WO2022117103A1 - 上行控制信息传输方法、接收方法、终端和网络设备 - Google Patents

上行控制信息传输方法、接收方法、终端和网络设备 Download PDF

Info

Publication number
WO2022117103A1
WO2022117103A1 PCT/CN2021/135551 CN2021135551W WO2022117103A1 WO 2022117103 A1 WO2022117103 A1 WO 2022117103A1 CN 2021135551 W CN2021135551 W CN 2021135551W WO 2022117103 A1 WO2022117103 A1 WO 2022117103A1
Authority
WO
WIPO (PCT)
Prior art keywords
harq
ack
bits
indication
indicate
Prior art date
Application number
PCT/CN2021/135551
Other languages
English (en)
French (fr)
Inventor
高雪娟
司倩倩
Original Assignee
大唐移动通信设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大唐移动通信设备有限公司 filed Critical 大唐移动通信设备有限公司
Priority to US18/256,009 priority Critical patent/US20240056232A1/en
Priority to EP21900125.2A priority patent/EP4258776A1/en
Publication of WO2022117103A1 publication Critical patent/WO2022117103A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1861Physical mapping arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0026Transmission of channel quality indication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1854Scheduling and prioritising arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1864ARQ related signaling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1896ARQ related signaling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • H04W72/232Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal the control data signalling from the physical layer, e.g. DCI signalling

