WO2022206344A1 - 一种信道复用方法、装置及通信设备 - Google Patents

一种信道复用方法、装置及通信设备 Download PDF

Info

Publication number
WO2022206344A1
WO2022206344A1 PCT/CN2022/080431 CN2022080431W WO2022206344A1 WO 2022206344 A1 WO2022206344 A1 WO 2022206344A1 CN 2022080431 W CN2022080431 W CN 2022080431W WO 2022206344 A1 WO2022206344 A1 WO 2022206344A1
Authority
WO
WIPO (PCT)
Prior art keywords
uplink
uplink channel
determined
multiplexing transmission
channel
Prior art date
Application number
PCT/CN2022/080431
Other languages
English (en)
French (fr)
Inventor
高雪娟
司倩倩
Original Assignee
大唐移动通信设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大唐移动通信设备有限公司 filed Critical 大唐移动通信设备有限公司
Priority to US18/553,194 priority Critical patent/US20240196427A1/en
Priority to AU2022247620A priority patent/AU2022247620A1/en
Priority to EP22778528.4A priority patent/EP4319395A1/en
Publication of WO2022206344A1 publication Critical patent/WO2022206344A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/56Allocation or scheduling criteria for wireless resources based on priority criteria
    • H04W72/566Allocation or scheduling criteria for wireless resources based on priority criteria of the information or information source or recipient
    • H04W72/569Allocation or scheduling criteria for wireless resources based on priority criteria of the information or information source or recipient of the traffic information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/56Allocation or scheduling criteria for wireless resources based on priority criteria
    • H04W72/566Allocation or scheduling criteria for wireless resources based on priority criteria of the information or information source or recipient
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1268Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of uplink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal

Definitions

  • the present disclosure relates to the field of wireless communication technologies, and in particular, to a channel multiplexing method, apparatus, and communication device.
  • uplink channel transmission with different physical layer priorities is supported, where RAT is Radio Access Technology, and the same terminal (also called user).
  • RAT Radio Access Technology
  • UE Terminal/User Equipment
  • a related solution is to transmit the channel with high physical layer priority among the conflicting channels, and discard the channel with low physical layer priority.
  • UCI uplink control information
  • PUCCH Physical Uplink Control Channel
  • the present disclosure provides a channel multiplexing method, device, and communication device, which are used to solve the problem that it is difficult to ensure the low time of high-priority channel transmission in the current scenario of supporting multiplexed transmission of channels with different priorities. It is also difficult to retain the scheduling flexibility of high-priority channels.
  • the present disclosure provides a channel multiplexing method, which is applied to communication equipment, including:
  • the determining whether to allow multiplexing transmission between the uplink channels includes:
  • the configuration signaling it is determined whether to allow multiplexing transmission between the uplink channels; wherein the configuration signaling includes at least one of the following:
  • Downlink control information in the downlink control channel corresponding to the uplink channel where the downlink control information carries indication information
  • the indication information indicates whether multiplexing transmission is allowed, or,
  • the indication information indicates information used to determine the first reference bit number of the low-priority uplink control information that is simultaneously transmitted on the same uplink channel as the high-priority uplink control information carried on the uplink channel, the reference The number of bits is used to determine whether to allow multiplexing transmission between the upstream channels.
  • the determining whether to allow multiplexing transmission between the uplink channels includes:
  • the number of bits of the high-priority uplink control information carried in the uplink channel or the bit interval corresponding to the number of bits determine the low-priority transmission simultaneously with the high-priority uplink control information on the same uplink channel
  • the second reference number of bits of uplink control information wherein, the number of bits of each high-priority uplink control information or the bit interval corresponding to the number of bits corresponds to the second reference bit number of a low-priority uplink control information respectively ;
  • the second reference bit number it is determined whether to allow multiplexing transmission between the uplink channels.
  • the communication device is a base station; the method further includes:
  • the uplink channel does not need to meet the time condition, when scheduling or configuring the uplink channel, it is not necessary to ensure that the uplink channel meets the time condition.
  • the communication device is a base station; the method further includes:
  • the uplink channel needs to meet the time condition, when scheduling or configuring the uplink channel, it is necessary to ensure that the uplink channel meets the time condition.
  • the communication device is a terminal; the method further includes:
  • the communication device is a terminal; the method further includes:
  • the present disclosure also provides a communication device, including a memory, a transceiver, and a processor:
  • a memory for storing a computer program
  • a transceiver for sending and receiving data under the control of the processor
  • a processor for reading the computer program in the memory and performing the following operations:
  • the determining whether to allow multiplexing transmission between the uplink channels includes:
  • the configuration signaling it is determined whether to allow multiplexing transmission between the uplink channels; wherein the configuration signaling includes at least one of the following:
  • Downlink control information in the downlink control channel corresponding to the uplink channel where the downlink control information carries indication information
  • the indication information indicates whether multiplexing transmission is allowed, or,
  • the indication information indicates information used to determine the first reference bit number of the low-priority uplink control information that is simultaneously transmitted on the same uplink channel as the high-priority uplink control information carried on the uplink channel, the reference The number of bits is used to determine whether to allow multiplexing transmission between the upstream channels.
  • the determining whether to allow multiplexing transmission between the uplink channels includes:
  • the number of bits of the high-priority uplink control information carried in the uplink channel or the bit interval corresponding to the number of bits determine the low-priority transmission simultaneously with the high-priority uplink control information on the same uplink channel
  • the second reference number of bits of uplink control information wherein, the number of bits of each high-priority uplink control information or the bit interval corresponding to the number of bits corresponds to the second reference bit number of a low-priority uplink control information respectively ;
  • the second reference bit number it is determined whether to allow multiplexing transmission between the uplink channels.
  • the communication device is a base station; the processor is further configured to perform the following operations:
  • the uplink channel does not need to meet the time condition, when scheduling or configuring the uplink channel, it is not necessary to ensure that the uplink channel meets the time condition.
  • the communication device is a base station; the processor is further configured to perform the following operations:
  • the uplink channel needs to meet the time condition, when scheduling or configuring the uplink channel, it is necessary to ensure that the uplink channel meets the time condition.
  • the communication device is a terminal; the processor is further configured to perform the following operations:
  • the communication device is a terminal; the processor is further configured to perform the following operations:
  • the present disclosure also provides a channel multiplexing device, comprising:
  • a first determining unit configured to determine whether to allow multiplexing transmission between the uplink channels when uplink channels with different priorities overlap in the time domain
  • a second determining unit configured to determine that the uplink channel needs to meet a predetermined time condition when it is determined that multiplexing transmission between the uplink channels is allowed
  • a third determining unit configured to determine that the uplink channel does not need to satisfy the time condition when it is determined that multiplexing transmission between the uplink channels is not allowed.
  • the first determining unit is configured to determine, according to configuration signaling, whether to allow multiplexing transmission between the uplink channels; wherein the configuration signaling includes at least one of the following:
  • Downlink control information in the downlink control channel corresponding to the uplink channel where the downlink control information carries indication information
  • the indication information indicates whether multiplexing transmission is allowed, or,
  • the indication information indicates information used to determine the first reference bit number of the low-priority uplink control information that is simultaneously transmitted on the same uplink channel as the high-priority uplink control information carried on the uplink channel, the reference The number of bits is used to determine whether to allow multiplexing transmission between the upstream channels.
  • the first determining unit includes:
  • a second reference bit number determination unit configured to determine the same number of bits as the high-priority uplink control information according to the number of bits or the bit interval corresponding to the number of bits of the high-priority uplink control information carried in the uplink channel
  • the second reference number of bits of low-priority uplink control information simultaneously transmitted on an uplink channel; wherein, the number of bits of each high-priority uplink control information or the bit interval corresponding to the number of bits corresponds to a low-priority
  • a multiplexing transmission determining unit configured to determine whether to allow multiplexing transmission between the uplink channels according to the second reference bit number.
  • the channel multiplexing apparatus is applied to a base station; the apparatus further includes:
  • the first allocation unit is configured to, if it is determined that the uplink channel does not need to meet the time condition, when scheduling or configuring the uplink channel, it is not necessary to ensure that the uplink channel meets the time condition.
  • the channel multiplexing apparatus is applied to a base station; the apparatus further includes:
  • the second allocation unit is configured to ensure that the uplink channel meets the time condition when scheduling or configuring the uplink channel if it is determined that the uplink channel needs to meet the time condition.
  • the channel multiplexing apparatus is applied to a base station; the apparatus further includes:
  • a first checking unit configured to check whether the uplink channel satisfies the time condition before performing multiplexing and transmission if it is determined that the uplink channel needs to meet the time condition.
  • the channel multiplexing apparatus is applied to a base station; the apparatus further includes:
  • the second checking unit is configured to, if it is determined that the uplink channel does not need to meet the time condition, it is not necessary to check whether the uplink channel meets the time condition before performing multiplexing transmission.
  • the present disclosure also provides a processor-readable storage medium, where a computer program is stored in the processor-readable storage medium, and the computer program is used to cause the processor to execute any one of the above methods.
  • the embodiment of the present disclosure provides a multiplexing transmission scheme when uplink channels with different priorities collide. According to the judgment result of whether to support UCI multiplexing transmission with different priorities, it is determined whether a predetermined time condition needs to be satisfied, and when the decision does not support Or when UCI multiplexing transmission with different priorities is not performed, it is not necessary to judge the time condition of overlapping channels, so as not to limit the scheduling of high-priority uplink channels, improve the transmission flexibility of priority uplink channels, and ensure that the transmission delay is satisfied. need.
  • FIG. 1 is a schematic diagram of a network structure to which an embodiment of the present disclosure can be applied;
  • FIG. 2 is a schematic flowchart of a channel multiplexing method in an embodiment of the present disclosure
  • FIG. 3 is a schematic diagram of overlapping between PUCCHs of different priorities
  • FIG. 4 is a schematic diagram of supporting multiplexing transmission in an embodiment of the present disclosure.
  • FIG. 5 is a schematic diagram of a non-supporting multiplexing transmission in an embodiment of the present disclosure
  • FIG. 6 is a schematic structural diagram of a communication device in an embodiment of the disclosure.
  • FIG. 7 is a schematic structural diagram of a channel multiplexing apparatus in an embodiment of the present disclosure.
  • the term "and/or" describes the association relationship of associated objects, and indicates that there can be three kinds of relationships. For example, A and/or B can indicate that A exists alone, A and B exist at the same time, and B exists alone these three situations.
  • the character “/” generally indicates that the associated objects are an "or" relationship.
  • the term “plurality” refers to two or more than two, and other quantifiers are similar.
  • the embodiments of the present disclosure provide a channel multiplexing method, apparatus, and communication device, so as to improve the transmission flexibility of the priority uplink channel and ensure that the transmission delay meets the requirements.
  • the method and device are conceived based on the same application. Since the principles of the method, the device, and the communication device for solving problems are similar, the implementation of the device, the communication device, and the method can be referred to each other, and repeated descriptions will not be repeated.
  • FIG. 1 is a schematic diagram of a network structure to which the embodiments of the present disclosure can be applied.
  • the terminal 11 may be a user terminal (User Equipment, UE) or other terminal equipment,
  • UE User Equipment
  • PDA personal digital assistant
  • mobile Internet device Mobile Internet Device, MID
  • wearable device Wearable device
  • Base station 12 such as: macro station, LTE eNB, 5G NR Node B (Node B, NB), etc.; network side equipment can also be small stations, such as low power nodes (LPN: low power node), pico, femto and other small stations , or the network side device can be an access point (AP, access point); the base station can also be a network composed of a central unit (CU, central unit) and multiple transmission reception points (TRP, Transmission Reception Point) that it manages and controls node.
  • LPN low power node
  • AP access point
  • the base station can also be a network composed of a central unit (CU, central unit) and multiple transmission reception points (TRP, Transmission Reception Point) that it manages and controls node.
  • TRP Transmission Reception Point
  • a UE can support different types of services, such as enhanced Mobile Broadband (eMBB) services and Ultra-Reliable and Low Latency Communication (URLLC) services.
  • eMBB enhanced Mobile Broadband
  • URLLC Ultra-Reliable and Low Latency Communication
  • Different service types have different requirements for reliability and transmission delay.
  • the URLLC service flow may occur sporadically and irregularly. Therefore, different system resources are independently reserved for different services, and the overhead of system resources is relatively large. In many cases, the resources reserved for URLLC may not be used.
  • multiplexing and transmission of different services on the same resources can be supported. It may happen that an earlier scheduled data transmission is interrupted or cancelled by another later scheduled data transmission.
