,或者可以是接入网中在空中接口上通过一个或多个扇区与无线终端设备通信的设备,或者其它名称。网络设备可用于将收到的空中帧与网际协议(Internet Protocol,IP)分组进行相互更换,作为无线终端设备与接入网的其余部分之间的路由器,其中接入网的其余部分可包括网际协议(IP)通信网络。网络设备还可协调对空中接口的属性管理。例如,本公开实施例涉及的网络设备可以是全球移动通信系统(Global System for Mobile communications,GSM)或码分多址接入(Code Division Multiple Access,CDMA)中的网络设备(Base Transceiver Station,BTS),也可以是带宽码分多址接入(Wide-band Code Division Multiple Access,WCDMA)中的网络设备(NodeB),还可以是长期演进(long term evolution,LTE)系统中的演进型网络设备(evolutional Node B,eNB或e-NodeB)、5G网络架构(next generation system)中的5G基站(gNB),也可以是家庭演进基站(Home evolved Node B,HeNB)、中继节点(relay node)、家庭基站(femto)、微微基站(pico)等,本公开实施例中并不限定。在一些网络结构中,网络设备可以包括集中单元(centralized unit,CU)节点和分布单元(distributed unit,DU)节点,集中单元和分布单元也可以地理上分开布置。
本公开实施例涉及的上行复用传输装置,也可以是终端设备,可以是指向用户提供语音和/或数据连通性的设备,具有无线连接功能的手持式设备、或连接到无线调制解调器的其他处理设备等。在不同的系统中,终端设备的名称可能也不相同,例如在5G系统中,终端设备可以称为用户设备(User Equipment,UE)。无线终端设备可以经无线接入网(Radio Access Network,RAN)与一个或多个核心网(Core Network,CN)进行通信,无线终端设备可以是移动终端设备,如移动电话(或称为“蜂窝”电话)和具有移动终端设备的计算机,例如,可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置,它们与无线接入网交换语言和/或数据。例如,个人通信业务(Personal Communication Service,PCS)电话、无绳电话、会话发起协议(Session Initiated Protocol,SIP)话机、无线本地环路(Wireless Local Loop,WLL)站、个人数字助理(Personal Digital Assistant,PDA)等设备。无线终端设备也可以称为系统、订户单元(subscriber unit)、订户站(subscriber station),移动站(mobile station)、移动台(mobile)、远程站(remote station)、接入点(access point)、远程终端设备(remote terminal)、接入终端设备(access terminal)、用户终端设备(user terminal)、用户代理(user agent)、用户装置(user device),本公开实施例中并不限定。
网络设备与终端设备之间可以各自使用一或多根天线进行多输入多输出(Multi  Input Multi Output,MIMO)传输,MIMO传输可以是单用户MIMO(Single User MIMO,SU-MIMO)或多用户MIMO(Multiple User MIMO,MU-MIMO)。根据根天线组合的形态和数量,MIMO传输可以是2D-MIMO、3D-MIMO、FD-MIMO或massive-MIMO,也可以是分集传输或预编码传输或波束赋形传输等。
在此需要说明的是,本公开提供的上述基站和终端设备等装置,能够实现上述方法实施例所实现的所有方法步骤,且能够达到相同的技术效果,在此不再对本实施例中与方法实施例相同的部分及有益效果进行具体赘述。
图16为本公开一实施例提供的上行复用传输装置结构示意图。本实施例提供的上行复用传输装置应用于终端或基站,如图16所示,所述上行复用传输装置50包括:确定单元510、复用单元520以及传输单元530。
确定单元510,用于在不同物理层优先级或不同类型的至少两个上行信道时域重叠的情况下,确定复用过程的时间单元;
复用单元520,用于对于所述至少两个上行信道中跨越多个时间单元的目标上行信道,若未满足预设复用结束条件,则依次在与所述目标上行信道时域重叠的每一个时间单元中进行复用过程,直至满足预设复用结束条件,得到最终的复用过程的处理结果;
传输单元530,用于基于复用过程的处理结果进行上行信道传输。
在一种可选的实施方式中,所述复用单元520在依次在与所述目标上行信道时域重叠的每一个时间单元中进行复用过程,直至满足预设复用结束条件时,用于:
对于跨越多个时间单元的低优先级PUCCH,在与所述低优先级PUCCH时域重叠的第一个时间单元中进行复用过程;
若当前复用过程中确定所述低优先级PUCCH被丢弃或与其他上行信道复用成功,则停止后续与所述低优先级PUCCH时域重叠的其他时间单元中进行所述低优先级PUCCH的复用过程;
否则,继续在下一个与所述低优先级PUCCH时域重叠的时间单元中进行所述低优先级PUCCH的复用过程;
重复上述过程,直至所述低优先级PUCCH被丢弃或与其他上行信道复用成功。
在一种可选的实施方式中,所述复用单元520在依次在与所述目标上行信道时域重叠的每一个时间单元中进行复用过程时,用于:
将当前复用过程的时间单元中所有PUCCH确定为Q集合,并根据时域重叠情况下的复用规则执行复用过程,得到当前复用过程的时间单元中时域不重叠的PUCCH。