Definitions

  • the present disclosure relates to the field of communication technologies, and in particular, to a method for transmitting and receiving uplink control information, a terminal and a network device.
  • a terminal may need to transmit multiple Hybrid Automatic Repeat request-ACKnowledgements (HARQ-ACKs).
  • HARQ-ACKs Hybrid Automatic Repeat request-ACKnowledgements
  • some HARQ-ACK codebooks for example, low-priority HARQ-ACK codebooks
  • the packet causes the number of bits of the HARQ-ACK codebook to be unstable, which may lead to a problem that the terminal and the network device have inconsistent understandings of the number of bits of the HARQ-ACK transmitted by the terminal.
  • Embodiments of the present disclosure provide a method for transmitting uplink control information, a method for receiving it, a terminal, and a network device, so as to solve the problem that the terminal and the network device have inconsistent understandings of the number of bits of HARQ-ACK transmitted by the terminal.
  • An embodiment of the present disclosure provides a method for transmitting uplink control information, including:
  • the terminal receives the first downlink control information (Downlink Control Information, DCI), and the first indication field of the first DCI is used to determine at least one of the following: the number of bits of the second HARQ-ACK acknowledgment, the number of bits of the second HARQ-ACK. 2. Whether the HARQ-ACK exists, and whether the second HARQ-ACK is multiplexed with the first HARQ-ACK for transmission;
  • DCI Downlink Control Information
  • the terminal performs HARQ-ACK transmission according to the first indication field
  • the first DCI is the DCI corresponding to the first uplink channel carrying the first HARQ-ACK
  • the second HARQ-ACK is the HARQ-ACK multiplexed and transmitted with the first HARQ-ACK.
  • the second HARQ-ACK uses a dynamic HARQ-ACK codebook:
  • Each indication state of the first indication field indicates a corresponding piece of information for determining the total number of bits of the second HARQ-ACK;
  • the first indication state of the first indication field is used to indicate that the second HARQ-ACK does not exist, or to indicate that the second HARQ-ACK is not multiplexed with the first HARQ-ACK for transmission, or to indicate the The total number of bits of the second HARQ-ACK is 0, or indicates that the total number of downlink transmissions corresponding to the second HARQ-ACK is 0, and each of the first indication fields except the first indication state
  • the indication status indicates a corresponding piece of information for determining the total number of bits of the second HARQ-ACK, where the total number of bits is greater than 0; or
  • the second indication state of the first indication field indicates information for determining the total number of bits of the second HARQ-ACK under the first condition, the total number of bits is greater than 0, and under the second condition the first number of bits is greater than 0.
  • the second indication status is used to indicate that the second HARQ-ACK does not exist, or to indicate that the second HARQ-ACK is not multiplexed with the first HARQ-ACK, or to indicate the total bits of the second HARQ-ACK
  • the number is 0, or it indicates that the total number of downlink transmissions corresponding to the second HARQ-ACK is 0, and each indication state in the first indication field except the second indication state indicates a corresponding one Information for determining the total number of bits of the second HARQ-ACK, where the total number of bits is greater than 0.
  • the information for determining the total number of bits of the second HARQ-ACK includes:
  • the first indication field indicates information for determining the total number of bits of the second HARQ-ACK:
  • the first indication field includes multiple sub-indication fields, and each sub-indication field is used to indicate the corresponding Two HARQ-ACK subcodebook bits information.
  • the second HARQ-ACK uses a semi-static HARQ-ACK codebook:
  • the first indication field includes at least: a third indication state and a fourth indication state, where the third indication state is used to indicate that the number of bits of the second HARQ-ACK is 1 bit or to indicate that the second indication state is determined according to a fallback mode.
  • the number of bits of the HARQ-ACK, the fourth indication state is used to indicate that the number of bits of the second HARQ-ACK is determined according to the semi-static HARQ-ACK codebook size; or
  • the first indication field includes at least: a fifth indication state and a sixth indication state, where the fifth indication state is used to indicate that the second HARQ-ACK does not exist, or to indicate that the second HARQ-ACK is not associated with the The first HARQ-ACK multiplexed transmission, or the number of bits indicating the second HARQ-ACK is 0, or the number of downlink transmissions corresponding to the second HARQ-ACK is 0, the sixth indication Status is used to indicate that the number of bits of the second HARQ-ACK is determined according to the semi-static HARQ-ACK codebook size; or
  • the first indication field includes at least: a seventh indication state and an eighth indication state, wherein the seventh indication state indicates that the number of bits of the second HARQ-ACK is 1 bit under the first condition or indicates that the number of bits of the second HARQ-ACK is 1 bit or the indication is based on the return.
  • the fallback mode determines the number of bits of the second HARQ-ACK.
  • the seventh indication state is used to indicate that the second HARQ-ACK does not exist, or to indicate that the second HARQ-ACK is not associated with the second HARQ-ACK.
  • the eighth indication state is In order to indicate that the number of bits of the second HARQ-ACK is determined according to the semi-static HARQ-ACK codebook size; or, the seventh indication state is used to indicate that the number of bits of the second HARQ-ACK is 1 bit or indicates that The fallback mode determines the number of bits of the second HARQ-ACK, and the eighth indication state indicates that the number of bits of the second HARQ-ACK is determined according to the semi-static HARQ-ACK codebook size under the first condition, and under the second condition
  • the eighth indication state described below is used to indicate that there is no second HARQ-ACK, or to indicate that the second HARQ-ACK is not multiplexed with the first HARQ-ACK for transmission, or to indicate that the number of bits of the second HARQ-ACK is 0 , or indicate that the number
  • the first indication field includes at least: a ninth indication state, a tenth indication state, and an eleventh indication state, and the ninth indication state is used to indicate that the second HARQ-ACK does not exist, or to indicate that the second HARQ-ACK does not exist.
  • the HARQ-ACK is not multiplexed and transmitted with the first HARQ-ACK, or the number of bits indicating the second HARQ-ACK is 0, or the number of downlink transmissions corresponding to the second HARQ-ACK is 0 , the tenth indication state is used to indicate that the number of bits of the second HARQ-ACK is 1 bit or that the number of bits of the second HARQ-ACK is determined according to the fallback mode, and the eleventh indication state is used to indicate that the number of bits of the second HARQ-ACK is determined according to the fallback mode.
  • the semi-static HARQ-ACK codebook size determines the number of bits of the second HARQ-ACK.
  • the first condition includes:
  • the first uplink channel and the second uplink channel overlap in the time domain, wherein the second uplink channel is a channel carrying the second HARQ-ACK;
  • the second condition includes:
  • the first uplink channel and the second uplink channel do not overlap in the time domain, wherein the second uplink channel is a channel carrying the second HARQ-ACK.
  • each indication state of the first indication field indicates a corresponding piece of information for determining the total number of bits of the second HARQ-ACK, if it is determined that the second HARQ-ACK is not carried. If the second uplink channel overlaps with the first uplink channel in the time domain, the indication information in the first indication domain is ignored.
  • the first indication field includes the third indication state and the fourth indication state, if it is determined that there is no second uplink channel carrying the second HARQ-ACK and the first If the uplink channels overlap in the time domain, the indication information in the first indication domain is ignored.
  • the terminal performs HARQ-ACK transmission according to the first indication field, including:
  • the terminal performs HARQ-ACK transmission according to the number of bits of the second HARQ-ACK.
  • the terminal performs HARQ-ACK transmission according to the number of bits of the second HARQ-ACK, including:
  • the first HARQ-ACK and the second HARQ-ACK are simultaneously transmitted on the same channel; or,
  • the first HARQ-ACK is simultaneously transmitted on the same channel according to the number of bits of the second HARQ-ACK ACK and the second HARQ-ACK;
  • the first HARQ-ACK is transmitted on the first uplink channel.
  • the terminal determines the number of bits of the second HARQ-ACK according to the first indication field, including:
  • the terminal determines according to the first indication field The number of bits of the second HARQ-ACK.
  • the priority of the first uplink channel is higher than the priority of the second uplink channel carrying the second HARQ-ACK;
  • the priority of the first HARQ-ACK is higher than the priority of the second HARQ-ACK;
  • the first HARQ-ACK is the HARQ-ACK of the unicast service
  • the second HARQ-ACK is the HARQ-ACK of the multicast service.
  • the first uplink channel is one of a physical uplink control channel (Physical Uplink Control Channel, PUCCH) and a physical uplink shared channel (Physical Uplink Shared Channel, PUSCH), which carries the first HARQ-ACK of the second HARQ-ACK.
  • the second uplink channel is one of PUCCH and PUSCH, and the channel types of the first uplink channel and the second uplink channel are the same or different.
  • whether the first indication field exists in the first DCI is determined according to the configuration of high-layer signaling.
  • the first indication field always exists in the first DCI.
  • the first DCI is the PDSCH DCI used for scheduling the HARQ-ACK feedback on the PUCCH, or the first DCI is the DCI used for scheduling the HARQ-ACK feedback on the PUCCH.
  • DCI that indicates the release (release) of the Physical Downlink Shared Channel (PDSCH) for Semi-Persistent Scheduling (SPS) that requires HARQ-ACK feedback on the PUCCH; or
  • the first DCI is the DCI that schedules the PUSCH.
  • the values of the first indication fields in the multiple first DCIs are the same, or the terminal performs HARQ-ACK transmission according to the first indication fields in the last DCI.
  • An embodiment of the present disclosure also provides a method for receiving uplink control information, including:
  • the network device sends the first DCI, and the first indication field of the first DCI is used to determine at least one of the following: the number of bits of the second HARQ-ACK acknowledgment for the second HARQ-ACK, whether the second HARQ-ACK exists, the second HARQ-ACK Whether the HARQ-ACK is multiplexed with the first HARQ-ACK;
  • the network device performs HARQ-ACK reception according to the first indication field
  • the first DCI is the DCI corresponding to the first uplink channel carrying the first HARQ-ACK
  • the second HARQ-ACK is the HARQ-ACK multiplexed and transmitted with the first HARQ-ACK.
  • the second HARQ-ACK uses a dynamic HARQ-ACK codebook:
  • Each indication state of the first indication field indicates a corresponding piece of information for determining the total number of bits of the second HARQ-ACK;
  • the first indication state of the first indication field is used to indicate that the second HARQ-ACK does not exist, or to indicate that the second HARQ-ACK is not multiplexed with the first HARQ-ACK for transmission, or to indicate the The total number of bits of the second HARQ-ACK is 0, or indicates that the total number of downlink transmissions corresponding to the second HARQ-ACK is 0, and each of the first indication fields except the first indication state
  • the indication status indicates a corresponding piece of information for determining the total number of bits of the second HARQ-ACK, where the total number of bits is greater than 0; or
  • the second indication state of the first indication field indicates information for determining the total number of bits of the second HARQ-ACK under the first condition, the total number of bits is greater than 0, and under the second condition the first number of bits is greater than 0.
  • the second indication status is used to indicate that the second HARQ-ACK does not exist, or to indicate that the second HARQ-ACK is not multiplexed with the first HARQ-ACK, or to indicate the total bits of the second HARQ-ACK
  • the number is 0, or it indicates that the total number of downlink transmissions corresponding to the second HARQ-ACK is 0, and each indication state in the first indication field except the second indication state indicates a corresponding one Information for determining the total number of bits of the second HARQ-ACK, where the total number of bits is greater than 0.
  • the information for determining the total number of bits of the second HARQ-ACK includes:
  • the first indication field indicates information for determining the total number of bits of the second HARQ-ACK:
  • the first indication field includes multiple sub-indication fields, and each sub-indication field is used to indicate the corresponding Two HARQ-ACK subcodebook bits information.
  • the second HARQ-ACK uses a semi-static HARQ-ACK codebook:
  • the first indication field includes at least: a third indication state and a fourth indication state, where the third indication state is used to indicate that the number of bits of the second HARQ-ACK is 1 bit or to indicate that the second indication state is determined according to a fallback mode.
  • the number of bits of the HARQ-ACK, the fourth indication state is used to indicate that the number of bits of the second HARQ-ACK is determined according to the semi-static HARQ-ACK codebook size; or
  • the first indication field includes at least: a fifth indication state and a sixth indication state, where the fifth indication state is used to indicate that the second HARQ-ACK does not exist, or to indicate that the second HARQ-ACK is not associated with the The first HARQ-ACK multiplexed transmission, or the number of bits indicating the second HARQ-ACK is 0, or the number of downlink transmissions corresponding to the second HARQ-ACK is 0, the sixth indication Status is used to indicate that the number of bits of the second HARQ-ACK is determined according to the semi-static HARQ-ACK codebook size; or
  • the first indication field includes at least: a seventh indication state and an eighth indication state, wherein the seventh indication state indicates that the number of bits of the second HARQ-ACK is 1 bit under the first condition or indicates that the number of bits of the second HARQ-ACK is 1 bit or the indication is based on the return.
  • the fallback mode determines the number of bits of the second HARQ-ACK.
  • the seventh indication state is used to indicate that the second HARQ-ACK does not exist, or to indicate that the second HARQ-ACK is not associated with the second HARQ-ACK.
  • the eighth indication state is In order to indicate that the number of bits of the second HARQ-ACK is determined according to the semi-static HARQ-ACK codebook size; or, the seventh indication state is used to indicate that the number of bits of the second HARQ-ACK is 1 bit or indicates that The fallback mode determines the number of bits of the second HARQ-ACK, and the eighth indication state indicates that the number of bits of the second HARQ-ACK is determined according to the semi-static HARQ-ACK codebook size under the first condition, and under the second condition
  • the eighth indication state described below is used to indicate that there is no second HARQ-ACK, or to indicate that the second HARQ-ACK is not multiplexed with the first HARQ-ACK for transmission, or to indicate that the number of bits of the second HARQ-ACK is 0 , or indicate that the number
  • the first indication field includes at least: a ninth indication state, a tenth indication state, and an eleventh indication state, and the ninth indication state is used to indicate that the second HARQ-ACK does not exist, or to indicate that the second HARQ-ACK does not exist.
  • the HARQ-ACK is not multiplexed and transmitted with the first HARQ-ACK, or the number of bits indicating the second HARQ-ACK is 0, or the number of downlink transmissions corresponding to the second HARQ-ACK is 0 , the tenth indication state is used to indicate that the number of bits of the second HARQ-ACK is 1 bit or that the number of bits of the second HARQ-ACK is determined according to the fallback mode, and the eleventh indication state is used to indicate that the number of bits of the second HARQ-ACK is determined according to the fallback mode.
  • the semi-static HARQ-ACK codebook size determines the number of bits of the second HARQ-ACK.
  • the first condition includes:
  • the first uplink channel and the second uplink channel overlap in the time domain, wherein the second uplink channel is a channel carrying the second HARQ-ACK;
  • the second condition includes:
  • the first uplink channel and the second uplink channel do not overlap in the time domain, wherein the second uplink channel is a channel carrying the second HARQ-ACK.
  • the network device performs HARQ-ACK reception according to the first indication field, including:
  • the network device performs HARQ-ACK reception according to the number of bits of the second HARQ-ACK.
  • the network device performs HARQ-ACK reception according to the number of bits of the second HARQ-ACK, including:
  • the first HARQ-ACK and the second HARQ-ACK are simultaneously received on the same channel; or,
  • the first HARQ is simultaneously received on the same channel according to the number of bits of the second HARQ-ACK - ACK and said second HARQ-ACK;
  • the first HARQ-ACK is received on the first uplink channel.
  • the network device determines the number of bits of the second HARQ-ACK according to the first indication field, including:
  • the network device In the case that the first uplink channel carrying the first HARQ-ACK and the second uplink channel carrying the second HARQ-ACK overlap in the time domain, the network device, according to the first indication field, The number of bits of the second HARQ-ACK is determined.
  • the priority of the first uplink channel is higher than the priority of the second uplink channel carrying the second HARQ-ACK;
  • the priority of the first HARQ-ACK is higher than the priority of the second HARQ-ACK;
  • the first HARQ-ACK is the HARQ-ACK of the unicast service
  • the second HARQ-ACK is the HARQ-ACK of the multicast service.
  • the first uplink channel is one of a physical uplink control channel PUCCH and a physical uplink shared channel PUSCH
  • the second uplink channel carrying the second HARQ-ACK is one of PUCCH and PUSCH
  • the Channel types of the first uplink channel and the second uplink channel are the same or different.
  • whether the first indication field exists in the first DCI is determined according to the configuration of high-layer signaling.
  • the first indication field always exists in the first DCI.
  • the first DCI is the DCI used to schedule the PDSCH that needs to perform HARQ-ACK feedback on the PUCCH, or the first DCI is DCI used to indicate the release of the SPS physical downlink shared channel PDSCH that needs to perform HARQ-ACK feedback on the PUCCH; or
  • the first DCI is the DCI that schedules the PUSCH.
  • the values of the first indication fields in the multiple first DCIs are the same, or the terminal performs HARQ-ACK transmission according to the first indication fields in the last DCI.
  • An embodiment of the present disclosure also provides a terminal, including a memory, a transceiver, and a processor:
  • a memory for storing a computer program
  • a transceiver for sending and receiving data under the control of the processor
  • a processor for reading the computer program in the memory and performing the following operations:
  • the first indication field of the first DCI is used to determine at least one of the following: the number of bits of the second HARQ-ACK acknowledgement of the second HARQ-ACK, whether the second HARQ-ACK exists, the second HARQ-ACK Whether the ACK is multiplexed with the first HARQ-ACK;
  • the first DCI is the DCI corresponding to the first uplink channel carrying the first HARQ-ACK
  • the second HARQ-ACK is the HARQ-ACK multiplexed and transmitted with the first HARQ-ACK.
  • the second HARQ-ACK uses a dynamic HARQ-ACK codebook:
  • Each indication state of the first indication field indicates a corresponding piece of information for determining the total number of bits of the second HARQ-ACK;
  • the first indication state of the first indication field is used to indicate that the second HARQ-ACK does not exist, or to indicate that the second HARQ-ACK is not multiplexed with the first HARQ-ACK for transmission, or to indicate the The total number of bits of the second HARQ-ACK is 0, or indicates that the total number of downlink transmissions corresponding to the second HARQ-ACK is 0, and each of the first indication fields except the first indication state
  • the indication status indicates a corresponding piece of information for determining the total number of bits of the second HARQ-ACK, where the total number of bits is greater than 0; or
  • the second indication state of the first indication field indicates information for determining the total number of bits of the second HARQ-ACK under the first condition, the total number of bits is greater than 0, and under the second condition the first number of bits is greater than 0.
  • the second indication status is used to indicate that the second HARQ-ACK does not exist, or to indicate that the second HARQ-ACK is not multiplexed with the first HARQ-ACK, or to indicate the total bits of the second HARQ-ACK
  • the number is 0, or it indicates that the total number of downlink transmissions corresponding to the second HARQ-ACK is 0, and each indication state in the first indication field except the second indication state indicates a corresponding one Information for determining the total number of bits of the second HARQ-ACK, where the total number of bits is greater than 0.
  • the information for determining the total number of bits of the second HARQ-ACK includes:
  • the first indication field indicates information for determining the total number of bits of the second HARQ-ACK:
  • the first indication field includes multiple sub-indication fields, and each sub-indication field is used to indicate the corresponding Two HARQ-ACK subcodebook bits information.
  • the second HARQ-ACK uses a semi-static HARQ-ACK codebook:
  • the first indication field includes at least: a third indication state and a fourth indication state, where the third indication state is used to indicate that the number of bits of the second HARQ-ACK is 1 bit or to indicate that the second indication state is determined according to a fallback mode.
  • the number of bits of the HARQ-ACK, the fourth indication state is used to indicate that the number of bits of the second HARQ-ACK is determined according to the semi-static HARQ-ACK codebook size; or
  • the first indication field includes at least: a fifth indication state and a sixth indication state, where the fifth indication state is used to indicate that the second HARQ-ACK does not exist, or to indicate that the second HARQ-ACK is not associated with the The first HARQ-ACK multiplexed transmission, or the number of bits indicating the second HARQ-ACK is 0, or the number of downlink transmissions corresponding to the second HARQ-ACK is 0, the sixth indication Status is used to indicate that the number of bits of the second HARQ-ACK is determined according to the semi-static HARQ-ACK codebook size; or
  • the first indication field includes at least: a seventh indication state and an eighth indication state, wherein the seventh indication state indicates that the number of bits of the second HARQ-ACK is 1 bit under the first condition or indicates that the number of bits of the second HARQ-ACK is 1 bit or the indication is based on the return.
  • the fallback mode determines the number of bits of the second HARQ-ACK.
  • the seventh indication state is used to indicate that the second HARQ-ACK does not exist, or to indicate that the second HARQ-ACK is not associated with the second HARQ-ACK.
  • the eighth indication state is In order to indicate that the number of bits of the second HARQ-ACK is determined according to the semi-static HARQ-ACK codebook size; or, the seventh indication state is used to indicate that the number of bits of the second HARQ-ACK is 1 bit or indicates that The fallback mode determines the number of bits of the second HARQ-ACK, the eighth indication state indicates under the first condition that the number of bits of the second HARQ-ACK is determined according to the semi-static HARQ-ACK codebook size, and under the second condition
  • the eighth indication state described below is used to indicate that there is no second HARQ-ACK, or to indicate that the second HARQ-ACK is not multiplexed with the first HARQ-ACK for transmission, or to indicate that the number of bits of the second HARQ-ACK is 0 , or indicate that the number of
  • the first indication field includes at least: a ninth indication state, a tenth indication state, and an eleventh indication state, and the ninth indication state is used to indicate that the second HARQ-ACK does not exist, or to indicate that the second HARQ-ACK does not exist.
  • the HARQ-ACK is not multiplexed and transmitted with the first HARQ-ACK, or the number of bits indicating the second HARQ-ACK is 0, or the number of downlink transmissions corresponding to the second HARQ-ACK is 0 , the tenth indication state is used to indicate that the number of bits of the second HARQ-ACK is 1 bit or that the number of bits of the second HARQ-ACK is determined according to the fallback mode, and the eleventh indication state is used to indicate that the number of bits of the second HARQ-ACK is determined according to the fallback mode.
  • the semi-static HARQ-ACK codebook size determines the number of bits of the second HARQ-ACK.
  • the first condition includes:
  • the first uplink channel and the second uplink channel overlap in the time domain, wherein the second uplink channel is a channel carrying the second HARQ-ACK;
  • the second condition includes:
  • the first uplink channel and the second uplink channel do not overlap in the time domain, wherein the second uplink channel is a channel carrying the second HARQ-ACK.
  • each indication state of the first indication field indicates a corresponding piece of information for determining the total number of bits of the second HARQ-ACK, if it is determined that the second HARQ-ACK is not carried. If the second uplink channel overlaps with the first uplink channel in the time domain, the indication information in the first indication domain is ignored.
  • the first indication field includes the third indication state and the fourth indication state, if it is determined that there is no second uplink channel carrying the second HARQ-ACK and the first If the uplink channels overlap in the time domain, the indication information in the first indication domain is ignored.
  • the performing HARQ-ACK transmission according to the first indication field includes:
  • HARQ-ACK transmission is performed according to the number of bits of the second HARQ-ACK.
  • performing HARQ-ACK transmission according to the number of bits of the second HARQ-ACK including:
  • the first HARQ-ACK and the second HARQ-ACK are simultaneously transmitted on the same channel; or,
  • the first HARQ-ACK is simultaneously transmitted on the same channel according to the number of bits of the second HARQ-ACK ACK and the second HARQ-ACK;
  • the first HARQ-ACK is transmitted on the first uplink channel.
  • the determining the number of bits of the second HARQ-ACK according to the first indication field includes:
  • the first uplink channel carrying the first HARQ-ACK and the second uplink channel carrying the second HARQ-ACK overlap in the time domain, determine the first uplink channel according to the first indication field 2 The number of HARQ-ACK bits.
  • the priority of the first uplink channel is higher than the priority of the second uplink channel carrying the second HARQ-ACK;
  • the priority of the first HARQ-ACK is higher than the priority of the second HARQ-ACK;
  • the first HARQ-ACK is the HARQ-ACK of the unicast service
  • the second HARQ-ACK is the HARQ-ACK of the multicast service.
  • the first uplink channel is one of a physical uplink control channel PUCCH and a physical uplink shared channel PUSCH
  • the second uplink channel carrying the second HARQ-ACK is one of PUCCH and PUSCH
  • the Channel types of the first uplink channel and the second uplink channel are the same or different.
  • whether the first indication field exists in the first DCI is determined according to the configuration of high-layer signaling.
  • the first indication field always exists in the first DCI.
  • the first DCI is the DCI used to schedule the PDSCH that needs to perform HARQ-ACK feedback on the PUCCH, or the first DCI is DCI used to indicate the release of the SPS physical downlink shared channel PDSCH that needs to perform HARQ-ACK feedback on the PUCCH; or
  • the first DCI is the DCI that schedules the PUSCH.
  • the values of the first indication fields in the multiple first DCIs are the same, or the terminal performs HARQ-ACK transmission according to the first indication fields in the last DCI.
  • An embodiment of the present disclosure also provides a network device, including a memory, a transceiver, and a processor:
  • a memory for storing a computer program
  • a transceiver for sending and receiving data under the control of the processor
  • a processor for reading the computer program in the memory and performing the following operations:
  • the first indication field of the first DCI is used to determine at least one of the following: the number of bits of the second HARQ-ACK acknowledgement HARQ-ACK, whether the second HARQ-ACK exists, the second HARQ-ACK Whether the ACK is multiplexed with the first HARQ-ACK;
  • the first DCI is the DCI corresponding to the first uplink channel carrying the first HARQ-ACK
  • the second HARQ-ACK is the HARQ-ACK multiplexed and transmitted with the first HARQ-ACK.
  • the second HARQ-ACK uses a dynamic HARQ-ACK codebook:
  • Each indication state of the first indication field indicates a corresponding piece of information for determining the total number of bits of the second HARQ-ACK;
  • the first indication state of the first indication field is used to indicate that the second HARQ-ACK does not exist, or to indicate that the second HARQ-ACK is not multiplexed with the first HARQ-ACK for transmission, or to indicate the The total number of bits of the second HARQ-ACK is 0, or indicates that the total number of downlink transmissions corresponding to the second HARQ-ACK is 0, and each of the first indication fields except the first indication state
  • the indication status indicates a corresponding piece of information for determining the total number of bits of the second HARQ-ACK, where the total number of bits is greater than 0; or
  • the second indication state of the first indication field indicates information for determining the total number of bits of the second HARQ-ACK under the first condition, the total number of bits is greater than 0, and under the second condition the first number of bits is greater than 0.
  • the second indication status is used to indicate that the second HARQ-ACK does not exist, or to indicate that the second HARQ-ACK is not multiplexed with the first HARQ-ACK, or to indicate the total bits of the second HARQ-ACK
  • the number is 0, or it indicates that the total number of downlink transmissions corresponding to the second HARQ-ACK is 0, and each indication state in the first indication field except the second indication state indicates a corresponding one Information for determining the total number of bits of the second HARQ-ACK, where the total number of bits is greater than 0.
  • the information for determining the total number of bits of the second HARQ-ACK includes:
  • the first indication field indicates information for determining the total number of bits of the second HARQ-ACK:
  • the first indication field includes multiple sub-indication fields, and each sub-indication field is used to indicate the corresponding Two HARQ-ACK subcodebook bits information.
  • the second HARQ-ACK uses a semi-static HARQ-ACK codebook:
  • the first indication field includes at least: a third indication state and a fourth indication state, where the third indication state is used to indicate that the number of bits of the second HARQ-ACK is 1 bit or to indicate that the second indication state is determined according to a fallback mode.
  • the number of bits of the HARQ-ACK, the fourth indication state is used to indicate that the number of bits of the second HARQ-ACK is determined according to the semi-static HARQ-ACK codebook size; or
  • the first indication field includes at least: a fifth indication state and a sixth indication state, where the fifth indication state is used to indicate that the second HARQ-ACK does not exist, or to indicate that the second HARQ-ACK is not associated with the The first HARQ-ACK multiplexed transmission, or the number of bits indicating the second HARQ-ACK is 0, or the number of downlink transmissions corresponding to the second HARQ-ACK is 0, the sixth indication Status is used to indicate that the number of bits of the second HARQ-ACK is determined according to the semi-static HARQ-ACK codebook size; or
  • the first indication field includes at least: a seventh indication state and an eighth indication state, wherein the seventh indication state indicates that the number of bits of the second HARQ-ACK is 1 bit under the first condition or indicates that the number of bits of the second HARQ-ACK is 1 bit or the indication is based on the return.
  • the fallback mode determines the number of bits of the second HARQ-ACK.
  • the seventh indication state is used to indicate that the second HARQ-ACK does not exist, or to indicate that the second HARQ-ACK is not associated with the second HARQ-ACK.
  • the eighth indication state is In order to indicate that the number of bits of the second HARQ-ACK is determined according to the semi-static HARQ-ACK codebook size; or, the seventh indication state is used to indicate that the number of bits of the second HARQ-ACK is 1 bit or indicates that The fallback mode determines the number of bits of the second HARQ-ACK, and the eighth indication state indicates that the number of bits of the second HARQ-ACK is determined according to the semi-static HARQ-ACK codebook size under the first condition, and under the second condition
  • the eighth indication state described below is used to indicate that there is no second HARQ-ACK, or to indicate that the second HARQ-ACK is not multiplexed with the first HARQ-ACK for transmission, or to indicate that the number of bits of the second HARQ-ACK is 0 , or indicate that the number
  • the first indication field includes at least: a ninth indication state, a tenth indication state, and an eleventh indication state, and the ninth indication state is used to indicate that the second HARQ-ACK does not exist, or to indicate that the second HARQ-ACK does not exist.
  • the HARQ-ACK is not multiplexed and transmitted with the first HARQ-ACK, or the number of bits indicating the second HARQ-ACK is 0, or the number of downlink transmissions corresponding to the second HARQ-ACK is 0 , the tenth indication state is used to indicate that the number of bits of the second HARQ-ACK is 1 bit or that the number of bits of the second HARQ-ACK is determined according to the fallback mode, and the eleventh indication state is used to indicate that the number of bits of the second HARQ-ACK is determined according to the fallback mode.
  • the semi-static HARQ-ACK codebook size determines the number of bits of the second HARQ-ACK.
  • the first condition includes:
  • the first uplink channel and the second uplink channel overlap in the time domain, wherein the second uplink channel is a channel carrying the second HARQ-ACK;
  • the second condition includes:
  • the first uplink channel and the second uplink channel do not overlap in the time domain, wherein the second uplink channel is a channel carrying the second HARQ-ACK.
  • the receiving HARQ-ACK according to the first indication field includes:
  • HARQ-ACK reception is performed according to the number of bits of the second HARQ-ACK.
  • performing HARQ-ACK reception according to the number of bits of the second HARQ-ACK including:
  • the first HARQ-ACK and the second HARQ-ACK are simultaneously received on the same channel; or,
  • the first HARQ is simultaneously received on the same channel according to the number of bits of the second HARQ-ACK - ACK and said second HARQ-ACK;
  • the first HARQ-ACK is received on the first uplink channel.
  • the determining the number of bits of the second HARQ-ACK according to the first indication field includes:
  • the first uplink channel carrying the first HARQ-ACK and the second uplink channel carrying the second HARQ-ACK overlap in the time domain, determine the first uplink channel according to the first indication field 2 The number of HARQ-ACK bits.
  • the priority of the first uplink channel is higher than the priority of the second uplink channel carrying the second HARQ-ACK;
  • the priority of the first HARQ-ACK is higher than the priority of the second HARQ-ACK;
  • the first HARQ-ACK is the HARQ-ACK of the unicast service
  • the second HARQ-ACK is the HARQ-ACK of the multicast service.
  • the first uplink channel is one of a physical uplink control channel PUCCH and a physical uplink shared channel PUSCH
  • the second uplink channel carrying the second HARQ-ACK is one of PUCCH and PUSCH
  • the Channel types of the first uplink channel and the second uplink channel are the same or different.
  • whether the first indication field exists in the first DCI is determined according to the configuration of high-layer signaling.
  • the first indication field always exists in the first DCI.
  • the first DCI is the DCI used to schedule the PDSCH that needs to perform HARQ-ACK feedback on the PUCCH, or the first DCI is DCI used to indicate the release of the semi-static SPS physical downlink shared channel PDSCH that needs to perform HARQ-ACK feedback on the PUCCH; or
  • the first DCI is the DCI that schedules the PUSCH.
  • the values of the first indication fields in the multiple first DCIs are the same, or the terminal performs HARQ-ACK transmission according to the first indication fields in the last DCI.
  • An embodiment of the present disclosure also provides a terminal, including:
  • a receiving unit configured for the terminal to receive the first DCI, where the first indication field of the first DCI is used to determine at least one of the following: the number of bits of the second HARQ-ACK acknowledgement of the second HARQ-ACK, whether the second HARQ-ACK is Existence, whether the second HARQ-ACK is multiplexed with the first HARQ-ACK;
  • a transmission unit configured to perform HARQ-ACK transmission according to the first indication field
  • the first DCI is the DCI corresponding to the first uplink channel carrying the first HARQ-ACK
  • the second HARQ-ACK is the HARQ-ACK multiplexed and transmitted with the first HARQ-ACK.
  • Embodiments of the present disclosure also provide a network device, including:
  • a sending unit used for the network device to send the first DCI, where the first indication field of the first DCI is used to determine at least one of the following: the number of bits of the second HARQ-ACK acknowledgment for the second HARQ-ACK, the second HARQ-ACK Whether it exists and whether the second HARQ-ACK is multiplexed with the first HARQ-ACK;
  • a receiving unit configured to receive HARQ-ACK according to the first indication field
  • the first DCI is the DCI corresponding to the first uplink channel carrying the first HARQ-ACK
  • the second HARQ-ACK is the HARQ-ACK multiplexed and transmitted with the first HARQ-ACK.
  • An embodiment of the present disclosure further provides a processor-readable storage medium, where the processor-readable storage medium stores a computer program, and the computer program is used to make the processor execute the uplink control information transmission provided by the embodiment of the present disclosure method, or the computer program is configured to cause the processor to execute the method for receiving uplink control information provided by the embodiments of the present disclosure.
  • the terminal receives the first DCI, and the first indication field of the first DCI is used to determine at least one of the following: the number of bits of the second HARQ-ACK, whether the second HARQ-ACK exists, the second HARQ-ACK Whether the ACK is multiplexed and transmitted with the first HARQ-ACK; the terminal performs HARQ-ACK transmission according to the first indication field; wherein, the first DCI corresponds to the first uplink channel carrying the first HARQ-ACK , the second HARQ-ACK is the HARQ-ACK multiplexed and transmitted with the first HARQ-ACK.
  • the terminal performs HARQ-ACK transmission according to the first indication field, it can be ensured that the terminal and the network device have the same understanding of the number of bits of the HARQ-ACK transmitted by the terminal.
  • FIG. 1 is a schematic structural diagram of a network architecture to which an embodiment of the present disclosure can be applied;
  • FIG. 2 is a schematic diagram of a semi-static HARQ-ACK codebook provided by an embodiment of the present disclosure
  • FIG. 3 is a schematic diagram of a dynamic HARQ-ACK codebook provided by an embodiment of the present disclosure
  • FIG. 4 is a flowchart of a method for transmitting uplink control information provided by an embodiment of the present disclosure
  • FIG. 5 is a flowchart of a method for receiving uplink control information provided by an embodiment of the present disclosure
  • FIG. 6 is a schematic diagram of uplink control information transmission provided by an embodiment of the present disclosure.
  • FIG. 7 is a schematic diagram of another uplink control information transmission provided by an embodiment of the present disclosure.
  • FIG. 8 is a structural diagram of a terminal provided by an embodiment of the present disclosure.
  • FIG. 9 is a structural diagram of a network device provided by an embodiment of the present disclosure.
  • FIG. 10 is a structural diagram of another terminal provided by an embodiment of the present disclosure.
  • FIG. 11 is a structural diagram of another network device provided by an embodiment of the present disclosure.
  • the term "and/or” describes the association relationship of associated objects, and indicates that there can be three kinds of relationships. For example, A and/or B can indicate that A exists alone, A and B exist at the same time, and B exists alone these three situations.
  • the character "/" generally indicates that the contextual object is an "and/or" relationship.
  • the term “plurality” refers to two or more than two, and other quantifiers are similar.
  • Embodiments of the present disclosure provide a method for transmitting uplink control information, a method for receiving it, a terminal, and a network device, so as to solve the problem that the terminal and the network device have inconsistent understanding of the number of bits of HARQ-ACK transmitted by the terminal
  • the method and the device are conceived based on the same application. Since the principles of the method and the device for solving the problem are similar, the implementation of the device and the method can be referred to each other, and the repetition will not be repeated.
  • applicable systems may be global system of mobile communication (GSM) system, code division multiple access (CDMA) system, wideband code division multiple access (WCDMA) general packet wireless service (general packet radio service, GPRS) system, long term evolution (long term evolution, LTE) system, LTE frequency division duplex (frequency division duplex, FDD) system, LTE time division duplex (time division duplex, TDD) system, Long term evolution advanced (LTE-A) system, universal mobile telecommunication system (UMTS), worldwide interoperability for microwave access (WiMAX) system, 5G New Radio (New Radio, NR) system, sixth generation (6th Generation , 6G) system, etc.
  • GSM global system of mobile communication
  • CDMA code division multiple access
  • WCDMA wideband code division multiple access
  • GPRS general packet wireless service
  • LTE long term evolution
  • LTE frequency division duplex frequency division duplex
  • time division duplex time division duplex
  • LTE-A Long term evolution advanced
  • UMTS universal mobile telecommunication system
  • FIG. 1 is a schematic structural diagram of a network architecture applicable to the implementation of the present disclosure. As shown in FIG. 1 , it includes a terminal 11 and a network device 12 .
  • the terminal involved in the embodiments of the present disclosure may be a device that provides voice and/or data connectivity to a user, a handheld device with a wireless connection function, or other processing device connected to a wireless modem.
  • the name of the terminal device may be different.
  • the terminal device may be called user equipment (User Equipment, UE).
  • Wireless terminal equipment can communicate with one or more core networks (Core Network, CN) via a radio access network (Radio Access Network, RAN).
  • RAN Radio Access Network
  • "telephone) and computers with mobile terminal equipment eg portable, pocket-sized, hand-held, computer-built or vehicle-mounted mobile devices, which exchange language and/or data with the radio access network.
  • Wireless terminal equipment may also be referred to as system, subscriber unit, subscriber station, mobile station, mobile station, remote station, access point , a remote terminal device (remote terminal), an access terminal device (access terminal), a user terminal device (user terminal), a user agent (user agent), and a user device (user device), which are not limited in the embodiments of the present disclosure.
  • the network device involved in the embodiments of the present disclosure may be a base station, and the base station may include a plurality of cells providing services for the terminal.
  • the base station may also be called an access point, or may be a device in the access network that communicates with wireless terminal equipment through one or more sectors on the air interface, or other names.
  • the network device can be used to exchange received air frames with Internet Protocol (IP) packets, and act as a router between the wireless terminal device and the rest of the access network, which can include the Internet. Protocol (IP) communication network.
  • IP Internet Protocol
  • the network devices may also coordinate attribute management for the air interface.
  • the network device involved in the embodiments of the present disclosure may be a network device (Base Transceiver Station, BTS) in the Global System for Mobile Communications (GSM) or Code Division Multiple Access (Code Division Multiple Access, CDMA). ), it can also be a network device (NodeB) in Wide-band Code Division Multiple Access (WCDMA), or it can be an evolved network device in a long term evolution (LTE) system (evolutional Node B, eNB or e-NodeB), 5G base station (gNB) in 5G network architecture (next generation system), or Home evolved Node B (HeNB), relay node (relay node) , a home base station (femto), a pico base station (pico), etc., which are not limited in the embodiments of the present disclosure.
  • a network device may include a centralized unit (CU) node and a distributed unit (DU) node, and the centralized unit and the distributed unit may also be geographically separated.
  • MIMO transmission can be single user MIMO (Single User MIMO, SU-MIMO) or multi-user MIMO ( Multiple User MIMO, MU-MIMO).
  • MIMO transmission can be two-dimensional MIMO (two dimensional-MIMO, 2D-MIMO), three-dimensional MIMO (three dimensional-MIMO, 3D-MIMO), full-dimensional MIMO (full dimensional-MIMO, FD) -MIMO) or massive-MIMO, it can also be diversity transmission or precoding transmission or beamforming transmission, etc.
  • uplink channel transmission with different physical layer priorities is supported, and the same terminal has different physical layer priorities.
  • Resource conflicts may exist between uplink channels, for example, on the same carrier, symbols occupied by uplink channels with different priorities overlap.
  • PAPR peak-to-average power ratio
  • the peak-to-average power ratio (PAPR) increases and the power limitation problem is caused, only the physical layer of the conflicting channel can be transmitted. Channels with high priority, and channels with low physical layer priority are discarded.
  • UCI Uplink Control Information
  • the channel transmission of different physical layer priorities can be as follows:
  • a terminal can support different types of services, such as enhanced Mobile Broadband (eMBB) services and Ultra-Reliable and Low Latency Communication (URLLC) services.
  • eMBB enhanced Mobile Broadband
  • URLLC Ultra-Reliable and Low Latency Communication
  • Different service types have different requirements for reliability and transmission delay.
  • the URLLC service flow may occur sporadically and irregularly. Therefore, different system resources are independently reserved for different services, and the overhead of system resources is relatively large. In many cases, the resources reserved for URLLC may not be used.
  • multiplexing and transmission of different services on the same resources can be supported. It may happen that an earlier scheduled data transmission is interrupted or cancelled by another later scheduled data transmission.
  • a terminal is scheduled to transmit the eMBB service on resource 1, due to the arrival of the URLLC service, in order to meet the delay requirement of the URLLC service, it needs to be scheduled as soon as possible, which may occupy all or all of the resource 1 allocated to the eMBB service.
  • Some resources including time domain resources and/or frequency domain resources) are used for URLLC transmission.
  • URLLC transmission is scheduled on all or part of the symbols in the time domain resources (symbol set) scheduled to eMBB on the same carrier, regardless of whether the frequency domain resources overlap, because at the same time on the same carrier If two uplink channels cannot be transmitted at the same time, the eMBB service will be interrupted or cancelled by the URLLC service.
  • the physical layer priorities of the PUCCH and PUSCH may be obtained in a default manner, a DCI dynamic indication, or a radio resource control (Radio Resource Control, RRC) semi-static configuration.
  • RRC Radio Resource Control
  • PUCCH carries a Scheduling Request (SR)
  • SR Scheduling Request
  • its priority is determined by the priority corresponding to the SR it carries, and the priority corresponding to each SR configuration is configured by high-level signaling
  • the HARQ-ACK of the SPS PDSCH or the HARQ-ACK of the PDCCH indicating the release of the SPS resources ie, the SPS PDSCH release
  • its priority is determined by the HARQ-ACK codebook number configured for the SPS PDSCH through high-level signaling, corresponding to
  • the HARQ-ACK codebook numbered 0 is of low priority
  • the corresponding HARQ-ACK codebook numbered 1 is of high priority
  • PUCCH carries CSI (including periodic CSI and semi-persistent
  • the DCI When the DCI includes a priority indication field, the DCI (or PDCCH) corresponding to PUCCH and PUSCH can be passed through.
  • PDCCH and DCI can be considered equivalent, DCI is the specific format used for PDCCH transmission, then having the corresponding DCI is equivalent to having the priority indication field in the corresponding PDCCH) to obtain the priority.
  • the DCI used by the PDCCH includes the priority indication field, then: PDCCH scheduling During a PDSCH, the priority of the PUCCH that bears the HARQ-ACK of this PDSCH can be indicated by the priority indication domain.
  • the priority of the scheduled PUSCH can be indicated by the priority indication domain, wherein the PUSCH includes PUSCH carrying only transport block (Transport Block, TB) or PUSCH carrying only aperiodic channel state information (Aperiodic CSI, A-CSI) or PUSCH carrying both TB and A-CSI; for PUSCH carrying SP-CSI, its The priority can be obtained by activating the priority indication field in the DCI of the PUSCH carrying SP-CSI. If the DCI does not contain the priority indication field, or the high-level signaling does not configure the priority, the default is low priority.
  • Transport Block TB
  • Aperiodic CSI aperiodic channel state information
  • SP-CSI PUSCH carrying SP-CSI
  • the UCI transmission in 5G NR can be as follows:
  • UCI may contain information such as HARQ-ACK, Channel State Information (CSI), SR, etc.
  • UCI may be transmitted on PUCCH.
  • HARQ-ACK is a collective term for positive acknowledgment (ACKnowledgement, ACK) and negative acknowledgment (Non-ACKnowledgement, NACK), which is used for PDSCH or PDCCH (also known as SPS PDSCH release) indicating the release of SPS resources.
  • CSI is used to feed back downlink channel quality, thereby helping network equipment to better perform downlink scheduling, for example, according to CSI for modulation and coding level (Modulation and Coding Scheme, MCS) selection, configuration is appropriate
  • the resource block (Resource Block, RB) resources, etc.; SR is used to request the network device for the transmission resources of the PUSCH carrying the uplink service when the terminal has uplink services that need to be transmitted.
  • the 5G NR system can support two HARQ-ACK codebook generation methods, semi-static and dynamic.
  • the HARQ-ACK codebook may be a HARQ-ACK feedback sequence generated for downlink transmission (including PDSCH and SPS PDSCH release) for HARQ-ACK feedback on the same time domain location or uplink channel.
  • the semi-static HARQ-ACK codebook can be determined according to each value in the K1 set representing the HARQ-ACK feedback timing (timing) to determine that each carrier c (specifically, the currently activated BWP on this carrier) corresponds to a time slot (slot) or sub-slot (sub-slot) n is a set of downlink transmission locations Mc for HARQ-ACK feedback, and then the HARQ-ACK codebook transmitted in the slot or sub-slot n can be determined according to Mc.
  • the K1 set is ⁇ 2, 3, 4, 5, 6, 7, 8, 9 ⁇ , and the time slots configured by the system for uplink transmission are not included.
  • the codebook size in time slot n+9 is 6 bits (if a time division multiplexing (TDM) can transmit multiple PDSCHs in one time slot, each time division multiplexing (TDM) can transmit multiple PDSCHs. Multi-bit HARQ-ACK positions can be reserved in each time slot. If a PDSCH contains multiple TBs or is configured with Code Block Group (CBG) transmission, each PDSCH can correspond to more bits of HARQ-ACK, thus change the codebook size in slot n+9).
  • CBG Code Block Group
  • the overhead of the semi-static HARQ-ACK codebook is relatively large, and even if only a few transmissions are scheduled in the downlink transmission location set Mc, it needs to be fed back according to the maximum range.
  • a fallback method of the semi-static HARQ-ACK codebook is proposed, that is, if only one downlink transmission is scheduled using fallback DCI (such as DCI format 1-0) within the Mc range, and the When the Downlink Assignment Index (DAI) field is indicated as "1" and only one SPS PDSCH is received, only a 1-bit HARQ-ACK is generated for one received downlink transmission for transmission, and it is no longer necessary to generate a 1-bit HARQ-ACK.
  • a fixed-size HARQ-ACK codebook determined by K1 set.
  • the dynamic HARQ-ACK codebook can perform HARQ-ACK sorting according to the indication of the cumulative downlink assignment index (Counter-Downlink Assignment Index, C-DAI) field in the DCI for scheduling downlink transmission, and according to the total downlink assignment index (total-Downlink Assignment Index, C-DAI) field.
  • C-DAI Cumule-Downlink Assignment Index
  • T-DAI Downlink Assignment Index
  • the PDCCH listening opportunity corresponding to the activated BWP on a carrier can be determined first according to K1 and K0 (the time slot interval between the PDCCH and its scheduled PDSCH, that is, the scheduling sequence) and the configured number of repeated transmissions (if configured).
  • the PDCCH MOs on different carriers may not be aligned in time, then the PDCCH MOs on multiple carriers are sorted in chronological order to form a large PDCCH MO set, in which the One MO includes MOs with overlapping time domains on multiple carriers; in this PDCCH MO set, C-DAI indicates the PDSCH that has been transmitted by the current PDCCH MO on the current carrier or indicates the release of SPS PDSCH in the order of frequency domain first and then time domain.
  • the cumulative number of PDCCHs indicated by T-DAI indicates the total number of PDSCHs transmitted on all carriers to the current PDCCH MO or indicates the number of PDCCHs released by SPS PDSCH.
  • the terminal detects the PDCCH using a certain DCI format (for example, one or more of format 1-0, format 1-1, and format 1-2) in the determined PDCCH MO set, and according to the received DAI in the PDCCH
  • the information (including C-DAI and T-DAI) generates the HARQ-ACK codebook.
  • the terminal can determine that the total number of bits is 6 according to the scheduling T-DAI in the last DCI in Figure 3 (assuming that 1 PDSCH corresponding to each DAI count corresponds to only 1 bit HARQ-ACK, if one PDSCH corresponds to A bit HARQ-ACK, Then here is 6*A bits).
  • PUCCH and PUSCH Parallel transmission of PUCCH and PUSCH at the same time is not supported in NR, whether on the same carrier or on different carriers.
  • PUCCH and PUSCH (no special explanation is given, generally PUCCH and PUSCH refer to PUCCH and PUSCH that do not use repeated transmission) overlap in time domain resources
  • the UCI Generally, HARQ-ACK and CSI
  • the SR is not transmitted on the PUSCH, and the SR is discarded.
  • a PUSCH is selected according to a predetermined rule, and the PUSCH carrying A-CSI is preferentially selected. If there are both PUSCH with PDCCH scheduling (DG PUSCH) and PUSCH without PDCCH scheduling (CG PUSCH) , SP-CSI PUSCH, etc.), DG PUSCH is preferred. After selecting according to the above rules, if there are PUSCH on multiple carriers, the PUSCH on the carrier with the lower carrier number can be preferentially selected. If there are multiple time domains on the selected carrier The non-overlapping PUSCH overlaps with the PUCCH, and the earliest PUSCH can be preferentially selected.
  • the definition of timeline may be: if the PUCCH or PUSCH has a corresponding PDCCH (for example, the HARQ-ACK carried by the PUCCH is the HARQ-ACK of the PDSCH with PDCCH scheduling or the HARQ-ACK of the PDCCH indicating the release of downlink SPS resources),
  • the PDCCH for scheduling PDSCH or the PDCCH for instructing the release of downlink SPS resources is the PDCCH corresponding to the PUCCH (or also referred to as the PDCCH for scheduling the PUCCH), and the PDCCH for scheduling the PUSCH is the PDCCH corresponding to the PUSCH.
  • the first symbol of the channel with the earliest start time in the overlapping PUCCH and PUSCH is used as the target symbol. If there are multiple channels with the same start time, a random channel is selected, and its first symbol is used as the target symbol.
  • the target symbol needs to meet the following timeline for multiplexing transmission, otherwise it is considered to be erroneous scheduling.
  • Timeline1 The target symbol is not earlier than the first symbol (including Cyclic Prefix, CP) after the T1mux time after the last symbol of any PDSCH or SPS PDSCH release that requires HARQ-ACK feedback on PUCCH ), that is, the time interval between the target symbol and the last symbol of any one of the above PDSCH or SPS PDSCH release is not less than T1mux time.
  • T1mux is related to the processing delay of PDSCH, and can be calculated according to a predetermined formula and related parameters.
  • the purpose of the timeline is to ensure that the acquisition and preparation of the HARQ-ACK can be completed before the transmission of the finally determined channel for transmitting the HARQ-ACK starts.
  • Timeline2 The target symbol is not earlier than the first symbol after the T2mux time (including the CP in the ), that is, the time interval between the target symbol and the last symbol of any one of the above PDCCHs is not less than T2mux time.
  • T2mux is related to the processing delay of PUSCH, and can be calculated according to a predetermined formula and related parameters.
  • the purpose of this timeline is to ensure that when the UCI needs to be transferred to the PUSCH for transmission, the PDCCH for scheduling the PUSCH can be obtained before the PUCCH preparation starts, so that it is determined that there is no need to prepare the UCI transmission on the PUCCH, and the UCI can be completed before the PUSCH transmission.
  • this T2mux is used to simulate CSI and SR Preparation time for multiplexing with HARQ-ACK.
  • the PDCCH of the PDSCH is not scheduled at this time. If there is no PUSCH or PUSCH and there is no corresponding PDCCH, you only need to check whether the T1mux is not Need to check T2mux. If CSI and/or SR are carried on the PUCCH, because there is no corresponding PDSCH, there is no need to check (check) T1mux, and if there is no PUSCH or PUSCH does not have a corresponding PDCCH, then there is no need to check T2mux.
  • At least one PUCCH is repeatedly transmitted when the PUCCH and PUCCH overlap (that is, occupying multiple time slots to repeatedly transmit UCI in each time slot), only for the overlapping repeated transmission (repetition), according to the transmission high priority , discarding low-priority processing without affecting repetitions that do not overlap.
  • the PUCCH overlaps with the PUSCH of repeated transmission, when the PUSCH adopts the repeated transmission based on time slots (R15 repeated transmission, or repetition type A defined by the protocol), the UCI carried on the PUCCH is transferred to one or more PUSCH time slots that overlap with the PUCCH.
  • the UCI carried by the PUCCH is transferred to the earliest actual repetition (actual repetition) PUSCH that overlaps with the PUCCH and contains more than 1 symbol for transmission (the actual repetition is based on the unavailable symbols, DL symbols, time slot boundaries, etc. are segmented to obtain repetition PUSCH); the PUSCH of one or more repetitions that overlap with the PUCCH above all need to meet the multiplexing timeline. If the multi-slot PUCCH overlaps with the single-slot or multi-slot PUSCH, the PUSCH overlapping with the PUCCH is discarded to ensure that the repeated transmission of the PUCCH is not interrupted.
  • FIG. 4 is a flowchart of a method for transmitting uplink control information provided by an embodiment of the present disclosure. As shown in FIG. 4, the method includes the following steps:
  • Step 401 The terminal receives the first DCI, and the first indication field of the first DCI is used to determine at least one of the following: the number of bits of the second HARQ-ACK, whether the second HARQ-ACK exists, whether the second HARQ-ACK exists multiplexed transmission with the first HARQ-ACK;
  • Step 402 the terminal performs HARQ-ACK transmission according to the first indication field
  • the first DCI is the DCI corresponding to the first uplink channel carrying the first HARQ-ACK
  • the second HARQ-ACK is the HARQ-ACK multiplexed and transmitted with the first HARQ-ACK.
  • the above-mentioned receiving the first DCI may be receiving the DCI sent by the network device, and the network device may send one or more DCIs, and the terminal may receive one or more DCIs.
  • the terminal may perform HARQ-ACK transmission according to the first indication fields in some or all of the multiple first DCIs.
  • the first indication field of the first DCI may be one or more bit fields in the first DCI.
  • the first indication field is reuse of existing bits in the first DCI, or the first indication field is a newly added bit in the first DCI.
  • the existing bits in the first DCI may be bits in the first DCI already defined in the protocol, and the newly added bits in the first DCI are one or more bits added in the DCI defined in the protocol.
  • the above-mentioned first indication field is used to determine the number of bits of the second HARQ-ACK may be, the first indication field indicates the information of the total number of bits of the second HARQ-ACK, such as the total number of bits of the second HARQ-ACK (for example: 0 , 1, 2, 4, etc.), or indicate the total number of downlink transmissions corresponding to the second HARQ-ACK; wherein, the downlink transmission corresponding to the second HARQ-ACK specifically includes the PDSCH or SPS PDSCH that needs to be fed back by the second HARQ-ACK release.
  • Whether the above-mentioned second HARQ-ACK exists may be whether there is a second HARQ-ACK multiplexed and transmitted with the first HARQ-ACK.
  • the first indication field does not indicate whether the second HARQ-ACK exists
  • the information on the number of bits of the second HARQ-ACK and the second HARQ-ACK At least one of whether the ACK exists or not determines whether the second HARQ-ACK is multiplexed with the first HARQ-ACK for transmission.
  • the second HARQ-ACK exists, it can be confirmed that the second HARQ-ACK is multiplexed with the first HARQ-ACK Otherwise, confirm that the second HARQ-ACK is not multiplexed with the first HARQ-ACK for transmission. If the number of bits of the second HARQ-ACK is 0, it can be confirmed that the second HARQ-ACK is not multiplexed with the first HARQ-ACK. , on the contrary, it is confirmed that the second HARQ-ACK is multiplexed with the first HARQ-ACK for transmission.
  • the above-mentioned terminal performing HARQ-ACK transmission according to the first indication field may be transmitted according to the number of bits of the second HARQ-ACK, whether the second HARQ-ACK exists, and whether the second HARQ-ACK is multiplexed with the first HARQ-ACK. At least one of, transmit the first HARQ-ACK, or transmit the first HARQ-ACK and the second HARQ-ACK.
  • the second HARQ-ACK uses a dynamic HARQ-ACK codebook:
  • Each indication state of the first indication field indicates a corresponding piece of information for determining the total number of bits of the second HARQ-ACK;
  • the first indication state of the first indication field is used to indicate that the second HARQ-ACK does not exist, or to indicate that the second HARQ-ACK is not multiplexed with the first HARQ-ACK for transmission, or to indicate the The total number of bits of the second HARQ-ACK is 0, or indicates that the total number of downlink transmissions corresponding to the second HARQ-ACK is 0, and each of the first indication fields except the first indication state
  • the indication status indicates a corresponding piece of information for determining the total number of bits of the second HARQ-ACK, where the total number of bits is greater than 0; or
  • the second indication state of the first indication field indicates information for determining the total number of bits of the second HARQ-ACK under the first condition, the total number of bits is greater than 0, and under the second condition the first number of bits is greater than 0.
  • the second indication status is used to indicate that the second HARQ-ACK does not exist, or to indicate that the second HARQ-ACK is not multiplexed with the first HARQ-ACK, or to indicate the total bits of the second HARQ-ACK
  • the number is 0, or it indicates that the total number of downlink transmissions corresponding to the second HARQ-ACK is 0, and each indication state in the first indication field except the second indication state indicates a corresponding one Information for determining the total number of bits of the second HARQ-ACK, where the total number of bits is greater than 0.
  • the above-mentioned information for determining the total number of bits of the second HARQ-ACK may determine that the total number of bits of the second HARQ-ACK is 0 or the number of bits greater than 0.
  • Each indication state of the above-mentioned first indication field indicates the corresponding information for determining the total number of bits of the second HARQ-ACK may be, the first indication field may determine different second HARQ-ACK through different indication states.
  • the total number of bits of HARQ-ACK Certainly, in some embodiments, a part of the indication state is allowed to correspond to the total number of bits of the same second HARQ-ACK.
  • the first indication field has 3-bit indication information, which can indicate 8 indication states, but the possible total number of bits of the second HARQ-ACK is 1-7, then there can be 2 indication states corresponding to these 8 indication states The total number of bits of the same second HARQ-ACK, or one of them indicates that the status is reserved.
  • a certain indication state is allowed to correspond to the total number of bits of multiple second HARQ-ACKs, for example: the first indication field has 2 bits of indication information, which can indicate 4 indication states, but the total number of bits of the second HARQ-ACK The possible values are 0-4, then one of the four indication states can correspond to the two total bits of 0 bits and 4 bits. number to determine whether the indication state actually indicates 0 bits or 4 bits. For example, if no downlink transmission corresponding to the second HARQ-ACK is received, it is determined that the indication is 0 bits, and at least one corresponding second HARQ-ACK is received. For downlink transmission of ACK, it is determined that the indication is 4 bits.
  • the above-mentioned first indication state may be an indication state defined by a protocol or configured on the network side, through which it may be indicated that the second HARQ-ACK does not exist, or that the second HARQ-ACK is not multiplexed with the first HARQ-ACK for transmission, or The total number of bits indicating the second HARQ-ACK is 0, or the total number of downlink transmissions corresponding to the second HARQ-ACK is 0.
  • the other information corresponding to the other indication states is used to determine the total number of bits greater than 0 of the second HARQ-ACK.
  • the above-mentioned second indication state may be an indication state of protocol definition or network side configuration, and the above-mentioned first condition and second condition are protocol definition or network side configuration. Different contents can be indicated under different conditions through the above-mentioned second indication state, thereby reducing the overhead of DCI.
  • the second HARQ-ACK may be discarded.
  • the information for determining the total number of bits of the second HARQ-ACK includes:
  • the total number of bits of the second HARQ-ACK may be 0, or the number of bits greater than 0.
  • the total number of downlink transmissions corresponding to the second HARQ-ACK may include the total number of PDSCH or SPS PDSCH release transmissions corresponding to the second HARQ-ACK, that is, the total number of PDCCHs that schedule PDSCH or PDCCHs that indicate SPS PDSCH release or the total number of downlink transmissions corresponding to the second HARQ-ACK may include, ⁇ serving cell (serving cell) with PDSCH or SPS PDSCH release, PDCCH monitoring opportunity (PDCCH monitoring occasion) ⁇ pairs (ie ⁇ serving cell, The total number of PDCCH monitoring occurrence ⁇ -pair(s)), where PDSCH and SPS PDSCH release are corresponding to the second HARQ-ACK.
  • the above-mentioned total number of PDCCH scheduling PDSCH and PDCCH indicating SPS PDSCH release may also be referred to as downlink transmission (including PDSCH, SPS PDSCH release) that needs to be fed back by the second HARQ-ACK (including ACK and NACK feedback information). ) number.
  • the total number of bits of the second HARQ-ACK can be determined by the total number of downlink transmissions corresponding to the second HARQ-ACK.
  • the second HARQ-ACK uses a dynamic HARQ-ACK codebook:
  • Each indication state of the first indication field indicates the total number of bits of a dynamic HARQ-ACK codebook corresponding to a second HARQ-ACK codebook, and the total number of bits includes 0 or an integer greater than 0; or
  • the first indication state of the first indication field may be used to indicate that the second HARQ-ACK does not exist, or to indicate that the second HARQ-ACK is not multiplexed with the first HARQ-ACK for transmission, or to indicate that the second HARQ-ACK is not multiplexed and transmitted.
  • the total number of bits of the second HARQ-ACK is 0, and each indication state in the first indication field except the first indication state may indicate a corresponding dynamic HARQ-ACK of the second HARQ-ACK. the total number of bits of the ACK codebook greater than 0; or
  • the second indication state of the first indication field may indicate the total number of bits of a dynamic HARQ-ACK codebook of a second HARQ-ACK HARQ-ACK under the first condition, and under the second condition the second indication state Used to indicate that the second HARQ-ACK does not exist, or to indicate that the second HARQ-ACK is not multiplexed and transmitted with the first HARQ-ACK, or to indicate that the total number of bits of the second HARQ-ACK is 0 , each indication state except the second indication state in the first indication field may indicate the total number of bits greater than 0 of a corresponding dynamic HARQ-ACK codebook of a second HARQ-ACK; or
  • Each indication state of the first indication field may indicate the total number of downlink transmissions corresponding to a corresponding second HARQ-ACK, wherein the total number of downlink transmissions may be used to determine the second HARQ-ACK.
  • the total number of bits in the HARQ-ACK codebook corresponding to the ACK where the total number includes 0 or greater than 0; or
  • the first indication state of the first indication field may be used to indicate that the second HARQ-ACK does not exist, or to indicate that the second HARQ-ACK is not multiplexed with the first HARQ-ACK for transmission, or to indicate the first HARQ-ACK.
  • the total number of downlink transmissions corresponding to two HARQ-ACKs is 0, and each indication state in the first indication field except the first indication state indicates a corresponding downlink corresponding to a second HARQ-ACK.
  • the second indication state of the first indication field may indicate a total number of downlink transmissions greater than 0 corresponding to a second HARQ-ACK under the first condition, and the second indication state is used to indicate that under the second condition
  • the second HARQ-ACK does not exist, or indicates that the second HARQ-ACK is not multiplexed with the first HARQ-ACK for transmission, or indicates that the total number of downlink transmissions corresponding to the second HARQ-ACK is 0, so
  • Each indication state in the first indication field except the second indication state indicates the total number of downlink transmissions corresponding to a corresponding second HARQ-ACK that is greater than 0, wherein the downlink transmission The total number is used to determine the total number of bits of the HARQ-ACK codebook corresponding to the second HARQ-ACK.
  • the first indication field indicates information for determining the total number of bits of the second HARQ-ACK:
  • the first indication field includes multiple sub-indication fields, and each sub-indication field is used to indicate the corresponding Two HARQ-ACK subcodebook bits information.
  • the above-mentioned information for determining the total number of bits of the second HARQ-ACK may be the total number of bits of the subcodebook of the second HARQ-ACK, or the downlink transmission corresponding to the subcodebook of the second HARQ-ACK total.
  • each sub-indication field may indicate information of the number of bits of a sub-codebook of a sub-codebook.
  • the first indication field includes multiple T-DAI fields, respectively indicating the information used to determine the total number of bits of each subcodebook.
  • the first indication field is 4 bits, of which the first 2 bits are the T-DAI field corresponding to the first subcodebook, which is used to indicate the information for determining the total number of bits of the first subcodebook, and the last 2 bits are corresponding to the first subcodebook.
  • the T-DAI field of the two subcodebooks is used to indicate the information for determining the total number of bits of the second subcodebook.
  • the physical meaning of the C-DAI domain is equivalent to the T-DAI domain.
  • the first indication field can be expressed as a C-DAI field.
  • the first DCI when the first HARQ-ACK also uses the dynamic HARQ-ACK codebook, the first DCI also includes T-DAI and C-DAI (or C-DAI only), and these fields are different indication fields from the first indication fields in the first DCI (corresponding to T-DAI and C-DAI (or only C-DAI) of the second HARQ-ACK).
  • the first condition includes:
  • the first uplink channel and the second uplink channel overlap in the time domain, wherein the second uplink channel is a channel carrying the second HARQ-ACK.
  • first uplink channel and the second uplink channel overlap in the time domain may be that the first uplink channel and the second uplink channel completely or partially overlap in the time domain.
  • the second condition includes:
  • the first uplink channel and the second uplink channel do not overlap in the time domain, wherein the second uplink channel is a channel carrying the second HARQ-ACK.
  • the above-mentioned first uplink channel and the second uplink channel do not overlap in the time domain may be that the first uplink channel and the second uplink channel do not have any overlapping time domain resources in the time domain.
  • the second HARQ-ACK uses a semi-static HARQ-ACK codebook:
  • the first indication field includes at least: a third indication state and a fourth indication state, where the third indication state is used to indicate that the number of bits of the second HARQ-ACK is 1 bit or to indicate that the second indication state is determined according to a fallback mode.
  • the number of bits of the HARQ-ACK, the fourth indication state is used to indicate that the number of bits of the second HARQ-ACK is determined according to the semi-static HARQ-ACK codebook size; or
  • the first indication field includes at least: a fifth indication state and a sixth indication state, where the fifth indication state is used to indicate that the second HARQ-ACK does not exist, or to indicate that the second HARQ-ACK is not associated with the The first HARQ-ACK multiplexed transmission, or the number of bits indicating the second HARQ-ACK is 0, or the number of downlink transmissions corresponding to the second HARQ-ACK is 0, the sixth indication Status is used to indicate that the number of bits of the second HARQ-ACK is determined according to the semi-static HARQ-ACK codebook size; or
  • the first indication field includes at least: a seventh indication state and an eighth indication state, wherein the seventh indication state indicates that the number of bits of the second HARQ-ACK is 1 bit under the first condition or indicates that the number of bits of the second HARQ-ACK is 1 bit or the indication is based on the return.
  • the fallback mode determines the number of bits of the second HARQ-ACK.
  • the seventh indication state is used to indicate that the second HARQ-ACK does not exist, or to indicate that the second HARQ-ACK is not associated with the second HARQ-ACK.
  • the eighth indication state is In order to indicate that the number of bits of the second HARQ-ACK is determined according to the semi-static HARQ-ACK codebook size; or, the seventh indication state is used to indicate that the number of bits of the second HARQ-ACK is 1 bit or indicates that The fallback mode determines the number of bits of the second HARQ-ACK, and the eighth indication state indicates that the number of bits of the second HARQ-ACK is determined according to the semi-static HARQ-ACK codebook size under the first condition, and under the second condition
  • the eighth indication state described below is used to indicate that there is no second HARQ-ACK, or to indicate that the second HARQ-ACK is not multiplexed with the first HARQ-ACK for transmission, or to indicate that the number of bits of the second HARQ-ACK is 0 , or indicate that the number
  • the first indication field includes at least: a ninth indication state, a tenth indication state, and an eleventh indication state, and the ninth indication state is used to indicate that the second HARQ-ACK does not exist, or to indicate that the second HARQ-ACK does not exist.
  • the HARQ-ACK is not multiplexed and transmitted with the first HARQ-ACK, or the number of bits indicating the second HARQ-ACK is 0, or the number of downlink transmissions corresponding to the second HARQ-ACK is 0 , the tenth indication state is used to indicate that the number of bits of the second HARQ-ACK is 1 bit or that the number of bits of the second HARQ-ACK is determined according to the fallback mode, and the eleventh indication state is used to indicate that the number of bits of the second HARQ-ACK is determined according to the fallback mode.
  • the semi-static HARQ-ACK codebook size determines the number of bits of the second HARQ-ACK.
  • the above-mentioned third to eleventh indication states may be protocol definitions or network configurations.
  • the indication states may be multiplexed.
  • the third indication state may be combined with the fifth indication state or the seventh indication state.
  • the fourth indication state may be the same as the sixth indication state or the eighth indication state.
  • the above-mentioned determination of the number of bits of the second HARQ-ACK according to the fallback mode may be to determine that the number of bits of the second HARQ-ACK is 1.
  • the fallback mode may be defined as, when the following conditions are met, only 1 bit of the second HARQ-ACK is fed back.
  • ACK When only one or more SPS PDSCHs are received, and if multiple SPS PDSCHs are received, only one SPS PDSCH needs to be HARQ-ACK feedback; or, when only one transmission using DCI format 1-0 is received. SPS PDSCH release, and the C-DAI value in DCI is 1; or when only one PDSCH scheduled with DCI format 1-0 is received, and the C-DAI value in DCI is 1.
  • the above-mentioned first indication field may include other indication states in addition to the above-mentioned first to eleventh indication states, which may be specifically defined according to requirements.
  • each indication state of the first indication field indicates a corresponding piece of information for determining the total number of bits of the second HARQ-ACK
  • the indication information in the first indication domain is ignored. That is, at this time, the terminal may not parse or read the indication information of the first indication field, or no matter what the indication information of the first indication field is, it will not perform HARQ-ACK transmission according to the first indication field, and it is always assumed that there is no indication For the second HARQ-ACK, only the first HARQ-ACK is transmitted.
  • the above-mentioned second uplink channel that does not carry the second HARQ-ACK overlaps with the first uplink channel in the time domain. It may be that, for the above-mentioned terminal, there is currently no overlap with the first uplink channel in the time domain.
  • the uplink channel that carries the second HARQ-ACK is not carried.
  • the terminal may not parse or read the indication information of the first indication field, or no matter what the indication information of the first indication field is, it will not perform HARQ-ACK transmission according to the first indication field, and it is always assumed that there is no indication For the second HARQ-ACK, only the first HARQ-ACK is transmitted.
  • the terminal performs HARQ-ACK transmission according to the first indication field, including:
  • the terminal performs HARQ-ACK transmission according to the number of bits of the second HARQ-ACK.
  • the above-mentioned terminal determining the number of bits of the second HARQ-ACK according to the first indication field may be, determining the number of bits of the second HARQ-ACK according to the indication state of the first indication field, for example: according to the indication state of the indication field
  • the indicated information for determining the total number of bits of the second HARQ-ACK determines the number of bits of the second HARQ-ACK. Or according to whether the second HARQ-ACK indicated by the first indication field exists, or whether the second HARQ-ACK is multiplexed and transmitted with the first HARQ-ACK, it is determined whether the number of bits of the second HARQ-ACK is 0.
  • the above-mentioned terminal may determine the number of bits of the second HARQ-ACK according to the first indication field, when determining that the first HARQ-ACK and the second HARQ-ACK need to be on the same channel It only needs to be executed when transmitting at the same time.
  • the terminal determines the number of bits of the second HARQ-ACK according to the first indication field, including:
  • the terminal determines according to the first indication field The number of bits of the second HARQ-ACK.
  • the network device can perform HARQ-ACK according to the same number of bits of the second HARQ-ACK received, thereby ensuring that the terminal and the network device have the same understanding of the number of bits of the second HARQ-ACK.
  • the terminal performs HARQ-ACK transmission according to the number of bits of the second HARQ-ACK, including:
  • the first HARQ-ACK and the second HARQ-ACK are simultaneously transmitted on the same channel; or,
  • the first HARQ-ACK is simultaneously transmitted on the same channel according to the number of bits of the second HARQ-ACK ACK and the second HARQ-ACK; when the number of bits of the second HARQ-ACK is 0 or it is determined not to transmit the second HARQ-ACK, the first HARQ is transmitted on the first uplink channel -ACK.
  • the above-mentioned determining to transmit the second HARQ-ACK may be determining that the number of bits of the second HARQ-ACK is greater than 0 according to the first indication field, or determining that there is a second HARQ-ACK, or determining that the second HARQ-ACK is allowed to be combined with the first HARQ-ACK.
  • HARQ-ACK multiplexed transmission; the above determination that the second HARQ-ACK is not to be transmitted may be determined by determining that the number of bits of the second HARQ-ACK is 0 according to the first indication field, or determining that there is no second HARQ-ACK, or determining The second HARQ-ACK is not multiplexed with the first HARQ-ACK for transmission.
  • the above-mentioned simultaneous transmission of the first HARQ-ACK and the second HARQ-ACK on the same channel according to the number of bits of the second HARQ-ACK determined according to the first indication field may be the first HARQ-ACK transmitted on the channel.
  • the number of bits of the second HARQ-ACK is the number of bits of the second HARQ-ACK determined according to the first indication field, and the number of bits of the first HARQ-ACK may be the HARQ-ACK codebook configured by the network side according to the related art
  • the number of bits of the ACK is not limited, and it is assumed that the network side and the terminal can always have a consistent understanding of the number of bits of the first HARQ-ACK.
  • the above-mentioned simultaneous transmission of the first HARQ-ACK and the second HARQ-ACK on the same channel may be the simultaneous transmission of the first HARQ-ACK and the first HARQ-ACK on the first uplink channel or the second uplink channel.
  • the second channel may be a channel different from the first uplink channel, and may be a PUCCH corresponding to the first HARQ-ACK or an uplink channel with the same priority as the first uplink channel or the first HARQ-ACK.
  • the above-mentioned simultaneous transmission of the first HARQ-ACK and the second HARQ-ACK on the same channel according to the number of bits of the second HARQ-ACK determined according to the first indication field may be, the above according to the first indication field.
  • the determined number of bits of the second HARQ-ACK is used as the number of reference bits, and according to the number of reference bits, the second HARQ-ACK and the first HARQ-ACK are simultaneously transmitted on the same uplink channel; specifically including:
  • the PUCCH resource is determined based on at least the number of reference bits, and the first HARQ-ACK and the second HARQ-ACK are simultaneously transmitted on the PUCCH resource.
  • the target resource for carrying the HARQ-ACK on the PUSCH is determined based on at least the reference bit number, and the target resource is simultaneously transmitted on the target resource the first HARQ-ACK and the second HARQ-ACK.
  • the above-mentioned determination of PUCCH resources includes at least one of the following:
  • One PUCCH resource in at least one PUCCH resource used for carrying channel state information CSI is determined, wherein the PUCCH resource used for carrying CSI is a PUCCH resource used for carrying multiple CSI.
  • the PUCCH resource set is determined, including:
  • the PUCCH resource set is determined according to the sum of the number of bits of the first HARQ-ACK and the number of reference bits of the second HARQ-ACK.
  • determining the minimum number of RBs for the PUCCH resources carrying the first HARQ-ACK and the second HARQ-ACK includes:
  • the sum of the number of bits of the first HARQ-ACK and the number of reference bits of the second HARQ-ACK determine all the PUCCH resources carrying the first HARQ-ACK and the second HARQ-ACK. the minimum number of RBs; or,