  • a UE is scheduled to transmit the eMBB service on resource 1, due to the arrival of the URLLC service, in order to meet the delay requirement of the URLLC service, it needs to be scheduled as soon as possible, which may occupy the resource 1 allocated to the eMBB service.
  • All or part of the resources are used for URLLC transmission, for example, URLLC transmission may be scheduled on all or part of the symbols in the time domain resources (symbol set) scheduled for eMBB on the same carrier , regardless of whether the frequency domain resources overlap, because two uplink channels cannot be simultaneously transmitted on the same carrier at the same time, the eMBB service will be interrupted or canceled by the URLLC service.
  • the physical layer priority of PUCCH and PUSCH can be obtained by default, dynamic indication of Downlink Control Information (DCI) or semi-static configuration of Radio Resource Control (RRC).
  • DCI Downlink Control Information
  • RRC Radio Resource Control
  • PUCCH carries a Scheduling Request (SR)
  • SR Scheduling Request
  • HARQ-ACK Hybrid Automatic Repeat request-ACKnowledgment
  • SPS Semi-Persistent Scheduling
  • PDSCH Physical Downlink Shared Channel
  • HARQ-ACK physical downlink shared channel
  • the DCI contains the priority indication field
  • the DCI (or PDCCH) corresponding to the PUCCH and PUSCH can be used.
  • the PDCCH and the DCI can be considered to be equivalent.
  • the priority indication field in the corresponding PDCCH obtains the priority.
  • the priority indication field can be used to indicate the HARQ- The priority of the PUCCH of the ACK; when the PDCCH schedules a PUSCH, the priority of the scheduled PUSCH can be indicated through the priority indication field, where the PUSCH includes only the PUSCH carrying the transport block (Transport Block, TB) or only the aperiodic channel.
  • PUSCH of status information Aperiodic CSI, A-CSI
  • PUSCH carrying both TB and A-CSI for PUSCH carrying SP-CSI, its priority can be indicated by activating the priority in the DCI of PUSCH carrying SP-CSI domain obtained. If the DCI does not contain a priority indication field, or the higher layer signaling does not have a priority configured, the default is low priority.
  • UCI contains HARQ-ACK, CSI, SR and other information.
  • UCI is transmitted on PUCCH.
  • HARQ-ACK is a general term for positive acknowledgment (ACKnowledgment, ACK) and negative acknowledgment (Non-ACKnowledgment, NACK), which is used for PDSCH or PDCCH (also known as SPS PDSCH release) indicating the release of SPS resources. Or indicate whether the PDCCH released by the SPS PDSCH is received correctly;
  • CSI is used to feed back downlink channel quality, thereby helping the base station to better perform downlink scheduling, such as selecting and configuring appropriate resources based on CSI for modulation and coding level (Modulation and Coding Scheme, MCS).
  • SR is used to request the base station for transmission resources of the PUSCH carrying the uplink service when the terminal needs to transmit the uplink service.
  • PUCCH and PUSCH Parallel transmission of PUCCH and PUSCH at the same time is not supported in NR, whether on the same carrier or on different carriers.
  • PUCCH and PUSCH (no special explanation is given, generally PUCCH and PUSCH refer to PUCCH and PUSCH that do not use repeated transmission) overlap in time domain resources
  • the UCI Generally, HARQ-ACK and CSI
  • the SR is not transmitted on the PUSCH, and the SR is discarded.
  • a PUSCH is selected according to a predetermined rule, and the PUSCH carrying A-CSI is preferentially selected. If there is a PUSCH with PDCCH scheduling (Dynamic grant (DG) PUSCH) and no For the PUSCH scheduled by PDCCH (Configured grant (CG) PUSCH, SP-CSI PUSCH, etc.), the DG PUSCH is preferentially selected. After selecting according to the above rules, if there are PUSCH on multiple carriers, the carrier with the lower carrier number is preferentially selected. If there are multiple non-overlapping PUSCHs and PUCCHs on the selected carrier, the earliest PUSCH is selected.
  • DG Dynamic grant
  • the earlier-starting channel can be obtained before preparation to determine whether there is a later-starting channel overlapping with it, and thus make a decision according to the multiplexing rule.
  • the multiplexing transmission decision requires that the multiplexing time conditions must be met between the multiplexing transmission channels.
  • high-priority channels which usually carry UCI or data of important services that are sensitive to delays
  • the scheduling restrictions on high-priority channels are very large, which may lead to a large increase in the delay.
  • there is no clear method how to ensure the low-latency characteristics of high-priority channel transmission and retain sufficient scheduling flexibility for high-priority channels.
  • the present disclosure provides the following technical solutions.
  • FIG. 2 is a schematic flowchart of a channel multiplexing method according to an embodiment of the present disclosure. The method is applied to a communication device and includes the following steps:
  • uplink channels with different priorities overlap in the time domain, that is, uplink channels with different priorities collide.
  • the multiplexing transmission refers to the simultaneous transmission of information carried on uplink channels of different priorities on the same uplink channel. If it is determined that multiplexing transmission between uplink channels with different priorities is not allowed, the uplink channels with low priority are discarded.
  • the embodiment of the present disclosure provides a method for multiplexing transmission when uplink channels with different priorities collide. According to the judgment result of whether to support UCI multiplexing transmission with different priorities, it is determined whether a predetermined time condition needs to be satisfied, and when the decision does not support Or when UCI multiplexing transmission with different priorities is not performed, it is not necessary to judge the time condition of overlapping channels, so as not to limit the scheduling of high-priority uplink channels, improve the transmission flexibility of priority uplink channels, and ensure that the transmission delay is satisfied. need.
  • the determining whether to allow multiplexing transmission between the uplink channels includes:
  • the configuration signaling it is determined whether to allow multiplexing transmission between the uplink channels; wherein the configuration signaling includes at least one of the following:
  • Downlink control information in the downlink control channel corresponding to the uplink channel and the downlink control information carries indication information;
  • the uplink channel here may specifically be an uplink channel with different priorities and overlapping in the time domain one or more upstream channels;
  • the determining whether to allow multiplexing transmission between the uplink channels according to the configuration signaling specifically includes:
  • the indication information in the downlink control channel corresponding to the uplink channel determine whether to allow multiplexing transmission between the uplink channels
  • the uplink channels it is determined whether to allow multiplexing transmission between the uplink channels. For example, whether to support (ie, allow) uplink channels with different priorities for multiplexing transmission can be semi-statically configured.
  • the indication information indicates whether multiplexing transmission is allowed (or exists); or,
  • the indication information indicates information used to determine the first reference bit number of the low-priority uplink control information that is simultaneously transmitted on the same uplink channel as the high-priority uplink control information carried by the uplink channel, and the A reference bit number is used to determine whether to allow multiplexing transmission between the uplink channels.
  • the indication information when it is determined according to the indication information that the number of the first reference bits is 0, it is determined that multiplexing transmission between the uplink channels is not allowed, and when the first reference bits are determined according to the indication information When the number is greater than 0, it is determined that multiplexing transmission between the uplink channels is allowed.
  • the indication state may be one of permitted or not permitted, or the indication state may be one of presence or absence, or the indication state may be supported or not supported one of.
  • there is an indication in the PDCCH that schedules the PDSCH or the PDCCH that indicates the activation of the SPS PDSCH or the PDCCH that needs to perform HARQ-ACK feedback for example, the PDCCH that indicates the release of the SPS PDSCH resources, the PDCCH that indicates the secondary cell (Secondary Cell, SCell) dormancy (Dormancy), etc.).
  • the HARQ-ACK corresponding to the PDCCH that is, the HARQ-ACK of the PDSCH scheduled or activated by the PDCCH or the HARQ-ACK of the PDCCH itself), and the HARQ-ACK in the same uplink. Simultaneous transmission on the channel (PUCCH or PUSCH).
  • Information about the indication information indicating the first reference number of bits used to determine the low-priority uplink control information that is simultaneously transmitted on the same uplink channel as the high-priority uplink control information carried on the uplink channel for example, There is an indication field in the PDCCH that schedules the PDSCH or the PDCCH that indicates the activation of the SPS PDSCH or the PDCCH that needs to perform HARQ-ACK feedback (for example, the PDCCH that indicates the release of the SPS PDSCH resources, the PDCCH that indicates the secondary cell dormancy (Secondary Cell Dormancy, SCell Dormancy), etc.), indicating Indication information used to determine the number of bits of UCI that is simultaneously transmitted on the same channel with the HARQ-ACK corresponding to the PDCCH and has a different priority from the HARQ-ACK, when the first reference bit number determined according to the indication information is When the value is 0, the determination result is not allowed, and when the number of the first reference bits determined according to the indication information is greater than 0,
  • an indication field in the PDCCH that schedules the PUSCH or the PDCCH that indicates the activation of the CG PUSCH indicating the number of bits or resources used to determine the transmission of UCI with a different priority from the PUSCH on the PUSCH (which can be based on the indicated beta offset (beta). -offset) to determine) indication information, when the first reference bit number or resource determined according to the indication information is 0, the determination result is not allowed, and when the first reference bit number or resource determined according to the indication information is greater than 0, Make sure the result is allowed.
  • DCI ie PDCCH
  • LP low priority
  • HP high priority
  • the determining whether to allow multiplexing transmission between the uplink channels includes:
  • the number of bits of the high-priority uplink control information carried in the uplink channel or the bit interval corresponding to the number of bits determine the low-priority transmission simultaneously with the high-priority uplink control information on the same uplink channel
  • the second reference number of bits of uplink control information wherein, the number of bits of each high-priority uplink control information or the bit interval corresponding to the number of bits corresponds to the second reference bit number of a low-priority uplink control information respectively ;
  • the second reference bit number it is determined whether to allow multiplexing transmission between the uplink channels.
  • the second reference bit number when the second reference bit number is 0, it is determined that multiplexing transmission between the uplink channels is not allowed; when the second reference bit number is greater than 0, it is determined that multiplexing transmission between the uplink channels is allowed. use transmission.
  • the bit interval corresponding to the number of bits of the high-priority uplink control information refers to a value range to which the number of bits of the high-priority uplink control information belongs.
  • the corresponding relationship between the number of bits of the high-priority uplink control information or the bit interval corresponding to the number of bits and the second reference bit number of the low-priority uplink control information can be pre-defined or configured, and then if there are different The uplink channels with the priority overlap in the time domain, then according to the number of bits of the uplink control information corresponding to the uplink channels with high priority in these overlapping uplink channels in the time domain and the corresponding relationship, it is determined that the uplink channels with high priority
  • the second reference bit number of the uplink control information of the low priority that the uplink control information corresponding to the uplink channel of the higher priority is simultaneously transmitted on the same channel.
  • the multiplexing timeline In accordance with the number of bits of high priority (HP) or the bit interval corresponding to the number of bits (that is, the number of bits of high-priority uplink control information or the bit interval corresponding to the number of bits), determine the corresponding low priority (LP) When the second reference bit number (that is, the second reference bit number of the low-priority uplink control information), if the determined second reference bit number is greater than 0 or there is an LP, the multiplexing timeline always needs to be satisfied. If the second reference bit number is 0 or corresponds to no LP, the multiplexing timeline does not need to be satisfied.
  • the communication device is a base station; the method further includes:
  • the uplink channel does not need to meet the time condition, when scheduling or configuring the uplink channel, it is not necessary to ensure that the uplink channel meets the time condition.
  • the communication device is a terminal; the method further includes:
  • the terminal can also check whether the uplink channel meets the time condition before performing multiplexing transmission, but even if the result of the check is not satisfied, it will not consider It is erroneous scheduling, but instead of multiplexing transmission, the high-priority uplink channels in the overlapping channels are transmitted, and the low-priority uplink channels are not transmitted (ie, discarded).
  • the communication device is a base station; the method further includes:
  • the uplink channel needs to meet the time condition, when scheduling or configuring the uplink channel, it is necessary to ensure that the uplink channel meets the time condition.
  • the above time conditions need to be satisfied, then for the base station side
  • scheduling or configuring uplink channels it is necessary to ensure that the above-mentioned time conditions are satisfied for uplink channels with different priorities that overlap in the time domain.
  • the communication device is a terminal; the method further includes:
  • the terminal side if it is determined that multiplexing transmission between uplink channels with different priorities is allowed, it is determined that there are overlapping uplink channels with different priorities in the time domain that need to meet the above time conditions, then for the terminal side In other words, before multiplexing transmission, it is necessary to check whether the overlapping uplink channels with different priorities in the time domain meet the above time conditions. If the check result is not satisfied, it is considered to be wrong scheduling, and there is no standardized terminal behavior. The terminal can not transmit to all overlapping uplink channels, or choose to transmit one of the uplink channels at will; if the check result is satisfied, it can be carried out. Multiplex transmission of uplink channels with different priorities.