在一种可选的实施方式中,所述复用单元520在依次在与所述目标上行信道时域重叠的每一个时间单元中进行复用过程的过程中,还用于:
若满足预设条件,则对所述Q集合中至少一个上行信道执行丢弃操作,所述预设条件包括:
在当前复用过程的时间单元中,经过复用过程得到的上行信道仍然跨多个时间单元;或者
在当前复用过程的时间单元中,经过复用过程得到的上行信道位于其它时间单元; 或者
在当前复用过程的时间单元中,经过复用过程得到的上行信道的起始位置早于当前复用过程的时间单元的起始位置。
在一种可选的实施方式中,所述复用单元520在对所述Q集合中至少一个上行信道执行丢弃操作时,用于:
若所述Q集合中各上行信道的物理层优先级不同,则丢弃其中低优先级的上行信道;或者
若所述Q集合中各上行信道的物理层优先级相同,则基于各上行信道承载的UCI类型的预设优先级,丢弃其中承载低优先级UCI类型的上行信道。
在一种可选的实施方式中,所述UCI类型的预设优先级顺序为:混合自动重传请求确认信息HARQ-ACK>调度请求信息SR>信道状态信息CSI。
在一种可选的实施方式中,所述复用单元520还用于:
若当前复用过程的时间单元中不存在与所述目标上行信道时域重叠的上行信道,则继续在下一个与所述目标上行信道时域重叠的时间单元中进行复用过程。
在一种可选的实施方式中,所述至少两个上行信道为不同物理层优先级的至少两个上行信道;
所述确定单元510在确定复用过程的时间单元时,用于:
根据不同物理层优先级的HARQ-ACK的传输时间单元,确定所述复用过程的时间单元。
在一种可选的实施方式中,所述确定单元510在根据不同物理层优先级HARQ-ACK的传输时间单元,确定为所述复用过程的时间单元时,用于:
将不同物理层优先级中的高优先级HARQ-ACK的传输时间单元,确定为所述复用过程的时间单元。
在一种可选的实施方式中,所述至少两个上行信道为不同类型的至少两个上行信道;
所述确定单元510在确定复用过程的时间单元时,用于:
将所述至少两个上行信道中传输时间单元较短的上行信道的传输时间单元确定为复用过程的时间单元;或者
将所述至少两个上行信道中目标类型的上行信道的传输时间单元确定为复用过程的时间单元。
在一种可选的实施方式中,所述不同类型的至少两个上行信道包括MBS PUCCH和unicast PUCCH。
在一种可选的实施方式中,所述复用单元520还用于:
在所述复用过程的处理结果中的PUCCH和物理上行共享信道PUSCH存在时域重叠的情况下,若确定终端支持PUCCH和PUSCH的并行传输,则同时传输该PUCCH和该PUSCH;
若确定终端不支持PUCCH和PUSCH的并行传输,则对该PUCCH和该PUSCH进行复用传输、或丢弃其中一个上行信道。
本实施例提供的上行复用传输装置具体可以用于执行上述任一方法实施例中的方 法流程,具体功能和效果此处不再赘述。
需要说明的是,本公开实施例中对单元的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。另外,在本公开各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个处理器可读取存储介质中。基于这样的理解,本公开的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)或处理器(processor)执行本公开各个实施例方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
在此需要说明的是,本公开提供的上述装置,能够实现上述方法实施例所实现的所有方法步骤,且能够达到相同的技术效果,在此不再对本实施例中与方法实施例相同的部分及有益效果进行具体赘述。
本公开还提供一种处理器可读存储介质,处理器可读存储介质存储有计算机程序,计算机程序用于使处理器执行上述任一方法实施例提供的方法。
处理器可读存储介质可以是处理器能够存取的任何可用介质或数据存储设备,包括但不限于磁性存储器(例如软盘、硬盘、磁带、磁光盘(MO)等)、光学存储器(例如CD、DVD、BD、HVD等)、以及半导体存储器(例如ROM、EPROM、EEPROM、非易失性存储器(NAND FLASH)、固态硬盘(SSD))等。
本公开还提供一种计算机程序产品,包括计算机程序,所述计算机程序用于使所述处理器执行如上述任一方法实施例提供的方法。
本领域内的技术人员应明白,本公开的实施例可提供为方法、系统、或计算机程序产品。因此,本公开可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本公开可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器和光学存储器等)上实施的计算机程序产品的形式。
本公开是参照根据本公开实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机可执行指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机可执行指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些处理器可执行指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的处理器可读存储器中,使得存储在该处理器可读存储器中的指令产生包 括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些处理器可执行指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
显然,本领域的技术人员可以对本公开进行各种改动和变型而不脱离本公开的精神和范围。这样,倘若本公开的这些修改和变型属于本公开权利要求及其等同技术的范围之内,则本公开也意图包含这些改动和变型在内。