  • the first minimum number of RBs used to carry the first HARQ-ACK is determined according to the number of bits of the first HARQ-ACK, and the number of RBs used to carry the first HARQ-ACK is determined according to the number of reference bits of the second HARQ-ACK
  • the second minimum number of RBs for the second HARQ-ACK, and the sum of the first minimum number of RBs and the second minimum number of RBs is used as the first HARQ-ACK and the second HARQ-ACK.
  • the minimum number of RBs for the PUCCH resource is used as the first HARQ-ACK and the second HARQ-ACK.
  • determining at least one PUCCH resource in the PUCCH resources for carrying CSI includes:
  • the number of bits of the first HARQ-ACK the number of reference bits of the second HARQ-ACK and the number of bits of CSI transmitted simultaneously with the first HARQ-ACK and the second HARQ-ACK and, selecting one PUCCH resource from at least one PUCCH resource for carrying CSI.
  • simultaneously transmitting the second HARQ-ACK and the first HARQ-ACK on the same uplink channel further comprising:
  • the CSI is directly transmitted on the same uplink channel as the second HARQ-ACK and the first HARQ-ACK; if it is determined to be discarded, it is further determined which part of the CSI to keep and which to discard.
  • the reserved CSI, the second HARQ-ACK and the first HARQ-ACK are simultaneously transmitted on the same uplink channel.
  • determining the target resource for carrying HARQ-ACK on the PUSCH based on the number of reference bits includes:
  • the sum of the number of bits of the first HARQ-ACK and the number of reference bits of the second HARQ-ACK determine the number of bits used to carry the first HARQ-ACK and the second HARQ-ACK on the PUSCH the target resource;
  • the first resource on the PUSCH for carrying the first HARQ-ACK is determined according to the number of bits of the first HARQ-ACK
  • the first resource on the PUSCH for carrying the first HARQ-ACK is determined according to the number of reference bits of the second HARQ-ACK
  • the second resource of the second HARQ-ACK, the target resource includes the first resource and the second resource.
  • simultaneously transmitting the second HARQ-ACK and the first HARQ-ACK on the same uplink channel including:
  • the second HARQ-ACK is transmitted according to the reference number of bits
  • the second HARQ-ACK is transmitted according to the reference number of bits, or the second HARQ-ACK is transmitted according to the actual number of bits (ie, according to the second HARQ-ACK Corresponding downlink reception situation and HARQ-ACK, the determined number of bits;) transmit the second HARQ-ACK.
  • a negative acknowledgement NACK bit is added after the actual bit sequence of the second HARQ-ACK to obtain a target bit sequence, the target bit sequence
  • the number of bits is the reference number of bits.
  • the priority of the first uplink channel is higher than the priority of the second uplink channel carrying the second HARQ-ACK.
  • the second HARQ-ACK with low priority and the first HARQ-ACK with high priority may be multiplexed and transmitted.
  • the first uplink channel is one of PUCCH and PUSCH
  • the second uplink channel carrying the second HARQ-ACK is one of PUCCH and PUSCH
  • the first uplink channel The channel type and the channel type of the second uplink channel are the same or different.
  • the first uplink channel and the second uplink channel can be PUCCH or PUSCH, and the channel types of the first uplink channel and the second uplink channel are the same or different, it is possible to combine the same or different types of uplinks.
  • the HARQ-ACK carried by the channel is multiplexed and transmitted.
  • whether the first indication field exists in the first DCI is determined according to the configuration of high-layer signaling.
  • the first indication field always exists in the first DCI.
  • the terminal may determine whether the first indication field exists in the first DCI according to high-layer signaling, so that when it is determined to exist, the DCI is detected according to the size of the DCI in which the first indication field exists.
  • the high layer signaling may explicitly or implicitly indicate whether the first indication field exists in the first DCI.
  • high-layer signaling directly informs the first DCI whether there is a first indication field; or high-layer signaling can notify whether multiplexing transmission of channels with different priorities is supported, if supported, it means that the first DCI contains the first indication field; Alternatively, high-layer signaling may notify whether to support the multiplexed transmission of the first HARQ-ACK and the second HARQ-ACK, and when the configuration supports it, it is determined that the first DCI exists in the first indication field.
  • the above-mentioned default that the first indication field always exists in the first DCI may be that the terminal and the network device consider that the first indication field always exists in the first DCI.
  • the first indication field can indicate the state to dynamically determine whether to support the multiplexed transmission of the first HARQ-ACK and the second HARQ-ACK, for example: the indication state of the first indication field indicates that there is no second HARQ-ACK transmission or second HARQ-ACK transmission.
  • the HARQ-ACK is not multiplexed and transmitted with the first HARQ-ACK, it means that the multiplexed transmission of the first HARQ-ACK and the second HARQ-ACK is not supported, or the second HARQ-ACK is scheduled or, or the second uplink The channel does not overlap with the first upstream channel.
  • the first DCI is the DCI used to schedule the PDSCH that needs to perform HARQ-ACK feedback on the PUCCH, or the The first DCI is the DCI used to indicate the SPS PDSCH release that needs to perform HARQ-ACK feedback on the PUCCH; or
  • the first DCI is the DCI that schedules the PUSCH.
  • the above-mentioned first DCI is the DCI used for scheduling the PDSCH that needs to perform HARQ-ACK feedback on the PUCCH. It can be understood that the first DCI is used to schedule the PDSCH, and the PDSCH is required to perform HARQ-ACK feedback on the PUCCH. PDSCH.
  • the above-mentioned first DCI is the DCI used to indicate the SPS PDSCH release that needs to perform HARQ-ACK feedback on the PUCCH. It can be understood that the first DCI is used to indicate the SPS PDSCH release, and the SPS PDSCH release needs to be SPS PDSCH release for HARQ-ACK feedback is performed on the PUCCH.
  • the values of the first indication fields in the multiple first DCIs are the same, or the terminal performs HARQ according to the first indication fields in the last DCI -ACK transmission.
  • the terminal can perform HARQ-ACK transmission according to the first indication field of any DCI.
  • the terminal when there are multiple DCIs corresponding to the above-mentioned first uplink channel, the terminal only performs HARQ-ACK transmission according to the first indication field in the last DCI.
  • the priority of the first HARQ-ACK is higher than the priority of the second HARQ-ACK;
  • the first HARQ-ACK is the HARQ-ACK of the unicast service
  • the second HARQ-ACK is the HARQ-ACK of the multicast service.
  • HARQ-ACKs with different priorities can be multiplexed and transmitted, and HARQ-ACKs of unicast services and HARQ-ACKs of multicast services can also be multiplexed and transmitted.
  • the overlap in the time domain mentioned in this disclosure usually refers to the overlap in the time domain in the same carrier group.
  • CA carrier aggregation
  • DC dual linking
  • MCG primary carrier group
  • SCG secondary carrier group
  • MCG or SCG certain carrier group in the same PUCCH carrier group
  • the terminal receives the first downlink control information DCI, and the first indication field of the first DCI is used to determine at least one of the following: the number of bits of the second HARQ-ACK, whether the second HARQ-ACK exists, Whether the second HARQ-ACK is multiplexed with the first HARQ-ACK for transmission; the terminal performs HARQ-ACK transmission according to the first indication field; wherein the first DCI is the first HARQ-ACK bearing the first HARQ-ACK For a DCI corresponding to an uplink channel, the second HARQ-ACK is a HARQ-ACK multiplexed with the first HARQ-ACK and transmitted.
  • the terminal since the terminal performs HARQ-ACK transmission according to the first indication field, it can be avoided that when multiple HARQ-ACKs are simultaneously transmitted, the terminal and the network device have inconsistent understanding of the number of bits of HARQ-ACK transmitted by the terminal.
  • FIG. 5 is a flowchart of a method for receiving uplink control information provided by an embodiment of the present disclosure. As shown in FIG. 5, the method includes the following steps:
  • Step 501 The network device sends the first downlink control information DCI, and the first indication field of the first DCI is used to determine at least one of the following: the number of bits of the second HARQ-ACK acknowledgment for the second hybrid automatic repeat request, the second HARQ -Whether the ACK exists and whether the second HARQ-ACK is multiplexed with the first HARQ-ACK;
  • Step 502 the network device performs HARQ-ACK reception according to the first indication field
  • the first DCI is the DCI corresponding to the first uplink channel carrying the first HARQ-ACK
  • the second HARQ-ACK is the HARQ-ACK multiplexed and transmitted with the first HARQ-ACK.
  • the second HARQ-ACK uses a dynamic HARQ-ACK codebook:
  • Each indication state of the first indication field indicates a corresponding piece of information for determining the total number of bits of the second HARQ-ACK;
  • the first indication state of the first indication field is used to indicate that the second HARQ-ACK does not exist, or to indicate that the second HARQ-ACK is not multiplexed with the first HARQ-ACK for transmission, or to indicate the The total number of bits of the second HARQ-ACK is 0, or indicates that the total number of downlink transmissions corresponding to the second HARQ-ACK is 0, and each of the first indication fields except the first indication state
  • the indication status indicates a corresponding piece of information for determining the total number of bits of the second HARQ-ACK, where the total number of bits is greater than 0; or
  • the second indication state of the first indication field indicates information for determining the total number of bits of the second HARQ-ACK under the first condition, the total number of bits is greater than 0, and under the second condition the first number of bits is greater than 0.
  • the second indication status is used to indicate that the second HARQ-ACK does not exist, or to indicate that the second HARQ-ACK is not multiplexed with the first HARQ-ACK, or to indicate the total bits of the second HARQ-ACK
  • the number is 0, or it indicates that the total number of downlink transmissions corresponding to the second HARQ-ACK is 0, and each indication state in the first indication field except the second indication state indicates a corresponding one Information for determining the total number of bits of the second HARQ-ACK, where the total number of bits is greater than 0.
  • the information for determining the total number of bits of the second HARQ-ACK includes:
  • the first indication field indicates information for determining the total number of bits of the second HARQ-ACK:
  • the first indication field includes multiple sub-indication fields, and each sub-indication field is used to indicate the corresponding Two HARQ-ACK subcodebook bits information.
  • the second HARQ-ACK uses a semi-static HARQ-ACK codebook:
  • the first indication field includes at least: a third indication state and a fourth indication state
  • the third indication state is used to indicate that the number of bits of the second HARQ-ACK is 1 bit or to indicate that the second indication state is determined according to a fallback mode.
  • the number of bits of the HARQ-ACK, the fourth indication state is used to indicate that the number of bits of the second HARQ-ACK is determined according to the semi-static HARQ-ACK codebook size; or
  • the first indication field includes at least: a fifth indication state and a sixth indication state, where the fifth indication state is used to indicate that the second HARQ-ACK does not exist, or to indicate that the second HARQ-ACK is not associated with the The first HARQ-ACK multiplexed transmission, or the number of bits indicating the second HARQ-ACK is 0, or the number of downlink transmissions corresponding to the second HARQ-ACK is 0, the sixth indication Status is used to indicate that the number of bits of the second HARQ-ACK is determined according to the semi-static HARQ-ACK codebook size; or
  • the first indication field includes at least: a seventh indication state and an eighth indication state, wherein the seventh indication state indicates that the number of bits of the second HARQ-ACK is 1 bit under the first condition or indicates that the number of bits of the second HARQ-ACK is 1 bit or the indication is based on the return
  • the fallback mode determines the number of bits of the second HARQ-ACK.
  • the seventh indication state is used to indicate that the second HARQ-ACK does not exist, or to indicate that the second HARQ-ACK is not associated with the second HARQ-ACK.
  • the eighth indication state is In order to indicate that the number of bits of the second HARQ-ACK is determined according to the semi-static HARQ-ACK codebook size; or, the seventh indication state is used to indicate that the number of bits of the second HARQ-ACK is 1 bit or indicates that The fallback mode determines the number of bits of the second HARQ-ACK, the eighth indication state indicates under the first condition that the number of bits of the second HARQ-ACK is determined according to the semi-static HARQ-ACK codebook size, and under the second condition
  • the eighth indication state described below is used to indicate that there is no second HARQ-ACK, or to indicate that the second HARQ-ACK is not multiplexed with the first HARQ-ACK for transmission, or to indicate that the number of bits of the second HARQ-ACK is 0 , or indicate that the number of
  • the first indication field includes at least: a ninth indication state, a tenth indication state, and an eleventh indication state, and the ninth indication state is used to indicate that the second HARQ-ACK does not exist, or to indicate that the second HARQ-ACK does not exist.
  • the HARQ-ACK is not multiplexed and transmitted with the first HARQ-ACK, or the number of bits indicating the second HARQ-ACK is 0, or the number of downlink transmissions corresponding to the second HARQ-ACK is 0 , the tenth indication state is used to indicate that the number of bits of the second HARQ-ACK is 1 bit or that the number of bits of the second HARQ-ACK is determined according to the fallback mode, and the eleventh indication state is used to indicate that the number of bits of the second HARQ-ACK is determined according to the fallback mode.
  • the semi-static HARQ-ACK codebook size determines the number of bits of the second HARQ-ACK.
  • the first condition includes:
  • the first uplink channel and the second uplink channel overlap in the time domain, wherein the second uplink channel is a channel carrying the second HARQ-ACK;
  • the second condition includes:
  • the first uplink channel and the second uplink channel do not overlap in the time domain, wherein the second uplink channel is a channel carrying the second HARQ-ACK.
  • each indication state of the first indication field indicates a corresponding piece of information for determining the total number of bits of the second HARQ-ACK, if it is determined that the second HARQ-ACK is not carried. If the second uplink channel and the first uplink channel overlap in the time domain, the indication information of the first indication domain can be arbitrarily set.
  • the indication information of the first indication domain can be arbitrarily set.
  • the network device performs HARQ-ACK reception according to the first indication field, including:
  • the network device performs HARQ-ACK reception according to the number of bits of the second HARQ-ACK.
  • the network device performs HARQ-ACK reception according to the number of bits of the second HARQ-ACK, including:
  • the first HARQ-ACK and the second HARQ-ACK are simultaneously received on the same channel; or,
  • the first HARQ is simultaneously received on the same channel according to the number of bits of the second HARQ-ACK - ACK and said second HARQ-ACK;
  • the first HARQ-ACK is received on the first uplink channel.
  • the network device determines the number of bits of the second HARQ-ACK according to the first indication field, including:
  • the network device In the case that the first uplink channel carrying the first HARQ-ACK and the second uplink channel carrying the second HARQ-ACK overlap in the time domain, the network device, according to the first indication field, The number of bits of the second HARQ-ACK is determined.
  • the priority of the first uplink channel is higher than the priority of the second uplink channel carrying the second HARQ-ACK.
  • the first uplink channel is one of a physical uplink control channel PUCCH and a physical uplink shared channel PUSCH
  • the second uplink channel carrying the second HARQ-ACK is one of PUCCH and PUSCH
  • the Channel types of the first uplink channel and the second uplink channel are the same or different.
  • whether the first indication field exists in the first DCI is determined according to the configuration of high-layer signaling.
  • the first indication field always exists in the first DCI.
  • the first DCI is the DCI used to schedule the PDSCH that needs to perform HARQ-ACK feedback on the PUCCH, or the first DCI is The DCI used to indicate the release of the SPS physical downlink shared channel PDSCH that needs to perform HARQ-ACK feedback on the PUCCH; or
  • the first DCI is the DCI that schedules the PUSCH.
  • the first indication fields in the multiple first DCIs are set to indicate the same value, or HARQ-ACK reception is performed according to the first indication fields in the last DCI.
  • the priority of the first HARQ-ACK is higher than the priority of the second HARQ-ACK;
  • the first HARQ-ACK is the HARQ-ACK of the unicast service
  • the second HARQ-ACK is the HARQ-ACK of the multicast service.
  • the first indication field is reuse of existing bits in the first DCI, or the first indication field is a newly added bit in the first DCI.
  • this embodiment is an embodiment corresponding to the embodiment shown in FIG. 4 , and this embodiment describes the implementation of network devices.
  • this embodiment describes the implementation of network devices.
  • this embodiment will not repeat them, and the same beneficial effects can also be achieved.
  • the low-priority HARQ-ACK (ie the second HARQ-ACK) codebook uses a dynamic codebook, and no CBG transmission is configured, that is, at least 2 bits of T-DAI are required to indicate the total number of bits of the low-priority dynamic codebook (if If CBG is configured, 4 bits of T-DAI are required.
  • the first 2 bits indicate the T-DAI of the first subcodebook, and the last 2 bits indicate the T-DAI of the second subcodebook.
  • each subcodebook is determined with The process in this embodiment is similar and will not be repeated); any codebook used for the high-priority HARQ-ACK (that is, the above-mentioned first HARQ-ACK) can use the method in this embodiment (for example: high-priority HARQ-ACK) It is only necessary to determine the HARQ-ACK feedback sequence of high priority according to the method defined by the protocol according to the similar codebook used); it is assumed that the terminal is configured to support the overlapping of low priority and high priority channels.
  • the transmission or the terminal is configured to support HARQ-ACK multiplexing transmission with different priorities, then determine the DCI corresponding to the high-priority PUCCH (for example, the DCI that schedules the PDSCH that transmits HARQ-ACK on the PUCCH, or indicates the release of SPS resources.
  • DCI and this DCI indicating SPS resource release needs to transmit HARQ-ACK on PUCCH includes a first indication field (the first indication field may be 2 bits or 3 bits according to different mapping tables).
  • the network device sends the DCI according to the condition including the first indication field, and the terminal receives the DCI according to the condition that includes the first indication field; it is assumed that according to the scheduling of the network equipment, on an activated BWP on the main carrier, the low-priority PUCCH (LP PUCCH) ) transmission and high-priority PUCCH (HP PUCCH) transmission overlap in the time domain, and both PUCCHs are used to carry HARQ-ACK, and the priority of the two PUCCHs is based on the priority of the HARQ-ACK codebook they carry
  • the priority of the HARQ-ACK codebook may be dynamically indicated by the priority indication field in the DCI scheduling the PDSCH.
  • the network devices may be as follows:
  • the network device schedules 6 downlink transmissions corresponding to low-priority HARQ-ACK (such as PDSCH or SPS PDSCH release), and each downlink transmission corresponds to 1-bit HARQ-ACK, that is, the network device determines that the low-priority PUCCH carries 6 bits Low-priority HARQ-ACK, as shown in Figure 3; the number of downlink transmissions corresponding to high-priority HARQ-ACKs scheduled by the network device and the number of HARQ-ACK bits corresponding to each downlink transmission and the high-priority HARQ-ACK The type of codebook (dynamic or semi-static), which determines that the A-bit high-priority HARQ-ACK is transmitted in the high-priority PUCCH;
  • low-priority HARQ-ACK such as PDSCH or SPS PDSCH release
  • the network device follows the following mapping table 1 according to method 1 (each indication state of the first indication field indicates a corresponding piece of information for determining the total number of bits of the second HARQ-ACK), or according to method 3 ( That is, the implementation of the second indication state in the embodiment shown in FIG. 4 ) according to the following mapping table 4, the DCI corresponding to the HP PUCCH (that is, the PDSCH that needs to transmit the high-priority HARQ-ACK on the high-priority PUCCH is scheduled 2-bit first indication field in the DCI) is set to "01" corresponding to The value is "2", or, according to mode 2 (that is, the implementation of the first indication state in the embodiment shown in FIG.
  • mapping table 2 the 2-bit first indication field in the DCI corresponding to the HP PUCCH Set to "10" corresponding to The value is "2", or, according to mode 2 (that is, the implementation of the first indication state in the embodiment shown in FIG. 4 ), according to the following mapping table 3, the 3-bit first indication field in the DCI corresponding to the HP PUCCH Set to "011” corresponding to The value is "3", indicating that there are 6 DCI transmissions corresponding to low priority, and 6 PDSCH or SPS PDSCH releases corresponding to low priority HARQ-ACK are scheduled to help the terminal determine the number of bits of low priority HARQ-ACK is 6 bits (that is, the number of bits of the second HARQ-ACK is 6);
  • the network device is on a PUCCH resource determined according to the high-priority and low-priority HARQ-ACK multiplexing transmission scheme (the specific multiplexing transmission scheme is not limited, for example: it can be defined in the protocol or new in the subsequent protocol version. Defined method), receive HARQ-ACK according to A-bit high-priority HARQ-ACK and 6-bit low-priority HARQ-ACK, and obtain A-bit high-priority HARQ-ACK and 6-bit low-priority HARQ-ACK respectively;
  • the terminal side can be as follows:
  • the number of bits of the low-priority HARQ-ACK is determined according to the first indication field in the DCI corresponding to the HPPUCCH (that is, the indication of the first indication field is used as the final T-DAI).
  • the value indicated by the 2-bit first indication field can be obtained.
  • the value is "2", or the 3-bit first indication field indicates The value is "3", and it is judged that more than 2 DCIs have been received
  • the number of DCIs transmitted in total indicated by the value is 6 (which value of 2, 6, and 10 corresponds to the same indication state can be determined in combination with how many DCIs have been received, because it is assumed that the multiplexing count of modulo 4 is In the mode, there is no continuous loss of 4 DCIs, then if the received DCIs have exceeded 2 but not more than 6, it can be determined that the current first indication field indicates 6 DCIs), and according to the DCI
  • the number of scheduled downlink transmissions and the number of HARQ-ACK feedback bits corresponding to each downlink transmission determine a total of 6 bits of low-priority HARQ-ACK (because there is packet
  • the terminal simultaneously sends A-bit high-priority HARQ-ACK and 6-bit low-priority HARQ-ACK on a PUCCH resource determined according to the high-priority and low-priority HARQ-ACK multiplexing transmission scheme;
  • the network device side may be as follows:
  • B-bit low-priority HARQ-ACK is carried in the PUCCH of the And case 2, the network device schedules the number of downlink transmissions corresponding to high-priority HARQ-ACK, the number of HARQ-ACK bits corresponding to each downlink transmission, and the type of high-priority HARQ-ACK codebook (dynamic or semi-static). ), determine that the A-bit high-priority HARQ-ACK is transmitted in the high-priority PUCCH;
  • the network device can set the first indication field to a fixed value or an arbitrary value, and the terminal will not read this value or
  • the number of bits of HARQ-ACK with low priority is determined according to this value; when using mode 2 (the implementation of the second indication state in the embodiment shown in FIG. 4 ), follow the mapping table 2, or when using mode 3 ( FIG.
  • the 2-bit first indication field in the DCI corresponding to the HP PUCCH is set to "00" corresponding to The value is "0", or, according to the mapping table 3 when using mode 2, the 3-bit first indication field in the DCI corresponding to the HP PUCCH is set to "000” corresponding to The value is "0", indicating that no LP PUCCH overlaps with the HP PUCCH, that is, no low-priority HARQ-ACK needs to be transmitted together with the high-priority HARQ-ACK.
  • the terminal helps the terminal to determine that the number of bits of the low-priority HARQ-ACK to be transmitted together with the high-priority HARQ-ACK is 0, that is, no low-priority HARQ-ACK needs to be transmitted together with the high-priority HARQ-ACK;
  • the network device receives A-bit high-priority HARQ-ACK on the HP PUCCH, respectively, and receives B-bit low-priority HARQ-ACK on the LP PUCCH; A-bit high-priority HARQ-ACK is received.
  • the terminal side can be as follows:
  • the terminal directly The number of downlink transmissions of priority HARQ-ACK, the number of HARQ-ACK bits corresponding to each downlink transmission, and the type of low-priority HARQ-ACK codebook (dynamic or semi-static), determine the B-bit low-priority HARQ-ACK in the LP PUCCH, and according to the received number of downlink transmissions corresponding to high-priority HARQ-ACK, the number of HARQ-ACK bits corresponding to each downlink transmission, and the type of high-priority HARQ-ACK codebook (dynamic or semi-static ), determine that A-bit high-priority HARQ-ACK is transmitted in HP PUCCH, and transmit B-bit low-priority HARQ-ACK on LP PUCCH respectively, and transmit A-bit high-priority HARQ-ACK
  • the terminal receives the number of downlink transmissions corresponding to the high-priority HARQ-ACK, the number of HARQ-ACK bits corresponding to each downlink transmission, and the type of the high-priority HARQ-ACK codebook (dynamic or semi-static). ), determine that A-bit high-priority HARQ-ACK is transmitted in HP PUCCH (ie, there is no low-priority HARQ-ACK transmission at this time), and transmit A-bit high-priority HARQ-ACK only on HP PUCCH.
  • the first indication field included in the DCI corresponding to the HP PUCCH (that is, the first DCI above) is 1 or 2 bits, and other assumptions are the same as in Embodiment 1, as follows. :
  • the first indication field may be 1 bit, corresponding to mode 4 (ie, the implementation of the third indication state and the fourth indication state in the embodiment shown in FIG. 4 ); or 2 bits corresponding to mode 5 (ie, the embodiment shown in FIG. 4 ) Embodiments of the fifth indication state and the sixth indication state in the embodiment) and mode 6 (ie, the implementation of the seventh indication state and the eighth indication state in the embodiment shown in FIG. 4 ).
  • the network device sends 3 bits, the terminal receives 1 bit, and performs multiplexing and transmission according to the A1 bit; in the above methods 4-6, if the instruction is generated according to the semi-static codebook, the 3 bits are together with AN. transmission.
  • the network device side can be as follows:
  • the network device schedules 3 downlink transmissions (such as PDSCH or SPS PDSCH release) corresponding to the low-priority HARQ-ACK (that is, the second HARQ-ACK), and each downlink transmission corresponds to 1-bit HARQ-ACK, as shown in Figure 2 shown, because the fallback situation of the semi-static codebook (the case of 1-bit HARQ-ACK transmission) is not satisfied, the network device determines that the low-priority HARQ-ACK carried in the LP PUCCH is determined according to the semi-static codebook, that is, Determined based on the K1 set, it is a 6-bit HARQ-ACK as shown in Figure 2; the number of downlink transmissions of the corresponding high-priority HARQ-ACK (that is, the first HARQ-ACK) scheduled by the network device and each downlink Transmit the corresponding number of HARQ-ACK bits and the type of high-priority HARQ-ACK codebook (dynamic or semi-static), and determine that the A
  • the network device sets the 1-bit first indication field in the DCI corresponding to the HP PUCCH to "1" according to the above-mentioned method 4 according to the following mapping table 5, or according to the above-mentioned method 5 according to the following mapping table 6, or, according to the above-mentioned method 6 According to the following mapping table 7, the 1-bit first indication field in the DCI corresponding to the HP PUCCH is set to "0", or, according to the above-mentioned mode 7 (that is, the ninth indication state and the tenth indication in the embodiment shown in FIG.
  • the 2-bit first indication field in the DCI corresponding to the HP PUCCH is set to "10", indicating that the low priority is determined according to the size of the semi-static codebook
  • the number of bits of the HARQ-ACK, thereby helping the terminal to determine the number of bits of the low-priority HARQ-ACK is 6 bits.
  • the network device receives the HARQ-ACK according to the A-bit high-priority HARQ-ACK and the 6-bit low-priority HARQ-ACK on a PUCCH resource determined according to the high-priority and low-priority HARQ-ACK multiplexing transmission scheme, and A-bit high-priority HARQ-ACK and 6-bit low-priority HARQ-ACK are obtained, respectively.
  • Table 5 Corresponding relationship between indication states of the 1-bit first indication field (corresponding to the above method 4)
  • Table 6 Indication state correspondence of the 1-bit first indication field (corresponding to the above-mentioned mode 5)
  • Table 7 Indication state correspondence of the 1-bit first indication field (corresponding to the above-mentioned mode 6)
  • Table 8 Indication state correspondence of the 2-bit first indication field (corresponding to the above mode 7)
  • the terminal side can be as follows:
  • the terminal will consider it to be semi-static
  • the fallback method of the codebook considers that the low-priority 1-bit HARQ-ACK is transmitted on the LP PUCCH determined according to the first DCI, which is inconsistent with that determined by the network device; and in the embodiment of the present disclosure, the terminal does not For the DCI corresponding to the low-priority HARQ-ACK, the number of bits of the low-priority HARQ-ACK is determined according to the first indication field in the DCI corresponding to the HP PUCCH.
  • the mapping table can be determined according to the 1-bit first indication field or the 2-bit first indication field, which indicates that the number of bits of the low-priority HARQ-ACK is determined according to the size of the semi-static codebook.
  • the terminal determines that the DCI corresponding to the low-priority HARQ-ACK is actually received.
  • the first indication field being "0" indicates that the number of bits of the low-priority HARQ-ACK is determined according to the size of the semi-static codebook; further, the terminal determines a total of 6 bits of the low-priority HARQ-ACK; for the high-priority case, According to the received number of downlink transmissions corresponding to the high-priority HARQ-ACK, the number of HARQ-ACK bits corresponding to each downlink transmission, and the type of the high-priority HARQ-ACK codebook (dynamic or semi-static), determine that the A bit is high.
  • the priority HARQ-ACK is transmitted in the high priority PUCCH.
  • the terminal simultaneously sends A-bit high-priority HARQ-ACK and 6-bit low-priority HARQ-ACK on one PUCCH resource determined according to the high-priority and low-priority HARQ-ACK multiplexing transmission scheme.
  • the first indication field included in the DCI corresponding to the HP PUCCH is 1 or 2 bits, and other assumptions are the same as those in Embodiment 2, as follows:
  • the network device does not send the LP AN, and the specific state in the DCI indicates that there is no LP PAN multiplexing, then only the HP AN is transmitted; using the above method 5 or 6, it can be determined according to the first indication field that there is no LP AN ; Use the above-mentioned mode 4, then according to the terminal does not receive any LP transmission, it is determined to ignore the first indication field, and only transmit HP AN, or think that there is no overlap, then do not need to look at the first indication field to determine the number of LP AN bits;
  • the network device side can be as follows:
  • Scenario 1 Suppose the network device schedules more than one downlink transmission corresponding to low-priority HARQ-ACK (such as PDSCH or SPS PDSCH release), and each downlink transmission corresponds to 1-bit HARQ-ACK, that is, the network device follows the semi-static codebook
  • the determination method determines that the low-priority PUCCH carries a B-bit low-priority HARQ-ACK (ie, the above-mentioned second HARQ-ACK).
  • case 2 Assuming that the network device does not schedule low-priority transmissions, there is no low-priority PUCCH transmission carrying the low-priority HARQ-ACK; for cases 1 and 2, the network device schedules the corresponding high-priority HARQ according to its schedule -The number of downlink transmissions of the ACK (ie the above-mentioned first HARQ-ACK), the number of HARQ-ACK bits corresponding to each downlink transmission, and the type of high-priority HARQ-ACK codebook (dynamic or semi-static), determine that the A bit is high Priority HARQ-ACK is transmitted in high priority PUCCH;
  • the network device can use the first indication
  • the field is set to a fixed value or an arbitrary value, the terminal will not read this value or determine the number of bits of HARQ-ACK with low priority according to this value; when using the above method 5, follow the mapping table 6, or when using the above method 6.
  • the 1-bit first indication field in the DCI corresponding to the HP PUCCH is set to "0", or, according to the mapping table 8 when the above-mentioned method 7 is used, the 2-bit first indication field in the DCI corresponding to the HP PUCCH is set to "0".
  • the indication field is set to "00", indicating that no LP PUCCH overlaps with HP PUCCH, that is, no low-priority HARQ-ACK needs to be transmitted together with high-priority HARQ-ACK.
  • the terminal helps the terminal to determine that the number of bits of the low-priority HARQ-ACK to be transmitted together with the high-priority HARQ-ACK is 0, that is, no low-priority HARQ-ACK needs to be transmitted together with the high-priority HARQ-ACK;
  • the network device receives A-bit high-priority HARQ-ACK on the HP PUCCH, respectively, and receives B-bit low-priority HARQ-ACK on the LP PUCCH; A-bit high-priority HARQ-ACK is received.
  • the terminal side can be as follows:
  • the terminal may not read the indication field or do not care about the indication state of the indication field.
  • mode 6 or mode 7 according to the received value of the 1-bit or 2-bit first indication field in the DCI corresponding to the HP PUCCH, it can be determined according to the corresponding mapping table that there is no low-priority HARQ-ACK or high-priority HARQ-ACK at this time.
  • HARQ-ACK multiplexing transmission with high priority wherein, in particular, for mode 6, in the above case 1, because the terminal has received multiple downlink transmissions corresponding to low-priority HARQ-ACK and the determined LP PUCCH resources are different from the HP PUCCH resources Overlapping, it is judged that the "0" indicated by the first indication field at this time indicates that there is no low-priority HARQ-ACK and high-priority HARQ-ACK for multiplexing transmission; in the above case 2, because the terminal does not receive any Corresponding to the downlink transmission of the low-priority HARQ-ACK, it is determined that the "0" indicated by the first indication field at this time indicates that there is no low-priority HARQ-ACK and high-priority HARQ-ACK for multiplexing transmission.
  • the terminal directly receives the number of downlink transmissions corresponding to the low-priority HARQ-ACK, the number of HARQ-ACK bits corresponding to each downlink transmission, and the type of the low-priority HARQ-ACK codebook (dynamic or semi-static), determine that the B-bit low-priority HARQ-ACK is transmitted in the LP PUCCH, and according to the received number of downlink transmissions corresponding to the high-priority HARQ-ACK and the number of HARQ-ACK bits corresponding to each downlink transmission and The type of the high-priority HARQ-ACK codebook (dynamic or semi-static), determine the A-bit high-priority HARQ-ACK to be transmitted in the HP PUCCH, and transmit the B-bit low-priority HARQ-ACK on the LP PUCCH, respectively.
  • the type of the low-priority HARQ-ACK codebook dynamic or semi-static
  • the high-priority HARQ-ACK of A bits is transmitted on the HP PUCCH; for case 2, the terminal receives the number of downlink transmissions corresponding to the high-priority HARQ-ACK and the number of HARQ-ACK bits corresponding to each downlink transmission and the high-priority
  • the type of HARQ-ACK codebook (dynamic or semi-static) of the first level determines that the A-bit high-priority HARQ-ACK is transmitted in the HP PUCCH (that is, there is no low-priority HARQ-ACK transmission at this time), and only on the HP PUCCH Transmit A-bit high-priority HARQ-ACK;
  • the above-mentioned terminal and network device perform the steps in no particular order, which is only to illustrate specific behaviors.
  • only one PDSCH is scheduled by one DCI, and one PDSCH corresponds to 1-bit feedback.
  • the result that affects the total number of bits determined according to the T-DAI does not affect the above-mentioned process of determining the number of bits according to the first indication field, and the above method can be reused after the determined number of bits is replaced accordingly.
  • the first indication field is the scheduling high-priority PUSCH. Present in the DCI of the priority PUSCH.
  • 2-bit and 3-bit first indication fields are only examples, and 1-bit can also indicate different accumulated DCI numbers by modulo 2, and of course, it can also be more than 2 or 3 bits and so on.
  • the correspondence between different indication states and the corresponding number of DCIs may also be changed, which are all included in the embodiments of the present disclosure.
  • the HARQ-ACK with different priorities is replaced by unicast and multicast HARQ-ACK, or replaced by other two different UCI transmissions, which is also applicable.
  • the first indication field in the DCI corresponding to the first type of HARQ-ACK or the uplink channel corresponding to the first type of HARQ-ACK can be determined according to the to determine the number of bits of the second type of HARQ-ACK, so as to avoid the change of the number of bits of the second type of HARQ-ACK due to packet loss from affecting the transmission of the first type of HARQ-ACK.
  • FIG. 8 is a structural diagram of a terminal provided by an embodiment of the present disclosure. As shown in FIG. 8, the terminal includes a memory 820, a transceiver 800, and a processor 810:
  • the memory 820 is used to store computer programs; the transceiver 800 is used to send and receive data under the control of the processor 810; the processor 810 is used to read the computer program in the memory 820 and perform the following operations:
  • the first indication field of the first DCI is used to determine at least one of the following: the number of bits of the second HARQ-ACK acknowledgment for the second HARQ-ACK, whether the second HARQ-ACK exists, Whether the second HARQ-ACK is multiplexed with the first HARQ-ACK;
  • the first DCI is the DCI corresponding to the first uplink channel carrying the first HARQ-ACK
  • the second HARQ-ACK is the HARQ-ACK multiplexed and transmitted with the first HARQ-ACK.
  • the transceiver 800 is used for receiving and transmitting data under the control of the processor 810 .
  • the bus architecture may include any number of interconnected buses and bridges, specifically one or more processors represented by processor 810 and various circuits of memory represented by memory 820 are linked together.
  • the bus architecture may also link together various other circuits, such as peripherals, voltage regulators, and power management circuits, which are well known in the art and, therefore, will not be described further herein.
  • the bus interface provides the interface.
  • Transceiver 800 may be a number of elements, including a transmitter and a receiver, providing means for communicating with various other devices over transmission media including wireless channels, wired channels, fiber optic cables, and the like Transmission medium.
  • the user interface 830 may also be an interface capable of externally connecting the required equipment, and the connected equipment includes but is not limited to a keypad, a display, a speaker, a microphone, a joystick, and the like.
  • the processor 810 is responsible for managing the bus architecture and general processing, and the memory 820 may store data used by the processor 800 in performing operations.
  • the processor 810 may be a central processing unit (CPU), an application specific integrated circuit (ASIC), a field programmable gate array (Field-Programmable Gate Array, FPGA) or a complex programmable Logic device (Complex Programmable Logic Device, CPLD), the processor can also use a multi-core architecture.
  • CPU central processing unit
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • CPLD complex programmable Logic Device
  • the processor is configured to execute any one of the methods provided by the embodiments of the present disclosure according to the obtained executable instructions by invoking the computer program stored in the memory.
  • the processor and memory may also be physically separated.
  • the first indication field of the first DCI is used to determine at least one of the following: the number of bits of the second HARQ-ACK acknowledgment for the second HARQ-ACK, the second HARQ- Whether ACK exists and whether the second HARQ-ACK is multiplexed with the first HARQ-ACK;
  • the first DCI is the DCI corresponding to the first uplink channel carrying the first HARQ-ACK
  • the second HARQ-ACK is the HARQ-ACK multiplexed and transmitted with the first HARQ-ACK.
  • the second HARQ-ACK uses a dynamic HARQ-ACK codebook:
  • Each indication state of the first indication field indicates a corresponding piece of information for determining the total number of bits of the second HARQ-ACK;
  • the first indication state of the first indication field is used to indicate that the second HARQ-ACK does not exist, or to indicate that the second HARQ-ACK is not multiplexed with the first HARQ-ACK for transmission, or to indicate the The total number of bits of the second HARQ-ACK is 0, or indicates that the total number of downlink transmissions corresponding to the second HARQ-ACK is 0, and each of the first indication fields except the first indication state
  • the indication status indicates a corresponding piece of information for determining the total number of bits of the second HARQ-ACK, where the total number of bits is greater than 0; or
  • the second indication state of the first indication field indicates information for determining the total number of bits of the second HARQ-ACK under the first condition, the total number of bits is greater than 0, and under the second condition the first number of bits is greater than 0.
  • the second indication status is used to indicate that the second HARQ-ACK does not exist, or to indicate that the second HARQ-ACK is not multiplexed with the first HARQ-ACK, or to indicate the total bits of the second HARQ-ACK
  • the number is 0, or it indicates that the total number of downlink transmissions corresponding to the second HARQ-ACK is 0, and each indication state in the first indication field except the second indication state indicates a corresponding one Information for determining the total number of bits of the second HARQ-ACK, where the total number of bits is greater than 0.
  • the information for determining the total number of bits of the second HARQ-ACK includes:
  • the first indication field indicates information for determining the total number of bits of the second HARQ-ACK:
  • the first indication field includes multiple sub-indication fields, and each sub-indication field is used to indicate the corresponding Two HARQ-ACK subcodebook bits information.
  • the second HARQ-ACK uses a semi-static HARQ-ACK codebook:
  • the first indication field includes at least: a third indication state and a fourth indication state, where the third indication state is used to indicate that the number of bits of the second HARQ-ACK is 1 bit or to indicate that the second indication state is determined according to a fallback mode.
  • the number of bits of the HARQ-ACK, the fourth indication state is used to indicate that the number of bits of the second HARQ-ACK is determined according to the semi-static HARQ-ACK codebook size; or
  • the first indication field includes at least: a fifth indication state and a sixth indication state, where the fifth indication state is used to indicate that the second HARQ-ACK does not exist, or to indicate that the second HARQ-ACK is not associated with the The first HARQ-ACK multiplexed transmission, or the number of bits indicating the second HARQ-ACK is 0, or the number of downlink transmissions corresponding to the second HARQ-ACK is 0, the sixth indication Status is used to indicate that the number of bits of the second HARQ-ACK is determined according to the semi-static HARQ-ACK codebook size; or
  • the first indication field includes at least: a seventh indication state and an eighth indication state, wherein the seventh indication state indicates that the number of bits of the second HARQ-ACK is 1 bit under the first condition or indicates that the number of bits of the second HARQ-ACK is 1 bit or the indication is based on the return.
  • the fallback mode determines the number of bits of the second HARQ-ACK.
  • the seventh indication state is used to indicate that the second HARQ-ACK does not exist, or to indicate that the second HARQ-ACK is not associated with the second HARQ-ACK.
  • the eighth indication state is In order to indicate that the number of bits of the second HARQ-ACK is determined according to the semi-static HARQ-ACK codebook size; or, the seventh indication state is used to indicate that the number of bits of the second HARQ-ACK is 1 bit or indicates that The fallback mode determines the number of bits of the second HARQ-ACK, and the eighth indication state indicates that the number of bits of the second HARQ-ACK is determined according to the semi-static HARQ-ACK codebook size under the first condition, and under the second condition
  • the eighth indication state described below is used to indicate that there is no second HARQ-ACK, or to indicate that the second HARQ-ACK is not multiplexed with the first HARQ-ACK for transmission, or to indicate that the number of bits of the second HARQ-ACK is 0 , or indicate that the number
  • the first indication field includes at least: a ninth indication state, a tenth indication state, and an eleventh indication state, and the ninth indication state is used to indicate that the second HARQ-ACK does not exist, or to indicate that the second HARQ-ACK does not exist.
  • the HARQ-ACK is not multiplexed and transmitted with the first HARQ-ACK, or the number of bits indicating the second HARQ-ACK is 0, or the number of downlink transmissions corresponding to the second HARQ-ACK is 0 , the tenth indication state is used to indicate that the number of bits of the second HARQ-ACK is 1 bit or that the number of bits of the second HARQ-ACK is determined according to the fallback mode, and the eleventh indication state is used to indicate that the number of bits of the second HARQ-ACK is determined according to the fallback mode.
  • the semi-static HARQ-ACK codebook size determines the number of bits of the second HARQ-ACK.
  • the first condition includes:
  • the first uplink channel and the second uplink channel overlap in the time domain, wherein the second uplink channel is a channel carrying the second HARQ-ACK;
  • the second condition includes:
  • the first uplink channel and the second uplink channel do not overlap in the time domain, wherein the second uplink channel is a channel carrying the second HARQ-ACK.
  • each indication state of the first indication field indicates a corresponding piece of information for determining the total number of bits of the second HARQ-ACK, if it is determined that the second HARQ-ACK is not carried. If the second uplink channel overlaps with the first uplink channel in the time domain, the indication information in the first indication domain is ignored.
  • the first indication field includes the third indication state and the fourth indication state, if it is determined that there is no second uplink channel carrying the second HARQ-ACK and the first If the uplink channels overlap in the time domain, the indication information in the first indication domain is ignored.
  • the performing HARQ-ACK transmission according to the first indication field includes:
  • HARQ-ACK transmission is performed according to the number of bits of the second HARQ-ACK.
  • performing HARQ-ACK transmission according to the number of bits of the second HARQ-ACK including:
  • the first HARQ-ACK and the second HARQ-ACK are simultaneously transmitted on the same channel; or,
  • the first HARQ-ACK is simultaneously transmitted on the same channel according to the number of bits of the second HARQ-ACK ACK and the second HARQ-ACK;
  • the first HARQ-ACK is transmitted on the first uplink channel.
  • the determining the number of bits of the second HARQ-ACK according to the first indication field includes:
  • the first uplink channel carrying the first HARQ-ACK and the second uplink channel carrying the second HARQ-ACK overlap in the time domain, determine the first uplink channel according to the first indication field 2 The number of HARQ-ACK bits.
  • the priority of the first uplink channel is higher than the priority of the second uplink channel carrying the second HARQ-ACK.
  • the first uplink channel is one of a physical uplink control channel PUCCH and a physical uplink shared channel PUSCH
  • the second uplink channel carrying the second HARQ-ACK is one of PUCCH and PUSCH
  • the Channel types of the first uplink channel and the second uplink channel are the same or different.
  • whether the first indication field exists in the first DCI is determined according to the configuration of high-layer signaling.
  • the first indication field always exists in the first DCI.
  • the first DCI is the DCI used to schedule the PDSCH that needs to perform HARQ-ACK feedback on the PUCCH, or the first DCI is The DCI used to indicate the release of the SPS physical downlink shared channel PDSCH that needs to perform HARQ-ACK feedback on the PUCCH; or
  • the first DCI is the DCI that schedules the PUSCH.
  • the values of the first indication fields in the multiple first DCIs are the same, or the terminal performs HARQ-ACK transmission according to the first indication fields in the last DCI.
  • the priority of the first HARQ-ACK is higher than the priority of the second HARQ-ACK;
  • the first HARQ-ACK is the HARQ-ACK of the unicast service
  • the second HARQ-ACK is the HARQ-ACK of the multicast service.
  • the first indication field is reuse of existing bits in the first DCI, or the first indication field is a newly added bit in the first DCI.
  • FIG. 9 is a structural diagram of a network device provided by an embodiment of the present disclosure. As shown in FIG. 9, it includes a memory 920, a transceiver 900, and a processor 910:
  • the memory 920 is used to store computer programs; the transceiver 900 is used to send and receive data under the control of the processor 910; the processor 910 is used to read the computer programs in the memory 920 and perform the following operations:
  • the first indication field of the first DCI is used to determine at least one of the following: the number of bits of the second HARQ-ACK acknowledgement HARQ-ACK, whether the second HARQ-ACK exists, the second HARQ-ACK Whether the ACK is multiplexed with the first HARQ-ACK;
  • the first DCI is the DCI corresponding to the first uplink channel carrying the first HARQ-ACK
  • the second HARQ-ACK is the HARQ-ACK multiplexed and transmitted with the first HARQ-ACK.
  • the transceiver 900 is used for receiving and transmitting data under the control of the processor 910 .
  • the bus architecture may include any number of interconnected buses and bridges, specifically one or more processors represented by processor 910 and various circuits of memory represented by memory 920 are linked together.
  • the bus architecture may also link together various other circuits, such as peripherals, voltage regulators, and power management circuits, which are well known in the art and, therefore, will not be described further herein.
  • the bus interface provides the interface.
  • Transceiver 900 may be multiple elements, including a transmitter and a receiver, providing means for communicating with various other devices over transmission media including wireless channels, wired channels, fiber optic cables, and the like.
  • the processor 910 is responsible for managing the bus architecture and general processing, and the memory 920 may store data used by the processor 910 in performing operations.
  • the processor 910 may be a central processing unit (CPU), an application-specific integrated circuit (ASIC), a field-programmable gate array (FPGA), or a complex programmable logic device (Complex). Programmable Logic Device, CPLD), the processor can also adopt a multi-core architecture.
  • CPU central processing unit
  • ASIC application-specific integrated circuit
  • FPGA field-programmable gate array
  • Complex complex programmable logic device
  • Programmable Logic Device, CPLD Programmable Logic Device
  • the processor can also adopt a multi-core architecture.
  • the processor is configured to execute any one of the methods provided by the embodiments of the present disclosure according to the obtained executable instructions by invoking the computer program stored in the memory.
  • the processor and memory may also be physically separated.
  • the second HARQ-ACK uses a dynamic HARQ-ACK codebook:
  • Each indication state of the first indication field indicates a corresponding piece of information for determining the total number of bits of the second HARQ-ACK;
  • the first indication state of the first indication field is used to indicate that the second HARQ-ACK does not exist, or to indicate that the second HARQ-ACK is not multiplexed with the first HARQ-ACK for transmission, or to indicate the The total number of bits of the second HARQ-ACK is 0, or indicates that the total number of downlink transmissions corresponding to the second HARQ-ACK is 0, and each of the first indication fields except the first indication state
  • the indication status indicates a corresponding piece of information for determining the total number of bits of the second HARQ-ACK, where the total number of bits is greater than 0; or
  • the second indication state of the first indication field indicates information for determining the total number of bits of the second HARQ-ACK under the first condition, the total number of bits is greater than 0, and under the second condition the first number of bits is greater than 0.
  • the second indication status is used to indicate that the second HARQ-ACK does not exist, or to indicate that the second HARQ-ACK is not multiplexed with the first HARQ-ACK, or to indicate the total bits of the second HARQ-ACK
  • the number is 0, or it indicates that the total number of downlink transmissions corresponding to the second HARQ-ACK is 0, and each indication state in the first indication field except the second indication state indicates a corresponding one Information for determining the total number of bits of the second HARQ-ACK, where the total number of bits is greater than 0.
  • the information for determining the total number of bits of the second HARQ-ACK includes:
  • the first indication field indicates information for determining the total number of bits of the second HARQ-ACK:
  • the first indication field includes multiple sub-indication fields, and each sub-indication field is used to indicate the corresponding Two HARQ-ACK subcodebook bits information.
  • the second HARQ-ACK uses a semi-static HARQ-ACK codebook:
  • the first indication field includes at least: a third indication state and a fourth indication state, where the third indication state is used to indicate that the number of bits of the second HARQ-ACK is 1 bit or to indicate that the second indication state is determined according to a fallback mode.
  • the number of bits of the HARQ-ACK, the fourth indication state is used to indicate that the number of bits of the second HARQ-ACK is determined according to the semi-static HARQ-ACK codebook size; or
  • the first indication field includes at least: a fifth indication state and a sixth indication state, where the fifth indication state is used to indicate that the second HARQ-ACK does not exist, or to indicate that the second HARQ-ACK is not associated with the The first HARQ-ACK multiplexed transmission, or the number of bits indicating the second HARQ-ACK is 0, or the number of downlink transmissions corresponding to the second HARQ-ACK is 0, the sixth indication Status is used to indicate that the number of bits of the second HARQ-ACK is determined according to the semi-static HARQ-ACK codebook size; or
  • the first indication field includes at least: a seventh indication state and an eighth indication state, wherein the seventh indication state indicates that the number of bits of the second HARQ-ACK is 1 bit under the first condition or indicates that the number of bits of the second HARQ-ACK is 1 bit or the indication is based on the return.
  • the fallback mode determines the number of bits of the second HARQ-ACK.
  • the seventh indication state is used to indicate that the second HARQ-ACK does not exist, or to indicate that the second HARQ-ACK is not associated with the second HARQ-ACK.
  • the eighth indication state is In order to indicate that the number of bits of the second HARQ-ACK is determined according to the semi-static HARQ-ACK codebook size; or, the seventh indication state is used to indicate that the number of bits of the second HARQ-ACK is 1 bit or indicates that The fallback mode determines the number of bits of the second HARQ-ACK, and the eighth indication state indicates that the number of bits of the second HARQ-ACK is determined according to the semi-static HARQ-ACK codebook size under the first condition, and under the second condition
  • the eighth indication state described below is used to indicate that there is no second HARQ-ACK, or to indicate that the second HARQ-ACK is not multiplexed with the first HARQ-ACK for transmission, or to indicate that the number of bits of the second HARQ-ACK is 0 , or indicate that the number
  • the first indication field includes at least: a ninth indication state, a tenth indication state, and an eleventh indication state, and the ninth indication state is used to indicate that the second HARQ-ACK does not exist, or to indicate that the second HARQ-ACK does not exist.
  • the HARQ-ACK is not multiplexed and transmitted with the first HARQ-ACK, or the number of bits indicating the second HARQ-ACK is 0, or the number of downlink transmissions corresponding to the second HARQ-ACK is 0 , the tenth indication state is used to indicate that the number of bits of the second HARQ-ACK is 1 bit or that the number of bits of the second HARQ-ACK is determined according to the fallback mode, and the eleventh indication state is used to indicate that the number of bits of the second HARQ-ACK is determined according to the fallback mode.
  • the semi-static HARQ-ACK codebook size determines the number of bits of the second HARQ-ACK.
  • the first condition includes:
  • the first uplink channel and the second uplink channel overlap in the time domain, wherein the second uplink channel is a channel carrying the second HARQ-ACK;
  • the second condition includes:
  • the first uplink channel and the second uplink channel do not overlap in the time domain, wherein the second uplink channel is a channel carrying the second HARQ-ACK.
  • each indication state of the first indication field indicates a corresponding piece of information for determining the total number of bits of the second HARQ-ACK, if it is determined that the second HARQ-ACK is not carried. If the second uplink channel and the first uplink channel overlap in the time domain, the indication information of the first indication domain is arbitrarily set.
  • the indication information of the first indication domain is arbitrarily set.
  • the receiving HARQ-ACK according to the first indication field includes:
  • HARQ-ACK reception is performed according to the number of bits of the second HARQ-ACK.
  • performing HARQ-ACK reception according to the number of bits of the second HARQ-ACK including:
  • the first HARQ-ACK and the second HARQ-ACK are simultaneously received on the same channel; or,
  • the first HARQ is simultaneously received on the same channel according to the number of bits of the second HARQ-ACK - ACK and said second HARQ-ACK;
  • the first HARQ-ACK is received on the first uplink channel.
  • the determining the number of bits of the second HARQ-ACK according to the first indication field includes:
  • the first uplink channel carrying the first HARQ-ACK and the second uplink channel carrying the second HARQ-ACK overlap in the time domain, determine the first uplink channel according to the first indication field 2 The number of HARQ-ACK bits.
  • the priority of the first uplink channel is higher than the priority of the second uplink channel carrying the second HARQ-ACK.
  • the first uplink channel is one of a physical uplink control channel PUCCH and a physical uplink shared channel PUSCH
  • the second uplink channel carrying the second HARQ-ACK is one of PUCCH and PUSCH
  • the Channel types of the first uplink channel and the second uplink channel are the same or different.
  • whether the first indication field exists in the first DCI is determined according to the configuration of high-layer signaling.
  • the first indication field always exists in the first DCI.
  • the first DCI is the DCI used to schedule the PDSCH that needs to perform HARQ-ACK feedback on the PUCCH, or the first DCI is DCI used to indicate the release of the semi-static SPS physical downlink shared channel PDSCH that needs to perform HARQ-ACK feedback on the PUCCH; or
  • the first DCI is the DCI that schedules the PUSCH.
  • the first indication fields in the multiple first DCIs are set to indicate the same value, or HARQ-ACK reception is performed according to the first indication fields in the last DCI.
  • the priority of the first HARQ-ACK is higher than the priority of the second HARQ-ACK;
  • the first HARQ-ACK is the HARQ-ACK of the unicast service
  • the second HARQ-ACK is the HARQ-ACK of the multicast service.
  • the first indication field is reuse of existing bits in the first DCI, or the first indication field is a newly added bit in the first DCI.
  • FIG. 10 is a structural diagram of a terminal provided by an embodiment of the present disclosure. As shown in FIG. 10, the terminal 1000 includes:
  • the receiving unit 1001 is used for the terminal to receive the first DCI, and the first indication field of the first DCI is used to determine at least one of the following: the number of bits of the second HARQ-ACK for the second HARQ-ACK confirmation, the second HARQ-ACK Whether it exists and whether the second HARQ-ACK is multiplexed with the first HARQ-ACK;
  • a transmission unit 1002 configured to perform HARQ-ACK transmission according to the first indication field
  • the first DCI is the DCI corresponding to the first uplink channel carrying the first HARQ-ACK
  • the second HARQ-ACK is the HARQ-ACK multiplexed and transmitted with the first HARQ-ACK.
  • the second HARQ-ACK uses a dynamic HARQ-ACK codebook:
  • Each indication state of the first indication field indicates a corresponding piece of information for determining the total number of bits of the second HARQ-ACK;
  • the first indication state of the first indication field is used to indicate that the second HARQ-ACK does not exist, or to indicate that the second HARQ-ACK is not multiplexed with the first HARQ-ACK for transmission, or to indicate the The total number of bits of the second HARQ-ACK is 0, or indicates that the total number of downlink transmissions corresponding to the second HARQ-ACK is 0, and each of the first indication fields except the first indication state
  • the indication status indicates a corresponding piece of information for determining the total number of bits of the second HARQ-ACK, where the total number of bits is greater than 0; or
  • the second indication state of the first indication field indicates information for determining the total number of bits of the second HARQ-ACK under the first condition, the total number of bits is greater than 0, and under the second condition the first number of bits is greater than 0.
  • the second indication status is used to indicate that the second HARQ-ACK does not exist, or to indicate that the second HARQ-ACK is not multiplexed with the first HARQ-ACK, or to indicate the total bits of the second HARQ-ACK
  • the number is 0, or it indicates that the total number of downlink transmissions corresponding to the second HARQ-ACK is 0, and each indication state in the first indication field except the second indication state indicates a corresponding one Information for determining the total number of bits of the second HARQ-ACK, where the total number of bits is greater than 0.
  • the information for determining the total number of bits of the second HARQ-ACK includes:
  • the first indication field indicates information for determining the total number of bits of the second HARQ-ACK:
  • the first indication field includes multiple sub-indication fields, and each sub-indication field is used to indicate the corresponding Two HARQ-ACK subcodebook bits information.
  • the second HARQ-ACK uses a semi-static HARQ-ACK codebook:
  • the first indication field includes at least: a third indication state and a fourth indication state, where the third indication state is used to indicate that the number of bits of the second HARQ-ACK is 1 bit or to indicate that the second indication state is determined according to a fallback mode.
  • the number of bits of the HARQ-ACK, the fourth indication state is used to indicate that the number of bits of the second HARQ-ACK is determined according to the semi-static HARQ-ACK codebook size; or
  • the first indication field includes at least: a fifth indication state and a sixth indication state, where the fifth indication state is used to indicate that the second HARQ-ACK does not exist, or to indicate that the second HARQ-ACK is not associated with the The first HARQ-ACK multiplexed transmission, or the number of bits indicating the second HARQ-ACK is 0, or the number of downlink transmissions corresponding to the second HARQ-ACK is 0, the sixth indication Status is used to indicate that the number of bits of the second HARQ-ACK is determined according to the semi-static HARQ-ACK codebook size; or
  • the first indication field includes at least: a seventh indication state and an eighth indication state, wherein the seventh indication state indicates that the number of bits of the second HARQ-ACK is 1 bit under the first condition or indicates that the number of bits of the second HARQ-ACK is 1 bit or the indication is based on the return.
  • the fallback mode determines the number of bits of the second HARQ-ACK.
  • the seventh indication state is used to indicate that the second HARQ-ACK does not exist, or to indicate that the second HARQ-ACK is not associated with the second HARQ-ACK.
  • the eighth indication state is In order to indicate that the number of bits of the second HARQ-ACK is determined according to the semi-static HARQ-ACK codebook size; or, the seventh indication state is used to indicate that the number of bits of the second HARQ-ACK is 1 bit or indicates that The fallback mode determines the number of bits of the second HARQ-ACK, and the eighth indication state indicates that the number of bits of the second HARQ-ACK is determined according to the semi-static HARQ-ACK codebook size under the first condition, and under the second condition
  • the eighth indication state described below is used to indicate that there is no second HARQ-ACK, or to indicate that the second HARQ-ACK is not multiplexed with the first HARQ-ACK for transmission, or to indicate that the number of bits of the second HARQ-ACK is 0 , or indicate that the number
  • the first indication field includes at least: a ninth indication state, a tenth indication state, and an eleventh indication state, and the ninth indication state is used to indicate that the second HARQ-ACK does not exist, or to indicate that the second HARQ-ACK does not exist.
  • the HARQ-ACK is not multiplexed and transmitted with the first HARQ-ACK, or the number of bits indicating the second HARQ-ACK is 0, or the number of downlink transmissions corresponding to the second HARQ-ACK is 0 , the tenth indication state is used to indicate that the number of bits of the second HARQ-ACK is 1 bit or that the number of bits of the second HARQ-ACK is determined according to the fallback mode, and the eleventh indication state is used to indicate that the number of bits of the second HARQ-ACK is determined according to the fallback mode.
  • the semi-static HARQ-ACK codebook size determines the number of bits of the second HARQ-ACK.
  • the first condition includes:
  • the first uplink channel and the second uplink channel overlap in the time domain, wherein the second uplink channel is a channel carrying the second HARQ-ACK;
  • the second condition includes:
  • the first uplink channel and the second uplink channel do not overlap in the time domain, wherein the second uplink channel is a channel carrying the second HARQ-ACK.
  • each indication state of the first indication field indicates a corresponding piece of information for determining the total number of bits of the second HARQ-ACK, if it is determined that the second HARQ-ACK is not carried. If the second uplink channel overlaps with the first uplink channel in the time domain, the indication information in the first indication domain is ignored.
  • the first indication field includes the third indication state and the fourth indication state, if it is determined that there is no second uplink channel carrying the second HARQ-ACK and the first If the uplink channels overlap in the time domain, the indication information in the first indication domain is ignored.
  • the transmission unit 1002 includes:
  • determining a subunit configured to determine the number of bits of the second HARQ-ACK according to the first indication field
  • a transmission subunit configured to perform HARQ-ACK transmission according to the number of bits of the second HARQ-ACK.
  • the transmission subunit is used to:
  • the first HARQ-ACK and the second HARQ-ACK are simultaneously transmitted on the same channel; or,
  • the first HARQ-ACK is simultaneously transmitted on the same channel according to the number of bits of the second HARQ-ACK ACK and the second HARQ-ACK;
  • the first HARQ-ACK is transmitted on the first uplink channel.
  • the first uplink channel carrying the first HARQ-ACK and the second uplink channel carrying the second HARQ-ACK overlap in the time domain, determine the first uplink channel according to the first indication field 2 The number of HARQ-ACK bits.
  • the priority of the first uplink channel is higher than the priority of the second uplink channel carrying the second HARQ-ACK.
  • the first uplink channel is one of a physical uplink control channel PUCCH and a physical uplink shared channel PUSCH
  • the second uplink channel carrying the second HARQ-ACK is one of PUCCH and PUSCH
  • the Channel types of the first uplink channel and the second uplink channel are the same or different.
  • whether the first indication field exists in the first DCI is determined according to the configuration of high-layer signaling.
  • the first indication field always exists in the first DCI.
  • the first DCI is the DCI used to schedule the PDSCH that needs to perform HARQ-ACK feedback on the PUCCH, or the first DCI is DCI used to indicate the release of the SPS physical downlink shared channel PDSCH that needs to perform HARQ-ACK feedback on the PUCCH; or
  • the first DCI is the DCI that schedules the PUSCH.
  • the values of the first indication fields in the multiple first DCIs are the same, or the terminal performs HARQ-ACK transmission according to the first indication fields in the last DCI.
  • the priority of the first HARQ-ACK is higher than the priority of the second HARQ-ACK;
  • the first HARQ-ACK is the HARQ-ACK of the unicast service
  • the second HARQ-ACK is the HARQ-ACK of the multicast service.
  • the first indication field is reuse of existing bits in the first DCI, or the first indication field is a newly added bit in the first DCI.
  • FIG. 11 is a structural diagram of a network device provided by an embodiment of the present disclosure. As shown in FIG. 11, the network device 1100 includes:
  • the sending unit 1101 is used for the network device to send the first DCI, and the first indication field of the first DCI is used to determine at least one of the following: the number of bits of the second HARQ-ACK acknowledgement of the second hybrid automatic repeat request, the second HARQ- Whether ACK exists and whether the second HARQ-ACK is multiplexed with the first HARQ-ACK;
  • a receiving unit 1102 configured to receive HARQ-ACK according to the first indication field
  • the first DCI is the DCI corresponding to the first uplink channel carrying the first HARQ-ACK
  • the second HARQ-ACK is the HARQ-ACK multiplexed and transmitted with the first HARQ-ACK.
  • the second HARQ-ACK uses a dynamic HARQ-ACK codebook:
  • Each indication state of the first indication field indicates a corresponding piece of information for determining the total number of bits of the second HARQ-ACK;
  • the first indication state of the first indication field is used to indicate that the second HARQ-ACK does not exist, or to indicate that the second HARQ-ACK is not multiplexed with the first HARQ-ACK for transmission, or to indicate the The total number of bits of the second HARQ-ACK is 0, or indicates that the total number of downlink transmissions corresponding to the second HARQ-ACK is 0, and each of the first indication fields except the first indication state
  • the indication status indicates a corresponding piece of information for determining the total number of bits of the second HARQ-ACK, where the total number of bits is greater than 0; or
  • the second indication state of the first indication field indicates information for determining the total number of bits of the second HARQ-ACK under the first condition, the total number of bits is greater than 0, and under the second condition the first number of bits is greater than 0.
  • the second indication status is used to indicate that the second HARQ-ACK does not exist, or to indicate that the second HARQ-ACK is not multiplexed with the first HARQ-ACK, or to indicate the total bits of the second HARQ-ACK
  • the number is 0, or it indicates that the total number of downlink transmissions corresponding to the second HARQ-ACK is 0, and each indication state in the first indication field except the second indication state indicates a corresponding one Information for determining the total number of bits of the second HARQ-ACK, where the total number of bits is greater than 0.
  • the information for determining the total number of bits of the second HARQ-ACK includes:
  • the first indication field indicates information for determining the total number of bits of the second HARQ-ACK:
  • the first indication field includes multiple sub-indication fields, and each sub-indication field is used to indicate the corresponding Two HARQ-ACK subcodebook bits information.
  • the second HARQ-ACK uses a semi-static HARQ-ACK codebook:
  • the first indication field includes at least: a third indication state and a fourth indication state, where the third indication state is used to indicate that the number of bits of the second HARQ-ACK is 1 bit or to indicate that the second indication state is determined according to a fallback mode.
  • the number of bits of the HARQ-ACK, the fourth indication state is used to indicate that the number of bits of the second HARQ-ACK is determined according to the semi-static HARQ-ACK codebook size; or
  • the first indication field includes at least: a fifth indication state and a sixth indication state, where the fifth indication state is used to indicate that the second HARQ-ACK does not exist, or to indicate that the second HARQ-ACK is not associated with the The first HARQ-ACK multiplexed transmission, or the number of bits indicating the second HARQ-ACK is 0, or the number of downlink transmissions corresponding to the second HARQ-ACK is 0, the sixth indication Status is used to indicate that the number of bits of the second HARQ-ACK is determined according to the semi-static HARQ-ACK codebook size; or
  • the first indication field includes at least: a seventh indication state and an eighth indication state, wherein the seventh indication state indicates that the number of bits of the second HARQ-ACK is 1 bit under the first condition or indicates that the number of bits of the second HARQ-ACK is 1 bit or the indication is based on the return.
  • the fallback mode determines the number of bits of the second HARQ-ACK.
  • the seventh indication state is used to indicate that the second HARQ-ACK does not exist, or to indicate that the second HARQ-ACK is not associated with the second HARQ-ACK.
  • the eighth indication state is In order to indicate that the number of bits of the second HARQ-ACK is determined according to the semi-static HARQ-ACK codebook size; or, the seventh indication state is used to indicate that the number of bits of the second HARQ-ACK is 1 bit or indicates that The fallback mode determines the number of bits of the second HARQ-ACK, and the eighth indication state indicates that the number of bits of the second HARQ-ACK is determined according to the semi-static HARQ-ACK codebook size under the first condition, and under the second condition
  • the eighth indication state described below is used to indicate that there is no second HARQ-ACK, or to indicate that the second HARQ-ACK is not multiplexed with the first HARQ-ACK for transmission, or to indicate that the number of bits of the second HARQ-ACK is 0 , or indicate that the number
  • the first indication field includes at least: a ninth indication state, a tenth indication state, and an eleventh indication state, and the ninth indication state is used to indicate that the second HARQ-ACK does not exist, or to indicate that the second HARQ-ACK does not exist.
  • the HARQ-ACK is not multiplexed and transmitted with the first HARQ-ACK, or the number of bits indicating the second HARQ-ACK is 0, or the number of downlink transmissions corresponding to the second HARQ-ACK is 0 , the tenth indication state is used to indicate that the number of bits of the second HARQ-ACK is 1 bit or that the number of bits of the second HARQ-ACK is determined according to the fallback mode, and the eleventh indication state is used to indicate that the number of bits of the second HARQ-ACK is determined according to the fallback mode.
  • the semi-static HARQ-ACK codebook size determines the number of bits of the second HARQ-ACK.
  • the first condition includes:
  • the first uplink channel and the second uplink channel overlap in the time domain, wherein the second uplink channel is a channel carrying the second HARQ-ACK;
  • the second condition includes:
  • the first uplink channel and the second uplink channel do not overlap in the time domain, wherein the second uplink channel is a channel carrying the second HARQ-ACK.
  • each indication state of the first indication field indicates a corresponding piece of information for determining the total number of bits of the second HARQ-ACK, if it is determined that the second HARQ-ACK is not carried. If the second uplink channel and the first uplink channel overlap in the time domain, the indication information of the first indication domain is arbitrarily set.
  • the indication information of the first indication domain is arbitrarily set.
  • the receiving unit 1102 includes:
  • determining a subunit configured to determine the number of bits of the second HARQ-ACK according to the first indication field
  • a receiving subunit configured to receive HARQ-ACK according to the number of bits of the second HARQ-ACK.
  • the receiving subunit is used for:
  • the first HARQ-ACK and the second HARQ-ACK are simultaneously received on the same channel; or,
  • the first HARQ is simultaneously received on the same channel according to the number of bits of the second HARQ-ACK - ACK and said second HARQ-ACK;
  • the first HARQ-ACK is received on the first uplink channel.
  • the first uplink channel carrying the first HARQ-ACK and the second uplink channel carrying the second HARQ-ACK overlap in the time domain, determine the first uplink channel according to the first indication field 2 The number of HARQ-ACK bits.
  • the priority of the first uplink channel is higher than the priority of the second uplink channel carrying the second HARQ-ACK.
  • the first uplink channel is one of a physical uplink control channel PUCCH and a physical uplink shared channel PUSCH
  • the second uplink channel carrying the second HARQ-ACK is one of PUCCH and PUSCH
  • the Channel types of the first uplink channel and the second uplink channel are the same or different.
  • whether the first indication field exists in the first DCI is determined according to the configuration of high-layer signaling.
  • the first indication field always exists in the first DCI.
  • the first DCI is the DCI used to schedule the PDSCH that needs to perform HARQ-ACK feedback on the PUCCH, or the first DCI is DCI used to indicate the release of the semi-static SPS physical downlink shared channel PDSCH that needs to perform HARQ-ACK feedback on the PUCCH; or
  • the first DCI is the DCI that schedules the PUSCH.
  • the first indication fields in the multiple first DCIs are set to indicate the same value, or HARQ-ACK reception is performed according to the first indication fields in the last DCI.
  • the priority of the first HARQ-ACK is higher than the priority of the second HARQ-ACK;
  • the first HARQ-ACK is the HARQ-ACK of the unicast service
  • the second HARQ-ACK is the HARQ-ACK of the multicast service.
  • the first indication field is reuse of existing bits in the first DCI, or the first indication field is a newly added bit in the first DCI.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically alone, or two or more units may be integrated into one unit.
  • the above-mentioned integrated units may be implemented in the form of hardware, or may be implemented in the form of software functional units.
  • the integrated unit is implemented in the form of a software functional unit and sold or used as an independent product, it may be stored in a processor-readable storage medium.
  • the technical solution of the present application can be embodied in the form of a software product in essence, or the part that contributes to the related technology, or all or part of the technical solution, and the computer software product is stored in a storage medium.
  • a computer device which may be a personal computer, a server, or a network device, etc.
  • a processor processor
  • the aforementioned storage medium includes: U disk, mobile hard disk, read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disk and other media that can store program codes .
  • An embodiment of the present disclosure further provides a processor-readable storage medium, where the processor-readable storage medium stores a computer program, and the computer program is used to make the processor execute the uplink control information transmission provided by the embodiment of the present disclosure method, or the computer program is configured to cause the processor to execute the method for receiving uplink control information provided by the embodiments of the present disclosure.
  • the processor-readable storage medium can be any available medium or data storage device that can be accessed by the processor, including but not limited to magnetic memory (eg, floppy disk, hard disk, magnetic tape, magneto-optical disk (MO), etc.), optical Memory (such as compact disc (CD), digital versatile disc (DVD), blue-ray disc (BD), high-definition Versatile Disc (HVD), etc.), and Semiconductor memory (eg ROM, Electrically Programmable Read-Only-Memory, EPROM), Electrically Erasable Programmable Read-Only-Memory (EEPROM), Nonvolatile memory (NAND FLASH), solid state drive (solid state drive, SSD)), etc.
  • magnetic memory eg, floppy disk, hard disk, magnetic tape, magneto-optical disk (MO), etc.
  • optical Memory such as compact disc (CD), digital versatile disc (DVD), blue-ray disc (BD), high-definition Versatile Disc (HVD), etc.
  • Semiconductor memory
  • the embodiments of the present application may be provided as a method, a system, or a computer program product. Accordingly, the present application may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment combining software and hardware aspects. Furthermore, the present application may take the form of a computer program product embodied on one or more computer-usable storage media having computer-usable program code embodied therein, including but not limited to disk storage, optical storage, and the like.
  • processor-executable instructions may also be stored in a processor-readable memory capable of directing a computer or other programmable data processing apparatus to function in a particular manner, such that the instructions stored in the processor-readable memory result in the manufacture of means comprising the instructions product, the instruction means implements the functions specified in the flow or flow of the flowchart and/or the block or blocks of the block diagram.
  • processor-executable instructions can also be loaded onto a computer or other programmable data processing device to cause a series of operational steps to be performed on the computer or other programmable device to produce a computer-implemented process that Execution of the instructions provides steps for implementing the functions specified in the flowchart or blocks and/or the block or blocks of the block diagrams.
  • the disclosed apparatus and method may be implemented in other manners.
  • the apparatus embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or Can be integrated into another system, or some features can be ignored, or not implemented.
  • the shown or discussed mutual coupling or direct coupling or communication connection may be through some interfaces, indirect coupling or communication connection of devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution in this embodiment.
  • each functional unit in each embodiment of the present disclosure may be integrated into one processing unit, or each unit may exist physically alone, or two or more units may be integrated into one unit.
  • the storage medium may be a magnetic disk, an optical disk, a read-only memory (Read-Only Memory, ROM) or a random access memory (Random Access Memory, RAM) and the like.
  • modules, units, and sub-units can be implemented in one or more Application Specific Integrated Circuits (ASIC), Digital Signal Processor (DSP), Digital Signal Processing Device (DSP Device, DSPD) ), Programmable Logic Device (PLD), Field-Programmable Gate Array (FPGA), general-purpose processor, controller, microcontroller, microprocessor, in other electronic units or combinations thereof.
  • ASIC Application Specific Integrated Circuits
  • DSP Digital Signal Processor
  • DSP Device Digital Signal Processing Device
  • DSPD Digital Signal Processing Device
  • PLD Programmable Logic Device
  • FPGA Field-Programmable Gate Array
  • the technologies described in the embodiments of the present disclosure may be implemented through modules (eg, procedures, functions, etc.) that perform the functions described in the embodiments of the present disclosure.
  • Software codes may be stored in memory and executed by a processor.
  • the memory can be implemented in the processor or external to the processor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开提供一种上行控制信息传输方法、接收方法、终端和网络设备,该方法包括:终端接收第一DCI(401),该第一DCI的第一指示域用于确定如下至少一项:第二HARQ-ACK的比特数、第二HARQ-ACK是否存在、第二HARQ-ACK是否与第一HARQ-ACK复用传输;该终端依据该第一指示域进行HARQ-ACK传输(402);其中,该第一DCI为承载该第一HARQ-ACK的第一上行信道对应的DCI,该第二HARQ-ACK为与该第一HARQ-ACK复用传输的HARQ-ACK。