  • the time condition may be a time condition defined in the related art that needs to be satisfied when multiple PUCCHs overlap in the time domain, or when the PUCCH and the PUSCH overlap in the time domain.
  • the definition of the time condition (timeline) is: if the PUCCH or PUSCH has a corresponding PDCCH, for example, the HARQ-ACK carried on the PUCCH is the HARQ-ACK of the PDSCH with PDCCH scheduling or the HARQ-ACK of the PDCCH indicating the release of downlink SPS resources.
  • the PDCCH that schedules PDSCH or the PDCCH that indicates the release of downlink SPS resources is the PDCCH corresponding to the PUCCH, or it can also be called the PDCCH that schedules the PUCCH
  • the PDCCH that schedules the PUSCH is the PDCCH corresponding to the PUSCH.
  • the first symbol of the channel with the earliest start time is used as the target symbol. If there are multiple channels with the same start time, select a channel at random and use its first symbol as the target symbol. The target symbol needs to meet the following timeline. Perform multiplexing transmission, otherwise it is considered to be wrong scheduling:
  • Timeline1 The target symbol is not earlier than the first symbol (including Cyclic Prefix, CP) after the T1mux time after the last symbol of any PDSCH or SPS PDSCH release that requires HARQ-ACK feedback on PUCCH ), that is, the time interval between the target symbol and the last symbol of any one of the above PDSCH or SPS PDSCH release is not less than T1mux time.
  • T1mux is related to the processing delay of PDSCH, and can be calculated according to a predetermined formula and related parameters. The purpose of the timeline is to ensure that the acquisition and preparation of the HARQ-ACK can be completed before the transmission of the finally determined channel for transmitting the HARQ-ACK starts.
  • Timeline2 The target symbol is not earlier than the first symbol after the T2mux time (including the CP in the ), that is, the time interval between the target symbol and the last symbol of any one of the above PDCCHs is not less than T2mux time.
  • T2mux is related to the processing delay of PUSCH, and can be calculated according to a predetermined formula and related parameters. The purpose of this timeline is to ensure that when the UCI needs to be transferred to the PUSCH for transmission, the PDCCH for scheduling the PUSCH can be obtained before the PUCCH preparation starts, so that it is determined that there is no need to prepare the UCI transmission on the PUCCH, and the UCI can be completed before the PUSCH transmission.
  • this T2mux is used to simulate CSI and SR Preparation time for multiplexing with HARQ-ACK.
  • the PDCCH of the PDSCH is not scheduled at this time. If there is no PUSCH or PUSCH and there is no corresponding PDCCH, you only need to check whether the T1mux is not Need to check T2mux. If CSI and/or SR are carried on the PUCCH, because there is no corresponding PDSCH, there is no need to check T1mux, and if there is no PUSCH or PUSCH does not have a corresponding PDCCH, then there is no need to check T2mux.
  • PUCCH and PUCCH overlap, at least one PUCCH is repeatedly transmitted (that is, occupying multiple time slots to repeatedly transmit UCI in each time slot), only for the overlapping repetition (repetition), according to the transmission high priority, Discard low-priority processing without affecting repetitions that do not overlap. If the PUCCH overlaps with the PUSCH of repeated transmission, when the PUSCH adopts the repeated transmission based on time slots (R15 repeated transmission, or R16 repetition type A), the UCI carried on the PUCCH is transferred to one or more PUSCH time slots that overlap with the PUCCH for transmission.
  • the UCI carried by PUCCH is transferred to the earliest actual repetition PUSCH that overlaps with PUCCH and contains more than 1 symbol for transmission (actual repetition is carried out according to unavailable symbols, DL symbols, time slot boundaries, etc.
  • the predetermined time condition may also be a time condition newly defined in the related art for multiplexing transmission when there is overlap between PUCCHs and/or PUSCHs of different priorities in the time domain. For example, it is determined whether all DCIs and PDSCHs satisfy T1mux, T2mux, etc. based on the starting point of the high-priority uplink channel.
  • LP represents low priority
  • HP represents high priority
  • AN is the abbreviation of HARQ-ACK.
  • One of the implementations of channel multiplexing is as follows: there may be an indication field in the downlink scheduling grant (DL grant, namely PDCCH) for scheduling the PDSCH corresponding to the HP AN, indicating whether to support the multiplexing transmission of the HP AN and the L AN on the same channel,
  • DL grant namely PDCCH
  • the UE can obtain the indication field in it, and according to the indication field, it can determine whether to support the multiplexing transmission of the HP AN and the LP AN on the same channel.
  • the indication of support (for example, the indication state may be support, it may also be an indication of the number of bits used to determine the LP AN multiplexed with the HP AN, and if the number of bits is determined to be greater than 0, it proves that the LP AN exists and allows the LP AN to interact with the HP AN.
  • the UE needs to judge: 1) before the overlapping HP AN and LP AN are transmitted simultaneously on the same uplink channel according to the predefined multiplexing transmission rules: 1) In the overlapping PUCCH and LP AN carrying the HP AN Among the PUCCHs carrying the LP AN, whether the first symbol of the PUCCH with the earliest start symbol (ie the LP AN PUCCH in Figure 3) and the DL grants corresponding to the HP AN and the LP AN satisfy the time interval not short T2mux required for multiplexing transmission (T2mux can be calculated according to relevant formulas and parameters according to the definition in the related art); 2) Among the overlapping PUCCHs that carry HP AN and PUCCHs that carry LP AN, the earliest start symbol Whether the first symbol of the PUCCH and the PDSCH corresponding to the HP AN and the LP AN satisfy the time interval not shorter than the T1mux required for multiplexing transmission (T1mux can be calculated according to
  • the indication status may be unsupported, or it may be an indication of the number of bits used to determine the LPAN multiplexed with the HP AN, and if the number of bits is 0, it proves that the L PAN and the HP AN do not exist or are not allowed.
  • the terminal determines according to the DL grant corresponding to HP AN
  • the terminal determines according to the DL grant corresponding to HP AN
  • HP AN transmission can be performed directly according to the PUCCH resources corresponding to HP AN, and for The LP AN overlapping with the HP AN is discarded to ensure that the HP AN transmission is not affected, as shown in Figure 5.
  • the base station When the base station is scheduling, it is not necessary that the DL grant and PDSCH corresponding to the HP AN and the starting point of the LP AN PUCCH must satisfy T1mux and T2mux, that is, when the base station schedules HP data, the DL grant and PDSCH corresponding to the HP AN It does not need to be sent early enough. It can be scheduled and sent when the HP data arrives and the PDSCH needs to be sent according to the actual requirements, so that the normal transmission of the HP AN corresponding to the HP data can be guaranteed, and there is no restriction on the specific location. The scheduling and transmission of the HP data is sent before, thereby reducing the restriction and impact on the scheduling and transmission of the HP data, and ensuring the characteristics of the arrival and transmission of the HP data at any time.
  • channel multiplexing is: according to the number of bits of the HP AN, and the pre-defined or configured correspondence between the number of bits or the number of bits of the HP AN and the reference number of bits of the LPAN, determine the number of bits that can be used with the HP AN.
  • Number of LP AN bits transmitted by AN multiplexing Specifically, according to the corresponding relationship and the current number of HP AN bits, it is determined that the number of LP AN bits multiplexed with HP AN is greater than 0, that is, the multiplexed transmission of LP AN and HP AN exists and is allowed, and the specific processing process is the same as the above determination. Supported situations and Figure 4 will not be repeated.
  • the HARQ-ACK with different priorities is replaced by unicast and multicast HARQ-ACK, or replaced by other two different UCI transmissions, which is also applicable.
  • One of the above-mentioned PUCCHs carrying UCI is replaced with PUSCH, that is, if the PUCCH carrying LP AN overlaps with the PUSCH carrying HP AN, or the PUCCH carrying HP AN overlaps with the PUSCH carrying LP AN, the processing methods are similar, but the differences are different.
  • PUSCH only corresponds to one UL grant, and there is no PDSCH and DL grant.
  • FIG. 6 is a schematic structural diagram of a communication device according to Embodiment 2 of the present disclosure.
  • the communication device includes a memory 610, a transceiver 620, and a processor 630:
  • the memory 610 is used to store computer programs; the transceiver 620 is used to send and receive data under the control of the processor; the processor 630 is used to read the computer program in the memory 610 and perform the following operations:
  • the transceiver 620 is used to receive and transmit data under the control of the processor 630 .
  • the bus architecture may include any number of interconnected buses and bridges, specifically one or more processors represented by processor 630 and various circuits of memory represented by memory 610 are linked together.
  • the bus architecture may also link together various other circuits, such as peripherals, voltage regulators, and power management circuits, which are well known in the art and, therefore, will not be described further herein.
  • the bus interface provides the interface.
  • Transceiver 620 may be a number of elements, including a transmitter and a receiver, providing a means for communicating with various other devices over transmission media including wireless channels, wired channels, fiber optic cables, and the like Transmission medium.
  • the processor 630 is responsible for managing the bus architecture and general processing, and the memory 610 may store data used by the processor 630 in performing operations.
  • the processor 630 may be a central processor (CPU), an application specific integrated circuit (ASIC), a field programmable gate array (Field-Programmable Gate Array, FPGA) or a complex programmable logic device ( Complex Programmable Logic Device, CPLD), the processor can also adopt a multi-core architecture.
  • CPU central processor
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • CPLD Complex Programmable Logic Device
  • the processor is configured to execute any one of the methods provided by the embodiments of the present disclosure according to the obtained executable instructions by invoking the computer program stored in the memory.
  • the processor and memory may also be physically separated.
  • the embodiment of the present disclosure provides a multiplexing transmission scheme when uplink channels with different priorities collide. According to the judgment result of whether to support UCI multiplexing transmission with different priorities, it is determined whether the time condition needs to be satisfied, and when the decision does not support Or when UCI multiplexing transmission with different priorities is not performed, it is not necessary to judge the time condition of overlapping channels, so as not to limit the scheduling of high-priority uplink channels, improve the transmission flexibility of priority uplink channels, and ensure that the transmission delay is satisfied. need.
  • the determining whether to allow multiplexing transmission between the uplink channels includes:
  • the configuration signaling it is determined whether to allow multiplexing transmission between the uplink channels; wherein the configuration signaling includes at least one of the following:
  • Downlink control information in the downlink control channel corresponding to the uplink channel where the downlink control information carries indication information
  • the indication information indicates whether multiplexing transmission is allowed, or,
  • the indication information indicates information used to determine the first reference bit number of the low-priority uplink control information that is simultaneously transmitted on the same uplink channel as the high-priority uplink control information carried on the uplink channel, the reference The number of bits is used to determine whether to allow multiplexing transmission between the upstream channels.
  • the determining whether to allow multiplexing transmission between the uplink channels includes:
  • the number of bits of the high-priority uplink control information carried in the uplink channel or the bit interval corresponding to the number of bits determine the low-priority transmission simultaneously with the high-priority uplink control information on the same uplink channel
  • the second reference number of bits of uplink control information wherein, the number of bits of each high-priority uplink control information or the bit interval corresponding to the number of bits corresponds to the second reference bit number of a low-priority uplink control information respectively ;
  • the second reference bit number it is determined whether to allow multiplexing transmission between the uplink channels.
  • the communication device is a base station; the processor is further configured to perform the following operations:
  • the uplink channel does not need to meet the time condition, when scheduling or configuring the uplink channel, it is not necessary to ensure that the uplink channel meets the time condition.
  • the communication device is a base station; the processor is further configured to perform the following operations:
  • the uplink channel needs to meet the time condition, when scheduling or configuring the uplink channel, it is necessary to ensure that the uplink channel meets the time condition.
  • the communication device is a terminal; the processor is further configured to perform the following operations:
  • the communication device is a terminal; the processor is further configured to perform the following operations:
  • FIG. 7 is a schematic structural diagram of a channel multiplexing apparatus provided by an embodiment of the present disclosure.
  • the channel multiplexing apparatus 700 includes:
  • a first determining unit 701 configured to determine whether to allow multiplexing transmission between the uplink channels when uplink channels with different priorities overlap in the time domain;
  • a second determining unit 702 configured to determine that the uplink channel needs to meet a predetermined time condition when it is determined that multiplexing transmission between the uplink channels is allowed;
  • the third determining unit 703 is configured to determine that the uplink channel does not need to satisfy the time condition when it is determined that multiplexing transmission between the uplink channels is not allowed.