Claims (38)

  1. 一种上行复用传输方法,其特征在于,应用于终端或基站,该方法包括:
    在不同物理层优先级或不同类型的至少两个上行信道时域重叠的情况下,确定复用过程的时间单元;
    对于所述至少两个上行信道中跨越多个时间单元的目标上行信道,若未满足预设复用结束条件,则依次在与所述目标上行信道时域重叠的每一个时间单元中进行复用过程,直至满足预设复用结束条件,得到最终的复用过程的处理结果;
    基于复用过程的处理结果进行上行信道传输。
  2. 根据权利要求1所述的方法,其特征在于,所述依次在与所述目标上行信道时域重叠的每一个时间单元中进行复用过程,直至满足预设复用结束条件,包括:
    对于跨越多个时间单元的低优先级PUCCH,在与所述低优先级PUCCH时域重叠的第一个时间单元中进行复用过程;
    若当前复用过程中确定所述低优先级PUCCH被丢弃或与其他上行信道复用成功,则停止后续与所述低优先级PUCCH时域重叠的其他时间单元中进行所述低优先级PUCCH的复用过程;
    否则,继续在下一个与所述低优先级PUCCH时域重叠的时间单元中进行所述低优先级PUCCH的复用过程;
    重复上述过程,直至所述低优先级PUCCH被丢弃或与其他上行信道复用成功。
  3. 根据权利要求1所述的方法,其特征在于,所述依次在与所述目标上行信道时域重叠的每一个时间单元中进行复用过程,包括:
    将当前复用过程的时间单元中所有PUCCH确定为Q集合,并根据时域重叠情况下的复用规则执行复用过程,得到当前复用过程的时间单元中时域不重叠的PUCCH。
  4. 根据权利要求3所述的方法,其特征在于,所述依次在与所述目标上行信道时域重叠的每一个时间单元中进行复用过程的过程中,还包括:
    若满足预设条件,则对所述Q集合中至少一个上行信道执行丢弃操作,所述预设条件包括:
    在当前复用过程的时间单元中,经过复用过程得到的上行信道仍然跨多个时间单元;或者
    在当前复用过程的时间单元中,经过复用过程得到的上行信道位于其它时间单元;或者
    在当前复用过程的时间单元中,经过复用过程得到的上行信道的起始位置早于当前复用过程的时间单元的起始位置。
  5. 根据权利要求4所述的方法,其特征在于,所述对所述Q集合中至少一个上行信道执行丢弃操作,包括:
    若所述Q集合中各上行信道的物理层优先级不同,则丢弃其中低优先级的上行信道;或者
    若所述Q集合中各上行信道的物理层优先级相同,则基于各上行信道承载的UCI类型的预设优先级,丢弃其中承载低优先级UCI类型的上行信道。
  6. 根据权利要求5所述的方法,其特征在于,所述UCI类型的预设优先级顺序 为:混合自动重传请求确认信息HARQ-ACK>调度请求信息SR>信道状态信息CSI。
  7. 根据权利要求2所述的方法,其特征在于,所述方法还包括:
    若当前复用过程的时间单元中不存在与所述目标上行信道时域重叠的上行信道,则继续在下一个与所述目标上行信道时域重叠的时间单元中进行复用过程。
  8. 根据权利要求1-7任一项所述的方法,其特征在于,所述至少两个上行信道为不同物理层优先级的至少两个上行信道;
    所述确定复用过程的时间单元,包括:
    根据不同物理层优先级的HARQ-ACK的传输时间单元,确定所述复用过程的时间单元。
  9. 根据权利要求8所述的方法,其特征在于,所述根据不同物理层优先级HARQ-ACK的传输时间单元,确定为所述复用过程的时间单元,包括:
    将不同物理层优先级中的高优先级HARQ-ACK的传输时间单元,确定为所述复用过程的时间单元。
  10. 根据权利要求1-7任一项所述的方法,其特征在于,所述至少两个上行信道为不同类型的至少两个上行信道;
    所述确定复用过程的时间单元,包括:
    将所述至少两个上行信道中传输时间单元较短的上行信道的传输时间单元确定为复用过程的时间单元;或者