Description

上行控制信息传输方法、接收方法、终端和网络设备
相关申请的交叉引用
本申请主张在2020年12月4日在中国提交的中国专利申请号No.202011412815.2的优先权,其全部内容通过引用包含于此。
技术领域
本公开涉及通信技术领域,尤其涉及一种上行控制信息传输方法、接收方法、终端和网络设备。
背景技术
在一些通信系统(例如:第五代(5 th Generation,5G)系统)中终端可能需要传输多个混合自动重传请求确认(Hybrid Automatic Repeat request-ACKnowledgement,HARQ-ACK)。当终端将多个HARQ-ACK码本放在同一个信道传输时,某一些HARQ-ACK码本(例如:低优先级的HARQ-ACK码本)很有可能因为其传输性能不佳出现的丢包导致该HARQ-ACK码本的比特数不稳定,这样可能导致终端与网络设备对终端传输的HARQ-ACK的比特数理解不一致的问题。
发明内容
本公开实施例提供一种上行控制信息传输方法、接收方法、终端和网络设备,以解决终端与网络设备对终端传输的HARQ-ACK的比特数理解不一致的问题。
本公开实施例提供一种上行控制信息传输方法,包括:
终端接收第一下行控制信息(Downlink Control Information,DCI),所述第一DCI的第一指示域用于确定如下至少一项:第二混合自动重传请求确认HARQ-ACK的比特数、第二HARQ-ACK是否存在、第二HARQ-ACK是否与第一HARQ-ACK复用传输;
所述终端依据所述第一指示域进行HARQ-ACK传输;
其中,所述第一DCI为承载所述第一HARQ-ACK的第一上行信道对应的DCI,所述第二HARQ-ACK为与所述第一HARQ-ACK复用传输的HARQ-ACK。
可选的,在所述第二HARQ-ACK使用动态HARQ-ACK码本的情况下:
所述第一指示域的每个指示状态指示各自对应的一种用于确定所述第二HARQ-ACK的总比特数的信息;或者
所述第一指示域的第一指示状态用于指示不存在所述第二HARQ-ACK,或者指示所述第二HARQ-ACK不与所述第一HARQ-ACK复用传输,或者指示所述第二HARQ-ACK的总比特数为0,或者指示与所述第二HARQ-ACK对应的下行传输的总数为0,所述第一指示域中除所述第一指示状态之外的每个指示状态指示各自对应的一种用于确定第二HARQ-ACK的总比特数的信息,所述总比特数大于0;或者
所述第一指示域的第二指示状态在第一条件下指示一种用于确定第二HARQ-ACK的总比特数的信息,所述总比特数大于0,在第二条件下所述第二指示状态用于指示不存在所述第二HARQ-ACK,或者指示所述第二HARQ-ACK不与所述第一HARQ-ACK复用传输,或者指示所述第二HARQ-ACK的总比特数为0,或者指示与所述第二HARQ-ACK对应的下行传输的总数为0,所述第一指示域中除所述第二指示状态之外的每个指示状态指示各自对应的一种用于确定第二HARQ-ACK的总比特数的信息,所述总比特数大于0。
可选的,所述用于确定第二HARQ-ACK的总比特数的信息,包括:
所述第二HARQ-ACK的总比特数,或者,与所述第二HARQ-ACK对应的下行传输的总数。
可选的,当所述第一指示域指示用于确定第二HARQ-ACK的总比特数的信息时:
在所述第二HARQ-ACK的动态HARQ-ACK码本包括多个子码本的情况下,所述第一指示域包括多个子指示域,每个子指示域用于指示各自对应的用于确定第二HARQ-ACK的子码本的比特数的信息。
可选的,在所述第二HARQ-ACK使用半静态HARQ-ACK码本的情况下:
所述第一指示域至少包括:第三指示状态和第四指示状态,所述第三指示状态用于指示所述第二HARQ-ACK的比特数为1比特或指示按照回退模式确定第二HARQ-ACK的比特数,所述第四指示状态用于指示按照半静态HARQ-ACK码本大小确定所述第二HARQ-ACK的比特数;或者
所述第一指示域至少包括:第五指示状态和第六指示状态,所述第五指示状态用于指示不存在所述第二HARQ-ACK,或者指示所述第二HARQ-ACK不与所述第一HARQ-ACK复用传输,或者指示所述第二HARQ-ACK的比特数为0,或者指示与所述第二HARQ-ACK对应的下行传输的个数为0,所述第六指示状态用于指示按照半静态HARQ-ACK码本大小确定所述第二HARQ-ACK的比特数;或者
所述第一指示域至少包括:第七指示状态和第八指示状态,其中,所述第七指示状态在第一条件下指示所述第二HARQ-ACK的比特数为1比特或指示按照回退模式确定第二HARQ-ACK的比特数,在第二条件下所述第七指示状态用于指示不存在所述第二HARQ-ACK,或者指示所述第二HARQ-ACK不与所述第一HARQ-ACK复用传输,或者指示所述第二HARQ-ACK的比特数为0,或者指示与所述第二HARQ-ACK对应的下行传输的个数为0,所述第八指示状态用于指示按照半静态HARQ-ACK码本大小确定所述第二HARQ-ACK的比特数;或者,所述第七指示状态用于指示所述第二HARQ-ACK的比特数为1比特或指示按照回退模式确定第二HARQ-ACK的比特数,所述第八指示状态在第一条件下指示按照半静态HARQ-ACK码本大小确定所述第二HARQ-ACK的比特数,在第二条件下所述第八指示状态用于指示不存在第二HARQ-ACK,或者指示第二HARQ-ACK不与第一HARQ-ACK复用传输,或者指示所述第二HARQ-ACK的比特数为0,或者指示与所述第二HARQ-ACK对应的下行传输的个数为0;或者
所述第一指示域至少包括:第九指示状态、第十指示状态和第十一指示状态,所述第九指示状态用于指示不存在所述第二HARQ-ACK,或者指示所述第二HARQ-ACK不与所述第一HARQ-ACK复用传输,或者指示所述第二HARQ-ACK的比特数为0,或者指示与所述第二HARQ-ACK对应的下行传 输的个数为0,所述第十指示状态用于指示所述第二HARQ-ACK的比特数为1比特或指示按照回退模式确定第二HARQ-ACK的比特数,所述第十一指示状态用于指示按照半静态HARQ-ACK码本大小确定所述第二HARQ-ACK的比特数。
可选的,所述第一条件包括:
存在与所述第二HARQ-ACK对应的下行传输;或者
存在具有DCI调度的与所述第二HARQ-ACK对应的下行传输;或者,
所述第一上行信道与第二上行信道在时域上存在重叠,其中,所述第二上行信道为承载第二HARQ-ACK的信道;
所述第二条件包括:
不存在与所述第二HARQ-ACK对应的下行传输;或者
不存在具有DCI调度的与所述第二HARQ-ACK对应的下行传输;或者,
所述第一上行信道与第二上行信道在时域上不存在重叠,其中,所述第二上行信道为承载第二HARQ-ACK的信道。
可选的,在所述第一指示域的每个指示状态指示各自对应的一种用于确定第二HARQ-ACK的总比特数的信息情况下,如果确定没有承载所述第二HARQ-ACK的第二上行信道与所述第一上行信道在时域上存在重叠,则忽略所述第一指示域的指示信息。
可选的,在所述第一指示域包括所述第三指示状态和所述第四指示状态的情况下,如果确定没有承载所述第二HARQ-ACK的第二上行信道与所述第一上行信道在时域上存在重叠,则忽略所述第一指示域的指示信息。
可选的,所述终端依据所述第一指示域进行HARQ-ACK传输,包括:
所述终端根据所述第一指示域,确定所述第二HARQ-ACK的比特数;
所述终端按照所述第二HARQ-ACK的比特数,进行HARQ-ACK传输。
可选的,所述终端按照所述第二HARQ-ACK的比特数,进行HARQ-ACK传输,包括:
按照所述第二HARQ-ACK的比特数,在同一个信道上同时传输所述第一HARQ-ACK和所述第二HARQ-ACK;或者,
当所述第二HARQ-ACK的比特数大于0或确定传输所述第二 HARQ-ACK时,按照所述第二HARQ-ACK的比特数,在同一个信道上同时传输所述第一HARQ-ACK和所述第二HARQ-ACK;或者
当所述第二HARQ-ACK的比特数为0或确定不传输所述第二HARQ-ACK时,在所述第一上行信道上传输所述第一HARQ-ACK。
可选的,所述终端根据所述第一指示域,确定所述第二HARQ-ACK的比特数,包括:
在承载所述第一HARQ-ACK的第一上行信道与承载所述第二HARQ-ACK的第二上行信道在时域上存在重叠的情况下,所述终端根据所述第一指示域,确定所述第二HARQ-ACK的比特数。
可选的,所述第一上行信道的优先级高于承载所述第二HARQ-ACK的第二上行信道的优先级;或者
所述第一HARQ-ACK的优先级高于所述第二HARQ-ACK的优先级;或者
所述第一HARQ-ACK为单播业务的HARQ-ACK,所述第二HARQ-ACK为多播业务的HARQ-ACK。
可选的,所述第一上行信道为物理上行控制信道(Physical Uplink Control Channel,PUCCH)和物理上行共享信道(Physical Uplink Shared Channel,PUSCH)中的一个,承载所述第二HARQ-ACK的第二上行信道为PUCCH和PUSCH中的一个,且所述第一上行信道和所述第二上行信道的信道类型相同或者不同。
可选的,所述第一DCI中是否存在所述第一指示域根据高层信令的配置确定;或者
默认所述第一DCI中总是存在所述第一指示域。
可选的,在所述第一上行信道为PUCCH的情况下,所述第一DCI为用于调度需要在所述PUCCH上进行HARQ-ACK反馈的PDSCH DCI,或者,所述第一DCI为用于指示需要在所述PUCCH上进行HARQ-ACK反馈的半持续调度(Semi-Persistent Scheduling,SPS)物理下行共享信道(Physical Downlink Shared Channel,PDSCH)释放(release)的DCI;或者
在所述第一上行信道为PUSCH的情况下,所述第一DCI为调度所述 PUSCH的DCI。
可选的,当存在多个所述第一DCI时,多个第一DCI中的第一指示域的值相同,或者,终端依据最后一个DCI中的第一指示域进行HARQ-ACK传输。
本公开实施例还提供一种上行控制信息接收方法,包括:
网络设备发送第一DCI,所述第一DCI的第一指示域用于确定如下至少一项:第二混合自动重传请求确认HARQ-ACK的比特数、第二HARQ-ACK是否存在、第二HARQ-ACK是否与第一HARQ-ACK复用传输;
所述网络设备依据所述第一指示域进行HARQ-ACK接收;
其中,所述第一DCI为承载所述第一HARQ-ACK的第一上行信道对应的DCI,所述第二HARQ-ACK为与所述第一HARQ-ACK复用传输的HARQ-ACK。
可选的,在所述第二HARQ-ACK使用动态HARQ-ACK码本的情况下:
所述第一指示域的每个指示状态指示各自对应的一种用于确定所述第二HARQ-ACK的总比特数的信息;或者
所述第一指示域的第一指示状态用于指示不存在所述第二HARQ-ACK,或者指示所述第二HARQ-ACK不与所述第一HARQ-ACK复用传输,或者指示所述第二HARQ-ACK的总比特数为0,或者指示与所述第二HARQ-ACK对应的下行传输的总数为0,所述第一指示域中除所述第一指示状态之外的每个指示状态指示各自对应的一种用于确定第二HARQ-ACK的总比特数的信息,所述总比特数大于0;或者
所述第一指示域的第二指示状态在第一条件下指示一种用于确定第二HARQ-ACK的总比特数的信息,所述总比特数大于0,在第二条件下所述第二指示状态用于指示不存在所述第二HARQ-ACK,或者指示所述第二HARQ-ACK不与所述第一HARQ-ACK复用传输,或者指示所述第二HARQ-ACK的总比特数为0,或者指示与所述第二HARQ-ACK对应的下行传输的总数为0,所述第一指示域中除所述第二指示状态之外的每个指示状态指示各自对应的一种用于确定第二HARQ-ACK的总比特数的信息,所述总比特数大于0。
可选的,所述用于确定第二HARQ-ACK的总比特数的信息,包括:
所述第二HARQ-ACK的总比特数,或者,与所述第二HARQ-ACK对应的下行传输的总数。
可选的,当所述第一指示域指示用于确定第二HARQ-ACK的总比特数的信息时:
在所述第二HARQ-ACK的动态HARQ-ACK码本包括多个子码本的情况下,所述第一指示域包括多个子指示域,每个子指示域用于指示各自对应的用于确定第二HARQ-ACK的子码本的比特数的信息。
可选的,在所述第二HARQ-ACK使用半静态HARQ-ACK码本的情况下:
所述第一指示域至少包括:第三指示状态和第四指示状态,所述第三指示状态用于指示所述第二HARQ-ACK的比特数为1比特或指示按照回退模式确定第二HARQ-ACK的比特数,所述第四指示状态用于指示按照半静态HARQ-ACK码本大小确定所述第二HARQ-ACK的比特数;或者
所述第一指示域至少包括:第五指示状态和第六指示状态,所述第五指示状态用于指示不存在所述第二HARQ-ACK,或者指示所述第二HARQ-ACK不与所述第一HARQ-ACK复用传输,或者指示所述第二HARQ-ACK的比特数为0,或者指示与所述第二HARQ-ACK对应的下行传输的个数为0,所述第六指示状态用于指示按照半静态HARQ-ACK码本大小确定所述第二HARQ-ACK的比特数;或者
所述第一指示域至少包括:第七指示状态和第八指示状态,其中,所述第七指示状态在第一条件下指示所述第二HARQ-ACK的比特数为1比特或指示按照回退模式确定第二HARQ-ACK的比特数,在第二条件下所述第七指示状态用于指示不存在所述第二HARQ-ACK,或者指示所述第二HARQ-ACK不与所述第一HARQ-ACK复用传输,或者指示所述第二HARQ-ACK的比特数为0,或者指示与所述第二HARQ-ACK对应的下行传输的个数为0,所述第八指示状态用于指示按照半静态HARQ-ACK码本大小确定所述第二HARQ-ACK的比特数;或者,所述第七指示状态用于指示所述第二HARQ-ACK的比特数为1比特或指示按照回退模式确定第二HARQ-ACK的比特数,所述第八指示状态在第一条件下指示按照半静态 HARQ-ACK码本大小确定所述第二HARQ-ACK的比特数,在第二条件下所述第八指示状态用于指示不存在第二HARQ-ACK,或者指示第二HARQ-ACK不与第一HARQ-ACK复用传输,或者指示所述第二HARQ-ACK的比特数为0,或者指示与所述第二HARQ-ACK对应的下行传输的个数为0;或者
所述第一指示域至少包括:第九指示状态、第十指示状态和第十一指示状态,所述第九指示状态用于指示不存在所述第二HARQ-ACK,或者指示所述第二HARQ-ACK不与所述第一HARQ-ACK复用传输,或者指示所述第二HARQ-ACK的比特数为0,或者指示与所述第二HARQ-ACK对应的下行传输的个数为0,所述第十指示状态用于指示所述第二HARQ-ACK的比特数为1比特或指示按照回退模式确定第二HARQ-ACK的比特数,所述第十一指示状态用于指示按照半静态HARQ-ACK码本大小确定所述第二HARQ-ACK的比特数。
可选的,所述第一条件包括:
存在与所述第二HARQ-ACK对应的下行传输;或者
存在具有DCI调度的与所述第二HARQ-ACK对应的下行传输;或者,
所述第一上行信道与第二上行信道在时域上存在重叠,其中,所述第二上行信道为承载第二HARQ-ACK的信道;
所述第二条件包括:
不存在与所述第二HARQ-ACK对应的下行传输;或者
不存在具有DCI调度的与所述第二HARQ-ACK对应的下行传输;或者,
所述第一上行信道与第二上行信道在时域上不存在重叠,其中,所述第二上行信道为承载第二HARQ-ACK的信道。
可选的,所述网络设备依据所述第一指示域进行HARQ-ACK接收,包括:
所述网络设备根据所述第一指示域,确定所述第二HARQ-ACK的比特数;
所述网络设备按照所述第二HARQ-ACK的比特数,进行HARQ-ACK接收。
可选的,所述网络设备按照所述第二HARQ-ACK的比特数,进行HARQ-ACK接收,包括:
按照所述第二HARQ-ACK的比特数,在同一个信道上同时接收所述第一HARQ-ACK和所述第二HARQ-ACK;或者,
当所述第二HARQ-ACK的比特数大于0或确定终端传输所述第二HARQ-ACK时,按照所述第二HARQ-ACK的比特数,在同一个信道上同时接收所述第一HARQ-ACK和所述第二HARQ-ACK;或者
当所述第二HARQ-ACK的比特数为0或确定终端不传输所述第二HARQ-ACK时,在所述第一上行信道上接收所述第一HARQ-ACK。
可选的,所述网络设备根据所述第一指示域,确定所述第二HARQ-ACK的比特数,包括:
在承载所述第一HARQ-ACK的第一上行信道与承载所述第二HARQ-ACK的第二上行信道在时域上存在重叠的情况下,所述网络设备根据所述第一指示域,确定所述第二HARQ-ACK的比特数。
可选的,所述第一上行信道的优先级高于承载所述第二HARQ-ACK的第二上行信道的优先级;或者
所述第一HARQ-ACK的优先级高于所述第二HARQ-ACK的优先级;或者
所述第一HARQ-ACK为单播业务的HARQ-ACK,所述第二HARQ-ACK为多播业务的HARQ-ACK。
可选的,所述第一上行信道为物理上行控制信道PUCCH和物理上行共享信道PUSCH中的一个,承载所述第二HARQ-ACK的第二上行信道为PUCCH和PUSCH中的一个,且所述第一上行信道和所述第二上行信道的信道类型相同或者不同。
可选的,所述第一DCI中是否存在所述第一指示域根据高层信令的配置确定;或者
默认所述第一DCI中总是存在所述第一指示域。
可选的,在所述第一上行信道为PUCCH的情况下,所述第一DCI为用于调度需要在所述PUCCH上进行HARQ-ACK反馈的PDSCH的DCI,或者, 所述第一DCI为用于指示需要在所述PUCCH上进行HARQ-ACK反馈的SPS物理下行共享信道PDSCH释放release的DCI;或者
在所述第一上行信道为PUSCH的情况下,所述第一DCI为调度所述PUSCH的DCI。
可选的,当存在多个所述第一DCI时,多个第一DCI中的第一指示域的值相同,或者,终端依据最后一个DCI中的第一指示域进行HARQ-ACK传输。
本公开实施例还提供一种终端,包括存储器、收发机和处理器:
存储器,用于存储计算机程序;收发机,用于在所述处理器的控制下收发数据;处理器,用于读取所述存储器中的计算机程序并执行以下操作:
接收第一DCI,所述第一DCI的第一指示域用于确定如下至少一项:第二混合自动重传请求确认HARQ-ACK的比特数、第二HARQ-ACK是否存在、第二HARQ-ACK是否与第一HARQ-ACK复用传输;
依据所述第一指示域进行HARQ-ACK传输;
其中,所述第一DCI为承载所述第一HARQ-ACK的第一上行信道对应的DCI,所述第二HARQ-ACK为与所述第一HARQ-ACK复用传输的HARQ-ACK。
可选的,在所述第二HARQ-ACK使用动态HARQ-ACK码本的情况下:
所述第一指示域的每个指示状态指示各自对应的一种用于确定所述第二HARQ-ACK的总比特数的信息;或者
所述第一指示域的第一指示状态用于指示不存在所述第二HARQ-ACK,或者指示所述第二HARQ-ACK不与所述第一HARQ-ACK复用传输,或者指示所述第二HARQ-ACK的总比特数为0,或者指示与所述第二HARQ-ACK对应的下行传输的总数为0,所述第一指示域中除所述第一指示状态之外的每个指示状态指示各自对应的一种用于确定第二HARQ-ACK的总比特数的信息,所述总比特数大于0;或者
所述第一指示域的第二指示状态在第一条件下指示一种用于确定第二HARQ-ACK的总比特数的信息,所述总比特数大于0,在第二条件下所述第二指示状态用于指示不存在所述第二HARQ-ACK,或者指示所述第二 HARQ-ACK不与所述第一HARQ-ACK复用传输,或者指示所述第二HARQ-ACK的总比特数为0,或者指示与所述第二HARQ-ACK对应的下行传输的总数为0,所述第一指示域中除所述第二指示状态之外的每个指示状态指示各自对应的一种用于确定第二HARQ-ACK的总比特数的信息,所述总比特数大于0。
可选的,所述用于确定第二HARQ-ACK的总比特数的信息,包括:
所述第二HARQ-ACK的总比特数,或者,与所述第二HARQ-ACK对应的下行传输的总数。
可选的,当所述第一指示域指示用于确定第二HARQ-ACK的总比特数的信息时:
在所述第二HARQ-ACK的动态HARQ-ACK码本包括多个子码本的情况下,所述第一指示域包括多个子指示域,每个子指示域用于指示各自对应的用于确定第二HARQ-ACK的子码本的比特数的信息。
可选的,在所述第二HARQ-ACK使用半静态HARQ-ACK码本的情况下:
所述第一指示域至少包括:第三指示状态和第四指示状态,所述第三指示状态用于指示所述第二HARQ-ACK的比特数为1比特或指示按照回退模式确定第二HARQ-ACK的比特数,所述第四指示状态用于指示按照半静态HARQ-ACK码本大小确定所述第二HARQ-ACK的比特数;或者
所述第一指示域至少包括:第五指示状态和第六指示状态,所述第五指示状态用于指示不存在所述第二HARQ-ACK,或者指示所述第二HARQ-ACK不与所述第一HARQ-ACK复用传输,或者指示所述第二HARQ-ACK的比特数为0,或者指示与所述第二HARQ-ACK对应的下行传输的个数为0,所述第六指示状态用于指示按照半静态HARQ-ACK码本大小确定所述第二HARQ-ACK的比特数;或者
所述第一指示域至少包括:第七指示状态和第八指示状态,其中,所述第七指示状态在第一条件下指示所述第二HARQ-ACK的比特数为1比特或指示按照回退模式确定第二HARQ-ACK的比特数,在第二条件下所述第七指示状态用于指示不存在所述第二HARQ-ACK,或者指示所述第二HARQ-ACK不与所述第一HARQ-ACK复用传输,或者指示所述第二 HARQ-ACK的比特数为0,或者指示与所述第二HARQ-ACK对应的下行传输的个数为0,所述第八指示状态用于指示按照半静态HARQ-ACK码本大小确定所述第二HARQ-ACK的比特数;或者,所述第七指示状态用于指示所述第二HARQ-ACK的比特数为1比特或指示按照回退模式确定第二HARQ-ACK的比特数,所述第八指示状态在第一条件下指示按照半静态HARQ-ACK码本大小确定所述第二HARQ-ACK的比特数,在第二条件下所述第八指示状态用于指示不存在第二HARQ-ACK,或者指示第二HARQ-ACK不与第一HARQ-ACK复用传输,或者指示所述第二HARQ-ACK的比特数为0,或者指示与所述第二HARQ-ACK对应的下行传输的个数为0;或者
所述第一指示域至少包括:第九指示状态、第十指示状态和第十一指示状态,所述第九指示状态用于指示不存在所述第二HARQ-ACK,或者指示所述第二HARQ-ACK不与所述第一HARQ-ACK复用传输,或者指示所述第二HARQ-ACK的比特数为0,或者指示与所述第二HARQ-ACK对应的下行传输的个数为0,所述第十指示状态用于指示所述第二HARQ-ACK的比特数为1比特或指示按照回退模式确定第二HARQ-ACK的比特数,所述第十一指示状态用于指示按照半静态HARQ-ACK码本大小确定所述第二HARQ-ACK的比特数。
可选的,所述第一条件包括:
存在与所述第二HARQ-ACK对应的下行传输;或者
存在具有DCI调度的与所述第二HARQ-ACK对应的下行传输;或者,
所述第一上行信道与第二上行信道在时域上存在重叠,其中,所述第二上行信道为承载第二HARQ-ACK的信道;
所述第二条件包括:
不存在与所述第二HARQ-ACK对应的下行传输;或者
不存在具有DCI调度的与所述第二HARQ-ACK对应的下行传输;或者,
所述第一上行信道与第二上行信道在时域上不存在重叠,其中,所述第二上行信道为承载第二HARQ-ACK的信道。
可选的,在所述第一指示域的每个指示状态指示各自对应的一种用于确 定第二HARQ-ACK的总比特数的信息情况下,如果确定没有承载所述第二HARQ-ACK的第二上行信道与所述第一上行信道在时域上存在重叠,则忽略所述第一指示域的指示信息。
可选的,在所述第一指示域包括所述第三指示状态和所述第四指示状态的情况下,如果确定没有承载所述第二HARQ-ACK的第二上行信道与所述第一上行信道在时域上存在重叠,则忽略所述第一指示域的指示信息。
可选的,所述依据所述第一指示域进行HARQ-ACK传输,包括:
根据所述第一指示域,确定所述第二HARQ-ACK的比特数;
按照所述第二HARQ-ACK的比特数,进行HARQ-ACK传输。
可选的,所述按照所述第二HARQ-ACK的比特数,进行HARQ-ACK传输,包括:
按照所述第二HARQ-ACK的比特数,在同一个信道上同时传输所述第一HARQ-ACK和所述第二HARQ-ACK;或者,
当所述第二HARQ-ACK的比特数大于0或确定传输所述第二HARQ-ACK时,按照所述第二HARQ-ACK的比特数,在同一个信道上同时传输所述第一HARQ-ACK和所述第二HARQ-ACK;或者
当所述第二HARQ-ACK的比特数为0或确定不传输所述第二HARQ-ACK时,在所述第一上行信道上传输所述第一HARQ-ACK。
可选的,所述根据所述第一指示域,确定所述第二HARQ-ACK的比特数,包括:
在承载所述第一HARQ-ACK的第一上行信道与承载所述第二HARQ-ACK的第二上行信道在时域上存在重叠的情况下,根据所述第一指示域,确定所述第二HARQ-ACK的比特数。
可选的,所述第一上行信道的优先级高于承载所述第二HARQ-ACK的第二上行信道的优先级;或者
所述第一HARQ-ACK的优先级高于所述第二HARQ-ACK的优先级;或者
所述第一HARQ-ACK为单播业务的HARQ-ACK,所述第二HARQ-ACK为多播业务的HARQ-ACK。
可选的,所述第一上行信道为物理上行控制信道PUCCH和物理上行共享信道PUSCH中的一个,承载所述第二HARQ-ACK的第二上行信道为PUCCH和PUSCH中的一个,且所述第一上行信道和所述第二上行信道的信道类型相同或者不同。
可选的,所述第一DCI中是否存在所述第一指示域根据高层信令的配置确定;或者
默认所述第一DCI中总是存在所述第一指示域。
可选的,在所述第一上行信道为PUCCH的情况下,所述第一DCI为用于调度需要在所述PUCCH上进行HARQ-ACK反馈的PDSCH的DCI,或者,所述第一DCI为用于指示需要在所述PUCCH上进行HARQ-ACK反馈的SPS物理下行共享信道PDSCH释放release的DCI;或者
在所述第一上行信道为PUSCH的情况下,所述第一DCI为调度所述PUSCH的DCI。
可选的,当存在多个所述第一DCI时,多个第一DCI中的第一指示域的值相同,或者,终端依据最后一个DCI中的第一指示域进行HARQ-ACK传输。
本公开实施例还提供一种网络设备,包括存储器、收发机和处理器:
存储器,用于存储计算机程序;收发机,用于在所述处理器的控制下收发数据;处理器,用于读取所述存储器中的计算机程序并执行以下操作:
发送第一DCI,所述第一DCI的第一指示域用于确定如下至少一项:第二混合自动重传请求确认HARQ-ACK的比特数、第二HARQ-ACK是否存在、第二HARQ-ACK是否与第一HARQ-ACK复用传输;
依据所述第一指示域进行HARQ-ACK接收;
其中,所述第一DCI为承载所述第一HARQ-ACK的第一上行信道对应的DCI,所述第二HARQ-ACK为与所述第一HARQ-ACK复用传输的HARQ-ACK。
可选的,在所述第二HARQ-ACK使用动态HARQ-ACK码本的情况下:
所述第一指示域的每个指示状态指示各自对应的一种用于确定所述第二HARQ-ACK的总比特数的信息;或者
所述第一指示域的第一指示状态用于指示不存在所述第二HARQ-ACK,或者指示所述第二HARQ-ACK不与所述第一HARQ-ACK复用传输,或者指示所述第二HARQ-ACK的总比特数为0,或者指示与所述第二HARQ-ACK对应的下行传输的总数为0,所述第一指示域中除所述第一指示状态之外的每个指示状态指示各自对应的一种用于确定第二HARQ-ACK的总比特数的信息,所述总比特数大于0;或者
所述第一指示域的第二指示状态在第一条件下指示一种用于确定第二HARQ-ACK的总比特数的信息,所述总比特数大于0,在第二条件下所述第二指示状态用于指示不存在所述第二HARQ-ACK,或者指示所述第二HARQ-ACK不与所述第一HARQ-ACK复用传输,或者指示所述第二HARQ-ACK的总比特数为0,或者指示与所述第二HARQ-ACK对应的下行传输的总数为0,所述第一指示域中除所述第二指示状态之外的每个指示状态指示各自对应的一种用于确定第二HARQ-ACK的总比特数的信息,所述总比特数大于0。
可选的,所述用于确定第二HARQ-ACK的总比特数的信息,包括:
所述第二HARQ-ACK的总比特数,或者,与所述第二HARQ-ACK对应的下行传输的总数。
可选的,当所述第一指示域指示用于确定第二HARQ-ACK的总比特数的信息时:
在所述第二HARQ-ACK的动态HARQ-ACK码本包括多个子码本的情况下,所述第一指示域包括多个子指示域,每个子指示域用于指示各自对应的用于确定第二HARQ-ACK的子码本的比特数的信息。
可选的,在所述第二HARQ-ACK使用半静态HARQ-ACK码本的情况下:
所述第一指示域至少包括:第三指示状态和第四指示状态,所述第三指示状态用于指示所述第二HARQ-ACK的比特数为1比特或指示按照回退模式确定第二HARQ-ACK的比特数,所述第四指示状态用于指示按照半静态HARQ-ACK码本大小确定所述第二HARQ-ACK的比特数;或者
所述第一指示域至少包括:第五指示状态和第六指示状态,所述第五指示状态用于指示不存在所述第二HARQ-ACK,或者指示所述第二 HARQ-ACK不与所述第一HARQ-ACK复用传输,或者指示所述第二HARQ-ACK的比特数为0,或者指示与所述第二HARQ-ACK对应的下行传输的个数为0,所述第六指示状态用于指示按照半静态HARQ-ACK码本大小确定所述第二HARQ-ACK的比特数;或者
所述第一指示域至少包括:第七指示状态和第八指示状态,其中,所述第七指示状态在第一条件下指示所述第二HARQ-ACK的比特数为1比特或指示按照回退模式确定第二HARQ-ACK的比特数,在第二条件下所述第七指示状态用于指示不存在所述第二HARQ-ACK,或者指示所述第二HARQ-ACK不与所述第一HARQ-ACK复用传输,或者指示所述第二HARQ-ACK的比特数为0,或者指示与所述第二HARQ-ACK对应的下行传输的个数为0,所述第八指示状态用于指示按照半静态HARQ-ACK码本大小确定所述第二HARQ-ACK的比特数;或者,所述第七指示状态用于指示所述第二HARQ-ACK的比特数为1比特或指示按照回退模式确定第二HARQ-ACK的比特数,所述第八指示状态在第一条件下指示按照半静态HARQ-ACK码本大小确定所述第二HARQ-ACK的比特数,在第二条件下所述第八指示状态用于指示不存在第二HARQ-ACK,或者指示第二HARQ-ACK不与第一HARQ-ACK复用传输,或者指示所述第二HARQ-ACK的比特数为0,或者指示与所述第二HARQ-ACK对应的下行传输的个数为0;或者
所述第一指示域至少包括:第九指示状态、第十指示状态和第十一指示状态,所述第九指示状态用于指示不存在所述第二HARQ-ACK,或者指示所述第二HARQ-ACK不与所述第一HARQ-ACK复用传输,或者指示所述第二HARQ-ACK的比特数为0,或者指示与所述第二HARQ-ACK对应的下行传输的个数为0,所述第十指示状态用于指示所述第二HARQ-ACK的比特数为1比特或指示按照回退模式确定第二HARQ-ACK的比特数,所述第十一指示状态用于指示按照半静态HARQ-ACK码本大小确定所述第二HARQ-ACK的比特数。
可选的,所述第一条件包括:
存在与所述第二HARQ-ACK对应的下行传输;或者
存在具有DCI调度的与所述第二HARQ-ACK对应的下行传输;或者,
所述第一上行信道与第二上行信道在时域上存在重叠,其中,所述第二上行信道为承载第二HARQ-ACK的信道;
所述第二条件包括:
不存在与所述第二HARQ-ACK对应的下行传输;或者
不存在具有DCI调度的与所述第二HARQ-ACK对应的下行传输;或者,
所述第一上行信道与第二上行信道在时域上不存在重叠,其中,所述第二上行信道为承载第二HARQ-ACK的信道。
可选的,所述依据所述第一指示域进行HARQ-ACK接收,包括:
根据所述第一指示域,确定所述第二HARQ-ACK的比特数;
按照所述第二HARQ-ACK的比特数,进行HARQ-ACK接收。
可选的,所述按照所述第二HARQ-ACK的比特数,进行HARQ-ACK接收,包括:
按照所述第二HARQ-ACK的比特数,在同一个信道上同时接收所述第一HARQ-ACK和所述第二HARQ-ACK;或者,
当所述第二HARQ-ACK的比特数大于0或确定终端传输所述第二HARQ-ACK时,按照所述第二HARQ-ACK的比特数,在同一个信道上同时接收所述第一HARQ-ACK和所述第二HARQ-ACK;或者
当所述第二HARQ-ACK的比特数为0或确定终端不传输所述第二HARQ-ACK时,在所述第一上行信道上接收所述第一HARQ-ACK。
可选的,所述根据所述第一指示域,确定所述第二HARQ-ACK的比特数,包括:
在承载所述第一HARQ-ACK的第一上行信道与承载所述第二HARQ-ACK的第二上行信道在时域上存在重叠的情况下,根据所述第一指示域,确定所述第二HARQ-ACK的比特数。
可选的,所述第一上行信道的优先级高于承载所述第二HARQ-ACK的第二上行信道的优先级;或者
所述第一HARQ-ACK的优先级高于所述第二HARQ-ACK的优先级;或者
所述第一HARQ-ACK为单播业务的HARQ-ACK,所述第二HARQ-ACK为多播业务的HARQ-ACK。
可选的,所述第一上行信道为物理上行控制信道PUCCH和物理上行共享信道PUSCH中的一个,承载所述第二HARQ-ACK的第二上行信道为PUCCH和PUSCH中的一个,且所述第一上行信道和所述第二上行信道的信道类型相同或者不同。
可选的,所述第一DCI中是否存在所述第一指示域根据高层信令的配置确定;或者
默认所述第一DCI中总是存在所述第一指示域。
可选的,在所述第一上行信道为PUCCH的情况下,所述第一DCI为用于调度需要在所述PUCCH上进行HARQ-ACK反馈的PDSCH的DCI,或者,所述第一DCI为用于指示需要在所述PUCCH上进行HARQ-ACK反馈的半静态SPS物理下行共享信道PDSCH释放release的DCI;或者
在所述第一上行信道为PUSCH的情况下,所述第一DCI为调度所述PUSCH的DCI。
可选的,当存在多个所述第一DCI时,多个第一DCI中的第一指示域的值相同,或者,终端依据最后一个DCI中的第一指示域进行HARQ-ACK传输。
本公开实施例还提供一种终端,包括:
接收单元,用于终端接收第一DCI,所述第一DCI的第一指示域用于确定如下至少一项:第二混合自动重传请求确认HARQ-ACK的比特数、第二HARQ-ACK是否存在、第二HARQ-ACK是否与第一HARQ-ACK复用传输;
传输单元,用于依据所述第一指示域进行HARQ-ACK传输;
其中,所述第一DCI为承载所述第一HARQ-ACK的第一上行信道对应的DCI,所述第二HARQ-ACK为与所述第一HARQ-ACK复用传输的HARQ-ACK。
本公开实施例还提供一种网络设备,包括:
发送单元,用于网络设备发送第一DCI,所述第一DCI的第一指示域用于确定如下至少一项:第二混合自动重传请求确认HARQ-ACK的比特数、 第二HARQ-ACK是否存在、第二HARQ-ACK是否与第一HARQ-ACK复用传输;
接收单元,用于依据所述第一指示域进行HARQ-ACK接收;
其中,所述第一DCI为承载所述第一HARQ-ACK的第一上行信道对应的DCI,所述第二HARQ-ACK为与所述第一HARQ-ACK复用传输的HARQ-ACK。
本公开实施例还提供一种处理器可读存储介质,所述处理器可读存储介质存储有计算机程序,所述计算机程序用于使所述处理器执行本公开实施例提供的上行控制信息传输方法,或者,所述计算机程序用于使所述处理器执行本公开实施例提供的上行控制信息接收方法。
本公开实施例,终端接收第一DCI,所述第一DCI的第一指示域用于确定如下至少一项:第二HARQ-ACK的比特数、第二HARQ-ACK是否存在、第二HARQ-ACK是否与第一HARQ-ACK复用传输;所述终端依据所述第一指示域进行HARQ-ACK传输;其中,所述第一DCI为承载所述第一HARQ-ACK的第一上行信道对应的DCI,所述第二HARQ-ACK为与所述第一HARQ-ACK复用传输的HARQ-ACK。这样由于终端依据所述第一指示域进行HARQ-ACK传输,从而可以保证终端与网络设备对终端传输的HARQ-ACK的比特数理解一致。
附图说明
图1是本公开实施例可应用的网络构架的结构示意图;
图2是本公开实施例提供一种半静态HARQ-ACK码本的示意图;
图3是本公开实施例提供一种动态HARQ-ACK码本的示意图;
图4是本公开实施例提供的一种上行控制信息传输方法的流程图;
图5是本公开实施例提供的一种上行控制信息接收方法的流程图;
图6是本公开实施例提供的一种上行控制信息传输的示意图;
图7是本公开实施例提供的另一种上行控制信息传输的示意图;
图8是本公开实施例提供的一种终端的结构图;
图9是本公开实施例提供的一种网络设备的结构图;
图10是本公开实施例提供的另一种终端的结构图;
图11是本公开实施例提供的另一种网络设备的结构图。
具体实施方式
为使本公开要解决的技术问题、技术方案和优点更加清楚,下面将结合附图及具体实施例进行详细描述。
本公开实施例中术语“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“和/或”的关系。
本公开实施例中术语“多个”是指两个或两个以上,其它量词与之类似。
下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,并不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本公开实施例提供一种上行控件信息传输方法、接收方法、终端和网络设备,以解决终端与网络设备对终端传输的HARQ-ACK的比特数理解不一致的问题
其中,方法和设备是基于同一申请构思的,由于方法和设备解决问题的原理相似,因此装置和方法的实施可以相互参见,重复之处不再赘述。
本公开实施例提供的技术方案可以适用于多种系统,尤其是5G系统。例如适用的系统可以是全球移动通讯(global system of mobile communication,GSM)系统、码分多址(code division multiple access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)通用分组无线业务(general packet radio service,GPRS)系统、长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)系统、高级长期演进(long term evolution advanced,LTE-A)系统、通用移动系统(universal mobile telecommunication system,UMTS)、全球互联微波接入(worldwide interoperability for microwave access,WiMAX)系统、5G新空口(New Radio,NR)系统、第六代(6 th  Generation,6G)系统等。这多种系统中均包括终端设备和网络设备。系统中还可以包括核心网部分,例如演进的分组系统(Evolved Packet System,EPS)、5G系统(5G system,5GS)等。
请参见图1,图1是本公开实施可应用的网络构架的结构示意图,如图1所示,包括终端11和网络设备12。
其中,本公开实施例涉及的终端,可以是指向用户提供语音和/或数据连通性的设备,具有无线连接功能的手持式设备、或连接到无线调制解调器的其他处理设备等。在不同的系统中,终端设备的名称可能也不相同,例如在5G系统中,终端设备可以称为用户设备(User Equipment,UE)。无线终端设备可以经无线接入网(Radio Access Network,RAN)与一个或多个核心网(Core Network,CN)进行通信,无线终端设备可以是移动终端设备,如移动电话(或称为“蜂窝”电话)和具有移动终端设备的计算机,例如,可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置,它们与无线接入网交换语言和/或数据。例如,个人通信业务(Personal Communication Service,PCS)电话、无绳电话、会话发起协议(Session Initiated Protocol,SIP)话机、无线本地环路(Wireless Local Loop,WLL)站、个人数字助理(Personal Digital Assistant,PDA)等设备。无线终端设备也可以称为系统、订户单元(subscriber unit)、订户站(subscriber station),移动站(mobile station)、移动台(mobile)、远程站(remote station)、接入点(access point)、远程终端设备(remote terminal)、接入终端设备(access terminal)、用户终端设备(user terminal)、用户代理(user agent)、用户装置(user device),本公开实施例中并不限定。
本公开实施例涉及的网络设备,可以是基站,该基站可以包括多个为终端提供服务的小区。根据具体应用场合不同,基站又可以称为接入点,或者可以是接入网中在空中接口上通过一个或多个扇区与无线终端设备通信的设备,或者其它名称。网络设备可用于将收到的空中帧与网际协议(Internet Protocol,IP)分组进行相互更换,作为无线终端设备与接入网的其余部分之间的路由器,其中接入网的其余部分可包括网际协议(IP)通信网络。网络设备还可协调对空中接口的属性管理。例如,本公开实施例涉及的网络设备可以是全球移动通信系统(Global System for Mobile communications,GSM) 或码分多址接入(Code Division Multiple Access,CDMA)中的网络设备(Base Transceiver Station,BTS),也可以是带宽码分多址接入(Wide-band Code Division Multiple Access,WCDMA)中的网络设备(NodeB),还可以是长期演进(long term evolution,LTE)系统中的演进型网络设备(evolutional Node B,eNB或e-NodeB)、5G网络架构(next generation system)中的5G基站(gNB),也可以是家庭演进基站(Home evolved Node B,HeNB)、中继节点(relay node)、家庭基站(femto)、微微基站(pico)等,本公开实施例中并不限定。在一些网络结构中,网络设备可以包括集中单元(centralized unit,CU)节点和分布单元(distributed unit,DU)节点,集中单元和分布单元也可以地理上分开布置。
网络设备与终端之间可以各自使用一或多根天线进行多输入多输出(Multi Input Multi Output,MIMO)传输,MIMO传输可以是单用户MIMO(Single User MIMO,SU-MIMO)或多用户MIMO(Multiple User MIMO,MU-MIMO)。根据根天线组合的形态和数量,MIMO传输可以是二维MIMO(two dimensional-MIMO,2D-MIMO)、三维MIMO(three dimensional-MIMO,3D-MIMO)、全维MIMO(full dimensional-MIMO,FD-MIMO)或massive-MIMO,也可以是分集传输或预编码传输或波束赋形传输等。
在一些通信系统(例如:第五代新无线系统(5 th Generation New RAT,5G NR))中,支持具有不同物理层优先级的上行信道传输,同一个终端的具有不同的物理层优先级的上行信道之间可能存在资源冲突,比如在同一个载波上,具有不同优先级的上行信道所占用的符号之间存在重叠。为了避免多个上行信道在同一个载波上的同一个时刻并行传输导致峰均平均功率比(Peak to Average Power Ratio,PAPR)升高并带来功率受限问题,可以仅传输冲突信道中物理层优先级高的信道,丢弃物理层优先级低的信道。在本公开实施例中,为了避免丢弃低优先级的信道上承载的上行控制信息(Uplink Control Information,UCI),可以支持不同物理层优先级的多个PUCCH上的UCI复用在同一个信道上传输。
其中,不同物理层优先级的信道传输可以如下:
一个终端可以支持不同的业务类型,如增强移动宽带(enhanced Mobile  Broadband,eMBB)业务和低时延高可靠通信(Ultra-Reliable and Low Latency Communication,URLLC)业务等。不同的业务类型对可靠性和传输时延的需求不同。URLLC业务流可能是零散的不定时发生的,因此针对不同的业务独立预留不同的系统资源,在系统资源上的开销比较大,可能很多时候为URLLC预留的资源都是没有被使用的。为了提高系统资源利用率,可以支持不同业务在相同资源上复用传输。可能发生一个较早被调度的数据传输被另一个较晚被调度的数据传输所打断或取消的情况。例如:一个终端被调度了eMBB业务在资源1上传输之后,由于URLLC业务到达,而为了满足URLLC业务的时延需求,需要尽快调度,可能会占用已经分配给eMBB业务的资源1中的全部或部分资源(包括时域资源和/或频域资源)进行URLLC传输。又例如:可能是同一个载波上调度给eMBB的时域资源(符号集合)中的全部或部分符号上被调度了URLLC传输,不论频域资源是否重叠,因为在同一个时刻上同一个载波上不能同时传输两个上行信道,则eMBB业务会被URLLC业务所打断或取消。
为了避免业务之间的相互影响,可以对不同的业务定义不同的优先级,从而在出现资源冲突的时候,选择高优先级的信道传输,丢弃低优先级的信道。因此,为了更好的支持具有不同需求的不同业务的传输,在一些协议中引入了物理层优先级,并且当具有不同物理层优先级的信道发生冲突时,即多个PUCCH在同一个载波上在时域上存在重叠,或PUCCH和PUSCH在同一个载波上在时域上存在重叠时,丢弃低优先级的信道,只传输高优先级的信道。
其中,PUCCH、PUSCH的物理层优先级可以通过默认方式、DCI动态指示或者无线资源控制(Radio Resource Control,RRC)半静态配置的方式获得。例如,PUCCH在承载调度请求(Scheduling Request,SR)时,其优先级是通过其承载的SR对应的优先级确定的,而每个SR配置对应的优先级是高层信令配置的;PUCCH在承载SPS PDSCH的HARQ-ACK或承载指示SPS资源释放的PDCCH(即SPS PDSCH release)的HARQ-ACK时,其优先级是通过高层信令为SPS PDSCH配置的HARQ-ACK码本编号来确定的,对应编号为0的HARQ-ACK码本为低优先级,对应编号为1的HARQ-ACK码本 为高优先级;PUCCH在承载CSI(包括周期CSI和半持续信道状态信息(semi-persistent CSI,SP-CSI)时,其优先级可以默认为低优先级。当DCI中包含优先级指示域时,可以通过PUCCH、PUSCH对应的DCI(或PDCCH,本公开实施例中PDCCH和DCI可以认为等价,DCI是PDCCH传输使用的具体格式,则具有对应的DCI等价于具有对应的PDCCH)中的优先级指示域获得优先级,例如,PDCCH所使用的DCI中包含优先级指示域,则:PDCCH调度一个PDSCH时,可以通过优先级指示域指示承载这个PDSCH的HARQ-ACK的PUCCH的优先级。在PDCCH调度一个PUSCH时,可以通过优先级指示域指示被调度的PUSCH的优先级,其中,PUSCH包括仅承载传输块(Transport Block,TB)的PUSCH或仅承载非周期信道状态信息(Aperiodic CSI,A-CSI)的PUSCH或同时承载TB和A-CSI的PUSCH;对于承载SP-CSI的PUSCH,其优先级可以通过激活承载SP-CSI的PUSCH的DCI中的优先级指示域获得。如果DCI中不包含优先级指示域,或高层信令没有配置优先级,则默认为低优先级。
其中,5G NR中的UCI传输可以如下:
UCI可以包含HARQ-ACK、信道状态信息(Channel State Information,CSI)、SR等信息,UCI可以在PUCCH上传输。其中,HARQ-ACK是肯定确认(ACKnowledgement,ACK)和否定确认(Non-ACKnowledgement,NACK)的统称,用于针对PDSCH或指示SPS资源释放的PDCCH(又称SPS PDSCH release)进行反馈,告知网络设备PDSCH或指示SPS PDSCH释放的PDCCH是否正确接收;CSI用于反馈下行信道质量,从而帮助网络设备更好的进行下行调度,例如根据CSI进行调制编码等级(Modulation and Coding Scheme,MCS)选择、配置适当的资源块(Resource Block,RB)资源等;SR用于当终端有上行业务需要传输时,向网络设备请求携带上行业务的PUSCH的传输资源。
5G NR系统中可以支持半静态(semi-static)和动态(dynamic)两种HARQ-ACK码本(codebook)产生方式。其中,HARQ-ACK codebook可以是针对在同一个时域位置或上行信道上进行HARQ-ACK反馈的下行传输(包括PDSCH和SPS PDSCH release)产生的HARQ-ACK反馈序列。
半静态HARQ-ACK码本可以根据表示HARQ-ACK反馈时序(timing)的K1集合中的每个值确定每个载波c上(具体的是这个载波上当前激活的BWP上)对应在一个时隙(slot)或子时隙(sub-slot)n中进行HARQ-ACK反馈的下行传输的位置集合Mc,然后根据Mc即可以确定时隙或子时隙n中传输的HARQ-ACK码本。如图2所示,假设K1集合为{2,3,4,5,6,7,8,9},其中系统配置为上行传输的时隙不包含在内,则假设每个时隙中仅最多一个PDSCH传输且PDSCH仅包含1TB时,可以确定时隙n+9中的码本大小为6比特(如果一个时隙中可以时分复用(Time Division Multiplexing,TDM)传输多个PDSCH,则每个时隙中可以预留多比特HARQ-ACK位置,如果一个PDSCH包含多个TB或配置了码块组(Code Block Group,CBG)传输,则每个PDSCH可以对应更多比特HARQ-ACK,从而改变时隙n+9中的码本大小)。半静态HARQ-ACK码本的好处就是可以比较稳定的保证终端和网络设备对码本的大小的理解一致。但半静态HARQ-ACK码本的开销比较大,即使在下行传输位置集合Mc中仅调度了很少传输,也需要按照最大范围反馈。为了降低反馈开销,提出了半静态HARQ-ACK码本的回退(fallback)方式,即如果在Mc范围内使用fallback DCI(如DCI格式1-0)仅调度了一个下行传输,且DCI中的下行分配索引(Downlink Assignment Index,DAI)域指示为“1”时,仅收到一个SPS PDSCH时,则仅针对接收到的一个下行传输产生1比特HARQ-ACK进行传输,不再需要产生一个按照K1集合确定的固定大小的HARQ-ACK码本。
而动态HARQ-ACK码本可以根据调度下行传输的DCI中的累计下行分配索引(Counter-Downlink Assignment Index,C-DAI)域的指示来进行HARQ-ACK排序、并根据总计下行分配索引(total-Downlink Assignment Index,T-DAI)域来确定HARQ-ACK码本的总比特数的,因此,可以在不同的反馈时刻根据实际的调度来动态调整HARQ-ACK码本的大小,从而节省HARQ-ACK反馈开销。具体的,可以首先根据K1、K0(PDCCH与其调度的PDSCH之间的时隙间隔,即调度时序)以及配置的重复传输次数(如果配置了),确定一个载波上的激活BWP对应的PDCCH监听机会(Monitoring Occasion,MO),如果存在多个载波,不同载波上的PDCCH MO可能是在时 间上不对齐,则多个载波上的PDCCH MO按照时间先后顺序排序构成一个大的PDCCH MO集合,其中的一个MO包含了多个载波上时域重叠的MO;在这个PDCCH MO集合中,C-DAI按照先频域后时域的顺序指示到当前载波上当前PDCCH MO已经传输的PDSCH或者指示SPS PDSCH释放的PDCCH的累计个数,T-DAI指示到当前PDCCH MO总计在所有载波上传输的PDSCH或者指示SPS PDSCH释放的PDCCH的个数,网络设备发送DCI调度PDSCH传输时,保证C-DAI在同一个MO上在不同载波上的DCI中按照频域顺序进行累计计数,T-DAI则在同一个MO中的所有DCI中的值相同,表示这个MO中所有频域上调度的DCI总数。如图3所示,假设C-DAI和T-DAI都是2比特,2比特的1个指示状态可以复用指示1,5,9….,1个状态可以复用指示2,6,10…,1个状态可以复用指示3,7,11…,1个状态可以复用指示4,8,12…。终端在确定的PDCCH MO集合中检测使用某种DCI格式(例如格式1-0、格式1-1、格式1-2中的一种或多种)的PDCCH,并根据接收到的PDCCH中的DAI信息(包括C-DAI和T-DAI)产生HARQ-ACK码本。终端根据图3中的最后一个DCI中调度T-DAI可以确定总比特数是6(假设每个DAI计数对应的1个PDSCH仅对应1比特HARQ-ACK,如果一个PDSCH对应A比特HARQ-ACK,则这里就是6*A比特)。
其中,相同优先级的PUCCH与PUCCH/PUSCH重叠可以如下:
NR中不支持PUCCH与PUSCH在同一时刻并行传输,不管是同一个载波还是不同载波上。当PUCCH和PUSCH(不做特殊说明,一般PUCCH和PUSCH指不使用重复传输的PUCCH和PUSCH)在时域资源上存在重叠时,在满足预定的时间条件(timeline)的情况下,可以将UCI(一般是HARQ-ACK和CSI)从PUCCH上转移到一个PUSCH上传输,如果存在SR,则SR不在PUSCH上传输,SR被丢弃。如果存在多个PUSCH都与PUCCH重叠,则按照预定的规则选择一个PUSCH,其中优先选择承载A-CSI的PUSCH,如果同时存在具有PDCCH调度的PUSCH(DG PUSCH)和没有PDCCH调度的PUSCH(CG PUSCH,SP-CSI PUSCH等),优先选择DG PUSCH,按照上述规则选择之后,如果多个载波上都有PUSCH,可以优先选择载波编号低的载波上的PUSCH,如果选择的载波上存在多个时域上不重叠的PUSCH与 PUCCH重叠,可以优先选择最早的PUSCH。
其中,timeline的定义可以为:如果PUCCH或PUSCH具有对应的PDCCH时(例如PUCCH承载的HARQ-ACK为具有PDCCH调度的PDSCH的HARQ-ACK或为指示下行SPS资源释放的PDCCH的HARQ-ACK),则该调度PDSCH的PDCCH或指示下行SPS资源释放的PDCCH为PUCCH对应的PDCCH(或者也可以称为调度PUCCH的PDCCH),调度PUSCH的PDCCH则为PUSCH对应的PDCCH。将重叠的PUCCH和PUSCH中的起始时间最早的信道的第一个符号作为目标符号,如果存在多个起始时刻相同的信道,则随便选一个信道,将其第一个符号作目标符号,目标符号需要满足如下timeline才能进行复用传输,否则认为是错误调度。