  • the embodiment of the present disclosure provides a multiplexing transmission scheme when uplink channels with different priorities collide. According to the judgment result of whether to support UCI multiplexing transmission with different priorities, it is determined whether the time condition needs to be satisfied, and when the decision does not support Or when UCI multiplexing transmission with different priorities is not performed, it is not necessary to judge the time condition of overlapping channels, so as not to limit the scheduling of high-priority uplink channels, improve the transmission flexibility of priority uplink channels, and ensure that the transmission delay is satisfied. need.
  • the first determining unit 701 is configured to determine, according to configuration signaling, whether to allow multiplexing transmission between the uplink channels; wherein the configuration signaling includes at least one of the following:
  • Downlink control information in the downlink control channel corresponding to the uplink channel where the downlink control information carries indication information
  • the indication information indicates whether multiplexing transmission is allowed, or,
  • the indication information indicates information used to determine the first reference bit number of the low-priority uplink control information that is simultaneously transmitted on the same uplink channel as the high-priority uplink control information carried on the uplink channel, the reference The number of bits is used to determine whether to allow multiplexing transmission between the upstream channels.
  • the first determining unit 701 includes:
  • a second reference bit number determination unit configured to determine the same number of bits as the high-priority uplink control information according to the number of bits or the bit interval corresponding to the number of bits of the high-priority uplink control information carried in the uplink channel
  • the second reference number of bits of low-priority uplink control information simultaneously transmitted on an uplink channel; wherein, the number of bits of each high-priority uplink control information or the bit interval corresponding to the number of bits corresponds to a low-priority
  • a multiplexing transmission determining unit configured to determine whether to allow multiplexing transmission between the uplink channels according to the second reference bit number.
  • the channel multiplexing apparatus 700 is applied to a base station; the apparatus 700 further includes:
  • the first allocation unit is configured to, if it is determined that the uplink channel does not need to meet the time condition, when scheduling or configuring the uplink channel, it is not necessary to ensure that the uplink channel meets the time condition.
  • the channel multiplexing apparatus 700 is applied to a base station; the apparatus 700 further includes:
  • the second allocation unit is configured to ensure that the uplink channel meets the time condition when scheduling or configuring the uplink channel if it is determined that the uplink channel needs to meet the time condition.
  • the channel multiplexing apparatus 700 is applied to a base station; the apparatus 700 further includes:
  • a first checking unit configured to check whether the uplink channel satisfies the time condition before performing multiplexing and transmission if it is determined that the uplink channel needs to meet the time condition.
  • the channel multiplexing apparatus 700 is applied to a base station; the apparatus 700 further includes:
  • the second checking unit is configured to, if it is determined that the uplink channel does not need to meet the time condition, it is not necessary to check whether the uplink channel meets the time condition before performing multiplexing transmission.
  • each functional unit in each embodiment of the present disclosure may be integrated into one processing unit, or each unit may exist physically alone, or two or more units may be integrated into one unit.
  • the above-mentioned integrated units may be implemented in the form of hardware, or may be implemented in the form of software functional units.
  • the integrated unit is implemented in the form of a software functional unit and sold or used as an independent product, it may be stored in a processor-readable storage medium.
  • the technical solutions of the present disclosure can be embodied in the form of software products in essence, or the parts that contribute to related technologies, or all or part of the technical solutions, and the computer software products are stored in a storage medium.
  • a computer device which may be a personal computer, a server, or a base station, etc.
  • the aforementioned storage medium includes: U disk, mobile hard disk, read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disk and other media that can store program codes .
  • Embodiments of the present disclosure further provide a readable storage medium on which a program is stored, and when the program is executed by a processor, implements the steps in any one of the channel multiplexing methods in the foregoing method embodiments.
  • a program stored on which a program is stored, and when the program is executed by a processor, implements the steps in any one of the channel multiplexing methods in the foregoing method embodiments.
  • the processor-readable storage medium can be any available medium or data storage device that can be accessed by a processor, including, but not limited to, magnetic storage (eg, floppy disk, hard disk, magnetic tape, magneto-optical disk (MO), etc.), optical storage (eg, CD, DVD, BD, HVD, etc.), and semiconductor memory (eg, ROM, EPROM, EEPROM, non-volatile memory (NAND FLASH), solid-state disk (SSD)), etc.
  • magnetic storage eg, floppy disk, hard disk, magnetic tape, magneto-optical disk (MO), etc.
  • optical storage eg, CD, DVD, BD, HVD, etc.
  • semiconductor memory eg, ROM, EPROM, EEPROM, non-volatile memory (NAND FLASH), solid-state disk (SSD)
  • the applicable system may be a global system of mobile communication (GSM) system, a code division multiple access (CDMA) system, a wideband code division multiple access (Wideband Code Division Multiple Access, WCDMA) general packet Wireless service (general packet radio service, GPRS) system, long term evolution (long term evolution, LTE) system, LTE frequency division duplex (frequency division duplex, FDD) system, LTE time division duplex (time division duplex, TDD) system, Long term evolution advanced (LTE-A) system, universal mobile telecommunication system (UMTS), worldwide interoperability for microwave access (WiMAX) system, 5G New Radio (New Radio, NR) system, etc.
  • GSM global system of mobile communication
  • CDMA code division multiple access
  • WCDMA wideband Code Division Multiple Access
  • general packet Wireless service general packet Radio service
  • GPRS general packet Wireless service
  • LTE long term evolution
  • LTE long term evolution
  • FDD frequency division duplex
  • TDD time division duplex
  • LTE-A Long term evolution advanced
  • the terminal involved in the embodiments of the present disclosure may be a device that provides voice and/or data connectivity to a user, a handheld device with a wireless connection function, or other processing device connected to a wireless modem.
  • the name of the terminal may be different.
  • the terminal may be called user equipment (User Equipment, UE).
  • UE user equipment
  • a wireless terminal can communicate with one or more core networks (Core Network, CN) via a Radio Access Network (RAN), and the wireless terminal can be a mobile terminal device, such as a mobile phone (or "cellular" phone).
  • Core Network Core Network
  • RAN Radio Access Network
  • a computer with a mobile terminal device eg, a portable, pocket-sized, hand-held, computer-built or vehicle-mounted mobile device, which exchange language and/or data with the radio access network.
  • a mobile terminal device eg, a portable, pocket-sized, hand-held, computer-built or vehicle-mounted mobile device, which exchange language and/or data with the radio access network.
  • PCS Personal Communication Service
  • SIP Session Initiated Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital Assistants
  • a wireless terminal may also be referred to as a system, subscriber unit, subscriber station, mobile station, mobile station, remote station, access point, A remote terminal device (remote terminal), an access terminal device (access terminal), a user terminal device (user terminal), a user agent (user agent), and a user device (user device) are not limited in the embodiments of the present disclosure.
  • the base station may include a plurality of cells providing services for the terminal.
  • the base station may also be called an access point, or may be a device in the access network that communicates with wireless terminal equipment through one or more sectors on the air interface, or other names.
  • the base station can be used to exchange received air frames with Internet Protocol (IP) packets, and act as a router between the wireless terminal equipment and the rest of the access network, which can include the Internet Protocol (IP) communication network.
  • IP Internet Protocol
  • the base station may also coordinate attribute management of the air interface.
  • the base station involved in the embodiments of the present disclosure may be a base station (Base Transceiver Station, BTS) in a global system for mobile communications (Global System for Mobile communications, GSM) or a code division multiple access (Code Division Multiple Access, CDMA), It can also be a base station (NodeB) in a Wide-band Code Division Multiple Access (Wide-band Code Division Multiple Access, WCDMA), or an evolved base station (evolutional Node B) in a long term evolution (long term evolution, LTE) system.
  • BTS Base Transceiver Station
  • GSM Global System for Mobile communications
  • CDMA Code Division Multiple Access
  • NodeB Wide-band Code Division Multiple Access
  • WCDMA Wide-band Code Division Multiple Access
  • evolutional Node B evolved base station in a long term evolution (long term evolution, LTE) system.
  • a base station may include a centralized unit (CU) node and a distributed unit (DU) node, and the centralized unit and the distributed unit may also be geographically separated.
  • CU centralized unit
  • DU distributed unit
  • the base station and the terminal can each use one or more antennas for multiple input multiple output (Multi Input Multi Output, MIMO) transmission, and the MIMO transmission can be single user MIMO (Single User MIMO, SU-MIMO) or multi-user MIMO (Multiple User MIMO) User MIMO, MU-MIMO).
  • MIMO transmission can be two-dimensional MIMO (2Dimension MIMO, 2D-MIMO), three-dimensional MIMO (3Dimension MIMO, 3D-MIMO), full-dimensional MIMO (Full Dimension MIMO, FD-MIMO) or large Massive-MIMO (massive-MIMO) may also be diversity transmission, precoding transmission, or beamforming transmission.
  • embodiments of the present disclosure may be provided as a method, system, or computer program product. Accordingly, the present disclosure may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment combining software and hardware aspects. Furthermore, the present disclosure may take the form of a computer program product embodied on one or more computer-usable storage media having computer-usable program code embodied therein, including but not limited to disk storage, optical storage, and the like.
  • processor-executable instructions may also be stored in a processor-readable memory capable of directing a computer or other programmable data processing apparatus to operate in a particular manner, such that the instructions stored in the processor-readable memory result in the manufacture of means including the instructions product, the instruction means implements the functions specified in the flow or flow of the flowchart and/or the block or blocks of the block diagram.
  • processor-executable instructions can also be loaded onto a computer or other programmable data processing device to cause a series of operational steps to be performed on the computer or other programmable device to produce a computer-implemented process that Execution of the instructions provides steps for implementing the functions specified in the flowchart or blocks and/or the block or blocks of the block diagrams.
  • modules can all be implemented in the form of software calling through processing elements; they can also all be implemented in hardware; some modules can also be implemented in the form of calling software through processing elements, and some modules can be implemented in hardware.
  • a certain module may be a separately established processing element, or it may be integrated into a certain chip of the above-mentioned device to be implemented.
  • it may also be stored in the memory of the above-mentioned device in the form of program code, and processed by one of the above-mentioned devices.
  • the element calls and executes the functions of the above-determined modules.
  • the implementation of other modules is similar.
  • all or part of these modules can be integrated together, and can also be implemented independently.
  • the processing element described here may be an integrated circuit with signal processing capability.
  • each step of the above-mentioned method or each of the above-mentioned modules can be completed by an integrated logic circuit of hardware in the processor element or an instruction in the form of software.
  • each module, unit, sub-unit or sub-module may be one or more integrated circuits configured to implement the above methods, such as: one or more Application Specific Integrated Circuit (ASIC), or, one or Multiple microprocessors (digital signal processors, DSP), or, one or more field programmable gate arrays (Field Programmable Gate Array, FPGA), etc.
  • ASIC Application Specific Integrated Circuit
  • DSP digital signal processors
  • FPGA Field Programmable Gate Array
  • the processing element may be a general-purpose processor, such as a central processing unit (Central Processing Unit, CPU) or other processors that can call program codes.
  • CPU central processing unit
  • these modules can be integrated together and implemented in the form of a system-on-a-chip (SOC).