    将所述至少两个上行信道中目标类型的上行信道的传输时间单元确定为复用过程的时间单元。
  11. 根据权利要求10所述的方法,其特征在于,所述不同类型的至少两个上行信道包括MBS PUCCH和unicast PUCCH。
  12. 根据权利要求2-7任一项所述的方法,其特征在于,所述方法还包括:
    在所述复用过程的处理结果中的PUCCH和物理上行共享信道PUSCH存在时域重叠的情况下,若确定终端支持PUCCH和PUSCH的并行传输,则同时传输该PUCCH和该PUSCH;
    若确定终端不支持PUCCH和PUSCH的并行传输,则对该PUCCH和该PUSCH进行复用传输、或丢弃其中一个上行信道。
  13. 一种上行复用传输装置,其特征在于,包括存储器,收发机,处理器:
    存储器,用于存储计算机程序;收发机,用于在所述处理器的控制下收发数据;处理器,用于读取所述存储器中的计算机程序并执行以下操作:
    在不同物理层优先级或不同类型的至少两个上行信道时域重叠的情况下,确定复用过程的时间单元;
    对于所述至少两个上行信道中跨越多个时间单元的目标上行信道,若未满足预设复用结束条件,则依次在与所述目标上行信道时域重叠的每一个时间单元中进行复用过程,直至满足预设复用结束条件,得到最终的复用过程的处理结果;
    基于复用过程的处理结果进行上行信道传输。
  14. 根据权利要求13所述的装置,其特征在于,所述处理器在依次在与所述目标上行信道时域重叠的每一个时间单元中进行复用过程,直至满足预设复用结束条件时, 用于:
    对于跨越多个时间单元的低优先级PUCCH,在与所述低优先级PUCCH时域重叠的第一个时间单元中进行复用过程;
    若当前复用过程中确定所述低优先级PUCCH被丢弃或与其他上行信道复用成功,则停止后续与所述低优先级PUCCH时域重叠的其他时间单元中进行所述低优先级PUCCH的复用过程;
    否则,继续在下一个与所述低优先级PUCCH时域重叠的时间单元中进行所述低优先级PUCCH的复用过程;
    重复上述过程,直至所述低优先级PUCCH被丢弃或与其他上行信道复用成功。
  15. 根据权利要求13所述的装置,其特征在于,所述处理器在依次在与所述目标上行信道时域重叠的每一个时间单元中进行复用过程时,用于:
    将当前复用过程的时间单元中所有PUCCH确定为Q集合,并根据时域重叠情况下的复用规则执行复用过程,得到当前复用过程的时间单元中时域不重叠的PUCCH。
  16. 根据权利要求15所述的装置,其特征在于,所述处理器在依次在与所述目标上行信道时域重叠的每一个时间单元中进行复用过程的过程中,还用于:
    若满足预设条件,则对所述Q集合中至少一个上行信道执行丢弃操作,所述预设条件包括:
    在当前复用过程的时间单元中,经过复用过程得到的上行信道仍然跨多个时间单元;或者
    在当前复用过程的时间单元中,经过复用过程得到的上行信道位于其它时间单元;或者
    在当前复用过程的时间单元中,经过复用过程得到的上行信道的起始位置早于当前复用过程的时间单元的起始位置。
  17. 根据权利要求16所述的装置,其特征在于,所述处理器在对所述Q集合中至少一个上行信道执行丢弃操作时,用于:
    若所述Q集合中各上行信道的物理层优先级不同,则丢弃其中低优先级的上行信道;或者
    若所述Q集合中各上行信道的物理层优先级相同,则基于各上行信道承载的UCI类型的预设优先级,丢弃其中承载低优先级UCI类型的上行信道。
  18. 根据权利要求17所述的装置,其特征在于,所述UCI类型的预设优先级顺序为:混合自动重传请求确认信息HARQ-ACK>调度请求信息SR>信道状态信息CSI。
  19. 根据权利要求14所述的装置,其特征在于,所述处理器还用于:
    若当前复用过程的时间单元中不存在与所述目标上行信道时域重叠的上行信道,则继续在下一个与所述目标上行信道时域重叠的时间单元中进行复用过程。