Timeline1:目标符号不早于在任何一个需要在PUCCH上进行HARQ-ACK反馈的PDSCH或SPS PDSCH release的最后一个符号之后的T1mux时间之后的第一个符号(包括循环前缀(Cyclic Prefix,CP)在内的),即目标符号与任何一个上述PDSCH或SPS PDSCH release的最后一个符号之间的时间间隔不少于T1mux时间。其中,T1mux与PDSCH的处理时延有关,可以根据预定的公式和相关的参数计算得到。该timeline的目的是保证在最终确定的传输HARQ-ACK的信道的传输开始之前,能够完成对HARQ-ACK的获取和准备。
Timeline2:目标符号不早于调度PDSCH(如果有)和PUSCH(如果有)的任意一个PDCCH(包括指示SPS PDSCH release的PDCCH)的最后一个符号之后的T2mux时间之后的第一个符号(包括CP在内的),即目标符号与任何一个上述PDCCH的最后一个符号之间的时间间隔不少于T2mux时间。其中,T2mux与PUSCH的处理时延有关,可以根据预定的公式和相关的参数计算得到。该timeline的目的是保证当UCI需要转移到PUSCH上传输时,能够在PUCCH开始准备之前获得调度PUSCH的PDCCH,从而确定不需要在PUCCH上准备UCI传输,并且能够在PUSCH传输之前完成包括UCI在内的传输准备,即完成UCI的获取和复用处理,完成TB的准备(如编码、调制,加扰等操作);如果是多个PUCCH之间的复用,这个T2mux是用来模拟CSI和SR与HARQ-ACK复用的准备时间的。
如果PUCCH承载的HARQ-ACK没有对应的PDCCH(即HARQ-ACK为SPS PDSCH的HARQ-ACK),此时没有调度PDSCH的PDCCH,如果没有PUSCH或PUSCH也没有对应的PDCCH,则仅需要check T1mux不需要check T2mux。如果PUCCH上承载的是CSI和/或SR,因为没有对应的PDSCH,则不需要检查(check)T1mux,进一步如果没有PUSCH或PUSCH没有对应的PDCCH,则也不需要check T2mux。
如果PUCCH和PUCCH重叠时,至少一个PUCCH是重复传输的(即占用多个时隙在每个时隙中重复性的传输UCI),则仅针对重叠的重复传输(repetition),按照传输高优先级,丢弃低优先级处理,不影响不存在重叠的repetition。如果PUCCH和重复传输的PUSCH重叠,当PUSCH采用基于时隙的重复传输时(R15重复传输,或协议定义的repetition type A),PUCCH承载的UCI转移到和PUCCH重叠的一个或者多个PUSCH时隙中进行传输;当PUSCH采用协议定义的repetition type B时,PUCCH承载的UCI转移到和PUCCH重叠的最早的一个包含大于1个符号的实际重复(actual repetition)PUSCH中传输(actual repetition即根据不可用符号、DL符号、时隙边界等进行分段之后得到的repetition PUSCH);上述与PUCCH重叠的一个或多个repetition的PUSCH都需要满足复用timeline。如果多时隙PUCCH与单时隙或多时隙PUSCH重叠,则丢弃与PUCCH重叠的PUSCH,保证PUCCH的重复传输不被打断。
需要说明的是,上述仅是对本公开实施例采用的特征进行举例说明,对于本公开实施例保护的方案不作任何限定。
请参见图4,图4是本公开实施例提供的一种上行控制信息传输方法的流程图,如图4所示,包括以下步骤:
步骤401、终端接收第一DCI,所述第一DCI的第一指示域用于确定如下至少一项:第二HARQ-ACK的比特数、第二HARQ-ACK是否存在、第二HARQ-ACK是否与第一HARQ-ACK复用传输;
步骤402、所述终端依据所述第一指示域进行HARQ-ACK传输;
其中,所述第一DCI为承载所述第一HARQ-ACK的第一上行信道对应的DCI,所述第二HARQ-ACK为与所述第一HARQ-ACK复用传输的 HARQ-ACK。
上述接收第一DCI可以是接收网络设备发送的DCI,且网络设备可以发送一个或者多个DCI,终端可以接收一个或者多个DCI。在接收多个第一DCI的情况下,终端可以依据这多个第一DCI中的部分或者全部DCI中的第一指示域进行HARQ-ACK传输。
上述第一DCI的第一指示域可以是,第一DCI中的一个或者多个比特域。在一种可选的实施方式,所述第一指示域为所述第一DCI中的现有比特的重用,或者,所述第一指示域为所述第一DCI中新增的比特。其中,第一DCI中的现有比特可以是协议中已经定义的第一DCI中的比特,而第一DCI中新增的比特为在协议中已定义的DCI中增加的一个或者多个比特。
上述第一指示域用于确定第二HARQ-ACK的比特数可以是,第一指示域指示第二HARQ-ACK的总比特数的信息,如第二HARQ-ACK的总比特数(例如:0、1、2、4等比特),或者指示第二HARQ-ACK对应的下行传输的总数;其中,第二HARQ-ACK对应的下行传输具体包括需要进行第二HARQ-ACK反馈的PDSCH或SPS PDSCH release。
上述第二HARQ-ACK是否存在可以是,是否存在与第一HARQ-ACK复用传输的第二HARQ-ACK。
需要说明的是,在第一指示域不指示第二HARQ-ACK是否存在的情况下,可以依据第二HARQ-ACK的比特数的信息确定第二HARQ-ACK是否存在,如0比特则不存在,非0比特则存在;在第一指示域不指示第二HARQ-ACK是否与第一HARQ-ACK复用传输的情况下,可以依据第二HARQ-ACK的比特数的信息和第二HARQ-ACK是否存在中的至少一项,确定第二HARQ-ACK是否与第一HARQ-ACK复用传输,如第二HARQ-ACK存在,则可以确认第二HARQ-ACK与第一HARQ-ACK复用传输,反之确认第二HARQ-ACK不与第一HARQ-ACK复用传输,如第二HARQ-ACK的比特数为0,则可以确认第二HARQ-ACK不与第一HARQ-ACK复用传输,反之确认第二HARQ-ACK与第一HARQ-ACK复用传输。
上述终端依据所述第一指示域进行HARQ-ACK传输可以是,按照第二HARQ-ACK的比特数、第二HARQ-ACK是否存在、第二HARQ-ACK是否 与第一HARQ-ACK复用传输中的至少一项,传输第一HARQ-ACK,或者传输第一HARQ-ACK和第二HARQ-ACK。
本公开实施例中,通过上述步骤可以实现依据第一DCI的第一指示域来确定与第一HARQ-ACK同时传输的第二HARQ-ACK的比特数,从而进行HARQ-ACK传输,这样网络设备可以依据第一DCI的第一指示域进行相应的HARQ-ACK接收,从而可以保证终端与网络设备对终端传输的HARQ-ACK的比特数理解一致。
作为一种可选的实施方式,在所述第二HARQ-ACK使用动态HARQ-ACK码本的情况下:
所述第一指示域的每个指示状态指示各自对应的一种用于确定所述第二HARQ-ACK的总比特数的信息;或者
所述第一指示域的第一指示状态用于指示不存在所述第二HARQ-ACK,或者指示所述第二HARQ-ACK不与所述第一HARQ-ACK复用传输,或者指示所述第二HARQ-ACK的总比特数为0,或者指示与所述第二HARQ-ACK对应的下行传输的总数为0,所述第一指示域中除所述第一指示状态之外的每个指示状态指示各自对应的一种用于确定第二HARQ-ACK的总比特数的信息,所述总比特数大于0;或者
所述第一指示域的第二指示状态在第一条件下指示一种用于确定第二HARQ-ACK的总比特数的信息,所述总比特数大于0,在第二条件下所述第二指示状态用于指示不存在所述第二HARQ-ACK,或者指示所述第二HARQ-ACK不与所述第一HARQ-ACK复用传输,或者指示所述第二HARQ-ACK的总比特数为0,或者指示与所述第二HARQ-ACK对应的下行传输的总数为0,所述第一指示域中除所述第二指示状态之外的每个指示状态指示各自对应的一种用于确定第二HARQ-ACK的总比特数的信息,所述总比特数大于0。
其中,上述用于确定所述第二HARQ-ACK的总比特数的信息可以确定第二HARQ-ACK的总比特数为0或者大于0的比特数。
上述第一指示域的每个指示状态指示各自对应的一种用于确定所述第二HARQ-ACK的总比特数的信息可以是,第一指示域可以通过不同的指示状态 确定不同的第二HARQ-ACK的总比特数。当然,一些实施方式,允许一部分指示状态对应同一个第二HARQ-ACK的总比特数。例如:第一指示域有3比特指示信息,可以指示8个指示状态,但第二HARQ-ACK的可能的总比特数为1-7,则这8个指示状态中可以有2个指示状态对应同一个第二HARQ-ACK的总比特数,或者其中一个指示状态为预留。一些实施方式,允许某个指示状态对应多个第二HARQ-ACK的总比特数,例如:第一指示域有2比特指示信息,可以指示4个指示状态,但第二HARQ-ACK总比特数的可能值为0-4,则这4个指示状态中可以有1个指示状态对应0比特和4比特这两个总比特数,可以通过实际接收到的对应第二HARQ-ACK的下行传输的个数来确定这个指示状态实际指示的是0比特还是4比特,比如没有接收到任何对应第二HARQ-ACK的下行传输,则确定指示的是0比特,接收到至少1个对应第二HARQ-ACK的下行传输,则确定指示的是4比特。
上述第一指示状态可以是协议定义或者网络侧配置的指示状态,通过该指示状态可以指示不存在第二HARQ-ACK,或者指示第二HARQ-ACK不与第一HARQ-ACK复用传输,或者指示第二HARQ-ACK的总比特数为0,或者指示与第二HARQ-ACK对应的下行传输的总数为0。而其他指示状态各自对应的一种用于确定第二HARQ-ACK的大于0的总比特数的信息。
上述第二指示状态可以是协议定义或者网络侧配置的指示状态,上述第一条件、第二条件是协议定义或者网络侧配置。通过上述第二指示状态在不同条件下可以指示不同的内容,从而降低DCI的开销。
另外,在第一指示域指示第二HARQ-ACK不与第一HARQ-ACK复用传输、或指示第二HARQ-ACK的比特数为0、或指示不存在第二HARQ-ACK的情况下,如果实际存在第二HARQ-ACK,且第二HARQ-ACK与第一HARQ-ACK在时域上存在重叠,则可以丢弃第二HARQ-ACK。
可选的,所述用于确定第二HARQ-ACK的总比特数的信息,包括:
所述第二HARQ-ACK的总比特数,或者,与所述第二HARQ-ACK对应的下行传输的总数。
上述第二HARQ-ACK的总比特数可以是0,或者大于0的比特数。上述与第二HARQ-ACK对应的下行传输的总数可以包括,与第二HARQ-ACK对 应的PDSCH或SPS PDSCH release传输的总个数,即调度PDSCH的PDCCH或指示SPS PDSCH release的PDCCH的总个数;或者上述与第二HARQ-ACK对应的下行传输的总数可以包括,存在PDSCH或SPS PDSCH release的{服务小区(serving cell),PDCCH监听机会(PDCCH monitoring occasion)}对(即{serving cell,PDCCH monitoring occasion}-pair(s))的总个数,其中PDSCH和SPS PDSCH release是与第二HARQ-ACK对应的。另外,上述调度PDSCH的PDCCH和指示SPS PDSCH release的PDCCH的总个数也可以称作需要进行第二HARQ-ACK(包括ACK和NACK两种反馈信息)反馈的下行传输(包括PDSCH,SPS PDSCH release)的个数。且通过上述与第二HARQ-ACK对应的下行传输的总数可以确定第二HARQ-ACK的总比特数。
例如:在第二HARQ-ACK使用动态HARQ-ACK码本的情况下:
所述第一指示域的每个指示状态指示可以各自对应的一种第二HARQ-ACK的动态HARQ-ACK码本的总比特数,所述总比特数包括0或者大于0的整数;或者
所述第一指示域的第一指示状态可以用于指示不存在所述第二HARQ-ACK,或者指示所述第二HARQ-ACK不与所述第一HARQ-ACK复用传输,或者指示所述第二HARQ-ACK的总比特数为0,所述第一指示域中除所述第一指示状态之外的每个指示状态可以指示各自对应的一种第二HARQ-ACK的动态HARQ-ACK码本的大于0的总比特数;或者
所述第一指示域的第二指示状态可以在第一条件下指示一种第二HARQ-ACKHARQ-ACK的动态HARQ-ACK码本的总比特数,在第二条件下所述第二指示状态用于指示不存在所述第二HARQ-ACK,或者指示所述第二HARQ-ACK不与所述第一HARQ-ACK复用传输,或者指示所述第二HARQ-ACK的总比特数为0,所述第一指示域中除所述第二指示状态之外的每个指示状态可以指示各自对应的一种第二HARQ-ACK的动态HARQ-ACK码本的大于0的总比特数;或者
所述第一指示域的每个指示状态可以指示各自对应的一种第二HARQ-ACK对应的下行传输的总个数,其中,所述下行传输的总个数可以用于确定第二HARQ-ACK对应的HARQ-ACK码本的总比特数,所述总个数包 括0或者大于0;或者
所述第一指示域的第一指示状态可以用于指示不存在所述第二HARQ-ACK,或者指示所述第二HARQ-ACK不与所述第一HARQ-ACK复用传输,或者指示第二HARQ-ACK对应的下行传输的总个数为0,所述第一指示域中除所述第一指示状态之外的每个指示状态指示各自对应的一种第二HARQ-ACK对应的下行传输的大于0的总个数,其中,所述下行传输的总个数可以用于确定第二HARQ-ACK对应的HARQ-ACK码本的总比特数;或者
所述第一指示域的第二指示状态可以在第一条件下指示一种第二HARQ-ACK对应下行传输的大于0的总个数,在第二条件下所述第二指示状态用于指示不存在所述第二HARQ-ACK,或者指示所第二HARQ-ACK不与所述第一HARQ-ACK复用传输,或者指示第二HARQ-ACK对应的下行传输的总个数为0,所述第一指示域中除所述第二指示状态之外的每个指示状态指示各自对应的一种第二HARQ-ACK对应的下行传输的大于0的总个数,其中,所述下行传输的总个数用于确定第二HARQ-ACK对应的HARQ-ACK码本的总比特数。
作为一种可选的实施方式,当所述第一指示域指示用于确定第二HARQ-ACK的总比特数的信息时:
在所述第二HARQ-ACK的动态HARQ-ACK码本包括多个子码本的情况下,所述第一指示域包括多个子指示域,每个子指示域用于指示各自对应的用于确定第二HARQ-ACK的子码本的比特数的信息。
其中,上述用于确定第二HARQ-ACK的总比特数的信息可以是第二HARQ-ACK的子码本的总比特数,或者与所述第二HARQ-ACK的子码本对应的下行传输的总数。
该实施方式中,可以实现每个子指示域指示一个子码本的子码本的比特数的信息。例如:如果第二HARQ-ACK的HARQ-ACK码本包含多个子码本,则第一指示域包含多个T-DAI域,分别指示用于确定每一个子码本的总比特数的信息,如第一指示域为4比特,其中前2比特为对应第一个子码本的T-DAI域,用于指示确定第一个子码本的总比特数的信息,后2比特为对应第二个子码本的T-DAI域,用于指示确定第二个子码本的总比特数的信息。 特别的,在单载波的情况下,可能没有T-DAI域,只有C-DAI域,此时因为不存在载波之间的个数累计,则C-DAI域的物理意义等同于T-DAI域,也可以用来确定一个动态HARQ-ACK码本或子码本的总比特数,则第一指示域可以表现为C-DAI域。其中,当第一HARQ-ACK也使用动态HARQ-ACK码本时,第一DCI中还存在用于确定第一HARQ-ACK的动态HARQ-ACK码本大小的T-DAI和C-DAI(或者仅C-DAI),且这些域与第一DCI中的第一指示域(对应于第二HARQ-ACK的T-DAI和C-DAI(或者仅C-DAI))是不同的指示域。
可选的,所述第一条件包括:
存在与所述第二HARQ-ACK对应的下行传输;或者
存在具有DCI调度的与所述第二HARQ-ACK对应的下行传输;或者,
所述第一上行信道与第二上行信道在时域上存在重叠,其中,所述第二上行信道为承载第二HARQ-ACK的信道。
其中,上述第一上行信道与第二上行信道在时域上存在重叠可以是,第一上行信道和第二上行信道在时域上全部或者部分重叠。
可选的,所述第二条件包括:
不存在与所述第二HARQ-ACK对应的下行传输;或者
不存在具有DCI调度的与所述第二HARQ-ACK对应的下行传输;或者,
所述第一上行信道与第二上行信道在时域上不存在重叠,其中,所述第二上行信道为承载第二HARQ-ACK的信道。
上述第一上行信道与第二上行信道在时域上不存在重叠可以是,第一上行信道与第二上行信道在时域上不存在任何重叠的时域资源。
作为一种可选的实施方式,在所述第二HARQ-ACK使用半静态HARQ-ACK码本的情况下:
所述第一指示域至少包括:第三指示状态和第四指示状态,所述第三指示状态用于指示所述第二HARQ-ACK的比特数为1比特或指示按照回退模式确定第二HARQ-ACK的比特数,所述第四指示状态用于指示按照半静态HARQ-ACK码本大小确定所述第二HARQ-ACK的比特数;或者
所述第一指示域至少包括:第五指示状态和第六指示状态,所述第五指 示状态用于指示不存在所述第二HARQ-ACK,或者指示所述第二HARQ-ACK不与所述第一HARQ-ACK复用传输,或者指示所述第二HARQ-ACK的比特数为0,或者指示与所述第二HARQ-ACK对应的下行传输的个数为0,所述第六指示状态用于指示按照半静态HARQ-ACK码本大小确定所述第二HARQ-ACK的比特数;或者
所述第一指示域至少包括:第七指示状态和第八指示状态,其中,所述第七指示状态在第一条件下指示所述第二HARQ-ACK的比特数为1比特或指示按照回退模式确定第二HARQ-ACK的比特数,在第二条件下所述第七指示状态用于指示不存在所述第二HARQ-ACK,或者指示所述第二HARQ-ACK不与所述第一HARQ-ACK复用传输,或者指示所述第二HARQ-ACK的比特数为0,或者指示与所述第二HARQ-ACK对应的下行传输的个数为0,所述第八指示状态用于指示按照半静态HARQ-ACK码本大小确定所述第二HARQ-ACK的比特数;或者,所述第七指示状态用于指示所述第二HARQ-ACK的比特数为1比特或指示按照回退模式确定第二HARQ-ACK的比特数,所述第八指示状态在第一条件下指示按照半静态HARQ-ACK码本大小确定所述第二HARQ-ACK的比特数,在第二条件下所述第八指示状态用于指示不存在第二HARQ-ACK,或者指示第二HARQ-ACK不与第一HARQ-ACK复用传输,或者指示所述第二HARQ-ACK的比特数为0,或者指示与所述第二HARQ-ACK对应的下行传输的个数为0;或者
所述第一指示域至少包括:第九指示状态、第十指示状态和第十一指示状态,所述第九指示状态用于指示不存在所述第二HARQ-ACK,或者指示所述第二HARQ-ACK不与所述第一HARQ-ACK复用传输,或者指示所述第二HARQ-ACK的比特数为0,或者指示与所述第二HARQ-ACK对应的下行传输的个数为0,所述第十指示状态用于指示所述第二HARQ-ACK的比特数为1比特或指示按照回退模式确定第二HARQ-ACK的比特数,所述第十一指示状态用于指示按照半静态HARQ-ACK码本大小确定所述第二HARQ-ACK的比特数。
上述第三至第十一指示状态可以是协议定义或者网络配置的,另外,上 述四种实施方式中,指示状态可以复用,例如:第三指示状态可以与第五指示状态或者第七指示状态相同,第四指示状态可以与第六指示状态或者第八指示状态相同。
上述按照回退模式确定第二HARQ-ACK的比特数可以是确定第二HARQ-ACK的比特数为1,例如回退模式可以定义为,当满足如下条件时,仅反馈1比特第二HARQ-ACK:当仅收到一个或多个SPS PDSCH,且如果收到多个SPS PDSCH时,仅一个SPS PDSCH需要进行HARQ-ACK反馈时;或者,当仅收到一个使用DCI格式1-0传输的SPS PDSCH release,且DCI中的C-DAI值为1时;或者当仅收到一个使用DCI格式1-0调度的PDSCH,且DCI中的C-DAI值为1。
需要说明的是,本公开实施例中,上述第一指示域除了上述第一至第十一指示状态还可以包括其他指示状态,具体可以根据需求进行定义。
可选的,在所述第一指示域的每个指示状态指示各自对应的一种用于确定第二HARQ-ACK的总比特数的信息情况下,如果确定没有承载所述第二HARQ-ACK的第二上行信道与所述第一上行信道在时域上存在重叠,则忽略所述第一指示域的指示信息。即此时终端可以不解析或读取第一指示域的指示信息,或者不管第一指示域的指示信息是什么内容,都不会按照第一指示域来进行HARQ-ACK传输,总是假设没有第二HARQ-ACK,只传输第一HARQ-ACK。
上述没有承载所述第二HARQ-ACK的第二上行信道与所述第一上行信道在时域上存在重叠可以是,对于上述终端来说当前不存在与第一上行信道在时域上存在重叠的承载第二HARQ-ACK的上行信道。
可选的,在所述第一指示域包括所述第三指示状态和所述第四指示状态的情况下,如果确定没有承载所述第二HARQ-ACK的第二上行信道与所述第一上行信道在时域上存在重叠,则忽略所述第一指示域的指示信息。即此时终端可以不解析或读取第一指示域的指示信息,或者不管第一指示域的指示信息是什么内容,都不会按照第一指示域来进行HARQ-ACK传输,总是假设没有第二HARQ-ACK,只传输第一HARQ-ACK。
作为一种可选的实施方式,所述终端依据所述第一指示域进行 HARQ-ACK传输,包括:
所述终端根据所述第一指示域,确定所述第二HARQ-ACK的比特数;
所述终端按照所述第二HARQ-ACK的比特数,进行HARQ-ACK传输。
上述终端根据所述第一指示域,确定所述第二HARQ-ACK的比特数可以是,根据第一指示域的指示状态确定第二HARQ-ACK的比特数,例如:根据指示域的指示状态指示的用于确定第二HARQ-ACK的总比特数的信息,确定第二HARQ-ACK的比特数。或者根据第一指示域指示的第二HARQ-ACK是否存在、或指示第二HARQ-ACK是否与所述第一HARQ-ACK复用传输,确定第二HARQ-ACK的比特数是否为0。
作为一种可选的实施方式,上述终端根据所述第一指示域,确定所述第二HARQ-ACK的比特数可以是,在确定第一HARQ-ACK与第二HARQ-ACK需要在同一信道上同时传输时才需要执行的。例如:所述终端根据所述第一指示域,确定所述第二HARQ-ACK的比特数,包括:
在承载所述第一HARQ-ACK的第一上行信道与承载所述第二HARQ-ACK的第二上行信道在时域上存在重叠的情况下,所述终端根据所述第一指示域,确定所述第二HARQ-ACK的比特数。
该实施方式中,由于终端按照根据第一指示域确定的所述第二HARQ-ACK的比特数进行HARQ-ACK传输,这样网络设备可以按照同样的第二HARQ-ACK的比特数进行HARQ-ACK接收,从而保证终端与网络设备对第二HARQ-ACK的比特数理解一致。
可选的,所述终端按照所述第二HARQ-ACK的比特数,进行HARQ-ACK传输,包括:
按照所述第二HARQ-ACK的比特数,在同一个信道上同时传输所述第一HARQ-ACK和所述第二HARQ-ACK;或者,
当所述第二HARQ-ACK的比特数大于0或确定传输所述第二HARQ-ACK时,按照所述第二HARQ-ACK的比特数,在同一个信道上同时传输所述第一HARQ-ACK和所述第二HARQ-ACK;当所述第二HARQ-ACK的比特数为0或确定不传输所述第二HARQ-ACK时,在所述第一上行信道上传输所述第一HARQ-ACK。
上述确定传输所述第二HARQ-ACK,可以是,根据第一指示域确定第二HARQ-ACK的比特数大于0,或确定存在第二HARQ-ACK或确定允许第二HARQ-ACK与第一HARQ-ACK复用传输;上述确定不传输所述第二HARQ-ACK,可以是,根据第一指示域确定第二HARQ-ACK的比特数为0,或确定不存在第二HARQ-ACK或确定第二HARQ-ACK不与第一HARQ-ACK复用传输。
上述按照根据第一指示域确定的第二HARQ-ACK的比特数,在同一个信道上同时传输所述第一HARQ-ACK和所述第二HARQ-ACK可以是,在该信道上传输的第二HARQ-ACK的比特数为上述根据第一指示域确定的第二HARQ-ACK的比特数,而第一HARQ-ACK的比特数可以是按照相关技术,根据网络侧配置的HARQ-ACK码本类型、实际的接收情况、相关的配置参数等按照协议规定的方式确定的比特数,或者终端与网络侧设备预先协商的方式确定的比特数等等,本公开实施例中,对第一HARQ-ACK的比特数不作限定,并且假定网络侧和终端对第一HARQ-ACK的比特数理解总是可以一致的。
上述在同一个信道上同时传输所述第一HARQ-ACK和所述第二HARQ-ACK可以是在第一上行信道或者第二上行信道上传输同时传输所述第一HARQ-ACK和所述第二HARQ-ACK。其中第二信道可能是不同于第一上行信道的一个信道,且可能是对应第一HARQ-ACK的PUCCH或与第一上行信道或第一HARQ-ACK相同优先级的一个上行信道。
上述按照根据第一指示域确定的第二HARQ-ACK的比特数,在同一个信道上同时传输所述第一HARQ-ACK和所述第二HARQ-ACK可以是,将上述根据第一指示域确定的第二HARQ-ACK的比特数作为参考比特数,根据所述参考比特数,将所述第二HARQ-ACK与所述第一HARQ-ACK在同一上行信道上同时传输;具体包括:
当同时传输第一HARQ-ACK和第二HARQ-ACK的上行信道为PUCCH时,至少基于所述参考比特数确定PUCCH资源,并在所述PUCCH资源上同时传输所述第一HARQ-ACK和所述第二HARQ-ACK;或者
当同时传输第一HARQ-ACK和第二HARQ-ACK的上行信道为PUSCH 时,至少基于所述参考比特数确定PUSCH上用于承载HARQ-ACK的目标资源,并在所述目标资源上同时传输所述第一HARQ-ACK和所述第二HARQ-ACK。
其中,上述确定PUCCH资源包括如下至少一项:
确定PUCCH资源集合;
确定承载所述第一HARQ-ACK和所述第二HARQ-ACK的PUCCH资源的最小资源块RB个数;
确定至少一个用于承载信道状态信息CSI的PUCCH资源中的一个PUCCH资源,其中,所述用于承载CSI的PUCCH资源为用于承载多个CSI的PUCCH资源。
其中,确定PUCCH资源集合,包括:
按照所述第一HARQ-ACK的比特数和所述第二HARQ-ACK的所述参考比特数之和,确定所述PUCCH资源集合。
其中,确定承载所述第一HARQ-ACK和所述第二HARQ-ACK的PUCCH资源的最小RB个数,包括:
按照所述第一HARQ-ACK的比特数和所述第二HARQ-ACK的所述参考比特数之和,确定承载所述第一HARQ-ACK和所述第二HARQ-ACK的PUCCH资源的所述最小RB个数;或者,
按照所述第一HARQ-ACK的比特数确定用于承载所述第一HARQ-ACK的第一最小RB个数,按照所述第二HARQ-ACK的所述参考比特数确定用于承载所述第二HARQ-ACK的第二最小RB个数,并将所述第一最小RB数和所述第二最小RB数之和作为承载所述第一HARQ-ACK和所述第二HARQ-ACK的PUCCH资源的所述最小RB个数。
其中,确定至少一个用于承载CSI的PUCCH资源中的一个PUCCH资源,包括:
按照所述第一HARQ-ACK的比特数、所述第二HARQ-ACK的所述参考比特数和与所述第一HARQ-ACK和所述第二HARQ-ACK同时传的CSI的比特数之和,在至少一个用于承载CSI的PUCCH资源中选择一个PUCCH资源。
其中,根据所述参考比特数,将所述第二HARQ-ACK与所述第一HARQ-ACK在同一上行信道上同时传输,还包括:
在CSI与HARQ-ACK同时传输的情况下,至少基于所述第二HARQ-ACK的所述参考比特数,确定是否进行CSI丢弃和/或丢弃的部分CSI。
具体的,基于所述第一HARQ-ACK和所述第二HARQ-ACK的所述参考比特数,确定是否进行CSI丢弃和/或丢弃的部分CSI。
具体的,如果确定不丢弃,则直接将CSI与所述第二HARQ-ACK和所述第一HARQ-ACK在同一上行信道上同时传输;如果确定丢弃,则进一步确定保留哪部分CSI、丢弃哪部分CSI,将保留的CSI与所述第二HARQ-ACK和所述第一HARQ-ACK在同一上行信道上同时传输。
其中,基于所述参考比特数确定PUSCH上用于承载HARQ-ACK的目标资源,包括:
按照所述第一HARQ-ACK的比特数和所述第二HARQ-ACK的所述参考比特数之和,确定PUSCH上用于承载所述第一HARQ-ACK和所述第二HARQ-ACK的所述目标资源;或者
按照所述第一HARQ-ACK的比特数确定PUSCH上用于承载所述第一HARQ-ACK的第一资源,按照所述第二HARQ-ACK的所述参考比特数确定PUSCH上用于承载所述第二HARQ-ACK的第二资源,所述目标资源包括所述第一资源和所述第二资源。
其中,根据所述参考比特数,将所述第二HARQ-ACK与所述第一HARQ-ACK在同一上行信道上同时传输,包括:
当所述第一HARQ-ACK和所述第二HARQ-ACK使用联合编码传输时,按照所述参考比特数传输所述第二HARQ-ACK;或者
当所述第一HARQ-ACK和所述第二HARQ-ACK使用独立编码传输时,按照所述参考比特数传输所述第二HARQ-ACK,或者按照实际比特数(即按照第二HARQ-ACK对应的下行接收情况和HARQ-ACK,确定出来的比特数;)传输所述第二HARQ-ACK。
其中,在按照所述参考比特数传输所述第二HARQ-ACK的情况下,在所述第二HARQ-ACK的实际比特序列的后面添加否定应答NACK比特得到 目标比特序列,所述目标比特序列的比特数为所述参考比特数。
作为一种可选的实施方式,所述第一上行信道的优先级高于承载所述第二HARQ-ACK的第二上行信道的优先级。
该实施方式中,可以将优先级低的第二HARQ-ACK与高优先级的第一HARQ-ACK复用传输。
作为一种可选的实施方式,所述第一上行信道为PUCCH和PUSCH中的一个,承载所述第二HARQ-ACK的第二上行信道为PUCCH和PUSCH中的一个,且所述第一上行信道和所述第二上行信道的信道类型相同或者不同。
该实施方式中,由于第一上行信道和所述第二上行信道可以为PUCCH或者PUSCH,且第一上行信道和第二上行信道的信道类型相同或者不同,这样可以实现将相同或者不同类型的上行信道承载的HARQ-ACK进行复用传输。
作为一种可选的实施方式,所述第一DCI中是否存在所述第一指示域根据高层信令的配置确定;或者
默认所述第一DCI中总是存在所述第一指示域。
该实施方式中,终端可以根据高层信令确定第一DCI中是否第一指示域,这样当确定存在时按照存在第一指示域的DCI大小检测DCI。其中,高层信令可以显式或者隐式指示第一DCI中是否存在所述第一指示域。例如:高层信令直接通知第一DCI是否存在第一指示域;或者高层信令可以通知是否支持不同优先级的信道的复用传输,如果支持,则表示第一DCI中包含第一指示域;或者高层信令可以通知是否支持第一HARQ-ACK和第二HARQ-ACK复用传输,当配置支持时,确定第一DCI存在第一指示域。
上述默认所述第一DCI中总是存在所述第一指示域可以是,终端和网络设备认为第一DCI中总是存在第一指示域。且通过第一指示域可以指示状态来动态确定是否支持第一HARQ-ACK和第二HARQ-ACK的复用传输,例如:第一指示域的指示状态表示没有第二HARQ-ACK传输或第二HARQ-ACK不与第一HARQ-ACK复用传输,则表示不支持第一HARQ-ACK和第二HARQ-ACK的复用传输,或者表示第二HARQ-ACK被调度或,或者表示第二上行信道与第一上行信道不重叠。
作为一种可选的实施方式,在所述第一上行信道为PUCCH的情况下,所述第一DCI为用于调度需要在所述PUCCH上进行HARQ-ACK反馈的PDSCH的DCI,或者,所述第一DCI为用于指示需要在所述PUCCH上进行HARQ-ACK反馈的SPS PDSCH release的DCI;或者
在所述第一上行信道为PUSCH的情况下,所述第一DCI为调度所述PUSCH的DCI。
上述第一DCI为用于调度需要在所述PUCCH上进行HARQ-ACK反馈的PDSCH的DCI可以理解为,该第一DCI用于调度PDSCH,该PDSCH为需要在所述PUCCH上进行HARQ-ACK反馈的PDSCH。上述述第一DCI为用于指示需要在所述PUCCH上进行HARQ-ACK反馈的SPS PDSCH release的DCI可以理解为,该第一DCI为用于指示SPS PDSCH release,而该SPS PDSCH release是需要在所述PUCCH上进行HARQ-ACK反馈的SPS PDSCH release。
作为一种可选的实施方式,当存在多个所述第一DCI时,多个第一DCI中的第一指示域的值相同,或者,终端依据最后一个DCI中的第一指示域进行HARQ-ACK传输。
例如:存在多个对应于上述第一上行信道的DCI的情况下,这多个DCI的第一指示域的值相同,终端可以依据任一DCI的第一指示域进行HARQ-ACK传输。
例如:存在多个对应于上述第一上行信道的DCI的情况下,终端只依据最后一个DCI中的第一指示域进行HARQ-ACK传输。
作为一种可选的实施方式,所述第一HARQ-ACK的优先级高于所述第二HARQ-ACK的优先级;或者
所述第一HARQ-ACK为单播业务的HARQ-ACK,所述第二HARQ-ACK为多播业务的HARQ-ACK。
该实施方式中,可以实现将不同优先级的HARQ-ACK复用传输,以及还可以实现将单播业务的HARQ-ACK和多播业务的HARQ-ACK复用传输。
需要说明的是,本公开中所提及的时域上存在重叠的情况,通常是指在同一个载波组中在时域上存在重叠,例如,在载波聚合(CA)情况下,在同 一个PUCCH载波组中,或在双链接(DC)情况下,在同一个主载波组(MCG)或同一个辅载波组(SCG)中,或在CA和DC结合的情况下,在某一个载波组(MCG或SCG)中的同一个PUCCH载波组中;上述载波可以替换为小区,是等价的。
本公开实施例,终端接收第一下行控制信息DCI,所述第一DCI的第一指示域用于确定如下至少一项:第二HARQ-ACK的比特数、第二HARQ-ACK是否存在、第二HARQ-ACK是否与第一HARQ-ACK复用传输;所述终端依据所述第一指示域进行HARQ-ACK传输;其中,所述第一DCI为承载所述第一HARQ-ACK的第一上行信道对应的DCI,所述第二HARQ-ACK为与所述第一HARQ-ACK复用传输的HARQ-ACK。这样由于终端依据所述第一指示域进行HARQ-ACK传输,从而可以避免同时传输多种HARQ-ACK时,终端与网络设备对终端传输的HARQ-ACK的比特数理解不一致。
请参见图5,图5是本公开实施例提供的一种上行控制信息接收方法的流程图,如图5所示,包括以下步骤:
步骤501、网络设备发送第一下行控制信息DCI,所述第一DCI的第一指示域用于确定如下至少一项:第二混合自动重传请求确认HARQ-ACK的比特数、第二HARQ-ACK是否存在、第二HARQ-ACK是否与第一HARQ-ACK复用传输;
步骤502、所述网络设备依据所述第一指示域进行HARQ-ACK接收;
其中,所述第一DCI为承载所述第一HARQ-ACK的第一上行信道对应的DCI,所述第二HARQ-ACK为与所述第一HARQ-ACK复用传输的HARQ-ACK。
可选的,在所述第二HARQ-ACK使用动态HARQ-ACK码本的情况下:
所述第一指示域的每个指示状态指示各自对应的一种用于确定所述第二HARQ-ACK的总比特数的信息;或者
所述第一指示域的第一指示状态用于指示不存在所述第二HARQ-ACK,或者指示所述第二HARQ-ACK不与所述第一HARQ-ACK复用传输,或者指示所述第二HARQ-ACK的总比特数为0,或者指示与所述第二HARQ-ACK对应的下行传输的总数为0,所述第一指示域中除所述第一指示状态之外的 每个指示状态指示各自对应的一种用于确定第二HARQ-ACK的总比特数的信息,所述总比特数大于0;或者
所述第一指示域的第二指示状态在第一条件下指示一种用于确定第二HARQ-ACK的总比特数的信息,所述总比特数大于0,在第二条件下所述第二指示状态用于指示不存在所述第二HARQ-ACK,或者指示所述第二HARQ-ACK不与所述第一HARQ-ACK复用传输,或者指示所述第二HARQ-ACK的总比特数为0,或者指示与所述第二HARQ-ACK对应的下行传输的总数为0,所述第一指示域中除所述第二指示状态之外的每个指示状态指示各自对应的一种用于确定第二HARQ-ACK的总比特数的信息,所述总比特数大于0。
可选的,所述用于确定第二HARQ-ACK的总比特数的信息,包括:
所述第二HARQ-ACK的总比特数,或者,与所述第二HARQ-ACK对应的下行传输的总数。
可选的,当所述第一指示域指示用于确定第二HARQ-ACK的总比特数的信息时:
在所述第二HARQ-ACK的动态HARQ-ACK码本包括多个子码本的情况下,所述第一指示域包括多个子指示域,每个子指示域用于指示各自对应的用于确定第二HARQ-ACK的子码本的比特数的信息。
可选的,在所述第二HARQ-ACK使用半静态HARQ-ACK码本的情况下:
所述第一指示域至少包括:第三指示状态和第四指示状态,所述第三指示状态用于指示所述第二HARQ-ACK的比特数为1比特或指示按照回退模式确定第二HARQ-ACK的比特数,所述第四指示状态用于指示按照半静态HARQ-ACK码本大小确定所述第二HARQ-ACK的比特数;或者
所述第一指示域至少包括:第五指示状态和第六指示状态,所述第五指示状态用于指示不存在所述第二HARQ-ACK,或者指示所述第二HARQ-ACK不与所述第一HARQ-ACK复用传输,或者指示所述第二HARQ-ACK的比特数为0,或者指示与所述第二HARQ-ACK对应的下行传输的个数为0,所述第六指示状态用于指示按照半静态HARQ-ACK码本大小确定所述第二HARQ-ACK的比特数;或者
所述第一指示域至少包括:第七指示状态和第八指示状态,其中,所述第七指示状态在第一条件下指示所述第二HARQ-ACK的比特数为1比特或指示按照回退模式确定第二HARQ-ACK的比特数,在第二条件下所述第七指示状态用于指示不存在所述第二HARQ-ACK,或者指示所述第二HARQ-ACK不与所述第一HARQ-ACK复用传输,或者指示所述第二HARQ-ACK的比特数为0,或者指示与所述第二HARQ-ACK对应的下行传输的个数为0,所述第八指示状态用于指示按照半静态HARQ-ACK码本大小确定所述第二HARQ-ACK的比特数;或者,所述第七指示状态用于指示所述第二HARQ-ACK的比特数为1比特或指示按照回退模式确定第二HARQ-ACK的比特数,所述第八指示状态在第一条件下指示按照半静态HARQ-ACK码本大小确定所述第二HARQ-ACK的比特数,在第二条件下所述第八指示状态用于指示不存在第二HARQ-ACK,或者指示第二HARQ-ACK不与第一HARQ-ACK复用传输,或者指示所述第二HARQ-ACK的比特数为0,或者指示与所述第二HARQ-ACK对应的下行传输的个数为0;或者
所述第一指示域至少包括:第九指示状态、第十指示状态和第十一指示状态,所述第九指示状态用于指示不存在所述第二HARQ-ACK,或者指示所述第二HARQ-ACK不与所述第一HARQ-ACK复用传输,或者指示所述第二HARQ-ACK的比特数为0,或者指示与所述第二HARQ-ACK对应的下行传输的个数为0,所述第十指示状态用于指示所述第二HARQ-ACK的比特数为1比特或指示按照回退模式确定第二HARQ-ACK的比特数,所述第十一指示状态用于指示按照半静态HARQ-ACK码本大小确定所述第二HARQ-ACK的比特数。
可选的,所述第一条件包括:
存在与所述第二HARQ-ACK对应的下行传输;或者
存在具有DCI调度的与所述第二HARQ-ACK对应的下行传输;或者,
所述第一上行信道与第二上行信道在时域上存在重叠,其中,所述第二上行信道为承载第二HARQ-ACK的信道;
所述第二条件包括:
不存在与所述第二HARQ-ACK对应的下行传输;或者
不存在具有DCI调度的与所述第二HARQ-ACK对应的下行传输;或者,
所述第一上行信道与第二上行信道在时域上不存在重叠,其中,所述第二上行信道为承载第二HARQ-ACK的信道。
可选的,在所述第一指示域的每个指示状态指示各自对应的一种用于确定第二HARQ-ACK的总比特数的信息情况下,如果确定没有承载所述第二HARQ-ACK的第二上行信道与所述第一上行信道在时域上存在重叠,则可以任意设置所述第一指示域的指示信息。
可选的,在所述第一指示域包括所述第三指示状态和所述第四指示状态的情况下,如果确定没有承载所述第二HARQ-ACK的第二上行信道与所述第一上行信道在时域上存在重叠,则可以任意设置所述第一指示域的指示信息。
可选的,所述网络设备依据所述第一指示域进行HARQ-ACK接收,包括:
所述网络设备根据所述第一指示域,确定所述第二HARQ-ACK的比特数;
所述网络设备按照所述第二HARQ-ACK的比特数,进行HARQ-ACK接收。
可选的,所述网络设备按照所述第二HARQ-ACK的比特数,进行HARQ-ACK接收,包括:
按照所述第二HARQ-ACK的比特数,在同一个信道上同时接收所述第一HARQ-ACK和所述第二HARQ-ACK;或者,
当所述第二HARQ-ACK的比特数大于0或确定终端传输所述第二HARQ-ACK时,按照所述第二HARQ-ACK的比特数,在同一个信道上同时接收所述第一HARQ-ACK和所述第二HARQ-ACK;或者
当所述第二HARQ-ACK的比特数为0或确定终端不传输所述第二HARQ-ACK时,在所述第一上行信道上接收所述第一HARQ-ACK。
可选的,所述网络设备根据所述第一指示域,确定所述第二HARQ-ACK的比特数,包括:
在承载所述第一HARQ-ACK的第一上行信道与承载所述第二HARQ-ACK的第二上行信道在时域上存在重叠的情况下,所述网络设备根据所述第一指示域,确定所述第二HARQ-ACK的比特数。
可选的,所述第一上行信道的优先级高于承载所述第二HARQ-ACK的第二上行信道的优先级。
可选的,所述第一上行信道为物理上行控制信道PUCCH和物理上行共享信道PUSCH中的一个,承载所述第二HARQ-ACK的第二上行信道为PUCCH和PUSCH中的一个,且所述第一上行信道和所述第二上行信道的信道类型相同或者不同。
可选的,所述第一DCI中是否存在所述第一指示域根据高层信令的配置确定;或者
默认所述第一DCI中总是存在所述第一指示域。
可选的,在所述第一上行信道为PUCCH的情况下,所述第一DCI为用于调度需要在所述PUCCH上进行HARQ-ACK反馈的PDSCH的DCI,或者,所述第一DCI为用于指示需要在所述PUCCH上进行HARQ-ACK反馈的半持续调度SPS物理下行共享信道PDSCH释放release的DCI;或者
在所述第一上行信道为PUSCH的情况下,所述第一DCI为调度所述PUSCH的DCI。
可选的,当存在多个所述第一DCI时,设置多个第一DCI中的第一指示域指示相同的值,或者,依据最后一个DCI中的第一指示域进行HARQ-ACK接收。
可选的,所述第一HARQ-ACK的优先级高于所述第二HARQ-ACK的优先级;或者
所述第一HARQ-ACK为单播业务的HARQ-ACK,所述第二HARQ-ACK为多播业务的HARQ-ACK。
可选的,所述第一指示域为所述第一DCI中的现有比特的重用,或者,所述第一指示域为所述第一DCI中新增的比特。
需要说明的是,本实施例作为图4所示的实施例对应的实施例,本实施例描述的是网络设备的实施方式,其具体的实施方式可以参见图4所示的实 施例的相关说明,为了避免重复说明,本实施例不再赘述,且还可以达到相同有益效果。
下面通过多个实施例中对本公开实施例提供的方法进行举例说明:
实施例1:
假设低优先级的HARQ-ACK(即上述第二HARQ-ACK)码本使用动态码本,没有配置CBG传输,即至少需要2比特T-DAI指示低优先级动态码本的总比特数(如果配置了CBG,则需要4比特T-DAI,前2比特指示第一个子码本的T-DAI,后2比特指示第二个子码本的T-DAI,每个子码本的比特大小确定与本实施例中的过程是类似的,不再赘述);高优先级的HARQ-ACK(即上述第一HARQ-ACK)使用何种码本都可以使用本实施例中的方式(例如:高优先级的HARQ-ACK只需要按照使用的码本类似,根据协议定义的方式确定高优先级的HARQ-ACK反馈序列);假设终端被配置了支持低优先级和高优先级的信道重叠时进行复用传输或者终端被配置了支持不同优先级的HARQ-ACK复用传输,则确定对应高优先级PUCCH的DCI(例如:调度在PUCCH上传输HARQ-ACK的PDSCH的DCI,或指示SPS资源释放的DCI且这个指示SPS资源释放的DCI需要在PUCCH上传输HARQ-ACK)中包含第一指示域(第一指示域根据不同方式的映射表格可以是2比特或3比特)。网络设备按照包含第一指示域的情况发送DCI,终端按照包含第一指示域的情况接收DCI;假设根据网络设备的调度,在主载波上的一个激活BWP上,低优先级的PUCCH(LP PUCCH)传输和高优先级的PUCCH(HP PUCCH)传输在时域上存在重叠,且两个PUCCH都用于承载HARQ-ACK,两个PUCCH的优先级是根据其承载的HARQ-ACK码本的优先级确定的,而HARQ-ACK码本的优先级可以是调度PDSCH的DCI中的优先级指示域动态指示的。
具体如图6所示,网络设备可以如下:
假设网络设备调度了6个对应低优先级HARQ-ACK的下行传输(如PDSCH或SPS PDSCH release),每个下行传输对应1比特HARQ-ACK,即网络设备确定低优先级的PUCCH中承载6比特低优先级HARQ-ACK,如图3所示;网络设备根据其调度的对应高优先级HARQ-ACK的下行传输个数以 及每个下行传输对应的HARQ-ACK比特数以及高优先级HARQ-ACK码本的类型(动态或者半静态),确定A比特高优先级HARQ-ACK在高优先级PUCCH中传输;
网络设备根据方式1(第一指示域的每个指示状态指示各自对应的一种用于确定所述第二HARQ-ACK的总比特数的信息)按照如下的映射表格1,或根据方式3(即图4所示的实施例中第二指示状态的实施方式)按照如下的映射表格4,将对应HP PUCCH的DCI(即调度需要在高优先级的PUCCH上传输高优先级HARQ-ACK的PDSCH的DCI)中的2比特的第一指示域设置为“01”对应
Figure PCTCN2021135551-appb-000001
值为“2”,或者,根据方式2(即图4所示的实施例中第一指示状态的实施方式)按照如下的映射表格2,将对应HP PUCCH的DCI中的2比特第一指示域设置为“10”对应
Figure PCTCN2021135551-appb-000002
值为“2”,或者,根据方式2(即图4所示的实施例中第一指示状态的实施方式)按照如下的映射表格3,将对应HP PUCCH的DCI中的3比特第一指示域设置为“011”对应
Figure PCTCN2021135551-appb-000003
值为“3”,表示存在6个对应低优先级的DCI传输,调度6个对应低优先级HARQ-ACK的PDSCH或SPS PDSCH release,从而帮助终端确定低优先级HARQ-ACK的比特数为6比特(即第二HARQ-ACK的比特数为6);
网络设备在一个按照高优先级和低优先级HARQ-ACK复用传输方案确定的一个PUCCH资源上(具体的复用传输方案为不作限定,例如:可以是协议中已定义的或者后续协议版本新定义的方式),按照A比特高优先级HARQ-ACK和6比特低优先级HARQ-ACK接收HARQ-ACK,并分别获得A比特高优先级HARQ-ACK和6比特低优先级HARQ-ACK;
终端侧可以如下:
对于低优先级情况,基于图3的调度情况,假设终端丢失了最后一个时隙(时隙n+3)中的DCI,则相关技术的系统中,终端如果按照最后一个接收到的DCI中的T-DAI=1确定低优先级的HARQ-ACK,则确定为5比特,从而与网络设备确定的不一致;而在本公开实施例中,终端不管最后一个收到的对应低优先级HARQ-ACK的DCI中的T-DAI是多少,都是按照对应HPPUCCH的DCI中的第一指示域来确定低优先级的HARQ-ACK的比特数的(即将第一指示域的指示作为最终的T-DAI值,如果是单载波,则就是作为 最终的C-DAI值),具体的,根据网络设备采用的同一种方式对应的映射表格,可以得到2比特第一指示域所指示的
Figure PCTCN2021135551-appb-000004
值为“2”,或得到3比特第一指示域所指示的
Figure PCTCN2021135551-appb-000005
值为“3”,并且因为收到了超过2个DCI从而判断
Figure PCTCN2021135551-appb-000006
值所指示的共计传输的DCI个数为6个(同一个指示状态对应2、6、10中的哪一个值,是可以结合接收到了多少个DCI来确定的,因为假设模4的复用计数方式下,不存在连续丢失4个DCI的情况,则如果接收到的DCI已经超过了2个但没有超过6个,则可以确定当前的第一指示域指示的是6个DCI),并且根据DCI所调度的下行传输个数以及每个下行传输对应的HARQ-ACK反馈比特数,确定低优先级的HARQ-ACK共计6比特(因为最后的DCI存在丢包,则是在按照接收到的DCI对应的DAI值产生的5比特HARQ-ACK之后补1比特NACK得到6比特反馈信息);对高优先级情况,根据接收到的对应高优先级HARQ-ACK的下行传输个数以及每个下行传输对应的HARQ-ACK比特数以及高优先级HARQ-ACK码本的类型(动态或者半静态),确定A比特高优先级HARQ-ACK在高优先级PUCCH中传输;
终端在一个按照高优先级和低优先级HARQ-ACK复用传输方案确定的一个PUCCH资源上,同时发送A比特高优先级HARQ-ACK和6比特低优先级HARQ-ACK;
表1:2比特第一指示域的指示状态对应关系(对应上述方式1,其中T D=2 2=4)
Figure PCTCN2021135551-appb-000007
表2:2比特第一指示域的指示状态对应关系(对应上述方式2,其中 T D=2 2-1=3)
Figure PCTCN2021135551-appb-000008
表3:3比特第一指示域的指示状态对应关系(对应上述方式2,其中T D=4)
Figure PCTCN2021135551-appb-000009
表4:2比特第一指示域的指示状态对应关系(对应上述方式3,其中T D=2 2=4)
Figure PCTCN2021135551-appb-000010
实施例2:
假设在主载波上的一个激活BWP上,当前时刻并不存在承载高优先级HARQ-ACK(即上述第一HARQ-ACK)的高优先级PUCCH(HP PUCCH)和承载低优先级HARQ-ACK(即上述第二HARQ-ACK)的低优先级PUCCH(LP PUCCH)之间的时域重叠(情况1:网络设备调度了低优先级的传输,但承载低优先级的HARQ-ACK的LP PUCCH不与HP PUCCH在时域上重叠;情况2:网络设备没有调度低优先级的传输,因此不存在LP PUCCH);其余假设同实施例1,即高优先级和低优先级HARQ-ACK码本的假设同实施例1,且假设终端被配置了支持低优先级和高优先级的信道重叠时进行复用传输或者终端被配置了支持不同优先级的HARQ-ACK复用传输,则确定对应高优先级PUCCH的DCI(即调度在PUCCH上传输HARQ-ACK的PDSCH的DCI,或指示SPS资源释放的DCI且这个指示SPS资源释放的DCI需要在PUCCH上传输HARQ-ACK)中包含第一指示域(第一指示域根据不同方式的映射表格可以是2比特或3比特),网络设备按照包含第一指示域的情况发送DCI,终端按照包含第一指示域的情况接收DCI。
具体如图7所示,网络设备侧可以如下:
针对上述情况1:假设网络设备调度了B个对应低优先级的HARQ-ACK的下行传输(如PDSCH或SPS PDSCH release),每个下行传输对应1比特 HARQ-ACK,即网络设备确定低优先级的PUCCH中承载B比特低优先级HARQ-ACK,或者,对于上述情况2:假设网络设备没有调度低优先级传输,则没有承载低优先级的HARQ-ACK的低优先级PUCCH传输;对于情况1和情况2,网络设备根据其调度的对应高优先级HARQ-ACK的下行传输个数以及每个下行传输对应的HARQ-ACK比特数以及高优先级HARQ-ACK码本的类型(动态或者半静态),确定A比特高优先级HARQ-ACK在高优先级PUCCH中传输;
对于上述情况1和上述情况2,都不存在LP PUCCH与HP PUCCH重叠;在使用方式1(第一指示域的每个指示状态指示各自对应的一种用于确定所述第二HARQ-ACK的总比特数的信息)时,则认为对应HP PUCCH的DCI中的第一指示域不起作用,即网络设备可以将第一指示域设置为固定值或者任意值,终端不会读取这个值或按照这个值确定低优先级的HARQ-ACK的比特数;在使用方式2(图4所示的实施例中第二指示状态的实施方式)时按照映射表格2,或在使用方式3(图4所示的实施例中第三指示状态的实施方式)时按照映射表格4,将对应HP PUCCH的DCI中的2比特第一指示域设置为“00”对应
Figure PCTCN2021135551-appb-000011
值为“0”,或者,在使用方式2时按照映射表格3,将对应HP PUCCH的DCI中的3比特第一指示域设置为“000”对应
Figure PCTCN2021135551-appb-000012
值为“0”,表示没有LP PUCCH与HP PUCCH重叠即没有低优先级的HARQ-ACK需要与高优先级的HARQ-ACK一起传输。从而帮助终端确定与高优先级的HARQ-ACK一起传输的低优先级的HARQ-ACK的比特数为0,即没有低优先级的HARQ-ACK需要与高优先级的HARQ-ACK一起传输;
对于上述情况1:网络设备分别在HP PUCCH上接收A比特高优先级的HARQ-ACK,在LP PUCCH上接收B比特低优先级的HARQ-ACK;对于上述情况2:网络设备仅在HP PUCCH上接收A比特高优先级的HARQ-ACK。
终端侧可以如下:
对于上述情况1:因为分别根据低优先级和高优先级的调度情况确定LP PUCCH和HP PUCCH之间不存在时域上的重叠,则不需要进行低优先级HARQ-ACK和高优先级HARQ-ACK之间的复用传输;对于上述情况2:因为没有收到任何对应低优先级的下行传输,则确定没有承载低优先级 HARQ-ACK的LP PUCCH,因此也不需要进行低优先级HARQ-ACK和高优先级HARQ-ACK之间的复用传输;
当使用上述方式1时,根据上述判断确定对应HP PUCCH的DCI中的第一指示域不起作用,终端可以不读取这个指示域或者不关心这个指示域的指示状态,当使用上述方式2或上述方式3时,根据接收到的对应HP PUCCH的DCI中的2比特或3比特第一指示域指示的
Figure PCTCN2021135551-appb-000013