  • SOC system-on-a-chip

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

提供一种信道复用方法、装置及通信设备,属于无线通信技术领域,该方法包括:当具有不同优先级的上行信道在时域上存在重叠时,确定是否允许上行信道之间进行复用传输(S101);在确定允许上行信道之间进行复用传输时,确定上行信道需要满足预定的时间条件(S102);在确定不允许上行信道之间进行复用传输时,确定上行信道不需要满足所述时间条件(S103)。

Description

一种信道复用方法、装置及通信设备
相关申请的交叉引用
本公开主张在2021年04月02日在中国提交的中国专利申请号No.202110361972.3的优先权,其全部内容通过引用包含于此。
技术领域
本公开涉及无线通信技术领域,尤其涉及一种信道复用方法、装置及通信设备。
背景技术
在第五代新无线系统(5Generation New RAT,5G NR)中,支持具有不同物理层优先级的上行信道传输,其中,RAT为无线接入技术(Radio Access Technology),同一个终端(也称用户设备,Terminal/User Equipment,UE)的具有不同的物理层优先级的上行信道之间可能存在资源冲突,比如在同一个载波上,具有不同优先级的上行信道所占用的符号之间存在重叠。相关的解决方案是传输冲突信道中物理层优先级高的信道,丢弃物理层优先级低的信道。但相关技术最近又提出,为了避免丢弃低优先级的信道上承载的上行控制信息(Uplink Control Information,UCI),可以考虑支持不同物理层优先级的多个物理上行控制信道(Physical Uplink Control Channel,PUCCH)上的UCI复用在同一个信道上传输。
发明内容
有鉴于此,本公开提供一种信道复用方法、装置及通信设备,用于解决目前在支持具有不同优先级的信道进行复用传输的场景中,难以保证高优先级的信道传输的低时延特性,也难以保留高优先级信道的调度灵活性的问题。
为解决上述技术问题,本公开提供一种信道复用方法,应用于通信设备,包括:
当具有不同优先级的上行信道在时域上存在重叠时,确定是否允许所述 上行信道之间进行复用传输;
在确定允许所述上行信道之间进行复用传输时,确定所述上行信道需要满足预定的时间条件;
在确定不允许所述上行信道之间进行复用传输时,确定所述上行信道不需要满足所述时间条件。
可选的,所述确定是否允许所述上行信道之间进行复用传输,包括:
根据配置信令,确定是否允许所述上行信道之间进行复用传输;其中,所述配置信令包括以下至少之一:
与所述上行信道对应的下行控制信道中的下行控制信息,所述下行控制信息携带指示信息;
高层信令。
可选的,所述指示信息指示是否允许复用传输,或者,
所述指示信息指示用于确定与所述上行信道承载的高优先级的上行控制信息在同一个上行信道上同时传输的低优先级的上行控制信息的第一参考比特数的信息,所述参考比特数用于确定是否允许所述上行信道之间进行复用传输。
可选的,所述确定是否允许所述上行信道之间进行复用传输,包括:
根据所述上行信道中承载的高优先级的上行控制信息的比特数或比特数所对应的比特区间,确定与所述高优先级的上行控制信息在同一个上行信道上同时传输的低优先级的上行控制信息的第二参考比特数;其中,每一个高优先级的上行控制信息的比特数或比特数所对应的比特区间,分别对应一个低优先级的上行控制信息的第二参考比特数;
根据所述第二参考比特数,确定是否允许所述上行信道之间进行复用传输。
可选的,所述通信设备为基站;所述方法还包括:
若确定所述上行信道不需要满足所述时间条件,在调度或配置所述上行信道时,不需要保证所述上行信道满足所述时间条件。
可选的,所述通信设备为基站;所述方法还包括:
若确定所述上行信道需要满足所述时间条件,在调度或配置所述上行信 道时,需要保证所述上行信道满足所述时间条件。
可选的,所述通信设备为终端;所述方法还包括:
若确定所述上行信道需要满足所述时间条件,在进行复用传输之前,检查所述上行信道是否满足所述时间条件。
可选的,所述通信设备为终端;所述方法还包括:
若确定所述上行信道不需要满足所述时间条件,在进行复用传输之前,不需要检查所述上行信道是否满足所述时间条件。
本公开还提供一种通信设备,包括存储器,收发机,处理器:
存储器,用于存储计算机程序;收发机,用于在所述处理器的控制下收发数据;处理器,用于读取所述存储器中的计算机程序并执行以下操作:
当具有不同优先级的上行信道在时域上存在重叠时,确定是否允许所述上行信道之间进行复用传输;
在确定允许所述上行信道之间进行复用传输时,确定所述上行信道需要满足预定的时间条件;
在确定不允许所述上行信道之间进行复用传输时,确定所述上行信道不需要满足所述时间条件。
可选的,所述确定是否允许所述上行信道之间进行复用传输,包括:
根据配置信令,确定是否允许所述上行信道之间进行复用传输;其中,所述配置信令包括以下至少之一:
与所述上行信道对应的下行控制信道中的下行控制信息,所述下行控制信息携带指示信息;
高层信令。
可选的,所述指示信息指示是否允许复用传输,或者,
所述指示信息指示用于确定与所述上行信道承载的高优先级的上行控制信息在同一个上行信道上同时传输的低优先级的上行控制信息的第一参考比特数的信息,所述参考比特数用于确定是否允许所述上行信道之间进行复用传输。
可选的,所述确定是否允许所述上行信道之间进行复用传输,包括:
根据所述上行信道中承载的高优先级的上行控制信息的比特数或比特数 所对应的比特区间,确定与所述高优先级的上行控制信息在同一个上行信道上同时传输的低优先级的上行控制信息的第二参考比特数;其中,每一个高优先级的上行控制信息的比特数或比特数所对应的比特区间,分别对应一个低优先级的上行控制信息的第二参考比特数;
根据所述第二参考比特数,确定是否允许所述上行信道之间进行复用传输。
可选的,所述通信设备为基站;所述处理器,还用于执行以下操作:
若确定所述上行信道不需要满足所述时间条件,在调度或配置所述上行信道时,不需要保证所述上行信道满足所述时间条件。
可选的,所述通信设备为基站;所述处理器,还用于执行以下操作:
若确定所述上行信道需要满足所述时间条件,在调度或配置所述上行信道时,需要保证所述上行信道满足所述时间条件。
可选的,所述通信设备为终端;所述处理器,还用于执行以下操作:
若确定所述上行信道需要满足所述时间条件,在进行复用传输之前,检查所述上行信道是否满足所述时间条件。
可选的,所述通信设备为终端;所述处理器,还用于执行以下操作:
若确定所述上行信道不需要满足所述时间条件,在进行复用传输之前,不需要检查所述上行信道是否满足所述时间条件。
本公开还提供一种信道复用装置,包括:
第一确定单元,用于当具有不同优先级的上行信道在时域上存在重叠时,确定是否允许所述上行信道之间进行复用传输;
第二确定单元,用于在确定允许所述上行信道之间进行复用传输时,确定所述上行信道需要满足预定的时间条件;
第三确定单元,用于在确定不允许所述上行信道之间进行复用传输时,确定所述上行信道不需要满足所述时间条件。
可选的,所述第一确定单元,用于根据配置信令,确定是否允许所述上行信道之间进行复用传输;其中,所述配置信令包括以下至少之一:
与所述上行信道对应的下行控制信道中的下行控制信息,所述下行控制信息携带指示信息;
高层信令。
可选的,所述指示信息指示是否允许复用传输,或者,
所述指示信息指示用于确定与所述上行信道承载的高优先级的上行控制信息在同一个上行信道上同时传输的低优先级的上行控制信息的第一参考比特数的信息,所述参考比特数用于确定是否允许所述上行信道之间进行复用传输。
可选的,所述第一确定单元包括:
第二参考比特数确定单元,用于根据所述上行信道中承载的高优先级的上行控制信息的比特数或比特数所对应的比特区间,确定与所述高优先级的上行控制信息在同一个上行信道上同时传输的低优先级的上行控制信息的第二参考比特数;其中,每一个高优先级的上行控制信息的比特数或比特数所对应的比特区间,分别对应一个低优先级的上行控制信息的第二参考比特数;
复用传输确定单元,用于根据所述第二参考比特数,确定是否允许所述上行信道之间进行复用传输。
可选的,所述信道复用装置应用于基站;所述装置还包括:
第一调配单元,用于若确定所述上行信道不需要满足所述时间条件,在调度或配置所述上行信道时,不需要保证所述上行信道满足所述时间条件。
可选的,所述信道复用装置应用于基站;所述装置还包括:
第二调配单元,用于若确定所述上行信道需要满足所述时间条件,在调度或配置所述上行信道时,需要保证所述上行信道满足所述时间条件。
可选的,所述信道复用装置应用于基站;所述装置还包括:
第一检查单元,用于若确定所述上行信道需要满足所述时间条件,在进行复用传输之前,检查所述上行信道是否满足所述时间条件。
可选的,所述信道复用装置应用于基站;所述装置还包括:
第二检查单元,用于若确定所述上行信道不需要满足所述时间条件,在进行复用传输之前,不需要检查所述上行信道是否满足所述时间条件。
本公开还提供一种处理器可读存储介质,所述处理器可读存储介质存储有计算机程序,所述计算机程序用于使所述处理器执行上述任一种方法。
本公开的上述技术方案的有益效果如下:
本公开实施例提供了一种不同优先级的上行信道冲突时的复用传输方案,根据是否支持不同优先级的UCI复用传输的判断结果,确定是否需要满足预定的时间条件,在决策不支持或不进行不同优先级的UCI复用传输时,不需要对重叠信道进行时间条件判断,从而不限制高优先级的上行信道的调度,提高优先级上行信道的传输灵活性,保证传输时延满足需求。
附图说明
图1为本公开实施例可应用的网络结构示意图;
图2为本公开实施例中的一种信道复用方法的流程示意图;
图3为不同优先级的PUCCH之间的重叠示意图;
图4为本公开实施例中的一种支持复用传输的示意图;
图5为本公开实施例中的一种不支持复用传输的示意图;
图6为本公开实施例中的一种通信设备的结构示意图;
图7为本公开实施例中的一种信道复用装置的结构示意图。
具体实施方式
本公开实施例中术语“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。
本公开实施例中术语“多个”是指两个或两个以上,其它量词与之类似。
下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分实施例,并不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
本公开实施例提供了一种信道复用方法、装置及通信设备,用以提高优先级上行信道的传输灵活性,保证传输时延满足需求。
其中,方法和装置是基于同一申请构思的,由于方法和装置、通信设备解决问题的原理相似,因此装置、通信设备和方法的实施可以相互参见,重复之处不再赘述。
参见图1,图1是本公开实施例可应用的网络结构示意图,如图1所示,包括终端11和基站12,其中,终端11可以是用户终端(User Equipment,UE)或者其他终端设备,例如:手机、平板电脑(Tablet Personal Computer)、膝上型电脑(Laptop Computer)、个人数字助理(personal digital assistant,简称PDA)、移动上网装置(Mobile Internet Device,MID)或可穿戴式设备(Wearable Device)等终端侧设备,需要说明的是,在本公开实施例中并不限定终端的具体类型。基站12,例如:宏站、LTE eNB、5G NR节点B(Node B,NB)等;网络侧设备也可以是小站,如低功率节点(LPN:low power node)、pico、femto等小站,或者网络侧设备可以接入点(AP,access point);基站也可以是中央单元(CU,central unit)与其管理是和控制的多个传输接收点(TRP,Transmission Reception Point)共同组成的网络节点。需要说明的是,在本公开实施例中并不限定网络侧设备的具体类型。
首先,针对具有不同优先级的上行信道复用传输做以下说明:
1、不同物理层优先级的信道传输:
一个UE可以支持不同的业务类型,如增强移动宽带(enhanced Mobile Broadband,eMBB)业务和低时延高可靠通信(Ultra-Reliable and Low Latency Communication,URLLC)业务等。不同的业务类型对可靠性和传输时延的需求不同。URLLC业务流可能是零散的不定时发生的,因此针对不同的业务独立预留不同的系统资源,在系统资源上的开销比较大,可能很多时候为URLLC预留的资源都是没有被使用的。为了提高系统资源利用率,可以支持不同业务在相同资源上复用传输。可能发生一个较早被调度的数据传输被另一个较晚被调度的数据传输所打断或取消的情况。举例来说,一个UE被调度了eMBB业务在资源1上传输之后,由于URLLC业务到达,而为了满足URLLC业务的时延需求,需要尽快调度,可能会占用已经分配给eMBB业务的资源1中的全部或部分资源(包括时域资源和/或频域资源)进行URLLC传输,例如可能是同一个载波上调度给eMBB的时域资源(符号集合)中的全部或部分符号上被调度了URLLC传输,不论频域资源是否重叠,因为在同一个时刻上同一个载波上不能同时传输两个上行信道,则eMBB业务会被URLLC业务所打断或取消。
为了避免业务之间的相互影响,可以对不同的业务定义不同的优先级,从而在出现资源冲突的时候,选择高优先级的信道传输,丢弃低优先级的信道。因此,为了更好的支持具有不同需求的不同业务的传输,相关技术中引入了物理层优先级,并且规定,当具有不同物理层优先级的信道发生冲突时,即多个PUCCH在同一个载波上在时域上存在重叠,或PUCCH和物理上行共享信道(Physical Uplink Shared Channel,PUSCH)在同一个载波上在时域上存在重叠时,丢弃低优先级的信道,只传输高优先级的信道。