  20. 根据权利要求13-19任一项所述的装置,其特征在于,所述至少两个上行信道为不同物理层优先级的至少两个上行信道;
    所述处理器在确定复用过程的时间单元时,用于:
    根据不同物理层优先级的HARQ-ACK的传输时间单元,确定所述复用过程的时间单元。
  21. 根据权利要求20所述的装置,其特征在于,所述处理器在根据不同物理层优先级HARQ-ACK的传输时间单元,确定为所述复用过程的时间单元时,用于:
    将不同物理层优先级中的高优先级HARQ-ACK的传输时间单元,确定为所述复用过程的时间单元。
  22. 根据权利要求13-19任一项所述的装置,其特征在于,所述至少两个上行信道为不同类型的至少两个上行信道;
    所述处理器在确定复用过程的时间单元时,用于:
    将所述至少两个上行信道中传输时间单元较短的上行信道的传输时间单元确定为复用过程的时间单元;或者
    将所述至少两个上行信道中目标类型的上行信道的传输时间单元确定为复用过程的时间单元。
  23. 根据权利要求22所述的装置,其特征在于,所述不同类型的至少两个上行信道包括MBS PUCCH和unicast PUCCH。
  24. 根据权利要求14-19任一项所述的装置,其特征在于,所述处理器还用于:
    在所述复用过程的处理结果中的PUCCH和物理上行共享信道PUSCH存在时域重叠的情况下,若确定终端支持PUCCH和PUSCH的并行传输,则同时传输该PUCCH和该PUSCH;
    若确定终端不支持PUCCH和PUSCH的并行传输,则对该PUCCH和该PUSCH进行复用传输、或丢弃其中一个上行信道。
  25. 根据权利要求13-19任一项所述的装置,其特征在于,所述上行复用传输装置为终端或基站。
  26. 一种上行复用传输装置,其特征在于,应用于终端或基站,所述装置包括:
    确定单元,用于在不同物理层优先级或不同类型的至少两个上行信道时域重叠的情况下,确定复用过程的时间单元;
    复用单元,用于对于所述至少两个上行信道中跨越多个时间单元的目标上行信道,若未满足预设复用结束条件,则依次在与所述目标上行信道时域重叠的每一个时间单元中进行复用过程,直至满足预设复用结束条件,得到最终的复用过程的处理结果;
    传输单元,用于基于复用过程的处理结果进行上行信道传输。
  27. 根据权利要求26所述的装置,其特征在于,所述复用单元在依次在与所述目标上行信道时域重叠的每一个时间单元中进行复用过程,直至满足预设复用结束条件时,用于:
    对于跨越多个时间单元的低优先级PUCCH,在与所述低优先级PUCCH时域重叠的第一个时间单元中进行复用过程;
    若当前复用过程中确定所述低优先级PUCCH被丢弃或与其他上行信道复用成功,则停止后续与所述低优先级PUCCH时域重叠的其他时间单元中进行所述低优先级PUCCH的复用过程;
    否则,继续在下一个与所述低优先级PUCCH时域重叠的时间单元中进行所述低优先级PUCCH的复用过程;
    重复上述过程,直至所述低优先级PUCCH被丢弃或与其他上行信道复用成功。
  28. 根据权利要求26所述的装置,其特征在于,所述复用单元在依次在与所述目标上行信道时域重叠的每一个时间单元中进行复用过程时,用于:
    将当前复用过程的时间单元中所有PUCCH确定为Q集合,并根据时域重叠情况下的复用规则执行复用过程,得到当前复用过程的时间单元中时域不重叠的PUCCH。
  29. 根据权利要求28所述的装置,其特征在于,所述复用单元在依次在与所述目标上行信道时域重叠的每一个时间单元中进行复用过程的过程中,还用于:
    若满足预设条件,则对所述Q集合中至少一个上行信道执行丢弃操作,所述预设条件包括:
    在当前复用过程的时间单元中,经过复用过程得到的上行信道仍然跨多个时间单元;或者
    在当前复用过程的时间单元中,经过复用过程得到的上行信道位于其它时间单元;或者
    在当前复用过程的时间单元中,经过复用过程得到的上行信道的起始位置早于当前复用过程的时间单元的起始位置。