值为“0”,可以根据对应的映射表格确定此时没有低优先级的HARQ-ACK与高优先级的HARQ-ACK复用传输,则:对于上述情况1,终端直接根据接收到的对应低优先级HARQ-ACK的下行传输个数以及每个下行传输对应的HARQ-ACK比特数以及低优先级HARQ-ACK码本的类型(动态或者半静态),确定B比特低优先级HARQ-ACK在LP PUCCH中传输,并根据接收到的对应高优先级HARQ-ACK的下行传输个数以及每个下行传输对应的HARQ-ACK比特数以及高优先级HARQ-ACK码本的类型(动态或者半静态),确定A比特高优先级HARQ-ACK在HP PUCCH中传输,并分别在LP PUCCH上传输B比特的低优先级HARQ-ACK,在HP PUCCH上传输A比特的高优先级HARQ-ACK。对于上述情况2,终端根据接收到的对应高优先级HARQ-ACK的下行传输个数以及每个下行传输对应的HARQ-ACK比特数以及高优先级HARQ-ACK码本的类型(动态或者半静态),确定A比特高优先级HARQ-ACK在HP PUCCH中传输(即此时没有低优先级的HARQ-ACK传输),并仅在HP PUCCH上传输A比特的高优先级HARQ-ACK。
实施例3:
假设低优先级的HARQ-ACK使用半静态码本类型,HP PUCCH对应的DCI(即上述第一DCI)中包含的第一指示域为1或2比特,其他的假设同实施例1,具体如下:
第一指示域可以为1比特,对应方式4(即图4所示的实施例中的第三指示状态和第四指示状态的实施方式);或者2比特对应方式5(即图4所示的实施例中的第五指示状态和第六指示状态的实施方式)和方式6(即图4所示的实施例中的第七指示状态和第八指示状态的实施方式)。
对于半静态码本,网络设备发送了3比特,终端接收到1比特,按照A1 比特进行复用传输;在上述方式4-6中,如果指示按照半静态码本产生,则3比特与AN一起传输。
网络设备侧可以如下:
假设网络设备调度了3个对应低优先级HARQ-ACK(即上述第二HARQ-ACK)的下行传输(如PDSCH或SPS PDSCH release),每个下行传输对应1比特HARQ-ACK,如图2所示,则因为不满足半静态码本的回退情况(1比特HARQ-ACK传输的情况),网络设备确定LP PUCCH中承载的低优先级HARQ-ACK是根据半静态码本的确定方式,即基于K1集合确定的,则如图2所示为6比特HARQ-ACK;网络设备根据其调度的对应高优先级HARQ-ACK(即上述第一HARQ-ACK)的下行传输个数以及每个下行传输对应的HARQ-ACK比特数以及高优先级HARQ-ACK码本的类型(动态或者半静态),确定A比特高优先级HARQ-ACK在高优先级PUCCH中传输;
网络设备根据上述方式4按照如下的映射表格5,或根据上述方式5按照如下的映射表格6,将对应HP PUCCH的DCI中的1比特第一指示域设置为“1”,或者,根据上述方式6按照如下映射表格7,将对应HP PUCCH的DCI中的1比特第一指示域设置为“0”,或者,根据上述方式7(即图4所示实施例中第九指示状态、第十指示状态和第十一指示状态的实施方式)按照如下的映射表格8,将对应HP PUCCH的DCI中的2比特第一指示域设置为“10”,表示按照半静态码本的大小确定低优先级HARQ-ACK的比特数,从而帮助终端确定低优先级HARQ-ACK的比特数为6比特。
网络设备在一个按照高优先级和低优先级HARQ-ACK复用传输方案确定的一个PUCCH资源上,按照A比特高优先级HARQ-ACK和6比特低优先级HARQ-ACK接收HARQ-ACK,并分别获得A比特高优先级HARQ-ACK和6比特低优先级HARQ-ACK。
表5:1比特第一指示域的指示状态对应关系(对应上述方式4)
Figure PCTCN2021135551-appb-000014
表6:1比特第一指示域的指示状态对应关系(对应上述方式5)
Figure PCTCN2021135551-appb-000015
表7:1比特第一指示域的指示状态对应关系(对应上述方式6)
Figure PCTCN2021135551-appb-000016
表8:2比特第一指示域的指示状态对应关系(对应上述方式7)
Figure PCTCN2021135551-appb-000017
终端侧可以如下:
对于低优先级情况,基于图2的调度情况,假设终端仅接收到了第一个DCI,且第一DCI为fallback DCI且其中的DAI=1,则相关技术的系统中, 终端会认为是半静态码本的回退方式,认为低优先级的1比特HARQ-ACK在根据第一DCI确定的LP PUCCH上传输,从而与网络设备确定的不一致;而本公开实施例中,终端不管收到了几个对应低优先级HARQ-ACK的DCI,都是按照对应HP PUCCH的DCI中的第一指示域来确定低优先级的HARQ-ACK的比特数的,具体的,根据网络设备采用的同一种方式对应的映射表格,可以根据1比特第一指示域或2比特第一指示域确定所指示的是按照半静态码本的大小确定低优先级HARQ-ACK的比特数。特别的,对于上述方式6,因为0比特和按照半静态码本的大小确定比特数都对应第一指示域为状态“0”,终端根据实际收到了对应低优先级HARQ-ACK的DCI从而判断第一指示域为“0”表示的是按照半静态码本的大小确定低优先级HARQ-ACK的比特数;进而,终端确定低优先级的HARQ-ACK共计6比特;对高优先级情况,根据接收到的对应高优先级HARQ-ACK的下行传输个数以及每个下行传输对应的HARQ-ACK比特数以及高优先级HARQ-ACK码本的类型(动态或者半静态),确定A比特高优先级HARQ-ACK在高优先级PUCCH中传输。
终端在一个按照高优先级和低优先级HARQ-ACK复用传输方案确定的一个PUCCH资源上,同时发送A比特高优先级HARQ-ACK和6比特低优先级HARQ-ACK。
实施例4:
假设低优先级的HARQ-ACK使用半静态码本类型,HP PUCCH对应的DCI中包含的第一指示域为1或2比特,其他的假设同实施例2,具体如下:
对于半静态码本,网络设备没有发送LP AN,通过DCI中的特定状态指示没有LP AN复用,则只传输HP AN;使用上述方式5或者方式6,可以根据第一指示域确定没有LP AN;使用上述方式4,则根据终端没有收到任何LP传输,确定忽略第一指示域,也是只传输HP AN,或者认为不出现重叠,则不需要看第一指示域来确定LP AN比特数;
网络设备侧可以如下:
情况1:假设网络设备调度了大于1个对应低优先级的HARQ-ACK的下行传输(如PDSCH或SPS PDSCH release),每个下行传输对应1比特 HARQ-ACK,即网络设备按照半静态码本的确定方式确定低优先级的PUCCH中承载B比特低优先级HARQ-ACK(即上述第二HARQ-ACK)。或者,情况2:假设网络设备没有调度低优先级传输,则没有承载低优先级的HARQ-ACK的低优先级PUCCH传输;对于情况1和情况2,网络设备根据其调度的对应高优先级HARQ-ACK(即上述第一HARQ-ACK)的下行传输个数以及每个下行传输对应的HARQ-ACK比特数以及高优先级HARQ-ACK码本的类型(动态或者半静态),确定A比特高优先级HARQ-ACK在高优先级PUCCH中传输;
对于上述情况1和情况2,都不存在LP PUCCH与HP PUCCH重叠;则在使用上述方式4时,认为对应HP PUCCH的DCI中的第一指示域不起作用,即网络设备可以将第一指示域设置为固定值或者任意值,终端不会读取这个值或按照这个值确定低优先级的HARQ-ACK的比特数;在使用上述方式5时按照映射表格6,或在使用上述方式6时按照映射表格7,将对应HP PUCCH的DCI中的1比特第一指示域设置为“0”,或者,在使用上述方式7时按照映射表格8,将对应HP PUCCH的DCI中的2比特第一指示域设置为“00”,表示没有LP PUCCH与HP PUCCH重叠即没有低优先级的HARQ-ACK需要与高优先级的HARQ-ACK一起传输。从而帮助终端确定与高优先级的HARQ-ACK一起传输的低优先级的HARQ-ACK的比特数为0,即没有低优先级的HARQ-ACK需要与高优先级的HARQ-ACK一起传输;
对于上述情况1:网络设备分别在HP PUCCH上接收A比特高优先级的HARQ-ACK,在LP PUCCH上接收B比特低优先级的HARQ-ACK;对于上述情况2:网络设备仅在HP PUCCH上接收A比特高优先级的HARQ-ACK。
终端侧可以如下:
对于上述情况1:因为分别根据低优先级和高优先级的调度情况确定LP PUCCH和HP PUCCH之间不存在时域上的重叠,则不需要进行低优先级HARQ-ACK和高优先级HARQ-ACK之间的复用传输;对于上述情况2:因为没有收到任何对应低优先级的下行传输,则确定没有承载低优先级HARQ-ACK的LP PUCCH,因此也不需要进行低优先级HARQ-ACK和高优先级HARQ-ACK之间的复用传输;
当使用上述方式4时,根据上述判断确定对应HP PUCCH的DCI中的第一指示域不起作用,终端可以不读取这个指示域或者不关心这个指示域的指示状态,当使用上述方式5或方式6或方式7时,根据接收到的对应HP PUCCH的DCI中的1比特或2比特第一指示域的值,可以根据对应的映射表格确定此时没有低优先级的HARQ-ACK与高优先级的HARQ-ACK复用传输,其中,特别的,对于方式6,在上述情况1中,因为终端收到了多个对应低优先级HARQ-ACK的下行传输且确定的LP PUCCH资源与HP PUCCH不重叠,则判断此时第一指示域所指示的“0”表示的是没有低优先级HARQ-ACK与高优先级HARQ-ACK进行复用传输;在上述情况2中,因为终端没有收到任何对应低优先级HARQ-ACK的下行传输,则判断此时第一指示域所指示的“0”表示的是没有低优先级HARQ-ACK与高优先级HARQ-ACK进行复用传输。进而,对于上述情况1,终端直接根据接收到的对应低优先级HARQ-ACK的下行传输个数以及每个下行传输对应的HARQ-ACK比特数以及低优先级HARQ-ACK码本的类型(动态或者半静态),确定B比特低优先级HARQ-ACK在LP PUCCH中传输,并根据接收到的对应高优先级HARQ-ACK的下行传输个数以及每个下行传输对应的HARQ-ACK比特数以及高优先级HARQ-ACK码本的类型(动态或者半静态),确定A比特高优先级HARQ-ACK在HP PUCCH中传输,并分别在LP PUCCH上传输B比特的低优先级HARQ-ACK,在HP PUCCH上传输A比特的高优先级HARQ-ACK;对于情况2,终端根据接收到的对应高优先级HARQ-ACK的下行传输个数以及每个下行传输对应的HARQ-ACK比特数以及高优先级HARQ-ACK码本的类型(动态或者半静态),确定A比特高优先级HARQ-ACK在HP PUCCH中传输(即此时没有低优先级的HARQ-ACK传输),并仅在HP PUCCH上传输A比特的高优先级HARQ-ACK;
需要说明的是,上述多个实施例中,上述终端和网络设备执行步骤不分先后,只是为了说明具体行为。且上述多个实施例中仅以一个DCI调度一个PDSCH,一个PDSCH对应1比特反馈为例,一个DCI如果调度多个PDSCH或一个PDSCH对应多比特反馈(例如多TB或配置CBG的情况),仅影响根据T-DAI确定的总比特数的结果,并不影响上述根据第一指示域确定比特数 的过程,对确定的比特数作相应的替换后可以重用上述方式。
另外,在上述多个实施例中,如将其中一个PUCCH或两个PUCCH都替换为PUSCH,同样适用,其中,如果高优先级PUCCH替换为高优先级PUSCH,则第一指示域是在调度高优先级PUSCH的DCI中存在。
且上述2、3比特第一指示域仅为示例,还可以是1比特通过模2的方式来指示不同的累计DCI个数,当然还可以是大于2或3比特等情况。其中,不同的指示状态与对应的DCI个数的对应关系也可以改变,都包含在本公开实施例中。
且上述实施例中不同优先级的HARQ-ACK替换为单播和多播的HARQ-ACK,或者替换为其他的两种不同的UCI传输,也同样适用。
本公开实施例中,针对两类不同的HARQ-ACK在传输上存在冲突时,可以根据对应第一类HARQ-ACK或对应承载第一类HARQ-ACK的上行信道的DCI中的第一指示域来确定第二类HARQ-ACK的比特数,从而避免第二类HARQ-ACK比特数因为丢包导致的变化影响第一类HARQ-ACK的传输。
请参见图8,图8是本公开实施例提供的一种终端的结构图,如图8所示,包括存储器820、收发机800和处理器810:
存储器820,用于存储计算机程序;收发机800,用于在所述处理器810的控制下收发数据;处理器810,用于读取所述存储器820中的计算机程序并执行以下操作:
接收第一下行控制信息DCI,所述第一DCI的第一指示域用于确定如下至少一项:第二混合自动重传请求确认HARQ-ACK的比特数、第二HARQ-ACK是否存在、第二HARQ-ACK是否与第一HARQ-ACK复用传输;
依据所述第一指示域进行HARQ-ACK传输;
其中,所述第一DCI为承载所述第一HARQ-ACK的第一上行信道对应的DCI,所述第二HARQ-ACK为与所述第一HARQ-ACK复用传输的HARQ-ACK。
收发机800,用于在处理器810的控制下接收和发送数据。
其中,在图8中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器810代表的一个或多个处理器和存储器820代表的存储器的各种电 路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机800可以是多个元件,即包括发送机和接收机,提供用于在传输介质上与各种其他装置通信的单元,这些传输介质包括,这些传输介质包括无线信道、有线信道、光缆等传输介质。针对不同的用户设备,用户接口830还可以是能够外接内接需要设备的接口,连接的设备包括但不限于小键盘、显示器、扬声器、麦克风、操纵杆等。
处理器810负责管理总线架构和通常的处理,存储器820可以存储处理器800在执行操作时所使用的数据。
可选的,处理器810可以是中央处理器(central processing unit,CPU)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)或复杂可编程逻辑器件(Complex Programmable Logic Device,CPLD),处理器也可以采用多核架构。
处理器通过调用存储器存储的计算机程序,用于按照获得的可执行指令执行本公开实施例提供的任一所述方法。处理器与存储器也可以物理上分开布置。
可选的,接收第一下行控制信息DCI,所述第一DCI的第一指示域用于确定如下至少一项:第二混合自动重传请求确认HARQ-ACK的比特数、第二HARQ-ACK是否存在、第二HARQ-ACK是否与第一HARQ-ACK复用传输;
依据所述第一指示域进行HARQ-ACK传输;
其中,所述第一DCI为承载所述第一HARQ-ACK的第一上行信道对应的DCI,所述第二HARQ-ACK为与所述第一HARQ-ACK复用传输的HARQ-ACK。
可选的,在所述第二HARQ-ACK使用动态HARQ-ACK码本的情况下:
所述第一指示域的每个指示状态指示各自对应的一种用于确定所述第二HARQ-ACK的总比特数的信息;或者
所述第一指示域的第一指示状态用于指示不存在所述第二HARQ-ACK, 或者指示所述第二HARQ-ACK不与所述第一HARQ-ACK复用传输,或者指示所述第二HARQ-ACK的总比特数为0,或者指示与所述第二HARQ-ACK对应的下行传输的总数为0,所述第一指示域中除所述第一指示状态之外的每个指示状态指示各自对应的一种用于确定第二HARQ-ACK的总比特数的信息,所述总比特数大于0;或者
所述第一指示域的第二指示状态在第一条件下指示一种用于确定第二HARQ-ACK的总比特数的信息,所述总比特数大于0,在第二条件下所述第二指示状态用于指示不存在所述第二HARQ-ACK,或者指示所述第二HARQ-ACK不与所述第一HARQ-ACK复用传输,或者指示所述第二HARQ-ACK的总比特数为0,或者指示与所述第二HARQ-ACK对应的下行传输的总数为0,所述第一指示域中除所述第二指示状态之外的每个指示状态指示各自对应的一种用于确定第二HARQ-ACK的总比特数的信息,所述总比特数大于0。
可选的,所述用于确定第二HARQ-ACK的总比特数的信息,包括:
所述第二HARQ-ACK的总比特数,或者,与所述第二HARQ-ACK对应的下行传输的总数。
可选的,当所述第一指示域指示用于确定第二HARQ-ACK的总比特数的信息时:
在所述第二HARQ-ACK的动态HARQ-ACK码本包括多个子码本的情况下,所述第一指示域包括多个子指示域,每个子指示域用于指示各自对应的用于确定第二HARQ-ACK的子码本的比特数的信息。
可选的,在所述第二HARQ-ACK使用半静态HARQ-ACK码本的情况下:
所述第一指示域至少包括:第三指示状态和第四指示状态,所述第三指示状态用于指示所述第二HARQ-ACK的比特数为1比特或指示按照回退模式确定第二HARQ-ACK的比特数,所述第四指示状态用于指示按照半静态HARQ-ACK码本大小确定所述第二HARQ-ACK的比特数;或者
所述第一指示域至少包括:第五指示状态和第六指示状态,所述第五指示状态用于指示不存在所述第二HARQ-ACK,或者指示所述第二HARQ-ACK不与所述第一HARQ-ACK复用传输,或者指示所述第二 HARQ-ACK的比特数为0,或者指示与所述第二HARQ-ACK对应的下行传输的个数为0,所述第六指示状态用于指示按照半静态HARQ-ACK码本大小确定所述第二HARQ-ACK的比特数;或者
所述第一指示域至少包括:第七指示状态和第八指示状态,其中,所述第七指示状态在第一条件下指示所述第二HARQ-ACK的比特数为1比特或指示按照回退模式确定第二HARQ-ACK的比特数,在第二条件下所述第七指示状态用于指示不存在所述第二HARQ-ACK,或者指示所述第二HARQ-ACK不与所述第一HARQ-ACK复用传输,或者指示所述第二HARQ-ACK的比特数为0,或者指示与所述第二HARQ-ACK对应的下行传输的个数为0,所述第八指示状态用于指示按照半静态HARQ-ACK码本大小确定所述第二HARQ-ACK的比特数;或者,所述第七指示状态用于指示所述第二HARQ-ACK的比特数为1比特或指示按照回退模式确定第二HARQ-ACK的比特数,所述第八指示状态在第一条件下指示按照半静态HARQ-ACK码本大小确定所述第二HARQ-ACK的比特数,在第二条件下所述第八指示状态用于指示不存在第二HARQ-ACK,或者指示第二HARQ-ACK不与第一HARQ-ACK复用传输,或者指示所述第二HARQ-ACK的比特数为0,或者指示与所述第二HARQ-ACK对应的下行传输的个数为0;或者
所述第一指示域至少包括:第九指示状态、第十指示状态和第十一指示状态,所述第九指示状态用于指示不存在所述第二HARQ-ACK,或者指示所述第二HARQ-ACK不与所述第一HARQ-ACK复用传输,或者指示所述第二HARQ-ACK的比特数为0,或者指示与所述第二HARQ-ACK对应的下行传输的个数为0,所述第十指示状态用于指示所述第二HARQ-ACK的比特数为1比特或指示按照回退模式确定第二HARQ-ACK的比特数,所述第十一指示状态用于指示按照半静态HARQ-ACK码本大小确定所述第二HARQ-ACK的比特数。
可选的,所述第一条件包括:
存在与所述第二HARQ-ACK对应的下行传输;或者
存在具有DCI调度的与所述第二HARQ-ACK对应的下行传输;或者,
所述第一上行信道与第二上行信道在时域上存在重叠,其中,所述第二上行信道为承载第二HARQ-ACK的信道;
所述第二条件包括:
不存在与所述第二HARQ-ACK对应的下行传输;或者
不存在具有DCI调度的与所述第二HARQ-ACK对应的下行传输;或者,
所述第一上行信道与第二上行信道在时域上不存在重叠,其中,所述第二上行信道为承载第二HARQ-ACK的信道。
可选的,在所述第一指示域的每个指示状态指示各自对应的一种用于确定第二HARQ-ACK的总比特数的信息情况下,如果确定没有承载所述第二HARQ-ACK的第二上行信道与所述第一上行信道在时域上存在重叠,则忽略所述第一指示域的指示信息。
可选的,在所述第一指示域包括所述第三指示状态和所述第四指示状态的情况下,如果确定没有承载所述第二HARQ-ACK的第二上行信道与所述第一上行信道在时域上存在重叠,则忽略所述第一指示域的指示信息。
可选的,所述依据所述第一指示域进行HARQ-ACK传输,包括:
根据所述第一指示域,确定所述第二HARQ-ACK的比特数;
按照所述第二HARQ-ACK的比特数,进行HARQ-ACK传输。
可选的,所述按照所述第二HARQ-ACK的比特数,进行HARQ-ACK传输,包括:
按照所述第二HARQ-ACK的比特数,在同一个信道上同时传输所述第一HARQ-ACK和所述第二HARQ-ACK;或者,
当所述第二HARQ-ACK的比特数大于0或确定传输所述第二HARQ-ACK时,按照所述第二HARQ-ACK的比特数,在同一个信道上同时传输所述第一HARQ-ACK和所述第二HARQ-ACK;或者
当所述第二HARQ-ACK的比特数为0或确定不传输所述第二HARQ-ACK时,在所述第一上行信道上传输所述第一HARQ-ACK。
可选的,所述根据所述第一指示域,确定所述第二HARQ-ACK的比特数,包括:
在承载所述第一HARQ-ACK的第一上行信道与承载所述第二 HARQ-ACK的第二上行信道在时域上存在重叠的情况下,根据所述第一指示域,确定所述第二HARQ-ACK的比特数。
可选的,所述第一上行信道的优先级高于承载所述第二HARQ-ACK的第二上行信道的优先级。
可选的,所述第一上行信道为物理上行控制信道PUCCH和物理上行共享信道PUSCH中的一个,承载所述第二HARQ-ACK的第二上行信道为PUCCH和PUSCH中的一个,且所述第一上行信道和所述第二上行信道的信道类型相同或者不同。
可选的,所述第一DCI中是否存在所述第一指示域根据高层信令的配置确定;或者
默认所述第一DCI中总是存在所述第一指示域。
可选的,在所述第一上行信道为PUCCH的情况下,所述第一DCI为用于调度需要在所述PUCCH上进行HARQ-ACK反馈的PDSCH的DCI,或者,所述第一DCI为用于指示需要在所述PUCCH上进行HARQ-ACK反馈的半持续调度SPS物理下行共享信道PDSCH释放release的DCI;或者
在所述第一上行信道为PUSCH的情况下,所述第一DCI为调度所述PUSCH的DCI。
可选的,当存在多个所述第一DCI时,多个第一DCI中的第一指示域的值相同,或者,终端依据最后一个DCI中的第一指示域进行HARQ-ACK传输。
可选的,所述第一HARQ-ACK的优先级高于所述第二HARQ-ACK的优先级;或者
所述第一HARQ-ACK为单播业务的HARQ-ACK,所述第二HARQ-ACK为多播业务的HARQ-ACK。
可选的,所述第一指示域为所述第一DCI中的现有比特的重用,或者,所述第一指示域为所述第一DCI中新增的比特。
在此需要说明的是,本公开实施例提供的上述终端,能够实现上述方法实施例所实现的所有方法步骤,且能够达到相同的技术效果,在此不再对本实施例中与方法实施例相同的部分及有益效果进行具体赘述。
请参见图9,图9是本公开实施例提供的一种网络设备的结构图,如图9所示,包括存储器920、收发机900和处理器910:
存储器920,用于存储计算机程序;收发机900,用于在所述处理器910的控制下收发数据;处理器910,用于读取所述存储器920中的计算机程序并执行以下操作:
发送第一DCI,所述第一DCI的第一指示域用于确定如下至少一项:第二混合自动重传请求确认HARQ-ACK的比特数、第二HARQ-ACK是否存在、第二HARQ-ACK是否与第一HARQ-ACK复用传输;
依据所述第一指示域进行HARQ-ACK接收;
其中,所述第一DCI为承载所述第一HARQ-ACK的第一上行信道对应的DCI,所述第二HARQ-ACK为与所述第一HARQ-ACK复用传输的HARQ-ACK。
收发机900,用于在处理器910的控制下接收和发送数据。
其中,在图9中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器910代表的一个或多个处理器和存储器920代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机900可以是多个元件,即包括发送机和接收机,提供用于在传输介质上与各种其他装置通信的单元,这些传输介质包括无线信道、有线信道、光缆等传输介质。处理器910负责管理总线架构和通常的处理,存储器920可以存储处理器910在执行操作时所使用的数据。
处理器910可以是中央处理器(central processing unit,CPU)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)或复杂可编程逻辑器件(Complex Programmable Logic Device,CPLD),处理器也可以采用多核架构。
处理器通过调用存储器存储的计算机程序,用于按照获得的可执行指令执行本公开实施例提供的任一所述方法。处理器与存储器也可以物理上分开布置。
可选的,
可选的,在所述第二HARQ-ACK使用动态HARQ-ACK码本的情况下:
所述第一指示域的每个指示状态指示各自对应的一种用于确定所述第二HARQ-ACK的总比特数的信息;或者
所述第一指示域的第一指示状态用于指示不存在所述第二HARQ-ACK,或者指示所述第二HARQ-ACK不与所述第一HARQ-ACK复用传输,或者指示所述第二HARQ-ACK的总比特数为0,或者指示与所述第二HARQ-ACK对应的下行传输的总数为0,所述第一指示域中除所述第一指示状态之外的每个指示状态指示各自对应的一种用于确定第二HARQ-ACK的总比特数的信息,所述总比特数大于0;或者
所述第一指示域的第二指示状态在第一条件下指示一种用于确定第二HARQ-ACK的总比特数的信息,所述总比特数大于0,在第二条件下所述第二指示状态用于指示不存在所述第二HARQ-ACK,或者指示所述第二HARQ-ACK不与所述第一HARQ-ACK复用传输,或者指示所述第二HARQ-ACK的总比特数为0,或者指示与所述第二HARQ-ACK对应的下行传输的总数为0,所述第一指示域中除所述第二指示状态之外的每个指示状态指示各自对应的一种用于确定第二HARQ-ACK的总比特数的信息,所述总比特数大于0。
可选的,所述用于确定第二HARQ-ACK的总比特数的信息,包括:
所述第二HARQ-ACK的总比特数,或者,与所述第二HARQ-ACK对应的下行传输的总数。
可选的,当所述第一指示域指示用于确定第二HARQ-ACK的总比特数的信息时:
在所述第二HARQ-ACK的动态HARQ-ACK码本包括多个子码本的情况下,所述第一指示域包括多个子指示域,每个子指示域用于指示各自对应的用于确定第二HARQ-ACK的子码本的比特数的信息。
可选的,在所述第二HARQ-ACK使用半静态HARQ-ACK码本的情况下:
所述第一指示域至少包括:第三指示状态和第四指示状态,所述第三指示状态用于指示所述第二HARQ-ACK的比特数为1比特或指示按照回退模 式确定第二HARQ-ACK的比特数,所述第四指示状态用于指示按照半静态HARQ-ACK码本大小确定所述第二HARQ-ACK的比特数;或者
所述第一指示域至少包括:第五指示状态和第六指示状态,所述第五指示状态用于指示不存在所述第二HARQ-ACK,或者指示所述第二HARQ-ACK不与所述第一HARQ-ACK复用传输,或者指示所述第二HARQ-ACK的比特数为0,或者指示与所述第二HARQ-ACK对应的下行传输的个数为0,所述第六指示状态用于指示按照半静态HARQ-ACK码本大小确定所述第二HARQ-ACK的比特数;或者
所述第一指示域至少包括:第七指示状态和第八指示状态,其中,所述第七指示状态在第一条件下指示所述第二HARQ-ACK的比特数为1比特或指示按照回退模式确定第二HARQ-ACK的比特数,在第二条件下所述第七指示状态用于指示不存在所述第二HARQ-ACK,或者指示所述第二HARQ-ACK不与所述第一HARQ-ACK复用传输,或者指示所述第二HARQ-ACK的比特数为0,或者指示与所述第二HARQ-ACK对应的下行传输的个数为0,所述第八指示状态用于指示按照半静态HARQ-ACK码本大小确定所述第二HARQ-ACK的比特数;或者,所述第七指示状态用于指示所述第二HARQ-ACK的比特数为1比特或指示按照回退模式确定第二HARQ-ACK的比特数,所述第八指示状态在第一条件下指示按照半静态HARQ-ACK码本大小确定所述第二HARQ-ACK的比特数,在第二条件下所述第八指示状态用于指示不存在第二HARQ-ACK,或者指示第二HARQ-ACK不与第一HARQ-ACK复用传输,或者指示所述第二HARQ-ACK的比特数为0,或者指示与所述第二HARQ-ACK对应的下行传输的个数为0;或者
所述第一指示域至少包括:第九指示状态、第十指示状态和第十一指示状态,所述第九指示状态用于指示不存在所述第二HARQ-ACK,或者指示所述第二HARQ-ACK不与所述第一HARQ-ACK复用传输,或者指示所述第二HARQ-ACK的比特数为0,或者指示与所述第二HARQ-ACK对应的下行传输的个数为0,所述第十指示状态用于指示所述第二HARQ-ACK的比特数为1比特或指示按照回退模式确定第二HARQ-ACK的比特数,所述第十一指示 状态用于指示按照半静态HARQ-ACK码本大小确定所述第二HARQ-ACK的比特数。
可选的,所述第一条件包括:
存在与所述第二HARQ-ACK对应的下行传输;或者
存在具有DCI调度的与所述第二HARQ-ACK对应的下行传输;或者,
所述第一上行信道与第二上行信道在时域上存在重叠,其中,所述第二上行信道为承载第二HARQ-ACK的信道;
所述第二条件包括:
不存在与所述第二HARQ-ACK对应的下行传输;或者
不存在具有DCI调度的与所述第二HARQ-ACK对应的下行传输;或者,
所述第一上行信道与第二上行信道在时域上不存在重叠,其中,所述第二上行信道为承载第二HARQ-ACK的信道。
可选的,在所述第一指示域的每个指示状态指示各自对应的一种用于确定第二HARQ-ACK的总比特数的信息情况下,如果确定没有承载所述第二HARQ-ACK的第二上行信道与所述第一上行信道在时域上存在重叠,则任意设置所述第一指示域的指示信息。
可选的,在所述第一指示域包括所述第三指示状态和所述第四指示状态的情况下,如果确定没有承载所述第二HARQ-ACK的第二上行信道与所述第一上行信道在时域上存在重叠,则任意设置所述第一指示域的指示信息。
可选的,所述依据所述第一指示域进行HARQ-ACK接收,包括:
根据所述第一指示域,确定所述第二HARQ-ACK的比特数;
按照所述第二HARQ-ACK的比特数,进行HARQ-ACK接收。
可选的,所述按照所述第二HARQ-ACK的比特数,进行HARQ-ACK接收,包括:
按照所述第二HARQ-ACK的比特数,在同一个信道上同时接收所述第一HARQ-ACK和所述第二HARQ-ACK;或者,
当所述第二HARQ-ACK的比特数大于0或确定终端传输所述第二HARQ-ACK时,按照所述第二HARQ-ACK的比特数,在同一个信道上同时接收所述第一HARQ-ACK和所述第二HARQ-ACK;或者
当所述第二HARQ-ACK的比特数为0或确定终端不传输所述第二HARQ-ACK时,在所述第一上行信道上接收所述第一HARQ-ACK。
可选的,所述根据所述第一指示域,确定所述第二HARQ-ACK的比特数,包括:
在承载所述第一HARQ-ACK的第一上行信道与承载所述第二HARQ-ACK的第二上行信道在时域上存在重叠的情况下,根据所述第一指示域,确定所述第二HARQ-ACK的比特数。
可选的,所述第一上行信道的优先级高于承载所述第二HARQ-ACK的第二上行信道的优先级。
可选的,所述第一上行信道为物理上行控制信道PUCCH和物理上行共享信道PUSCH中的一个,承载所述第二HARQ-ACK的第二上行信道为PUCCH和PUSCH中的一个,且所述第一上行信道和所述第二上行信道的信道类型相同或者不同。
可选的,所述第一DCI中是否存在所述第一指示域根据高层信令的配置确定;或者
默认所述第一DCI中总是存在所述第一指示域。
可选的,在所述第一上行信道为PUCCH的情况下,所述第一DCI为用于调度需要在所述PUCCH上进行HARQ-ACK反馈的PDSCH的DCI,或者,所述第一DCI为用于指示需要在所述PUCCH上进行HARQ-ACK反馈的半静态SPS物理下行共享信道PDSCH释放release的DCI;或者
在所述第一上行信道为PUSCH的情况下,所述第一DCI为调度所述PUSCH的DCI。
可选的,当存在多个所述第一DCI时,设置多个第一DCI中的第一指示域指示相同的值,或者,依据最后一个DCI中的第一指示域进行HARQ-ACK接收。
可选的,所述第一HARQ-ACK的优先级高于所述第二HARQ-ACK的优先级;或者
所述第一HARQ-ACK为单播业务的HARQ-ACK,所述第二HARQ-ACK为多播业务的HARQ-ACK。
可选的,所述第一指示域为所述第一DCI中的现有比特的重用,或者,所述第一指示域为所述第一DCI中新增的比特。
在此需要说明的是,本公开实施例提供的上述网络设备,能够实现上述方法实施例所实现的所有方法步骤,且能够达到相同的技术效果,在此不再对本实施例中与方法实施例相同的部分及有益效果进行具体赘述。
请参见图10,图10是本公开实施例提供的一种终端的结构图,如图10所示,终端1000包括:
接收单元1001,用于终端接收第一DCI,所述第一DCI的第一指示域用于确定如下至少一项:第二混合自动重传请求确认HARQ-ACK的比特数、第二HARQ-ACK是否存在、第二HARQ-ACK是否与第一HARQ-ACK复用传输;
传输单元1002,用于依据所述第一指示域进行HARQ-ACK传输;
其中,所述第一DCI为承载所述第一HARQ-ACK的第一上行信道对应的DCI,所述第二HARQ-ACK为与所述第一HARQ-ACK复用传输的HARQ-ACK。
可选的,在所述第二HARQ-ACK使用动态HARQ-ACK码本的情况下:
所述第一指示域的每个指示状态指示各自对应的一种用于确定所述第二HARQ-ACK的总比特数的信息;或者
所述第一指示域的第一指示状态用于指示不存在所述第二HARQ-ACK,或者指示所述第二HARQ-ACK不与所述第一HARQ-ACK复用传输,或者指示所述第二HARQ-ACK的总比特数为0,或者指示与所述第二HARQ-ACK对应的下行传输的总数为0,所述第一指示域中除所述第一指示状态之外的每个指示状态指示各自对应的一种用于确定第二HARQ-ACK的总比特数的信息,所述总比特数大于0;或者
所述第一指示域的第二指示状态在第一条件下指示一种用于确定第二HARQ-ACK的总比特数的信息,所述总比特数大于0,在第二条件下所述第二指示状态用于指示不存在所述第二HARQ-ACK,或者指示所述第二HARQ-ACK不与所述第一HARQ-ACK复用传输,或者指示所述第二HARQ-ACK的总比特数为0,或者指示与所述第二HARQ-ACK对应的下行 传输的总数为0,所述第一指示域中除所述第二指示状态之外的每个指示状态指示各自对应的一种用于确定第二HARQ-ACK的总比特数的信息,所述总比特数大于0。
可选的,所述用于确定第二HARQ-ACK的总比特数的信息,包括:
所述第二HARQ-ACK的总比特数,或者,与所述第二HARQ-ACK对应的下行传输的总数。
可选的,当所述第一指示域指示用于确定第二HARQ-ACK的总比特数的信息时:
在所述第二HARQ-ACK的动态HARQ-ACK码本包括多个子码本的情况下,所述第一指示域包括多个子指示域,每个子指示域用于指示各自对应的用于确定第二HARQ-ACK的子码本的比特数的信息。
可选的,在所述第二HARQ-ACK使用半静态HARQ-ACK码本的情况下:
所述第一指示域至少包括:第三指示状态和第四指示状态,所述第三指示状态用于指示所述第二HARQ-ACK的比特数为1比特或指示按照回退模式确定第二HARQ-ACK的比特数,所述第四指示状态用于指示按照半静态HARQ-ACK码本大小确定所述第二HARQ-ACK的比特数;或者
所述第一指示域至少包括:第五指示状态和第六指示状态,所述第五指示状态用于指示不存在所述第二HARQ-ACK,或者指示所述第二HARQ-ACK不与所述第一HARQ-ACK复用传输,或者指示所述第二HARQ-ACK的比特数为0,或者指示与所述第二HARQ-ACK对应的下行传输的个数为0,所述第六指示状态用于指示按照半静态HARQ-ACK码本大小确定所述第二HARQ-ACK的比特数;或者
所述第一指示域至少包括:第七指示状态和第八指示状态,其中,所述第七指示状态在第一条件下指示所述第二HARQ-ACK的比特数为1比特或指示按照回退模式确定第二HARQ-ACK的比特数,在第二条件下所述第七指示状态用于指示不存在所述第二HARQ-ACK,或者指示所述第二HARQ-ACK不与所述第一HARQ-ACK复用传输,或者指示所述第二HARQ-ACK的比特数为0,或者指示与所述第二HARQ-ACK对应的下行传输的个数为0,所述第八指示状态用于指示按照半静态HARQ-ACK码本大小 确定所述第二HARQ-ACK的比特数;或者,所述第七指示状态用于指示所述第二HARQ-ACK的比特数为1比特或指示按照回退模式确定第二HARQ-ACK的比特数,所述第八指示状态在第一条件下指示按照半静态HARQ-ACK码本大小确定所述第二HARQ-ACK的比特数,在第二条件下所述第八指示状态用于指示不存在第二HARQ-ACK,或者指示第二HARQ-ACK不与第一HARQ-ACK复用传输,或者指示所述第二HARQ-ACK的比特数为0,或者指示与所述第二HARQ-ACK对应的下行传输的个数为0;或者
所述第一指示域至少包括:第九指示状态、第十指示状态和第十一指示状态,所述第九指示状态用于指示不存在所述第二HARQ-ACK,或者指示所述第二HARQ-ACK不与所述第一HARQ-ACK复用传输,或者指示所述第二HARQ-ACK的比特数为0,或者指示与所述第二HARQ-ACK对应的下行传输的个数为0,所述第十指示状态用于指示所述第二HARQ-ACK的比特数为1比特或指示按照回退模式确定第二HARQ-ACK的比特数,所述第十一指示状态用于指示按照半静态HARQ-ACK码本大小确定所述第二HARQ-ACK的比特数。
可选的,所述第一条件包括:
存在与所述第二HARQ-ACK对应的下行传输;或者
存在具有DCI调度的与所述第二HARQ-ACK对应的下行传输;或者,
所述第一上行信道与第二上行信道在时域上存在重叠,其中,所述第二上行信道为承载第二HARQ-ACK的信道;
所述第二条件包括:
不存在与所述第二HARQ-ACK对应的下行传输;或者
不存在具有DCI调度的与所述第二HARQ-ACK对应的下行传输;或者,
所述第一上行信道与第二上行信道在时域上不存在重叠,其中,所述第二上行信道为承载第二HARQ-ACK的信道。
可选的,在所述第一指示域的每个指示状态指示各自对应的一种用于确定第二HARQ-ACK的总比特数的信息情况下,如果确定没有承载所述第二HARQ-ACK的第二上行信道与所述第一上行信道在时域上存在重叠,则忽略 所述第一指示域的指示信息。
可选的,在所述第一指示域包括所述第三指示状态和所述第四指示状态的情况下,如果确定没有承载所述第二HARQ-ACK的第二上行信道与所述第一上行信道在时域上存在重叠,则忽略所述第一指示域的指示信息。
可选的,传输单元1002,包括:
确定子单元,用于根据所述第一指示域,确定所述第二HARQ-ACK的比特数;
传输子单元,用于按照所述第二HARQ-ACK的比特数,进行HARQ-ACK传输。
可选的,传输子单元用于:
按照所述第二HARQ-ACK的比特数,在同一个信道上同时传输所述第一HARQ-ACK和所述第二HARQ-ACK;或者,
当所述第二HARQ-ACK的比特数大于0或确定传输所述第二HARQ-ACK时,按照所述第二HARQ-ACK的比特数,在同一个信道上同时传输所述第一HARQ-ACK和所述第二HARQ-ACK;或者
当所述第二HARQ-ACK的比特数为0或确定不传输所述第二HARQ-ACK时,在所述第一上行信道上传输所述第一HARQ-ACK。
可选的,确定子单元用于:
在承载所述第一HARQ-ACK的第一上行信道与承载所述第二HARQ-ACK的第二上行信道在时域上存在重叠的情况下,根据所述第一指示域,确定所述第二HARQ-ACK的比特数。
可选的,所述第一上行信道的优先级高于承载所述第二HARQ-ACK的第二上行信道的优先级。
可选的,所述第一上行信道为物理上行控制信道PUCCH和物理上行共享信道PUSCH中的一个,承载所述第二HARQ-ACK的第二上行信道为PUCCH和PUSCH中的一个,且所述第一上行信道和所述第二上行信道的信道类型相同或者不同。
可选的,所述第一DCI中是否存在所述第一指示域根据高层信令的配置确定;或者
默认所述第一DCI中总是存在所述第一指示域。
可选的,在所述第一上行信道为PUCCH的情况下,所述第一DCI为用于调度需要在所述PUCCH上进行HARQ-ACK反馈的PDSCH的DCI,或者,所述第一DCI为用于指示需要在所述PUCCH上进行HARQ-ACK反馈的SPS物理下行共享信道PDSCH释放release的DCI;或者
在所述第一上行信道为PUSCH的情况下,所述第一DCI为调度所述PUSCH的DCI。
可选的,当存在多个所述第一DCI时,多个第一DCI中的第一指示域的值相同,或者,终端依据最后一个DCI中的第一指示域进行HARQ-ACK传输。
可选的,所述第一HARQ-ACK的优先级高于所述第二HARQ-ACK的优先级;或者
所述第一HARQ-ACK为单播业务的HARQ-ACK,所述第二HARQ-ACK为多播业务的HARQ-ACK。
可选的,所述第一指示域为所述第一DCI中的现有比特的重用,或者,所述第一指示域为所述第一DCI中新增的比特。
在此需要说明的是,本公开实施例提供的上述终端,能够实现上述方法实施例所实现的所有方法步骤,且能够达到相同的技术效果,在此不再对本实施例中与方法实施例相同的部分及有益效果进行具体赘述。
请参见图11,图11是本公开实施例提供的一种网络设备的结构图,如图11所示,网络设备1100包括:
发送单元1101,用于网络设备发送第一DCI,所述第一DCI的第一指示域用于确定如下至少一项:第二混合自动重传请求确认HARQ-ACK的比特数、第二HARQ-ACK是否存在、第二HARQ-ACK是否与第一HARQ-ACK复用传输;
接收单元1102,用于依据所述第一指示域进行HARQ-ACK接收;
其中,所述第一DCI为承载所述第一HARQ-ACK的第一上行信道对应的DCI,所述第二HARQ-ACK为与所述第一HARQ-ACK复用传输的HARQ-ACK。
可选的,在所述第二HARQ-ACK使用动态HARQ-ACK码本的情况下:
所述第一指示域的每个指示状态指示各自对应的一种用于确定所述第二HARQ-ACK的总比特数的信息;或者
所述第一指示域的第一指示状态用于指示不存在所述第二HARQ-ACK,或者指示所述第二HARQ-ACK不与所述第一HARQ-ACK复用传输,或者指示所述第二HARQ-ACK的总比特数为0,或者指示与所述第二HARQ-ACK对应的下行传输的总数为0,所述第一指示域中除所述第一指示状态之外的每个指示状态指示各自对应的一种用于确定第二HARQ-ACK的总比特数的信息,所述总比特数大于0;或者
所述第一指示域的第二指示状态在第一条件下指示一种用于确定第二HARQ-ACK的总比特数的信息,所述总比特数大于0,在第二条件下所述第二指示状态用于指示不存在所述第二HARQ-ACK,或者指示所述第二HARQ-ACK不与所述第一HARQ-ACK复用传输,或者指示所述第二HARQ-ACK的总比特数为0,或者指示与所述第二HARQ-ACK对应的下行传输的总数为0,所述第一指示域中除所述第二指示状态之外的每个指示状态指示各自对应的一种用于确定第二HARQ-ACK的总比特数的信息,所述总比特数大于0。
可选的,所述用于确定第二HARQ-ACK的总比特数的信息,包括:
所述第二HARQ-ACK的总比特数,或者,与所述第二HARQ-ACK对应的下行传输的总数。
可选的,当所述第一指示域指示用于确定第二HARQ-ACK的总比特数的信息时:
在所述第二HARQ-ACK的动态HARQ-ACK码本包括多个子码本的情况下,所述第一指示域包括多个子指示域,每个子指示域用于指示各自对应的用于确定第二HARQ-ACK的子码本的比特数的信息。
可选的,在所述第二HARQ-ACK使用半静态HARQ-ACK码本的情况下:
所述第一指示域至少包括:第三指示状态和第四指示状态,所述第三指示状态用于指示所述第二HARQ-ACK的比特数为1比特或指示按照回退模式确定第二HARQ-ACK的比特数,所述第四指示状态用于指示按照半静态 HARQ-ACK码本大小确定所述第二HARQ-ACK的比特数;或者
所述第一指示域至少包括:第五指示状态和第六指示状态,所述第五指示状态用于指示不存在所述第二HARQ-ACK,或者指示所述第二HARQ-ACK不与所述第一HARQ-ACK复用传输,或者指示所述第二HARQ-ACK的比特数为0,或者指示与所述第二HARQ-ACK对应的下行传输的个数为0,所述第六指示状态用于指示按照半静态HARQ-ACK码本大小确定所述第二HARQ-ACK的比特数;或者
所述第一指示域至少包括:第七指示状态和第八指示状态,其中,所述第七指示状态在第一条件下指示所述第二HARQ-ACK的比特数为1比特或指示按照回退模式确定第二HARQ-ACK的比特数,在第二条件下所述第七指示状态用于指示不存在所述第二HARQ-ACK,或者指示所述第二HARQ-ACK不与所述第一HARQ-ACK复用传输,或者指示所述第二HARQ-ACK的比特数为0,或者指示与所述第二HARQ-ACK对应的下行传输的个数为0,所述第八指示状态用于指示按照半静态HARQ-ACK码本大小确定所述第二HARQ-ACK的比特数;或者,所述第七指示状态用于指示所述第二HARQ-ACK的比特数为1比特或指示按照回退模式确定第二HARQ-ACK的比特数,所述第八指示状态在第一条件下指示按照半静态HARQ-ACK码本大小确定所述第二HARQ-ACK的比特数,在第二条件下所述第八指示状态用于指示不存在第二HARQ-ACK,或者指示第二HARQ-ACK不与第一HARQ-ACK复用传输,或者指示所述第二HARQ-ACK的比特数为0,或者指示与所述第二HARQ-ACK对应的下行传输的个数为0;或者
所述第一指示域至少包括:第九指示状态、第十指示状态和第十一指示状态,所述第九指示状态用于指示不存在所述第二HARQ-ACK,或者指示所述第二HARQ-ACK不与所述第一HARQ-ACK复用传输,或者指示所述第二HARQ-ACK的比特数为0,或者指示与所述第二HARQ-ACK对应的下行传输的个数为0,所述第十指示状态用于指示所述第二HARQ-ACK的比特数为1比特或指示按照回退模式确定第二HARQ-ACK的比特数,所述第十一指示状态用于指示按照半静态HARQ-ACK码本大小确定所述第二HARQ-ACK的 比特数。
可选的,所述第一条件包括:
存在与所述第二HARQ-ACK对应的下行传输;或者
存在具有DCI调度的与所述第二HARQ-ACK对应的下行传输;或者,
所述第一上行信道与第二上行信道在时域上存在重叠,其中,所述第二上行信道为承载第二HARQ-ACK的信道;
所述第二条件包括:
不存在与所述第二HARQ-ACK对应的下行传输;或者
不存在具有DCI调度的与所述第二HARQ-ACK对应的下行传输;或者,
所述第一上行信道与第二上行信道在时域上不存在重叠,其中,所述第二上行信道为承载第二HARQ-ACK的信道。
可选的,在所述第一指示域的每个指示状态指示各自对应的一种用于确定第二HARQ-ACK的总比特数的信息情况下,如果确定没有承载所述第二HARQ-ACK的第二上行信道与所述第一上行信道在时域上存在重叠,则任意设置所述第一指示域的指示信息。
可选的,在所述第一指示域包括所述第三指示状态和所述第四指示状态的情况下,如果确定没有承载所述第二HARQ-ACK的第二上行信道与所述第一上行信道在时域上存在重叠,则任意设置所述第一指示域的指示信息。
可选的,接收单元1102,包括:
确定子单元,用于根据所述第一指示域,确定所述第二HARQ-ACK的比特数;
接收子单元,用于按照所述第二HARQ-ACK的比特数,进行HARQ-ACK接收。
可选的,所述接收子单元用于:
按照所述第二HARQ-ACK的比特数,在同一个信道上同时接收所述第一HARQ-ACK和所述第二HARQ-ACK;或者,
当所述第二HARQ-ACK的比特数大于0或确定终端传输所述第二HARQ-ACK时,按照所述第二HARQ-ACK的比特数,在同一个信道上同时接收所述第一HARQ-ACK和所述第二HARQ-ACK;或者
当所述第二HARQ-ACK的比特数为0或确定终端不传输所述第二HARQ-ACK时,在所述第一上行信道上接收所述第一HARQ-ACK。
可选的,确定子单元用于:
在承载所述第一HARQ-ACK的第一上行信道与承载所述第二HARQ-ACK的第二上行信道在时域上存在重叠的情况下,根据所述第一指示域,确定所述第二HARQ-ACK的比特数。
可选的,所述第一上行信道的优先级高于承载所述第二HARQ-ACK的第二上行信道的优先级。
可选的,所述第一上行信道为物理上行控制信道PUCCH和物理上行共享信道PUSCH中的一个,承载所述第二HARQ-ACK的第二上行信道为PUCCH和PUSCH中的一个,且所述第一上行信道和所述第二上行信道的信道类型相同或者不同。
可选的,所述第一DCI中是否存在所述第一指示域根据高层信令的配置确定;或者
默认所述第一DCI中总是存在所述第一指示域。
可选的,在所述第一上行信道为PUCCH的情况下,所述第一DCI为用于调度需要在所述PUCCH上进行HARQ-ACK反馈的PDSCH的DCI,或者,所述第一DCI为用于指示需要在所述PUCCH上进行HARQ-ACK反馈的半静态SPS物理下行共享信道PDSCH释放release的DCI;或者
在所述第一上行信道为PUSCH的情况下,所述第一DCI为调度所述PUSCH的DCI。
可选的,当存在多个所述第一DCI时,设置多个第一DCI中的第一指示域指示相同的值,或者,依据最后一个DCI中的第一指示域进行HARQ-ACK接收。
可选的,所述第一HARQ-ACK的优先级高于所述第二HARQ-ACK的优先级;或者
所述第一HARQ-ACK为单播业务的HARQ-ACK,所述第二HARQ-ACK为多播业务的HARQ-ACK。
可选的,所述第一指示域为所述第一DCI中的现有比特的重用,或者, 所述第一指示域为所述第一DCI中新增的比特。
在此需要说明的是,本公开实施例提供的上述网络设备,能够实现上述方法实施例所实现的所有方法步骤,且能够达到相同的技术效果,在此不再对本实施例中与方法实施例相同的部分及有益效果进行具体赘述。
需要说明的是,本公开实施例中对单元的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个处理器可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对相关技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)或处理器(processor)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
本公开实施例还提供一种处理器可读存储介质,所述处理器可读存储介质存储有计算机程序,所述计算机程序用于使所述处理器执行本公开实施例提供的上行控制信息传输方法,或者,所述计算机程序用于使所述处理器执行本公开实施例提供的上行控制信息接收方法。
所述处理器可读存储介质可以是处理器能够存取的任何可用介质或数据存储设备,包括但不限于磁性存储器(例如软盘、硬盘、磁带、磁光盘(magnetooptical disk,MO)等)、光学存储器(例如光盘(compact disc,CD)、数字多功能光碟(digital versatile disc,DVD)、蓝光光盘(blue-ray disc,BD)、高清通用光盘(High-Definition Versatile Disc,HVD)等)、以及半导体存储器(例如ROM、电可编程序只读存储器(Electrically Programmable Read-Only-Memory,EPROM)、电可擦可编程只读存储器(Electrically Erasable  Programmable Read-Only-Memory,EEPROM)、非易失性存储器(NAND FLASH)、固态硬盘(solid state drive,SSD))等。
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器和光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本公开实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机可执行指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机可执行指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些处理器可执行指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的处理器可读存储器中,使得存储在该处理器可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些处理器可执行指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的 划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本公开各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。根据这样的理解,本公开的技术方案本质上或者说对现有相关技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁盘、光盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本公开的各个实施例所述的方法。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,是可以通过计算机程序来控制相关的硬件来完成,所述的程序可存储于计算机可读取存储介质中,该程序在执行时,可包括如上述各方法的实施例的流程。其中,所述的存储介质可为磁碟、光盘、只读存储器(Read-Only Memory,ROM)或随机存取存储器(Random Access Memory,RAM)等。
可以理解的是,本公开实施例描述的这些实施例可以用硬件、软件、固件、中间件、微码或其组合来实现。对于硬件实现,模块、单元、子单元可以实现在一个或多个专用集成电路(Application Specific Integrated Circuits,ASIC)、数字信号处理器(Digital Signal Processor,DSP)、数字信号处理设备(DSP Device,DSPD)、可编程逻辑设备(Programmable Logic Device,PLD)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)、通用处理器、控 制器、微控制器、微处理器、用于执行本公开所述功能的其它电子单元或其组合中。
对于软件实现,可通过执行本公开实施例所述功能的模块(例如过程、函数等)来实现本公开实施例所述的技术。软件代码可存储在存储器中并通过处理器执行。存储器可以在处理器中或在处理器外部实现。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (91)