PUCCH、PUSCH的物理层优先级可以通过默认方式、下行控制信息(Downlink Control Information,DCI)动态指示或者无线资源控制(Radio Resource Control,RRC)半静态配置的方式获得。例如,PUCCH在承载调度请求(Scheduling Request,SR)时,其优先级是通过其承载的SR对应的优先级确定的,而每个SR配置对应的优先级是高层信令配置的;PUCCH在承载半持续调度(Semi-Persistent Scheduling,SPS)物理下行共享信道(Physical Downlink Shared Channel,PDSCH)的混合自动重传请求确认(Hybrid Automatic Repeat request-ACKnowledgment,HARQ-ACK)或承载指示SPS资源释放的物理下行控制信道(Physical Downlink Control Channel,PDCCH)(即SPS PDSCH release)的HARQ-ACK时,其优先级是通过高层信令为SPS PDSCH配置的HARQ-ACK码本编号来确定的,对应编号为0的HARQ-ACK码本为低优先级,对应编号为1的HARQ-ACK码本为高优先级;PUCCH在承载信道状态信息(Channel State Information,CSI)(包括周期CSI和半持续信道状态信息(semi-persistent CSI,SP-CSI))时,其优先级默认为低优先级。当DCI中包含优先级指示域时,可以通过PUCCH、PUSCH对应的DCI(或PDCCH,本公开中PDCCH和DCI可以认为等价,DCI是PDCCH传输使用的具体格式,则具有对应的DCI等价于具有对应的PDCCH)中的优先级指示域获得优先级,例如,PDCCH所使用的DCI中包含优先级指示域,则:PDCCH调度一个PDSCH时,可以通过优先级指示域指示承载这个PDSCH的HARQ-ACK的PUCCH的优先级;PDCCH调度一个PUSCH时,可以通过优先级指示域指示被调度的PUSCH的优先级,其中,PUSCH包括仅承载传输块(Transport Block,TB)的PUSCH或仅承载非周期信道状态信息(Aperiodic CSI,A-CSI)的PUSCH 或同时承载TB和A-CSI的PUSCH;对于承载SP-CSI的PUSCH,其优先级可以通过激活承载SP-CSI的PUSCH的DCI中的优先级指示域获得。如果DCI中不包含优先级指示域,或高层信令没有配置优先级,则默认为低优先级。
2、5G NR中的UCI传输
UCI包含HARQ-ACK,CSI,SR等信息。UCI在PUCCH上传输。其中,HARQ-ACK是肯定确认(ACKnowledgment,ACK)和否定确认(Non-ACKnowledgment,NACK)的统称,用于针对PDSCH或指示SPS资源释放的PDCCH(又称SPS PDSCH release)进行反馈,告知基站PDSCH或指示SPS PDSCH释放的PDCCH是否正确接收;CSI用于反馈下行信道质量,从而帮助基站更好的进行下行调度,例如根据CSI进行调制编码等级(Modulation and Coding Scheme,MCS)选择、配置适当的资源块(Resource Block,RB)资源等;SR用于当终端有上行业务需要传输时,向基站请求携带上行业务的PUSCH的传输资源。
3、相同优先级的PUCCH与PUCCH/PUSCH重叠
NR中不支持PUCCH与PUSCH在同一时刻并行传输,不管是同一个载波还是不同载波上。当PUCCH和PUSCH(不做特殊说明,一般PUCCH和PUSCH指不使用重复传输的PUCCH和PUSCH)在时域资源上存在重叠时,在满足预定的时间条件(timeline)的情况下,可以将UCI(一般是HARQ-ACK和CSI)从PUCCH上转移到一个PUSCH上传输,如果存在SR,则SR不在PUSCH上传输,SR被丢弃。如果存在多个PUSCH都与PUCCH重叠,则按照预定的规则选择一个PUSCH,其中优先选择承载A-CSI的PUSCH,如果同时存在具有PDCCH调度的PUSCH(动态授权(Dynamic grant,DG)PUSCH)和没有PDCCH调度的PUSCH(配置授权(Configured grant,CG)PUSCH,SP-CSI PUSCH等),优先选择DG PUSCH,按照上述规则选择之后,如果多个载波上都有PUSCH,优先选择载波编号低的载波上的PUSCH,如果选择的载波上存在多个时域上不重叠的PUSCH与PUCCH重叠,选择最早的PUSCH。
其次,关于相关的上行信道复用传输技术中存在的技术问题做以下说明:
目前的技术中,为了保证具有不同优先级的上行信道进行复用传输的时候,比较早起始的信道可以在准备之前获得是否存在比较晚起点的信道与之 重叠,并从而根据复用规则做出复用传输决策,要求复用传输的信道之间都需要满足复用的时间条件。但对于高优先级的信道,通常承载对时延比较敏感的重要业务的UCI或数据,如果想要占用已经调度传输的低优先级的信道所在的时域资源进行传输,如果总是满足复用的时间条件,对高优先级信道的调度限制非常大,可能会导致其时延增大较多。目前,在希望支持具有不同优先级的信道进行复用传输的场景中,如何保证高优先级的信道传输的低时延特性,保留高优先级信道足够的调度灵活性还没有明确方法。
针对上述问题,本公开提供了以下技术方案。
请参阅图2,图2为本公开实施例提供的一种信道复用方法的流程示意图,该方法应用于通信设备,包括以下步骤:
S101:当具有不同优先级的上行信道在时域上存在重叠时,确定是否允许所述上行信道之间进行复用传输;
其中,具有不同优先级的上行信道在时域上存在重叠,也即具有不同优先级的上行信道冲突。
S102:在确定允许所述上行信道之间进行复用传输时,确定所述上行信道需要满足预定的时间条件;
S103:在确定不允许所述上行信道之间进行复用传输时,确定所述上行信道不需要满足所述时间条件。
其中,复用传输是指不同优先级的上行信道上承载的信息在同一个上行信道上同时传输。如果确定不允许具有不同优先级的上行信道之间进行复用传输,则丢弃低优先级的上行信道。
本公开实施例提供了一种不同优先级的上行信道冲突时的复用传输方法,根据是否支持不同优先级的UCI复用传输的判断结果,确定是否需要满足预定的时间条件,在决策不支持或不进行不同优先级的UCI复用传输时,不需要对重叠信道进行时间条件判断,从而不限制高优先级的上行信道的调度,提高优先级上行信道的传输灵活性,保证传输时延满足需求。
可选的,所述确定是否允许所述上行信道之间进行复用传输,包括:
根据配置信令,确定是否允许所述上行信道之间进行复用传输;其中,所述配置信令包括以下至少之一:
与所述上行信道对应的下行控制信道中的下行控制信息,所述下行控制信息携带指示信息;其中,这里的上行信道具体可以是具有不同优先级的、在时域上存在重叠的上行信道中的一个或多个上行信道;
高层信令。
也就是说,所述根据配置信令,确定是否允许所述上行信道之间进行复用传输,具体包括:
根据与所述上行信道对应的下行控制信道中的指示信息,确定是否允许所述上行信道之间进行复用传输;
或者,
根据高层信令,确定是否允许所述上行信道之间进行复用传输。例如,可以半静态的配置是否支持(即允许)具有不同优先级的上行信道进行复用传输。
可选的,所述指示信息指示是否允许(或者说存在)复用传输;或者,
所述指示信息指示用于确定与所述上行信道承载的高优先级的上行控制信息在同一个上行信道上同时传输的低优先级的上行控制信息的第一参考比特数的信息,所述第一参考比特数用于确定是否允许所述上行信道之间进行复用传输。
进一步可选的,当根据所述指示信息确定所述第一参考比特数为0时,确定不允许所述上行信道之间进行复用传输,当根据所述指示信息确定所述第一参考比特数大于0时,确定允许所述上行信道之间进行复用传输。
关于所述指示信息指示是否允许复用传输,具体的,指示状态可以是允许或不允许中的一个,或者指示状态可以是存在或不存在中的一个,或者指示状态可以是支持或不支持中的一个。例如,调度PDSCH的PDCCH或指示SPS PDSCH激活的PDCCH或需要进行HARQ-ACK反馈的PDCCH(例如指示SPS PDSCH资源释放、指示辅小区(Secondary Cell,SCell)休眠(Dormancy)等的PDCCH)中存在指示域,指示是否允许具有与PDCCH对应的HARQ-ACK(即PDCCH所调度或激活的PDSCH的HARQ-ACK或PDCCH本身的HARQ-ACK)不同优先级的UCI,与所述HARQ-ACK在同一个上行信道(PUCCH或PUSCH)上同时传输。又例如,调度PUSCH的PDCCH或 指示CG PUSCH激活的PDCCH中存在指示域,指示在PUSCH上是否允许传输与PUSCH具有不同优先级的UCI。
关于所述指示信息指示用于确定与所述上行信道承载的高优先级的上行控制信息在同一个上行信道上同时传输的低优先级的上行控制信息的第一参考比特数的信息:例如,调度PDSCH的PDCCH或指示SPS PDSCH激活的PDCCH或需要进行HARQ-ACK反馈的PDCCH(例如指示SPS PDSCH资源释放、指示辅小区休眠(Secondary Cell Dormancy,SCell Dormancy)等的PDCCH)中存在指示域,指示用于确定与PDCCH对应的HARQ-ACK在同一个信道上同时传输的、与所述HARQ-ACK具有不同优先级的UCI的比特数的指示信息,当根据指示信息确定的第一参考比特数为0时,确定结果为不允许,当根据指示信息确定的第一参考比特数大于0时,确定结果为允许。又例如,调度PUSCH的PDCCH或指示CG PUSCH激活的PDCCH中存在指示域,指示用于确定在PUSCH上传输与PUSCH具有不同优先级的UCI的比特数或资源(可以根据指示的贝塔偏移(beta-offset)来确定)的指示信息,当根据指示信息确定的第一参考比特数或资源为0时,确定结果为不允许,当根据指示信息确定的第一参考比特数或资源大于0时,确定结果为允许。
如果DCI(即PDCCH)中存在指示域指示是否存在或允许在低优先级(Low priority,LP)与高优先级(High priority,HP)复用(即低优先级上行信道与高优先级上行信道复用传输),则指示为存在时,复用的上行信道需要总是满足复用timeline,指示为不存在时,复用的上行信道不用满足复用timeline。
可选的,所述确定是否允许所述上行信道之间进行复用传输,包括:
根据所述上行信道中承载的高优先级的上行控制信息的比特数或比特数所对应的比特区间,确定与所述高优先级的上行控制信息在同一个上行信道上同时传输的低优先级的上行控制信息的第二参考比特数;其中,每一个高优先级的上行控制信息的比特数或比特数所对应的比特区间,分别对应一个低优先级的上行控制信息的第二参考比特数;
根据所述第二参考比特数,确定是否允许所述上行信道之间进行复用传 输。
例如,当所述第二参考比特数为0时,确定不允许所述上行信道之间进行复用传输;当所述第二参考比特数大于0时,确定允许所述上行信道之间进行复用传输。
其中,高优先级的上行控制信息的比特数所对应的比特区间是指高优先级的上行控制信息的比特数所属的取值范围。
具体的,可以预先定义或配置高优先级的上行控制信息的比特数或比特数所对应的比特区间与低优先级的上行控制信息的第二参考比特数之间的对应关系,然后如果具有不同优先级的上行信道在时域上存在重叠,那么根据这些在时域上存在重叠的上行信道中优先级高的上行信道对应的上行控制信息的比特数以及所述对应关系,确定能够与高优先级的上行信道对应的上行控制信息在同一个信道上同时传输的低优先级的上行控制信息的第二参考比特数。
在根据高优先级(HP)的比特数或比特数所对应的比特区间(即高优先级的上行控制信息的比特数或比特数所对应的比特区间),确定对应的低优先级(LP)的第二参考比特数(即低优先级的上行控制信息的第二参考比特数)时,如果确定的第二参考比特数大于0或存在LP,则总是需要满足复用timeline,如果确定的第二参考比特数为0或对应无LP,则不用满足复用timeline。
可选的,所述通信设备为基站;所述方法还包括:
若确定所述上行信道不需要满足所述时间条件,在调度或配置所述上行信道时,不需要保证所述上行信道满足所述时间条件。
本公开实施例中,如果确定不允许具有不同优先级的上行信道之间进行复用传输,则确定在时域上存在重叠的、具有不同优先级的上行信道不需要满足上述时间条件,那么对于基站侧来说,在调度或配置上行信道时,对于在时域上存在重叠的、具有不同优先级的上行信道不需要保证满足上述时间条件。
可选的,所述通信设备为终端;所述方法还包括:
若确定所述上行信道不需要满足所述时间条件,在进行复用传输之前, 不需要检查所述上行信道是否满足所述时间条件。
本公开实施例中,如果确定不允许具有不同优先级的上行信道之间进行复用传输,则确定在时域上存在重叠的、具有不同优先级的上行信道不需要满足上述时间条件,那么对于终端侧来说,不需要检查在时域上存在重叠的、具有不同优先级的上行信道是否满足上述时间条件。
当然,若确定所述上行信道不需要满足所述时间条件,终端也可以在进行复用传输之前检查所述上行信道是否满足所述时间条件,但即使检查的结果是不满足,也不会认为是错误调度,而是不进行复用传输,传输重叠的信道中的高优先级的上行信道,不传输(即丢弃)低优先级的上行信道。
可选的,所述通信设备为基站;所述方法还包括:
若确定所述上行信道需要满足所述时间条件,在调度或配置所述上行信道时,需要保证所述上行信道满足所述时间条件。
本公开实施例中,如果确定允许具有不同优先级的上行信道之间进行复用传输,则确定在时域上存在重叠的、具有不同优先级的上行信道需要满足上述时间条件,那么对于基站侧来说,在调度或配置上行信道时,对于在时域上存在重叠的、具有不同优先级的上行信道需要保证满足上述时间条件。
可选的,所述通信设备为终端;所述方法还包括:
若确定所述上行信道需要满足所述时间条件,在进行复用传输之前,检查所述上行信道是否满足所述时间条件。
本公开实施例中,如果确定允许具有不同优先级的上行信道之间进行复用传输,则确定在时域上存在重叠的、具有不同优先级的上行信道需要满足上述时间条件,那么对于终端侧来说,在进行复用传输之前,需要检查在时域上存在重叠的、具有不同优先级的上行信道是否满足上述时间条件。如果检查结果为不满足,则认为是错误调度,则没有规范的终端行为,终端可以对所有重叠的上行信道都不传输,或者随意选择传输其中一个上行信道等;如果检查结果为满足,才能进行不同优先级的上行信道的复用传输。
本公开实施例中,所述时间条件,可以是相关技术中定义的针对多个PUCCH在时域上重叠、或PUCCH与PUSCH在时域上重叠时需要满足的时间条件。其中,时间条件(timeline)的定义为:如果PUCCH或PUSCH具 有对应的PDCCH时,例如PUCCH承载的HARQ-ACK为具有PDCCH调度的PDSCH的HARQ-ACK或为指示下行SPS资源释放的PDCCH的HARQ-ACK,则该调度PDSCH的PDCCH或指示下行SPS资源释放的PDCCH为PUCCH对应的PDCCH,或者也可以称为调度PUCCH的PDCCH,调度PUSCH的PDCCH则为PUSCH对应的PDCCH,将重叠的PUCCH和PUSCH中的起始时间最早的信道的第一个符号作为目标符号,如果存在多个起始时刻相同的信道,则随便选一个信道,将其第一个符号作目标符号,目标符号需要满足如下timeline才能进行复用传输,否则认为是错误调度:
Timeline1:目标符号不早于在任何一个需要在PUCCH上进行HARQ-ACK反馈的PDSCH或SPS PDSCH release的最后一个符号之后的T1mux时间之后的第一个符号(包括循环前缀(Cyclic Prefix,CP)在内的),即目标符号与任何一个上述PDSCH或SPS PDSCH release的最后一个符号之间的时间间隔不少于T1mux时间。T1mux与PDSCH的处理时延有关,可以根据预定的公式和相关的参数计算得到。该timeline的目的是保证在最终确定的传输HARQ-ACK的信道的传输开始之前,能够完成对HARQ-ACK的获取和准备。
Timeline2:目标符号不早于调度PDSCH(如果有)和PUSCH(如果有)的任意一个PDCCH(包括指示SPS PDSCH release的PDCCH)的最后一个符号之后的T2mux时间之后的第一个符号(包括CP在内的),即目标符号与任何一个上述PDCCH的最后一个符号之间的时间间隔不少于T2mux时间。T2mux与PUSCH的处理时延有关,可以根据预定的公式和相关的参数计算得到。该timeline的目的是保证当UCI需要转移到PUSCH上传输时,能够在PUCCH开始准备之前获得调度PUSCH的PDCCH,从而确定不需要在PUCCH上准备UCI传输,并且能够在PUSCH传输之前完成包括UCI在内的传输准备,即完成UCI的获取和复用处理,完成TB的准备(如编码、调制,加扰等操作);如果是多个PUCCH之间的复用,这个T2mux是用来模拟CSI和SR与HARQ-ACK复用的准备时间的。
如果PUCCH承载的HARQ-ACK没有对应的PDCCH(即HARQ-ACK为SPS PDSCH的HARQ-ACK),此时没有调度PDSCH的PDCCH,如果没 有PUSCH或PUSCH也没有对应的PDCCH,则仅需要check T1mux不需要check T2mux。如果PUCCH上承载的是CSI和/或SR,因为没有对应的PDSCH,则不需要check T1mux,进一步如果没有PUSCH或PUSCH没有对应的PDCCH,则也不需要check T2mux。
如果PUCCH和PUCCH重叠时,至少一个PUCCH是重复传输的(即占用多个时隙在每个时隙中重复性的传输UCI),则仅针对重叠的重复(repetition),按照传输高优先级,丢弃低优先级处理,不影响不存在重叠的repetition。如果PUCCH和重复传输的PUSCH重叠,当PUSCH采用基于时隙的重复传输时(R15重复传输,或R16repetition type A),PUCCH承载的UCI转移到和PUCCH重叠的一个或者多个PUSCH时隙中进行传输;当PUSCH采用R16repetition type B时,PUCCH承载的UCI转移到和PUCCH重叠的最早的一个包含大于1个符号的actual repetition PUSCH中传输(actual repetition即根据不可用符号、DL符号、时隙边界等进行分段之后得到的repetition PUSCH);上述与PUCCH重叠的一个或多个repetition的PUSCH都需要满足复用timeline。如果多时隙PUCCH与单时隙或多时隙PUSCH重叠,则丢弃与PUCCH重叠的PUSCH,保证PUCCH的重复传输不被打断。
另外,所述预定的时间条件也可以是相关技术中针对不同优先级的PUCCH和/或PUSCH之间在时域存在重叠时的复用传输新定义的时间条件。例如,基于高优先级的上行信道的起点判断所有DCI和PDSCH是否满足T1mux、T2mux等。
下面举例说明上述信道复用方法。
请参阅图3所示的不同优先级的PUCCH之间的重叠情况,其中LP表示低优先级,HP表示高优先级,AN为HARQ-ACK的简称。
其中一种信道复用的实现方式为:调度对应HP AN的PDSCH的下行调度授权(DL grant,即PDCCH)中可以存在指示域,指示是否支持HP AN和LP AN在同一个信道复用传输,当接收到对应HP AN的DL grant时,通过解析这个DL grant,UE可以获得其中的指示域,根据这个指示域可以确定是否支持HP AN和LP AN在同一个信道复用传输。
具体的,如果指示支持(比如指示状态可以是支持,也可以是指示用于 确定与HP AN复用的LP AN的比特数,确定比特数是大于0的,则证明存在并且允许LP AN与HP AN复用传输),则UE在对重叠的HP AN和LP AN按照预定义的复用传输规则,在同一个上行信道上同时传输之前,需要判断:1)在重叠的承载HP AN的PUCCH和承载LP AN的PUCCH之中,起始符号最早的PUCCH(即图3中的LP AN PUCCH)的第一个符号,与HP AN和LP AN对应的DL grant之间,是否均满足时间间隔不短于复用传输所需的T2mux(T2mux按照相关技术中的定义可以根据相关公式和参数计算得到);2)在重叠的承载HP AN的PUCCH和承载LP AN的PUCCH之中,起始符号最早的PUCCH的第一个符号,与HP AN和LP AN对应的PDSCH之间,是否均满足时间间隔不短于复用传输所需的T1mux(T1mux按照相关技术中的定义可以根据相关公式和参数计算得到);当上述两个时间条件都满足的时候,确定可以进行复用传输,根据复用传输规则,确定一个PUCCH资源,用于同时传输HP AN和LP AN,如图4所示。
如果指示不支持(比如指示状态可以是不支持,也可以是指示用于确定与HP AN复用的LP AN的比特数,确定比特数是0,则证明不存在或不允许LP AN与HP AN复用传输),则因为并不需要将HP AN和LP AN放在同一个上行信道上传输,且LP AN PUCCH与HP AN PUCCH重叠的部分是需要丢弃,终端在根据HP AN对应的DL grant确定并不支持HP AN和LP AN复用传输时,不再需要对DL grant和PDSCH与PUCCH之间进行是否满足T1mux和T2mux的判断,可以直接按照HP AN对应的PUCCH资源进行HP AN传输,并对于与HP AN重叠的LP AN进行丢弃处理,从而保证不影响HP AN传输,如图5所示。基站侧在调度时,也并不需要让HP AN对应的DL grant和PDSCH与LP AN PUCCH的起点之间必须满足T1mux和T2mux,也就是基站在调度HP数据时,HP AN对应的DL grant和PDSCH并不需要发送的足够早,可以按照实际需求在HP数据到达并需要发送PDSCH的时候才进行调度和发送,这样即能保证HP数据对应的HP AN的正常的传输,又不限制必须在特定位置之前发送对HP数据的调度和传输,从而降低了对HP数据调度和传输的限制和影响,保证了HP数据随时到达、随时传输的特性。
另一种信道复用的实现方式为:根据HP AN的比特数,以及预先定义或 配置的HP AN的比特数或比特数区间与LP AN的参考比特数之间的对应关系,确定能够与HP AN复用传输的LP AN比特数。具体的,根据对应关系以及当前的HP AN比特数,确定与HP AN复用的LP AN比特数是大于0的,即存在并允许LP AN与HP AN复用传输,则具体处理过程同上述确定支持的情况以及图4,不再赘述。根据对应关系以及当前的HP AN比特数,确定与HP AN复用的LP AN比特数是0,即不存在或不允许LP AN与HP AN复用传输,则具体处理过程同上述确定不支持的情况以及图5,不再赘述。
上述实施例中不同优先级的HARQ-ACK替换为单播和多播的HARQ-ACK,或者替换为其他的两种不同的UCI传输,也同样适用。上述承载UCI的PUCCH中的一个替换为PUSCH,即如果是承载LP AN的PUCCH与承载HP AN的PUSCH之间重叠,或者承载HP AN的PUCCH与承载LP AN的PUSCH重叠,处理方式类似,所不同的就是PUSCH只对应一个UL grant,没有PDSCH和DL grant。
需要说明的是,上述确定不支持(或者说不存在、不允许)LP AN与HP AN复用传输,或者确定与HP AN复用的LP AN的比特数为0的时候,并不一定是在调度和传输上并不存在承载LP AN的PUCCH/PUSCH与承载HP AN的PUCCH/PUSCH重叠,而是实际发生了重叠传输,但配置或决策上确定并不支持两者复用传输,因此需要对低优先级信道进行丢弃处理,不需要对高优先级信道限制满足所述时间条件。
请参阅图6,图6是本公开实施例二提供的一种通信设备的结构示意图,该通信设备包括存储器610,收发机620,处理器630:
存储器610,用于存储计算机程序;收发机620,用于在所述处理器的控制下收发数据;处理器630,用于读取所述存储器610中的计算机程序并执行以下操作:
当具有不同优先级的上行信道在时域上存在重叠时,确定是否允许所述上行信道之间进行复用传输;
在确定允许所述上行信道之间进行复用传输时,确定所述上行信道需要满足预定的时间条件;
在确定不允许所述上行信道之间进行复用传输时,确定所述上行信道不 需要满足所述时间条件。
收发机620,用于在处理器630的控制下接收和发送数据。
其中,在图6中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器630代表的一个或多个处理器和存储器610代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机620可以是多个元件,即包括发送机和接收机,提供用于在传输介质上与各种其他装置通信的单元,这些传输介质包括,这些传输介质包括无线信道、有线信道、光缆等传输介质。
处理器630负责管理总线架构和通常的处理,存储器610可以存储处理器630在执行操作时所使用的数据。
可选的,处理器630可以是中央处埋器(CPU)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)或复杂可编程逻辑器件(Complex Programmable Logic Device,CPLD),处理器也可以采用多核架构。
处理器通过调用存储器存储的计算机程序,用于按照获得的可执行指令执行本公开实施例提供的任一所述方法。处理器与存储器也可以物理上分开布置。
本公开实施例提供了一种不同优先级的上行信道冲突时的复用传输方案,根据是否支持不同优先级的UCI复用传输的判断结果,确定是否需要满足所述时间条件,在决策不支持或不进行不同优先级的UCI复用传输时,不需要对重叠信道进行时间条件判断,从而不限制高优先级的上行信道的调度,提高优先级上行信道的传输灵活性,保证传输时延满足需求。
可选的,所述确定是否允许所述上行信道之间进行复用传输,包括:
根据配置信令,确定是否允许所述上行信道之间进行复用传输;其中,所述配置信令包括以下至少之一:
与所述上行信道对应的下行控制信道中的下行控制信息,所述下行控制信息携带指示信息;
高层信令。
可选的,所述指示信息指示是否允许复用传输,或者,
所述指示信息指示用于确定与所述上行信道承载的高优先级的上行控制信息在同一个上行信道上同时传输的低优先级的上行控制信息的第一参考比特数的信息,所述参考比特数用于确定是否允许所述上行信道之间进行复用传输。
可选的,所述确定是否允许所述上行信道之间进行复用传输,包括:
根据所述上行信道中承载的高优先级的上行控制信息的比特数或比特数所对应的比特区间,确定与所述高优先级的上行控制信息在同一个上行信道上同时传输的低优先级的上行控制信息的第二参考比特数;其中,每一个高优先级的上行控制信息的比特数或比特数所对应的比特区间,分别对应一个低优先级的上行控制信息的第二参考比特数;
根据所述第二参考比特数,确定是否允许所述上行信道之间进行复用传输。
可选的,所述通信设备为基站;所述处理器,还用于执行以下操作:
若确定所述上行信道不需要满足所述时间条件,在调度或配置所述上行信道时,不需要保证所述上行信道满足所述时间条件。
可选的,所述通信设备为基站;所述处理器,还用于执行以下操作:
若确定所述上行信道需要满足所述时间条件,在调度或配置所述上行信道时,需要保证所述上行信道满足所述时间条件。
可选的,所述通信设备为终端;所述处理器,还用于执行以下操作:
若确定所述上行信道需要满足所述时间条件,在进行复用传输之前,检查所述上行信道是否满足所述时间条件。
可选的,所述通信设备为终端;所述处理器,还用于执行以下操作:
若确定所述上行信道不需要满足所述时间条件,在进行复用传输之前,不需要检查所述上行信道是否满足所述时间条件。