  30. 根据权利要求29所述的装置,其特征在于,所述复用单元在对所述Q集合中至少一个上行信道执行丢弃操作时,用于:
    若所述Q集合中各上行信道的物理层优先级不同,则丢弃其中低优先级的上行信道;或者
    若所述Q集合中各上行信道的物理层优先级相同,则基于各上行信道承载的UCI类型的预设优先级,丢弃其中承载低优先级UCI类型的上行信道。
  31. 根据权利要求30所述的装置,其特征在于,所述UCI类型的预设优先级顺序为:混合自动重传请求确认信息HARQ-ACK>调度请求信息SR>信道状态信息CSI。
  32. 根据权利要求27所述的装置,其特征在于,所述复用单元还用于:
    若当前复用过程的时间单元中不存在与所述目标上行信道时域重叠的上行信道,则继续在下一个与所述目标上行信道时域重叠的时间单元中进行复用过程。
  33. 根据权利要求26-32任一项所述的装置,其特征在于,所述至少两个上行信道为不同物理层优先级的至少两个上行信道;
    所述确定单元在确定复用过程的时间单元时,用于:
    根据不同物理层优先级的HARQ-ACK的传输时间单元,确定所述复用过程的时间单元。
  34. 根据权利要求33所述的装置,其特征在于,所述确定单元在根据不同物理层优先级HARQ-ACK的传输时间单元,确定为所述复用过程的时间单元时,用于:
    将不同物理层优先级中的高优先级HARQ-ACK的传输时间单元,确定为所述复用过程的时间单元。
  35. 根据权利要求26-32任一项所述的装置,其特征在于,所述至少两个上行信道为不同类型的至少两个上行信道;
    所述确定单元在确定复用过程的时间单元时,用于:
    将所述至少两个上行信道中传输时间单元较短的上行信道的传输时间单元确定为复用过程的时间单元;或者
    将所述至少两个上行信道中目标类型的上行信道的传输时间单元确定为复用过程的时间单元。
  36. 根据权利要求35所述的装置,其特征在于,所述不同类型的至少两个上行信道包括MBS PUCCH和unicast PUCCH。
  37. 根据权利要求27-32任一项所述的装置,其特征在于,所述复用单元还用于:
    在所述复用过程的处理结果中的PUCCH和物理上行共享信道PUSCH存在时域重叠的情况下,若确定终端支持PUCCH和PUSCH的并行传输,则同时传输该PUCCH和该PUSCH;
    若确定终端不支持PUCCH和PUSCH的并行传输,则对该PUCCH和该PUSCH进行复用传输、或丢弃其中一个上行信道。
  38. 一种处理器可读存储介质,其特征在于,所述处理器可读存储介质存储有计算机程序,所述计算机程序用于使所述处理器执行权利要求1至12任一项所述的方法。
PCT/CN2022/081822 2021-04-02 2022-03-18 上行复用传输方法、装置及存储介质 WO2022206443A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP22778626.6A EP4319418A1 (en) 2021-04-02 2022-03-18 Uplink multiplexing transmission method and device, and storage medium
US18/552,673 US20240155576A1 (en) 2021-04-02 2022-03-18 Uplink multiplexing transmission method, apparatus and storage medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110363231.9 2021-04-02
CN202110363231.9A CN115190602A (zh) 2021-04-02 2021-04-02 上行复用传输方法、装置及存储介质