  1. 一种上行控制信息传输方法,包括:
    终端接收第一下行控制信息DCI,所述第一DCI的第一指示域用于确定如下至少一项:第二混合自动重传请求确认HARQ-ACK的比特数、第二HARQ-ACK是否存在、第二HARQ-ACK是否与第一HARQ-ACK复用传输;
    所述终端依据所述第一指示域进行HARQ-ACK传输;
    其中,所述第一DCI为承载所述第一HARQ-ACK的第一上行信道对应的DCI,所述第二HARQ-ACK为与所述第一HARQ-ACK复用传输的HARQ-ACK。
  2. 如权利要求1所述的方法,其中,在所述第二HARQ-ACK使用动态HARQ-ACK码本的情况下:
    所述第一指示域的每个指示状态指示各自对应的一种用于确定所述第二HARQ-ACK的总比特数的信息;或者
    所述第一指示域的第一指示状态用于指示不存在所述第二HARQ-ACK,或者指示所述第二HARQ-ACK不与所述第一HARQ-ACK复用传输,或者指示所述第二HARQ-ACK的总比特数为0,或者指示与所述第二HARQ-ACK对应的下行传输的总数为0,所述第一指示域中除所述第一指示状态之外的每个指示状态指示各自对应的一种用于确定第二HARQ-ACK的总比特数的信息,所述总比特数大于0;或者
    所述第一指示域的第二指示状态在第一条件下指示一种用于确定第二HARQ-ACK的总比特数的信息,所述总比特数大于0,在第二条件下所述第二指示状态用于指示不存在所述第二HARQ-ACK,或者指示所述第二HARQ-ACK不与所述第一HARQ-ACK复用传输,或者指示所述第二HARQ-ACK的总比特数为0,或者指示与所述第二HARQ-ACK对应的下行传输的总数为0,所述第一指示域中除所述第二指示状态之外的每个指示状态指示各自对应的一种用于确定第二HARQ-ACK的总比特数的信息,所述总比特数大于0。
  3. 如权利要求2所述的方法,其中,所述用于确定第二HARQ-ACK的 总比特数的信息,包括:
    所述第二HARQ-ACK的总比特数,或者,与所述第二HARQ-ACK对应的下行传输的总数。
  4. 如权利要求2所述的方法,其中,当所述第一指示域指示用于确定第二HARQ-ACK的总比特数的信息时:
    在所述第二HARQ-ACK的动态HARQ-ACK码本包括多个子码本的情况下,所述第一指示域包括多个子指示域,每个子指示域用于指示各自对应的用于确定第二HARQ-ACK的子码本的比特数的信息。
  5. 如权利要求1所述的方法,其中,在所述第二HARQ-ACK使用半静态HARQ-ACK码本的情况下:
    所述第一指示域至少包括:第三指示状态和第四指示状态,所述第三指示状态用于指示所述第二HARQ-ACK的比特数为1比特或指示按照回退模式确定第二HARQ-ACK的比特数,所述第四指示状态用于指示按照半静态HARQ-ACK码本大小确定所述第二HARQ-ACK的比特数;或者
    所述第一指示域至少包括:第五指示状态和第六指示状态,所述第五指示状态用于指示不存在所述第二HARQ-ACK,或者指示所述第二HARQ-ACK不与所述第一HARQ-ACK复用传输,或者指示所述第二HARQ-ACK的比特数为0,或者指示与所述第二HARQ-ACK对应的下行传输的个数为0,所述第六指示状态用于指示按照半静态HARQ-ACK码本大小确定所述第二HARQ-ACK的比特数;或者
    所述第一指示域至少包括:第七指示状态和第八指示状态,其中,所述第七指示状态在第一条件下指示所述第二HARQ-ACK的比特数为1比特或指示按照回退模式确定第二HARQ-ACK的比特数,在第二条件下所述第七指示状态用于指示不存在所述第二HARQ-ACK,或者指示所述第二HARQ-ACK不与所述第一HARQ-ACK复用传输,或者指示所述第二HARQ-ACK的比特数为0,或者指示与所述第二HARQ-ACK对应的下行传输的个数为0,所述第八指示状态用于指示按照半静态HARQ-ACK码本大小确定所述第二HARQ-ACK的比特数;或者,所述第七指示状态用于指示所述第二HARQ-ACK的比特数为1比特或指示按照回退模式确定第二 HARQ-ACK的比特数,所述第八指示状态在第一条件下指示按照半静态HARQ-ACK码本大小确定所述第二HARQ-ACK的比特数,在第二条件下所述第八指示状态用于指示不存在第二HARQ-ACK,或者指示第二HARQ-ACK不与第一HARQ-ACK复用传输,或者指示所述第二HARQ-ACK的比特数为0,或者指示与所述第二HARQ-ACK对应的下行传输的个数为0;或者
    所述第一指示域至少包括:第九指示状态、第十指示状态和第十一指示状态,所述第九指示状态用于指示不存在所述第二HARQ-ACK,或者指示所述第二HARQ-ACK不与所述第一HARQ-ACK复用传输,或者指示所述第二HARQ-ACK的比特数为0,或者指示与所述第二HARQ-ACK对应的下行传输的个数为0,所述第十指示状态用于指示所述第二HARQ-ACK的比特数为1比特或指示按照回退模式确定第二HARQ-ACK的比特数,所述第十一指示状态用于指示按照半静态HARQ-ACK码本大小确定所述第二HARQ-ACK的比特数。
  6. 如权利要求2或5所述的方法,其中,所述第一条件包括:
    存在与所述第二HARQ-ACK对应的下行传输;或者
    存在具有DCI调度的与所述第二HARQ-ACK对应的下行传输;或者,
    所述第一上行信道与第二上行信道在时域上存在重叠,其中,所述第二上行信道为承载第二HARQ-ACK的信道;
    所述第二条件包括:
    不存在与所述第二HARQ-ACK对应的下行传输;或者
    不存在具有DCI调度的与所述第二HARQ-ACK对应的下行传输;或者,
    所述第一上行信道与第二上行信道在时域上不存在重叠,其中,所述第二上行信道为承载第二HARQ-ACK的信道。
  7. 如权利要求2所述的方法,其中,在所述第一指示域的每个指示状态指示各自对应的一种用于确定第二HARQ-ACK的总比特数的信息情况下,如果确定没有承载所述第二HARQ-ACK的第二上行信道与所述第一上行信道在时域上存在重叠,则忽略所述第一指示域的指示信息。
  8. 如权利要求5所述的方法,其中,在所述第一指示域包括所述第三指 示状态和所述第四指示状态的情况下,如果确定没有承载所述第二HARQ-ACK的第二上行信道与所述第一上行信道在时域上存在重叠,则忽略所述第一指示域的指示信息。
  9. 如权利要求1所述的方法,其中,所述终端依据所述第一指示域进行HARQ-ACK传输,包括:
    所述终端根据所述第一指示域,确定所述第二HARQ-ACK的比特数;
    所述终端按照所述第二HARQ-ACK的比特数,进行HARQ-ACK传输。
  10. 如权利要求9所述的方法,其中,所述终端按照所述第二HARQ-ACK的比特数,进行HARQ-ACK传输,包括:
    按照所述第二HARQ-ACK的比特数,在同一个信道上同时传输所述第一HARQ-ACK和所述第二HARQ-ACK;或者,
    当所述第二HARQ-ACK的比特数大于0或确定传输所述第二HARQ-ACK时,按照所述第二HARQ-ACK的比特数,在同一个信道上同时传输所述第一HARQ-ACK和所述第二HARQ-ACK;或者
    当所述第二HARQ-ACK的比特数为0或确定不传输所述第二HARQ-ACK时,在所述第一上行信道上传输所述第一HARQ-ACK。
  11. 如权利要求9所述的方法,其中,所述终端根据所述第一指示域,确定所述第二HARQ-ACK的比特数,包括:
    在承载所述第一HARQ-ACK的第一上行信道与承载所述第二HARQ-ACK的第二上行信道在时域上存在重叠的情况下,所述终端根据所述第一指示域,确定所述第二HARQ-ACK的比特数。
  12. 如权利要求1所述的方法,其中,所述第一上行信道的优先级高于承载所述第二HARQ-ACK的第二上行信道的优先级;或者,
    所述第一HARQ-ACK的优先级高于所述第二HARQ-ACK的优先级;或者,
    所述第一HARQ-ACK为单播业务的HARQ-ACK,所述第二HARQ-ACK为多播业务的HARQ-ACK。
  13. 如权利要求1所述的方法,其中,所述第一上行信道为物理上行控制信道PUCCH和物理上行共享信道PUSCH中的一个,承载所述第二 HARQ-ACK的第二上行信道为PUCCH和PUSCH中的一个,且所述第一上行信道和所述第二上行信道的信道类型相同或者不同。
  14. 如权利要求1所述的方法,其中,所述第一DCI中是否存在所述第一指示域根据高层信令的配置确定;或者
    默认所述第一DCI中总是存在所述第一指示域。
  15. 如权利要求1所述的方法,其中,在所述第一上行信道为PUCCH的情况下,所述第一DCI为用于调度需要在所述PUCCH上进行HARQ-ACK反馈的PDSCH的DCI,或者,所述第一DCI为用于指示需要在所述PUCCH上进行HARQ-ACK反馈的半持续调度SPS物理下行共享信道PDSCH释放release的DCI;或者
    在所述第一上行信道为PUSCH的情况下,所述第一DCI为调度所述PUSCH的DCI。
  16. 如权利要求1所述的方法,其中,当存在多个所述第一DCI时,多个第一DCI中的第一指示域的值相同,或者,终端依据最后一个DCI中的第一指示域进行HARQ-ACK传输。
  17. 一种上行控制信息接收方法,包括:
    网络设备发送第一下行控制信息DCI,所述第一DCI的第一指示域用于确定如下至少一项:第二混合自动重传请求确认HARQ-ACK的比特数、第二HARQ-ACK是否存在、第二HARQ-ACK是否与第一HARQ-ACK复用传输;
    所述网络设备依据所述第一指示域进行HARQ-ACK接收;
    其中,所述第一DCI为承载所述第一HARQ-ACK的第一上行信道对应的DCI,所述第二HARQ-ACK为与所述第一HARQ-ACK复用传输的HARQ-ACK。
  18. 如权利要求17所述的方法,其中,在所述第二HARQ-ACK使用动态HARQ-ACK码本的情况下:
    所述第一指示域的每个指示状态指示各自对应的一种用于确定所述第二HARQ-ACK的总比特数的信息;或者
    所述第一指示域的第一指示状态用于指示不存在所述第二HARQ-ACK, 或者指示所述第二HARQ-ACK不与所述第一HARQ-ACK复用传输,或者指示所述第二HARQ-ACK的总比特数为0,或者指示与所述第二HARQ-ACK对应的下行传输的总数为0,所述第一指示域中除所述第一指示状态之外的每个指示状态指示各自对应的一种用于确定第二HARQ-ACK的总比特数的信息,所述总比特数大于0;或者
    所述第一指示域的第二指示状态在第一条件下指示一种用于确定第二HARQ-ACK的总比特数的信息,所述总比特数大于0,在第二条件下所述第二指示状态用于指示不存在所述第二HARQ-ACK,或者指示所述第二HARQ-ACK不与所述第一HARQ-ACK复用传输,或者指示所述第二HARQ-ACK的总比特数为0,或者指示与所述第二HARQ-ACK对应的下行传输的总数为0,所述第一指示域中除所述第二指示状态之外的每个指示状态指示各自对应的一种用于确定第二HARQ-ACK的总比特数的信息,所述总比特数大于0。
  19. 如权利要求18所述的方法,其中,所述用于确定第二HARQ-ACK的总比特数的信息,包括:
    所述第二HARQ-ACK的总比特数,或者,与所述第二HARQ-ACK对应的下行传输的总数。
  20. 如权利要求18所述的方法,其中,当所述第一指示域指示用于确定第二HARQ-ACK的总比特数的信息时:
    在所述第二HARQ-ACK的动态HARQ-ACK码本包括多个子码本的情况下,所述第一指示域包括多个子指示域,每个子指示域用于指示各自对应的用于确定第二HARQ-ACK的子码本的比特数的信息。
  21. 如权利要求17所述的方法,其中,在所述第二HARQ-ACK使用半静态HARQ-ACK码本的情况下:
    所述第一指示域至少包括:第三指示状态和第四指示状态,所述第三指示状态用于指示所述第二HARQ-ACK的比特数为1比特或指示按照回退模式确定第二HARQ-ACK的比特数,所述第四指示状态用于指示按照半静态HARQ-ACK码本大小确定所述第二HARQ-ACK的比特数;或者
    所述第一指示域至少包括:第五指示状态和第六指示状态,所述第五指 示状态用于指示不存在所述第二HARQ-ACK,或者指示所述第二HARQ-ACK不与所述第一HARQ-ACK复用传输,或者指示所述第二HARQ-ACK的比特数为0,或者指示与所述第二HARQ-ACK对应的下行传输的个数为0,所述第六指示状态用于指示按照半静态HARQ-ACK码本大小确定所述第二HARQ-ACK的比特数;或者
    所述第一指示域至少包括:第七指示状态和第八指示状态,其中,所述第七指示状态在第一条件下指示所述第二HARQ-ACK的比特数为1比特或指示按照回退模式确定第二HARQ-ACK的比特数,在第二条件下所述第七指示状态用于指示不存在所述第二HARQ-ACK,或者指示所述第二HARQ-ACK不与所述第一HARQ-ACK复用传输,或者指示所述第二HARQ-ACK的比特数为0,或者指示与所述第二HARQ-ACK对应的下行传输的个数为0,所述第八指示状态用于指示按照半静态HARQ-ACK码本大小确定所述第二HARQ-ACK的比特数;或者,所述第七指示状态用于指示所述第二HARQ-ACK的比特数为1比特或指示按照回退模式确定第二HARQ-ACK的比特数,所述第八指示状态在第一条件下指示按照半静态HARQ-ACK码本大小确定所述第二HARQ-ACK的比特数,在第二条件下所述第八指示状态用于指示不存在第二HARQ-ACK,或者指示第二HARQ-ACK不与第一HARQ-ACK复用传输,或者指示所述第二HARQ-ACK的比特数为0,或者指示与所述第二HARQ-ACK对应的下行传输的个数为0;或者
    所述第一指示域至少包括:第九指示状态、第十指示状态和第十一指示状态,所述第九指示状态用于指示不存在所述第二HARQ-ACK,或者指示所述第二HARQ-ACK不与所述第一HARQ-ACK复用传输,或者指示所述第二HARQ-ACK的比特数为0,或者指示与所述第二HARQ-ACK对应的下行传输的个数为0,所述第十指示状态用于指示所述第二HARQ-ACK的比特数为1比特或指示按照回退模式确定第二HARQ-ACK的比特数,所述第十一指示状态用于指示按照半静态HARQ-ACK码本大小确定所述第二HARQ-ACK的比特数。
  22. 如权利要求18或21所述的方法,其中,所述第一条件包括:
    存在与所述第二HARQ-ACK对应的下行传输;或者
    存在具有DCI调度的与所述第二HARQ-ACK对应的下行传输;或者,
    所述第一上行信道与第二上行信道在时域上存在重叠,其中,所述第二上行信道为承载第二HARQ-ACK的信道;
    所述第二条件包括:
    不存在与所述第二HARQ-ACK对应的下行传输;或者
    不存在具有DCI调度的与所述第二HARQ-ACK对应的下行传输;或者,
    所述第一上行信道与第二上行信道在时域上不存在重叠,其中,所述第二上行信道为承载第二HARQ-ACK的信道。
  23. 如权利要求17所述的方法,其中,所述网络设备依据所述第一指示域进行HARQ-ACK接收,包括:
    所述网络设备根据所述第一指示域,确定所述第二HARQ-ACK的比特数;
    所述网络设备按照所述第二HARQ-ACK的比特数,进行HARQ-ACK接收。
  24. 如权利要求23所述的方法,其中,所述网络设备按照所述第二HARQ-ACK的比特数,进行HARQ-ACK接收,包括:
    按照所述第二HARQ-ACK的比特数,在同一个信道上同时接收所述第一HARQ-ACK和所述第二HARQ-ACK;或者,
    当所述第二HARQ-ACK的比特数大于0或确定终端传输所述第二HARQ-ACK时,按照所述第二HARQ-ACK的比特数,在同一个信道上同时接收所述第一HARQ-ACK和所述第二HARQ-ACK;或者
    当所述第二HARQ-ACK的比特数为0或确定终端不传输所述第二HARQ-ACK时,在所述第一上行信道上接收所述第一HARQ-ACK。
  25. 如权利要求23所述的方法,其中,所述网络设备根据所述第一指示域,确定所述第二HARQ-ACK的比特数,包括:
    在承载所述第一HARQ-ACK的第一上行信道与承载所述第二HARQ-ACK的第二上行信道在时域上存在重叠的情况下,所述网络设备根据所述第一指示域,确定所述第二HARQ-ACK的比特数。
  26. 如权利要求17所述的方法,其中,所述第一上行信道的优先级高于承载所述第二HARQ-ACK的第二上行信道的优先级;或者
    所述第一HARQ-ACK的优先级高于所述第二HARQ-ACK的优先级;或者
    所述第一HARQ-ACK为单播业务的HARQ-ACK,所述第二HARQ-ACK为多播业务的HARQ-ACK。
  27. 如权利要求17所述的方法,其中,所述第一上行信道为物理上行控制信道PUCCH和物理上行共享信道PUSCH中的一个,承载所述第二HARQ-ACK的第二上行信道为PUCCH和PUSCH中的一个,且所述第一上行信道和所述第二上行信道的信道类型相同或者不同。
  28. 如权利要求17所述的方法,其中,所述第一DCI中是否存在所述第一指示域根据高层信令的配置确定;或者
    默认所述第一DCI中总是存在所述第一指示域。
  29. 如权利要求17所述的方法,其中,在所述第一上行信道为PUCCH的情况下,所述第一DCI为用于调度需要在所述PUCCH上进行HARQ-ACK反馈的PDSCH的DCI,或者,所述第一DCI为用于指示需要在所述PUCCH上进行HARQ-ACK反馈的半持续调度SPS物理下行共享信道PDSCH释放release的DCI;或者
    在所述第一上行信道为PUSCH的情况下,所述第一DCI为调度所述PUSCH的DCI。
  30. 如权利要求17所述的方法,其中,当存在多个所述第一DCI时,设置多个第一DCI中的第一指示域指示相同的值,或者,依据最后一个DCI中的第一指示域进行HARQ-ACK接收。
  31. 一种终端,包括存储器、收发机和处理器:
    存储器,用于存储计算机程序;收发机,用于在所述处理器的控制下收发数据;处理器,用于读取所述存储器中的计算机程序并执行以下操作:
    接收第一下行控制信息DCI,所述第一DCI的第一指示域用于确定如下至少一项:第二混合自动重传请求确认HARQ-ACK的比特数、第二HARQ-ACK是否存在、第二HARQ-ACK是否与第一HARQ-ACK复用传输;
    依据所述第一指示域进行HARQ-ACK传输;
    其中,所述第一DCI为承载所述第一HARQ-ACK的第一上行信道对应的DCI,所述第二HARQ-ACK为与所述第一HARQ-ACK复用传输的HARQ-ACK。
  32. 如权利要求31所述的终端,其中,在所述第二HARQ-ACK使用动态HARQ-ACK码本的情况下:
    所述第一指示域的每个指示状态指示各自对应的一种用于确定所述第二HARQ-ACK的总比特数的信息;或者
    所述第一指示域的第一指示状态用于指示不存在所述第二HARQ-ACK,或者指示所述第二HARQ-ACK不与所述第一HARQ-ACK复用传输,或者指示所述第二HARQ-ACK的总比特数为0,或者指示与所述第二HARQ-ACK对应的下行传输的总数为0,所述第一指示域中除所述第一指示状态之外的每个指示状态指示各自对应的一种用于确定第二HARQ-ACK的总比特数的信息,所述总比特数大于0;或者
    所述第一指示域的第二指示状态在第一条件下指示一种用于确定第二HARQ-ACK的总比特数的信息,所述总比特数大于0,在第二条件下所述第二指示状态用于指示不存在所述第二HARQ-ACK,或者指示所述第二HARQ-ACK不与所述第一HARQ-ACK复用传输,或者指示所述第二HARQ-ACK的总比特数为0,或者指示与所述第二HARQ-ACK对应的下行传输的总数为0,所述第一指示域中除所述第二指示状态之外的每个指示状态指示各自对应的一种用于确定第二HARQ-ACK的总比特数的信息,所述总比特数大于0。
  33. 如权利要求32所述的终端,其中,所述用于确定第二HARQ-ACK的总比特数的信息,包括:
    所述第二HARQ-ACK的总比特数,或者,与所述第二HARQ-ACK对应的下行传输的总数。
  34. 如权利要求32所述的终端,其中,当所述第一指示域指示用于确定第二HARQ-ACK的总比特数的信息时:
    在所述第二HARQ-ACK的动态HARQ-ACK码本包括多个子码本的情况 下,所述第一指示域包括多个子指示域,每个子指示域用于指示各自对应的用于确定第二HARQ-ACK的子码本的比特数的信息。
  35. 如权利要求31所述的终端,其中,在所述第二HARQ-ACK使用半静态HARQ-ACK码本的情况下:
    所述第一指示域至少包括:第三指示状态和第四指示状态,所述第三指示状态用于指示所述第二HARQ-ACK的比特数为1比特或指示按照回退模式确定第二HARQ-ACK的比特数,所述第四指示状态用于指示按照半静态HARQ-ACK码本大小确定所述第二HARQ-ACK的比特数;或者
    所述第一指示域至少包括:第五指示状态和第六指示状态,所述第五指示状态用于指示不存在所述第二HARQ-ACK,或者指示所述第二HARQ-ACK不与所述第一HARQ-ACK复用传输,或者指示所述第二HARQ-ACK的比特数为0,或者指示与所述第二HARQ-ACK对应的下行传输的个数为0,所述第六指示状态用于指示按照半静态HARQ-ACK码本大小确定所述第二HARQ-ACK的比特数;或者
    所述第一指示域至少包括:第七指示状态和第八指示状态,其中,所述第七指示状态在第一条件下指示所述第二HARQ-ACK的比特数为1比特或指示按照回退模式确定第二HARQ-ACK的比特数,在第二条件下所述第七指示状态用于指示不存在所述第二HARQ-ACK,或者指示所述第二HARQ-ACK不与所述第一HARQ-ACK复用传输,或者指示所述第二HARQ-ACK的比特数为0,或者指示与所述第二HARQ-ACK对应的下行传输的个数为0,所述第八指示状态用于指示按照半静态HARQ-ACK码本大小确定所述第二HARQ-ACK的比特数;或者,所述第七指示状态用于指示所述第二HARQ-ACK的比特数为1比特或指示按照回退模式确定第二HARQ-ACK的比特数,所述第八指示状态在第一条件下指示按照半静态HARQ-ACK码本大小确定所述第二HARQ-ACK的比特数,在第二条件下所述第八指示状态用于指示不存在第二HARQ-ACK,或者指示第二HARQ-ACK不与第一HARQ-ACK复用传输,或者指示所述第二HARQ-ACK的比特数为0,或者指示与所述第二HARQ-ACK对应的下行传输的个数为0;或者
    所述第一指示域至少包括:第九指示状态、第十指示状态和第十一指示状态,所述第九指示状态用于指示不存在所述第二HARQ-ACK,或者指示所述第二HARQ-ACK不与所述第一HARQ-ACK复用传输,或者指示所述第二HARQ-ACK的比特数为0,或者指示与所述第二HARQ-ACK对应的下行传输的个数为0,所述第十指示状态用于指示所述第二HARQ-ACK的比特数为1比特或指示按照回退模式确定第二HARQ-ACK的比特数,所述第十一指示状态用于指示按照半静态HARQ-ACK码本大小确定所述第二HARQ-ACK的比特数。
  36. 如权利要求32或35所述的终端,其中,所述第一条件包括:
    存在与所述第二HARQ-ACK对应的下行传输;或者
    存在具有DCI调度的与所述第二HARQ-ACK对应的下行传输;或者,
    所述第一上行信道与第二上行信道在时域上存在重叠,其中,所述第二上行信道为承载第二HARQ-ACK的信道;
    所述第二条件包括:
    不存在与所述第二HARQ-ACK对应的下行传输;或者
    不存在具有DCI调度的与所述第二HARQ-ACK对应的下行传输;或者,
    所述第一上行信道与第二上行信道在时域上不存在重叠,其中,所述第二上行信道为承载第二HARQ-ACK的信道。
  37. 如权利要求32所述的终端,其中,在所述第一指示域的每个指示状态指示各自对应的一种用于确定第二HARQ-ACK的总比特数的信息情况下,如果确定没有承载所述第二HARQ-ACK的第二上行信道与所述第一上行信道在时域上存在重叠,则忽略所述第一指示域的指示信息。
  38. 如权利要求35所述的终端,其中,在所述第一指示域包括所述第三指示状态和所述第四指示状态的情况下,如果确定没有承载所述第二HARQ-ACK的第二上行信道与所述第一上行信道在时域上存在重叠,则忽略所述第一指示域的指示信息。
  39. 如权利要求31所述的终端,其中,所述依据所述第一指示域进行HARQ-ACK传输,包括:
    根据所述第一指示域,确定所述第二HARQ-ACK的比特数;
    按照所述第二HARQ-ACK的比特数,进行HARQ-ACK传输。
  40. 如权利要求39所述的终端,其中,所述按照所述第二HARQ-ACK的比特数,进行HARQ-ACK传输,包括:
    按照所述第二HARQ-ACK的比特数,在同一个信道上同时传输所述第一HARQ-ACK和所述第二HARQ-ACK;或者,
    当所述第二HARQ-ACK的比特数大于0或确定传输所述第二HARQ-ACK时,按照所述第二HARQ-ACK的比特数,在同一个信道上同时传输所述第一HARQ-ACK和所述第二HARQ-ACK;或者
    当所述第二HARQ-ACK的比特数为0或确定不传输所述第二HARQ-ACK时,在所述第一上行信道上传输所述第一HARQ-ACK。
  41. 如权利要求39所述的终端,其中,所述根据所述第一指示域,确定所述第二HARQ-ACK的比特数,包括:
    在承载所述第一HARQ-ACK的第一上行信道与承载所述第二HARQ-ACK的第二上行信道在时域上存在重叠的情况下,根据所述第一指示域,确定所述第二HARQ-ACK的比特数。
  42. 如权利要求31所述的终端,其中,所述第一上行信道的优先级高于承载所述第二HARQ-ACK的第二上行信道的优先级;或者,
    所述第一HARQ-ACK的优先级高于所述第二HARQ-ACK的优先级;或者,
    所述第一HARQ-ACK为单播业务的HARQ-ACK,所述第二HARQ-ACK为多播业务的HARQ-ACK。
  43. 如权利要求31所述的终端,其中,所述第一上行信道为物理上行控制信道PUCCH和物理上行共享信道PUSCH中的一个,承载所述第二HARQ-ACK的第二上行信道为PUCCH和PUSCH中的一个,且所述第一上行信道和所述第二上行信道的信道类型相同或者不同。
  44. 如权利要求31所述的终端,其中,所述第一DCI中是否存在所述第一指示域根据高层信令的配置确定;或者
    默认所述第一DCI中总是存在所述第一指示域。
  45. 如权利要求31所述的终端,其中,在所述第一上行信道为PUCCH 的情况下,所述第一DCI为用于调度需要在所述PUCCH上进行HARQ-ACK反馈的PDSCH的DCI,或者,所述第一DCI为用于指示需要在所述PUCCH上进行HARQ-ACK反馈的半持续调度SPS物理下行共享信道PDSCH释放release的DCI;或者
    在所述第一上行信道为PUSCH的情况下,所述第一DCI为调度所述PUSCH的DCI。
  46. 如权利要求31所述的终端,其中,当存在多个所述第一DCI时,多个第一DCI中的第一指示域的值相同,或者,终端依据最后一个DCI中的第一指示域进行HARQ-ACK传输。
  47. 一种网络设备,包括存储器、收发机和处理器:
    存储器,用于存储计算机程序;收发机,用于在所述处理器的控制下收发数据;处理器,用于读取所述存储器中的计算机程序并执行以下操作:
    发送第一下行控制信息DCI,所述第一DCI的第一指示域用于确定如下至少一项:第二混合自动重传请求确认HARQ-ACK的比特数、第二HARQ-ACK是否存在、第二HARQ-ACK是否与第一HARQ-ACK复用传输;
    依据所述第一指示域进行HARQ-ACK接收;
    其中,所述第一DCI为承载所述第一HARQ-ACK的第一上行信道对应的DCI,所述第二HARQ-ACK为与所述第一HARQ-ACK复用传输的HARQ-ACK。
  48. 如权利要求47所述的网络设备,其中,在所述第二HARQ-ACK使用动态HARQ-ACK码本的情况下:
    所述第一指示域的每个指示状态指示各自对应的一种用于确定所述第二HARQ-ACK的总比特数的信息;或者
    所述第一指示域的第一指示状态用于指示不存在所述第二HARQ-ACK,或者指示所述第二HARQ-ACK不与所述第一HARQ-ACK复用传输,或者指示所述第二HARQ-ACK的总比特数为0,或者指示与所述第二HARQ-ACK对应的下行传输的总数为0,所述第一指示域中除所述第一指示状态之外的每个指示状态指示各自对应的一种用于确定第二HARQ-ACK的总比特数的信息,所述总比特数大于0;或者
    所述第一指示域的第二指示状态在第一条件下指示一种用于确定第二HARQ-ACK的总比特数的信息,所述总比特数大于0,在第二条件下所述第二指示状态用于指示不存在所述第二HARQ-ACK,或者指示所述第二HARQ-ACK不与所述第一HARQ-ACK复用传输,或者指示所述第二HARQ-ACK的总比特数为0,或者指示与所述第二HARQ-ACK对应的下行传输的总数为0,所述第一指示域中除所述第二指示状态之外的每个指示状态指示各自对应的一种用于确定第二HARQ-ACK的总比特数的信息,所述总比特数大于0。
  49. 如权利要求48所述的网络设备,其中,所述用于确定第二HARQ-ACK的总比特数的信息,包括:
    所述第二HARQ-ACK的总比特数,或者,与所述第二HARQ-ACK对应的下行传输的总数。
  50. 如权利要求48所述的网络设备,其中,当所述第一指示域指示用于确定第二HARQ-ACK的总比特数的信息时:
    在所述第二HARQ-ACK的动态HARQ-ACK码本包括多个子码本的情况下,所述第一指示域包括多个子指示域,每个子指示域用于指示各自对应的用于确定第二HARQ-ACK的子码本的比特数的信息。
  51. 如权利要求47所述的网络设备,其中,在所述第二HARQ-ACK使用半静态HARQ-ACK码本的情况下:
    所述第一指示域至少包括:第三指示状态和第四指示状态,所述第三指示状态用于指示所述第二HARQ-ACK的比特数为1比特或指示按照回退模式确定第二HARQ-ACK的比特数,所述第四指示状态用于指示按照半静态HARQ-ACK码本大小确定所述第二HARQ-ACK的比特数;或者
    所述第一指示域至少包括:第五指示状态和第六指示状态,所述第五指示状态用于指示不存在所述第二HARQ-ACK,或者指示所述第二HARQ-ACK不与所述第一HARQ-ACK复用传输,或者指示所述第二HARQ-ACK的比特数为0,或者指示与所述第二HARQ-ACK对应的下行传输的个数为0,所述第六指示状态用于指示按照半静态HARQ-ACK码本大小确定所述第二HARQ-ACK的比特数;或者
    所述第一指示域至少包括:第七指示状态和第八指示状态,其中,所述第七指示状态在第一条件下指示所述第二HARQ-ACK的比特数为1比特或指示按照回退模式确定第二HARQ-ACK的比特数,在第二条件下所述第七指示状态用于指示不存在所述第二HARQ-ACK,或者指示所述第二HARQ-ACK不与所述第一HARQ-ACK复用传输,或者指示所述第二HARQ-ACK的比特数为0,或者指示与所述第二HARQ-ACK对应的下行传输的个数为0,所述第八指示状态用于指示按照半静态HARQ-ACK码本大小确定所述第二HARQ-ACK的比特数;或者,所述第七指示状态用于指示所述第二HARQ-ACK的比特数为1比特或指示按照回退模式确定第二HARQ-ACK的比特数,所述第八指示状态在第一条件下指示按照半静态HARQ-ACK码本大小确定所述第二HARQ-ACK的比特数,在第二条件下所述第八指示状态用于指示不存在第二HARQ-ACK,或者指示第二HARQ-ACK不与第一HARQ-ACK复用传输,或者指示所述第二HARQ-ACK的比特数为0,或者指示与所述第二HARQ-ACK对应的下行传输的个数为0;或者
    所述第一指示域至少包括:第九指示状态、第十指示状态和第十一指示状态,所述第九指示状态用于指示不存在所述第二HARQ-ACK,或者指示所述第二HARQ-ACK不与所述第一HARQ-ACK复用传输,或者指示所述第二HARQ-ACK的比特数为0,或者指示与所述第二HARQ-ACK对应的下行传输的个数为0,所述第十指示状态用于指示所述第二HARQ-ACK的比特数为1比特或指示按照回退模式确定第二HARQ-ACK的比特数,所述第十一指示状态用于指示按照半静态HARQ-ACK码本大小确定所述第二HARQ-ACK的比特数。
  52. 如权利要求48或51所述的网络设备,其中,所述第一条件包括:
    存在与所述第二HARQ-ACK对应的下行传输;或者
    存在具有DCI调度的与所述第二HARQ-ACK对应的下行传输;或者,
    所述第一上行信道与第二上行信道在时域上存在重叠,其中,所述第二上行信道为承载第二HARQ-ACK的信道;
    所述第二条件包括:
    不存在与所述第二HARQ-ACK对应的下行传输;或者
    不存在具有DCI调度的与所述第二HARQ-ACK对应的下行传输;或者,
    所述第一上行信道与第二上行信道在时域上不存在重叠,其中,所述第二上行信道为承载第二HARQ-ACK的信道。
  53. 如权利要求47所述的网络设备,其中,所述依据所述第一指示域进行HARQ-ACK接收,包括:
    根据所述第一指示域,确定所述第二HARQ-ACK的比特数;
    按照所述第二HARQ-ACK的比特数,进行HARQ-ACK接收。
  54. 如权利要求53所述的网络设备,其中,所述按照所述第二HARQ-ACK的比特数,进行HARQ-ACK接收,包括:
    按照所述第二HARQ-ACK的比特数,在同一个信道上同时接收所述第一HARQ-ACK和所述第二HARQ-ACK;或者,
    当所述第二HARQ-ACK的比特数大于0或确定终端传输所述第二HARQ-ACK时,按照所述第二HARQ-ACK的比特数,在同一个信道上同时接收所述第一HARQ-ACK和所述第二HARQ-ACK;或者
    当所述第二HARQ-ACK的比特数为0或确定终端不传输所述第二HARQ-ACK时,在所述第一上行信道上接收所述第一HARQ-ACK。
  55. 如权利要求53所述的网络设备,其中,所述根据所述第一指示域,确定所述第二HARQ-ACK的比特数,包括:
    在承载所述第一HARQ-ACK的第一上行信道与承载所述第二HARQ-ACK的第二上行信道在时域上存在重叠的情况下,根据所述第一指示域,确定所述第二HARQ-ACK的比特数。
  56. 如权利要求47所述的网络设备,其中,所述第一上行信道的优先级高于承载所述第二HARQ-ACK的第二上行信道的优先级;或者
    所述第一HARQ-ACK的优先级高于所述第二HARQ-ACK的优先级;或者
    所述第一HARQ-ACK为单播业务的HARQ-ACK,所述第二HARQ-ACK为多播业务的HARQ-ACK。
  57. 如权利要求47所述的网络设备,其中,所述第一上行信道为物理上 行控制信道PUCCH和物理上行共享信道PUSCH中的一个,承载所述第二HARQ-ACK的第二上行信道为PUCCH和PUSCH中的一个,且所述第一上行信道和所述第二上行信道的信道类型相同或者不同。
  58. 如权利要求47所述的网络设备,其中,所述第一DCI中是否存在所述第一指示域根据高层信令的配置确定;或者
    默认所述第一DCI中总是存在所述第一指示域。
  59. 如权利要求47所述的网络设备,其中,在所述第一上行信道为PUCCH的情况下,所述第一DCI为用于调度需要在所述PUCCH上进行HARQ-ACK反馈的PDSCH的DCI,或者,所述第一DCI为用于指示需要在所述PUCCH上进行HARQ-ACK反馈的半持续调度SPS物理下行共享信道PDSCH释放release的DCI;或者
    在所述第一上行信道为PUSCH的情况下,所述第一DCI为调度所述PUSCH的DCI。
  60. 如权利要求47所述的网络设备,其中,当存在多个所述第一DCI时,设置多个第一DCI中的第一指示域指示相同的值,或者,依据最后一个DCI中的第一指示域进行HARQ-ACK接收。
  61. 一种终端,包括:
    接收单元,用于终端接收第一下行控制信息DCI,所述第一DCI的第一指示域用于确定如下至少一项:第二混合自动重传请求确认HARQ-ACK的比特数、第二HARQ-ACK是否存在、第二HARQ-ACK是否与第一HARQ-ACK复用传输;
    传输单元,用于依据所述第一指示域进行HARQ-ACK传输;
    其中,所述第一DCI为承载所述第一HARQ-ACK的第一上行信道对应的DCI,所述第二HARQ-ACK为与所述第一HARQ-ACK复用传输的HARQ-ACK。
  62. 根据权利要求61所述的终端,其中,在所述第二HARQ-ACK使用动态HARQ-ACK码本的情况下:
    所述第一指示域的每个指示状态指示各自对应的一种用于确定所述第二HARQ-ACK的总比特数的信息;或者
    所述第一指示域的第一指示状态用于指示不存在所述第二HARQ-ACK,或者指示所述第二HARQ-ACK不与所述第一HARQ-ACK复用传输,或者指示所述第二HARQ-ACK的总比特数为0,或者指示与所述第二HARQ-ACK对应的下行传输的总数为0,所述第一指示域中除所述第一指示状态之外的每个指示状态指示各自对应的一种用于确定第二HARQ-ACK的总比特数的信息,所述总比特数大于0;或者
    所述第一指示域的第二指示状态在第一条件下指示一种用于确定第二HARQ-ACK的总比特数的信息,所述总比特数大于0,在第二条件下所述第二指示状态用于指示不存在所述第二HARQ-ACK,或者指示所述第二HARQ-ACK不与所述第一HARQ-ACK复用传输,或者指示所述第二HARQ-ACK的总比特数为0,或者指示与所述第二HARQ-ACK对应的下行传输的总数为0,所述第一指示域中除所述第二指示状态之外的每个指示状态指示各自对应的一种用于确定第二HARQ-ACK的总比特数的信息,所述总比特数大于0。
  63. 如权利要求62所述的终端,其中,所述用于确定第二HARQ-ACK的总比特数的信息,包括:
    所述第二HARQ-ACK的总比特数,或者,与所述第二HARQ-ACK对应的下行传输的总数。
  64. 如权利要求62所述的终端,其中,当所述第一指示域指示用于确定第二HARQ-ACK的总比特数的信息时:
    在所述第二HARQ-ACK的动态HARQ-ACK码本包括多个子码本的情况下,所述第一指示域包括多个子指示域,每个子指示域用于指示各自对应的用于确定第二HARQ-ACK的子码本的比特数的信息。
  65. 如权利要求61所述的终端,其中,在所述第二HARQ-ACK使用半静态HARQ-ACK码本的情况下:
    所述第一指示域至少包括:第三指示状态和第四指示状态,所述第三指示状态用于指示所述第二HARQ-ACK的比特数为1比特或指示按照回退模式确定第二HARQ-ACK的比特数,所述第四指示状态用于指示按照半静态HARQ-ACK码本大小确定所述第二HARQ-ACK的比特数;或者
    所述第一指示域至少包括:第五指示状态和第六指示状态,所述第五指示状态用于指示不存在所述第二HARQ-ACK,或者指示所述第二HARQ-ACK不与所述第一HARQ-ACK复用传输,或者指示所述第二HARQ-ACK的比特数为0,或者指示与所述第二HARQ-ACK对应的下行传输的个数为0,所述第六指示状态用于指示按照半静态HARQ-ACK码本大小确定所述第二HARQ-ACK的比特数;或者
    所述第一指示域至少包括:第七指示状态和第八指示状态,其中,所述第七指示状态在第一条件下指示所述第二HARQ-ACK的比特数为1比特或指示按照回退模式确定第二HARQ-ACK的比特数,在第二条件下所述第七指示状态用于指示不存在所述第二HARQ-ACK,或者指示所述第二HARQ-ACK不与所述第一HARQ-ACK复用传输,或者指示所述第二HARQ-ACK的比特数为0,或者指示与所述第二HARQ-ACK对应的下行传输的个数为0,所述第八指示状态用于指示按照半静态HARQ-ACK码本大小确定所述第二HARQ-ACK的比特数;或者,所述第七指示状态用于指示所述第二HARQ-ACK的比特数为1比特或指示按照回退模式确定第二HARQ-ACK的比特数,所述第八指示状态在第一条件下指示按照半静态HARQ-ACK码本大小确定所述第二HARQ-ACK的比特数,在第二条件下所述第八指示状态用于指示不存在第二HARQ-ACK,或者指示第二HARQ-ACK不与第一HARQ-ACK复用传输,或者指示所述第二HARQ-ACK的比特数为0,或者指示与所述第二HARQ-ACK对应的下行传输的个数为0;或者
    所述第一指示域至少包括:第九指示状态、第十指示状态和第十一指示状态,所述第九指示状态用于指示不存在所述第二HARQ-ACK,或者指示所述第二HARQ-ACK不与所述第一HARQ-ACK复用传输,或者指示所述第二HARQ-ACK的比特数为0,或者指示与所述第二HARQ-ACK对应的下行传输的个数为0,所述第十指示状态用于指示所述第二HARQ-ACK的比特数为1比特或指示按照回退模式确定第二HARQ-ACK的比特数,所述第十一指示状态用于指示按照半静态HARQ-ACK码本大小确定所述第二HARQ-ACK的比特数。
  66. 如权利要求62或65所述的终端,其中,所述第一条件包括:
    存在与所述第二HARQ-ACK对应的下行传输;或者
    存在具有DCI调度的与所述第二HARQ-ACK对应的下行传输;或者,
    所述第一上行信道与第二上行信道在时域上存在重叠,其中,所述第二上行信道为承载第二HARQ-ACK的信道;
    所述第二条件包括:
    不存在与所述第二HARQ-ACK对应的下行传输;或者
    不存在具有DCI调度的与所述第二HARQ-ACK对应的下行传输;或者,
    所述第一上行信道与第二上行信道在时域上不存在重叠,其中,所述第二上行信道为承载第二HARQ-ACK的信道。
  67. 如权利要求62所述的终端,其中,在所述第一指示域的每个指示状态指示各自对应的一种用于确定第二HARQ-ACK的总比特数的信息情况下,如果确定没有承载所述第二HARQ-ACK的第二上行信道与所述第一上行信道在时域上存在重叠,则忽略所述第一指示域的指示信息。
  68. 如权利要求65所述的终端,其中,在所述第一指示域包括所述第三指示状态和所述第四指示状态的情况下,如果确定没有承载所述第二HARQ-ACK的第二上行信道与所述第一上行信道在时域上存在重叠,则忽略所述第一指示域的指示信息。
  69. 如权利要求61所述的终端,其中,所述传输单元包括:
    确定子单元,用于根据所述第一指示域,确定所述第二HARQ-ACK的比特数;
    传输子单元,用于按照所述第二HARQ-ACK的比特数,进行HARQ-ACK传输。
  70. 如权利要求69所述的终端,其中,所述传输子单元用于:
    按照所述第二HARQ-ACK的比特数,在同一个信道上同时传输所述第一HARQ-ACK和所述第二HARQ-ACK;或者,
    当所述第二HARQ-ACK的比特数大于0或确定传输所述第二HARQ-ACK时,按照所述第二HARQ-ACK的比特数,在同一个信道上同时传输所述第一HARQ-ACK和所述第二HARQ-ACK;或者
    当所述第二HARQ-ACK的比特数为0或确定不传输所述第二HARQ-ACK时,在所述第一上行信道上传输所述第一HARQ-ACK。
  71. 如权利要求69所述的终端,其中,所述确定子单元用于:
    在承载所述第一HARQ-ACK的第一上行信道与承载所述第二HARQ-ACK的第二上行信道在时域上存在重叠的情况下,根据所述第一指示域,确定所述第二HARQ-ACK的比特数。
  72. 如权利要求61所述的终端,其中,所述第一上行信道的优先级高于承载所述第二HARQ-ACK的第二上行信道的优先级;或者,
    所述第一HARQ-ACK的优先级高于所述第二HARQ-ACK的优先级;或者,
    所述第一HARQ-ACK为单播业务的HARQ-ACK,所述第二HARQ-ACK为多播业务的HARQ-ACK。
  73. 如权利要求61所述的终端,其中,所述第一上行信道为物理上行控制信道PUCCH和物理上行共享信道PUSCH中的一个,承载所述第二HARQ-ACK的第二上行信道为PUCCH和PUSCH中的一个,且所述第一上行信道和所述第二上行信道的信道类型相同或者不同。
  74. 如权利要求61所述的终端,其中,所述第一DCI中是否存在所述第一指示域根据高层信令的配置确定;或者
    默认所述第一DCI中总是存在所述第一指示域。
  75. 如权利要求61所述的终端,其中,在所述第一上行信道为PUCCH的情况下,所述第一DCI为用于调度需要在所述PUCCH上进行HARQ-ACK反馈的PDSCH的DCI,或者,所述第一DCI为用于指示需要在所述PUCCH上进行HARQ-ACK反馈的半持续调度SPS物理下行共享信道PDSCH释放release的DCI;或者
    在所述第一上行信道为PUSCH的情况下,所述第一DCI为调度所述PUSCH的DCI。
  76. 如权利要求61所述的终端,其中,当存在多个所述第一DCI时,多个第一DCI中的第一指示域的值相同,或者,终端依据最后一个DCI中的第一指示域进行HARQ-ACK传输。
  77. 一种网络设备,包括:
    发送单元,用于网络设备发送第一下行控制信息DCI,所述第一DCI的第一指示域用于确定如下至少一项:第二混合自动重传请求确认HARQ-ACK的比特数、第二HARQ-ACK是否存在、第二HARQ-ACK是否与第一HARQ-ACK复用传输;
    接收单元,用于依据所述第一指示域进行HARQ-ACK接收;
    其中,所述第一DCI为承载所述第一HARQ-ACK的第一上行信道对应的DCI,所述第二HARQ-ACK为与所述第一HARQ-ACK复用传输的HARQ-ACK。
  78. 如权利要求77所述的网络设备,其中,在所述第二HARQ-ACK使用动态HARQ-ACK码本的情况下:
    所述第一指示域的每个指示状态指示各自对应的一种用于确定所述第二HARQ-ACK的总比特数的信息;或者
    所述第一指示域的第一指示状态用于指示不存在所述第二HARQ-ACK,或者指示所述第二HARQ-ACK不与所述第一HARQ-ACK复用传输,或者指示所述第二HARQ-ACK的总比特数为0,或者指示与所述第二HARQ-ACK对应的下行传输的总数为0,所述第一指示域中除所述第一指示状态之外的每个指示状态指示各自对应的一种用于确定第二HARQ-ACK的总比特数的信息,所述总比特数大于0;或者
    所述第一指示域的第二指示状态在第一条件下指示一种用于确定第二HARQ-ACK的总比特数的信息,所述总比特数大于0,在第二条件下所述第二指示状态用于指示不存在所述第二HARQ-ACK,或者指示所述第二HARQ-ACK不与所述第一HARQ-ACK复用传输,或者指示所述第二HARQ-ACK的总比特数为0,或者指示与所述第二HARQ-ACK对应的下行传输的总数为0,所述第一指示域中除所述第二指示状态之外的每个指示状态指示各自对应的一种用于确定第二HARQ-ACK的总比特数的信息,所述总比特数大于0。
  79. 如权利要求78所述的网络设备,其中,所述用于确定第二HARQ-ACK的总比特数的信息,包括:
    所述第二HARQ-ACK的总比特数,或者,与所述第二HARQ-ACK对应的下行传输的总数。
  80. 如权利要求78所述的网络设备,其中,当所述第一指示域指示用于确定第二HARQ-ACK的总比特数的信息时:
    在所述第二HARQ-ACK的动态HARQ-ACK码本包括多个子码本的情况下,所述第一指示域包括多个子指示域,每个子指示域用于指示各自对应的用于确定第二HARQ-ACK的子码本的比特数的信息。
  81. 如权利要求77所述的网络设备,其中,在所述第二HARQ-ACK使用半静态HARQ-ACK码本的情况下:
    所述第一指示域至少包括:第三指示状态和第四指示状态,所述第三指示状态用于指示所述第二HARQ-ACK的比特数为1比特或指示按照回退模式确定第二HARQ-ACK的比特数,所述第四指示状态用于指示按照半静态HARQ-ACK码本大小确定所述第二HARQ-ACK的比特数;或者
    所述第一指示域至少包括:第五指示状态和第六指示状态,所述第五指示状态用于指示不存在所述第二HARQ-ACK,或者指示所述第二HARQ-ACK不与所述第一HARQ-ACK复用传输,或者指示所述第二HARQ-ACK的比特数为0,或者指示与所述第二HARQ-ACK对应的下行传输的个数为0,所述第六指示状态用于指示按照半静态HARQ-ACK码本大小确定所述第二HARQ-ACK的比特数;或者
    所述第一指示域至少包括:第七指示状态和第八指示状态,其中,所述第七指示状态在第一条件下指示所述第二HARQ-ACK的比特数为1比特或指示按照回退模式确定第二HARQ-ACK的比特数,在第二条件下所述第七指示状态用于指示不存在所述第二HARQ-ACK,或者指示所述第二HARQ-ACK不与所述第一HARQ-ACK复用传输,或者指示所述第二HARQ-ACK的比特数为0,或者指示与所述第二HARQ-ACK对应的下行传输的个数为0,所述第八指示状态用于指示按照半静态HARQ-ACK码本大小确定所述第二HARQ-ACK的比特数;或者,所述第七指示状态用于指示所述第二HARQ-ACK的比特数为1比特或指示按照回退模式确定第二HARQ-ACK的比特数,所述第八指示状态在第一条件下指示按照半静态 HARQ-ACK码本大小确定所述第二HARQ-ACK的比特数,在第二条件下所述第八指示状态用于指示不存在第二HARQ-ACK,或者指示第二HARQ-ACK不与第一HARQ-ACK复用传输,或者指示所述第二HARQ-ACK的比特数为0,或者指示与所述第二HARQ-ACK对应的下行传输的个数为0;或者
    所述第一指示域至少包括:第九指示状态、第十指示状态和第十一指示状态,所述第九指示状态用于指示不存在所述第二HARQ-ACK,或者指示所述第二HARQ-ACK不与所述第一HARQ-ACK复用传输,或者指示所述第二HARQ-ACK的比特数为0,或者指示与所述第二HARQ-ACK对应的下行传输的个数为0,所述第十指示状态用于指示所述第二HARQ-ACK的比特数为1比特或指示按照回退模式确定第二HARQ-ACK的比特数,所述第十一指示状态用于指示按照半静态HARQ-ACK码本大小确定所述第二HARQ-ACK的比特数。
  82. 如权利要求78或81所述的网络设备,其中,所述第一条件包括:
    存在与所述第二HARQ-ACK对应的下行传输;或者
    存在具有DCI调度的与所述第二HARQ-ACK对应的下行传输;或者,
    所述第一上行信道与第二上行信道在时域上存在重叠,其中,所述第二上行信道为承载第二HARQ-ACK的信道;
    所述第二条件包括:
    不存在与所述第二HARQ-ACK对应的下行传输;或者
    不存在具有DCI调度的与所述第二HARQ-ACK对应的下行传输;或者,
    所述第一上行信道与第二上行信道在时域上不存在重叠,其中,所述第二上行信道为承载第二HARQ-ACK的信道。
  83. 如权利要求77所述的网络设备,其中,所述接收单元包括:
    确定子单元,用于根据所述第一指示域,确定所述第二HARQ-ACK的比特数;
    接收子单元,用于按照所述第二HARQ-ACK的比特数,进行HARQ-ACK接收。
  84. 如权利要求83所述的网络设备,其中,所述接收子单元用于:
    按照所述第二HARQ-ACK的比特数,在同一个信道上同时接收所述第一HARQ-ACK和所述第二HARQ-ACK;或者,
    当所述第二HARQ-ACK的比特数大于0或确定终端传输所述第二HARQ-ACK时,按照所述第二HARQ-ACK的比特数,在同一个信道上同时接收所述第一HARQ-ACK和所述第二HARQ-ACK;或者
    当所述第二HARQ-ACK的比特数为0或确定终端不传输所述第二HARQ-ACK时,在所述第一上行信道上接收所述第一HARQ-ACK。
  85. 如权利要求83所述的网络设备,其中,所述确定子单元用于:
    在承载所述第一HARQ-ACK的第一上行信道与承载所述第二HARQ-ACK的第二上行信道在时域上存在重叠的情况下,根据所述第一指示域,确定所述第二HARQ-ACK的比特数。
  86. 如权利要求77所述的网络设备,其中,所述第一上行信道的优先级高于承载所述第二HARQ-ACK的第二上行信道的优先级;或者
    所述第一HARQ-ACK的优先级高于所述第二HARQ-ACK的优先级;或者
    所述第一HARQ-ACK为单播业务的HARQ-ACK,所述第二HARQ-ACK为多播业务的HARQ-ACK。
  87. 如权利要求77所述的网络设备,其中,所述第一上行信道为物理上行控制信道PUCCH和物理上行共享信道PUSCH中的一个,承载所述第二HARQ-ACK的第二上行信道为PUCCH和PUSCH中的一个,且所述第一上行信道和所述第二上行信道的信道类型相同或者不同。
  88. 如权利要求77所述的网络设备,其中,所述第一DCI中是否存在所述第一指示域根据高层信令的配置确定;或者
    默认所述第一DCI中总是存在所述第一指示域。
  89. 如权利要求77所述的网络设备,其中,在所述第一上行信道为PUCCH的情况下,所述第一DCI为用于调度需要在所述PUCCH上进行HARQ-ACK反馈的PDSCH的DCI,或者,所述第一DCI为用于指示需要在所述PUCCH上进行HARQ-ACK反馈的半持续调度SPS物理下行共享信道PDSCH释放release的DCI;或者
    在所述第一上行信道为PUSCH的情况下,所述第一DCI为调度所述PUSCH的DCI。
  90. 如权利要求77所述的网络设备,其中,当存在多个所述第一DCI时,设置多个第一DCI中的第一指示域指示相同的值,或者,依据最后一个DCI中的第一指示域进行HARQ-ACK接收。
  91. 一种处理器可读存储介质,所述处理器可读存储介质存储有计算机程序,所述计算机程序用于使所述处理器执行权利要求1至16任一项所述的上行控制信息传输方法,或者,所述计算机程序用于使所述处理器执行权利要求17至30任一项所述的上行控制信息接收方法。
PCT/CN2021/135551 2020-12-04 2021-12-03 上行控制信息传输方法、接收方法、终端和网络设备 WO2022117103A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US18/256,009 US20240056232A1 (en) 2020-12-04 2021-12-03 Uplink control information transmission method, uplink control information reception method, terminal and network device
EP21900125.2A EP4258776A1 (en) 2020-12-04 2021-12-03 Uplink control information transmission method, uplink control information receiving method, terminal and network device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011412815.2 2020-12-04
CN202011412815.2A CN114599092A (zh) 2020-12-04 2020-12-04 上行控制信息传输方法、接收方法、终端和网络设备