Publications (1)

Publication Number Publication Date
WO2022206443A1 true WO2022206443A1 (zh) 2022-10-06

Family

ID=83457920

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/081822 WO2022206443A1 (zh) 2021-04-02 2022-03-18 上行复用传输方法、装置及存储介质

Country Status (4)

Country Link
US (1) US20240155576A1 (zh)
EP (1) EP4319418A1 (zh)
CN (1) CN115190602A (zh)
WO (1) WO2022206443A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190261361A1 (en) * 2018-06-08 2019-08-22 Intel Corporation Multiplexing physical uplink control channels in a slot for a new radio (nr) system
CN110536464A (zh) * 2019-08-14 2019-12-03 中兴通讯股份有限公司 一种传输方法、装置、通信节点及介质
US20200053761A1 (en) * 2018-08-10 2020-02-13 Qualcomm Incorporated Uplink collision handling for wireless communications
CN111278143A (zh) * 2018-12-27 2020-06-12 维沃移动通信有限公司 处理上行控制信息的方法及设备
US20200296716A1 (en) * 2019-03-15 2020-09-17 FG Innovation Company Limited Method and apparatus for multiplexing uci

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190261361A1 (en) * 2018-06-08 2019-08-22 Intel Corporation Multiplexing physical uplink control channels in a slot for a new radio (nr) system
US20200053761A1 (en) * 2018-08-10 2020-02-13 Qualcomm Incorporated Uplink collision handling for wireless communications
CN111278143A (zh) * 2018-12-27 2020-06-12 维沃移动通信有限公司 处理上行控制信息的方法及设备
US20200296716A1 (en) * 2019-03-15 2020-09-17 FG Innovation Company Limited Method and apparatus for multiplexing uci
CN110536464A (zh) * 2019-08-14 2019-12-03 中兴通讯股份有限公司 一种传输方法、装置、通信节点及介质

Also Published As

Publication number Publication date
EP4319418A1 (en) 2024-02-07
CN115190602A (zh) 2022-10-14
US20240155576A1 (en) 2024-05-09

Similar Documents

Publication Publication Date Title
WO2020057565A1 (zh) 一种harq-ack的传输方法、终端设备及网络设备
TWI829760B (zh) 用於側行鏈路的通信方法和設備
JP2022516899A (ja) 無線通信方法及び装置
WO2022218157A1 (zh) 信道处理方法、装置及存储介质
WO2022117103A1 (zh) 上行控制信息传输方法、接收方法、终端和网络设备
WO2022117102A1 (zh) 上行控制信息传输方法、接收方法、终端和网络设备
WO2022083364A1 (zh) 状态参量处理方法及装置、网络设备
WO2022156448A1 (zh) 一种信息确定方法、装置及存储介质
WO2022083480A1 (zh) 一种数据传输方法、装置及设备
WO2022152092A1 (zh) 数据传输控制方法和装置
WO2022206443A1 (zh) 上行复用传输方法、装置及存储介质
WO2022206344A1 (zh) 一种信道复用方法、装置及通信设备
WO2022206458A1 (zh) 数据传输方法、装置及存储介质
WO2022206457A1 (zh) 信息传输方法、装置、设备以及存储介质
WO2022218075A1 (zh) Uci的级联确定方法、装置、终端及网络侧设备
WO2024032274A1 (zh) 确定harq进程标识的方法及装置
WO2022206356A1 (zh) 复用传输方法、装置及存储介质
US20240179715A1 (en) Multiplexing transmission method and apparatus, and storage medium
WO2023134572A1 (zh) 上行传输方法、终端设备和网络设备
WO2022237462A1 (zh) 上行信道的传输方法及相关装置
WO2022078285A1 (zh) 上行传输方法及装置
WO2024088174A1 (zh) 保护间隔的确定方法及装置
WO2023045709A1 (zh) 动态数据传输方法、装置及存储介质
WO2024066666A1 (zh) 数据传输优先级确定方法、装置及设备
WO2023134661A1 (zh) Uci传输方法、终端、网络设备、装置及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22778626

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18552673

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2022778626

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022778626

Country of ref document: EP

Effective date: 20231102

NENP Non-entry into the national phase

Ref country code: DE