Publications (1)

Publication Number Publication Date
WO2022117103A1 true WO2022117103A1 (zh) 2022-06-09

Family

ID=81802739

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/135551 WO2022117103A1 (zh) 2020-12-04 2021-12-03 上行控制信息传输方法、接收方法、终端和网络设备

Country Status (4)

Country Link
US (1) US20240056232A1 (zh)
EP (1) EP4258776A1 (zh)
CN (1) CN114599092A (zh)
WO (1) WO2022117103A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116095842B (zh) * 2023-04-06 2023-08-15 深圳国人无线通信有限公司 一种用户终端的传输资源复用方法及装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180092122A1 (en) * 2016-09-25 2018-03-29 Ofinno Technologies, Llc Harq process in semi-persistent scheduling
CN110830184A (zh) * 2018-08-09 2020-02-21 北京三星通信技术研究有限公司 块传输方法、下行传输方法、nrs接收方法、ue、基站和介质
CN111148077A (zh) * 2018-11-02 2020-05-12 华为技术有限公司 传输方法和装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180092122A1 (en) * 2016-09-25 2018-03-29 Ofinno Technologies, Llc Harq process in semi-persistent scheduling
CN110830184A (zh) * 2018-08-09 2020-02-21 北京三星通信技术研究有限公司 块传输方法、下行传输方法、nrs接收方法、ue、基站和介质
CN111148077A (zh) * 2018-11-02 2020-05-12 华为技术有限公司 传输方法和装置

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
FUTUREWEI: "Improving reliability for MC/BC services", 3GPP TSG RAN WG1 #103-E R1-2007557, 1 November 2020 (2020-11-01), XP051946412 *
MEDIATEK INC.: "Discussion on HARQ operation for NR MBS reliable transmission", 3GPP TSG RAN WG1 #103-E R1-2008962, 1 November 2020 (2020-11-01), XP051946750 *
SAMSUNG: "Enhancements on HARQ for NTN", 3GPP TSG RAN WG1 #103-E R1-2008166, 1 November 2020 (2020-11-01), XP051945343 *

Also Published As

Publication number Publication date
CN114599092A (zh) 2022-06-07
US20240056232A1 (en) 2024-02-15
EP4258776A1 (en) 2023-10-11

Similar Documents

Publication Publication Date Title
WO2019137500A1 (zh) 一种信息发送方法、接收方法和装置
JP2018504053A (ja) 拡張キャリアアグリゲーションのためのソフトバッファ管理
WO2021155608A1 (zh) 信息传输方法及相关装置
WO2019137506A1 (zh) 一种信息传输方法和装置
WO2021159857A1 (zh) 码本传输方法及装置
WO2021227624A1 (zh) 一种确定反馈信息传输位置的方法及设备
WO2022117103A1 (zh) 上行控制信息传输方法、接收方法、终端和网络设备
WO2022117102A1 (zh) 上行控制信息传输方法、接收方法、终端和网络设备
WO2017128512A1 (zh) 信息发送方法、信息接收方法、装置及系统
WO2022237611A1 (zh) 一种信息确认方法、装置及通信设备
WO2022218223A1 (zh) 载波切换的传输处理方法及装置
WO2023134661A1 (zh) Uci传输方法、终端、网络设备、装置及存储介质
WO2023134572A1 (zh) 上行传输方法、终端设备和网络设备
TWI786585B (zh) 資訊傳輸方法及裝置
WO2022028579A1 (zh) Uci传输方法、接收方法、终端和网络设备
WO2022206344A1 (zh) 一种信道复用方法、装置及通信设备
WO2022206347A1 (zh) 一种uci在pusch上传输的方法、终端及设备
WO2022078285A1 (zh) 上行传输方法及装置
US20240179715A1 (en) Multiplexing transmission method and apparatus, and storage medium
WO2023155729A1 (zh) 一种信息处理方法、装置及可读存储介质
WO2022237462A1 (zh) 上行信道的传输方法及相关装置
CN115333699B (zh) 信道处理方法、装置及存储介质
WO2022206443A1 (zh) 上行复用传输方法、装置及存储介质
WO2023078029A1 (zh) 功率控制参数确定方法、装置及终端设备
WO2022198643A1 (zh) 信息报告方法、装置、设备及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21900125

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18256009

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021900125

Country of ref document: EP

Effective date: 20230704