在此需要说明的是,本公开实施例提供的上述装置,能够实现上述方法实施例所实现的所有方法步骤,且能够达到相同的技术效果,在此不再对本实施例中与方法实施例相同的部分及有益效果进行具体赘述。
请参阅图7,图7是本公开实施例提供的一种信道复用装置的结构示意图,该信道复用装置700包括:
第一确定单元701,用于当具有不同优先级的上行信道在时域上存在重叠时,确定是否允许所述上行信道之间进行复用传输;
第二确定单元702,用于在确定允许所述上行信道之间进行复用传输时,确定所述上行信道需要满足预定的时间条件;
第三确定单元703,用于在确定不允许所述上行信道之间进行复用传输时,确定所述上行信道不需要满足所述时间条件。
本公开实施例提供了一种不同优先级的上行信道冲突时的复用传输方案,根据是否支持不同优先级的UCI复用传输的判断结果,确定是否需要满足所述时间条件,在决策不支持或不进行不同优先级的UCI复用传输时,不需要对重叠信道进行时间条件判断,从而不限制高优先级的上行信道的调度,提高优先级上行信道的传输灵活性,保证传输时延满足需求。
可选的,所述第一确定单元701,用于根据配置信令,确定是否允许所述上行信道之间进行复用传输;其中,所述配置信令包括以下至少之一:
与所述上行信道对应的下行控制信道中的下行控制信息,所述下行控制信息携带指示信息;
高层信令。
可选的,所述指示信息指示是否允许复用传输,或者,
所述指示信息指示用于确定与所述上行信道承载的高优先级的上行控制信息在同一个上行信道上同时传输的低优先级的上行控制信息的第一参考比特数的信息,所述参考比特数用于确定是否允许所述上行信道之间进行复用传输。
可选的,所述第一确定单元701包括:
第二参考比特数确定单元,用于根据所述上行信道中承载的高优先级的上行控制信息的比特数或比特数所对应的比特区间,确定与所述高优先级的上行控制信息在同一个上行信道上同时传输的低优先级的上行控制信息的第二参考比特数;其中,每一个高优先级的上行控制信息的比特数或比特数所对应的比特区间,分别对应一个低优先级的上行控制信息的第二参考比特数;
复用传输确定单元,用于根据所述第二参考比特数,确定是否允许所述上行信道之间进行复用传输。
可选的,所述信道复用装置700应用于基站;所述装置700还包括:
第一调配单元,用于若确定所述上行信道不需要满足所述时间条件,在调度或配置所述上行信道时,不需要保证所述上行信道满足所述时间条件。
可选的,所述信道复用装置700应用于基站;所述装置700还包括:
第二调配单元,用于若确定所述上行信道需要满足所述时间条件,在调度或配置所述上行信道时,需要保证所述上行信道满足所述时间条件。
可选的,所述信道复用装置700应用于基站;所述装置700还包括:
第一检查单元,用于若确定所述上行信道需要满足所述时间条件,在进行复用传输之前,检查所述上行信道是否满足所述时间条件。
可选的,所述信道复用装置700应用于基站;所述装置700还包括:
第二检查单元,用于若确定所述上行信道不需要满足所述时间条件,在进行复用传输之前,不需要检查所述上行信道是否满足所述时间条件。
在此需要说明的是,本公开实施例提供的上述装置,能够实现上述方法实施例所实现的所有方法步骤,且能够达到相同的技术效果,在此不再对本实施例中与方法实施例相同的部分及有益效果进行具体赘述。
需要说明的是,本公开实施例中对单元的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。另外,在本公开各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个处理器可读取存储介质中。基于这样的理解,本公开的技术方案本质上或者说对相关技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者基站等)或处理器(processor)执行本公开各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储 器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
在此需要说明的是,本公开实施例提供的上述装置,能够实现上述方法实施例所实现的所有方法步骤,且能够达到相同的技术效果,在此不再对本实施例中与方法实施例相同的部分及有益效果进行具体赘述。
本公开实施例还提供一种可读存储介质,其上存储有程序,该程序被处理器执行时实现上述方法实施例中任一种信道复用方法中的步骤。详细请参阅以上对应实施例中方法步骤的说明。
所述处理器可读存储介质可以是处理器能够存取的任何可用介质或数据存储设备,包括但不限于磁性存储器(例如软盘、硬盘、磁带、磁光盘(MO)等)、光学存储器(例如CD、DVD、BD、HVD等)、以及半导体存储器(例如ROM、EPROM、EEPROM、非易失性存储器(NAND FLASH)、固态硬盘(SSD))等。
本公开实施例提供的技术方案可以适用于多种系统,尤其是5G系统。例如适用的系统可以是全球移动通讯(global system of mobile communication,GSM)系统、码分多址(code division multiple access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)通用分组无线业务(general packet radio service,GPRS)系统、长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)系统、高级长期演进(long term evolution advanced,LTE-A)系统、通用移动系统(universal mobile telecommunication system,UMTS)、全球互联微波接入(worldwide interoperability for microwave access,WiMAX)系统、5G新空口(New Radio,NR)系统等。这多种系统中均包括终端和基站。系统中还可以包括核心网部分,例如演进的分组系统(Evloved Packet System,EPS)、5G系统(5G System,5GS)等。
本公开实施例涉及的终端,可以是指向用户提供语音和/或数据连通性的设备,具有无线连接功能的手持式设备、或连接到无线调制解调器的其他处理设备等。在不同的系统中,终端的名称可能也不相同,例如在5G系统中,终端可以称为用户设备(User Equipment,UE)。无线终端可以经无线接入网 (Radio Access Network,RAN)与一个或多个核心网(Core Network,CN)进行通信,无线终端可以是移动终端设备,如移动电话(或称为“蜂窝”电话)和具有移动终端设备的计算机,例如,可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置,它们与无线接入网交换语言和/或数据。例如,个人通信业务(Personal Communication Service,PCS)电话、无绳电话、会话发起协议(Session Initiated Protocol,SIP)话机、无线本地环路(Wireless Local Loop,WLL)站、个人数字助理(Personal Digital Assistant,PDA)等设备。无线终端也可以称为系统、订户单元(subscriber unit)、订户站(subscriber station),移动站(mobile station)、移动台(mobile)、远程站(remote station)、接入点(access point)、远程终端设备(remote terminal)、接入终端设备(access terminal)、用户终端设备(user terminal)、用户代理(user agent)、用户装置(user device),本公开实施例中并不限定。
本公开实施例涉及的基站,该基站可以包括多个为终端提供服务的小区。根据具体应用场合不同,基站又可以称为接入点,或者可以是接入网中在空中接口上通过一个或多个扇区与无线终端设备通信的设备,或者其它名称。基站可用于将收到的空中帧与网际协议(Internet Protocol,IP)分组进行相互更换,作为无线终端设备与接入网的其余部分之间的路由器,其中接入网的其余部分可包括网际协议(IP)通信网络。基站还可协调对空中接口的属性管理。例如,本公开实施例涉及的基站可以是全球移动通信系统(Global System for Mobile communications,GSM)或码分多址接入(Code Division Multiple Access,CDMA)中的基站(Base Transceiver Station,BTS),也可以是带宽码分多址接入(Wide-band Code Division Multiple Access,WCDMA)中的基站(NodeB),还可以是长期演进(long term evolution,LTE)系统中的演进型基站(evolutional Node B,eNB或e-NodeB)、5G网络架构(next generation system)中的5G基站(gNB),也可以是家庭演进基站(Home evolved Node B,HeNB)、中继节点(relay node)、家庭基站(femto)、微微基站(pico)等,本公开实施例中并不限定。在一些网络结构中,基站可以包括集中单元(centralized unit,CU)节点和分布单元(distributed unit,DU)节点,集中单元和分布单元也可以地理上分开布置。
基站与终端之间可以各自使用一或多根天线进行多输入多输出(Multi Input Multi Output,MIMO)传输,MIMO传输可以是单用户MIMO(Single User MIMO,SU-MIMO)或多用户MIMO(Multiple User MIMO,MU-MIMO)。根据根天线组合的形态和数量,MIMO传输可以是二维MIMO(2Dimension MIMO,2D-MIMO)、三维MIMO(3Dimension MIMO,3D-MIMO)、全维MIMO(Full Dimension MIMO,FD-MIMO)或大规模MIMO(massive-MIMO),也可以是分集传输或预编码传输或波束赋形传输等。
本领域内的技术人员应明白,本公开的实施例可提供为方法、系统、或计算机程序产品。因此,本公开可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本公开可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器和光学存储器等)上实施的计算机程序产品的形式。
本公开是参照根据本公开实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机可执行指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机可执行指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些处理器可执行指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的处理器可读存储器中,使得存储在该处理器可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些处理器可执行指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
需要说明的是,应理解以上各个模块的划分仅仅是一种逻辑功能的划分, 实际实现时可以全部或部分集成到一个物理实体上,也可以物理上分开。且这些模块可以全部以软件通过处理元件调用的形式实现;也可以全部以硬件的形式实现;还可以部分模块通过处理元件调用软件的形式实现,部分模块通过硬件的形式实现。例如,某个模块可以为单独设立的处理元件,也可以集成在上述装置的某一个芯片中实现,此外,也可以以程序代码的形式存储于上述装置的存储器中,由上述装置的某一个处理元件调用并执行以上确定模块的功能。其它模块的实现与之类似。此外这些模块全部或部分可以集成在一起,也可以独立实现。这里所述的处理元件可以是一种集成电路,具有信号的处理能力。在实现过程中,上述方法的各步骤或以上各个模块可以通过处理器元件中的硬件的集成逻辑电路或者软件形式的指令完成。
例如,各个模块、单元、子单元或子模块可以是被配置成实施以上方法的一个或多个集成电路,例如:一个或多个特定集成电路(Application Specific Integrated Circuit,ASIC),或,一个或多个微处理器(digital signal processor,DSP),或,一个或者多个现场可编程门阵列(Field Programmable Gate Array,FPGA)等。再如,当以上某个模块通过处理元件调度程序代码的形式实现时,该处理元件可以是通用处理器,例如中央处理器(Central Processing Unit,CPU)或其它可以调用程序代码的处理器。再如,这些模块可以集成在一起,以片上系统(system-on-a-chip,SOC)的形式实现。
本公开的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本公开的实施例,例如除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。此外,说明书以及权利要求中使用“和/或”表示所连接对象的至少其中之一,例如A和/或B和/或C,表示包含单独A,单独B,单独C,以及A和B都存在,B和C都存在,A和C都存在,以及A、B和C都存在的7种情况。类似地,本说明书以及权利要求中使用“A和B中的 至少一个”应理解为“单独A,单独B,或A和B都存在”。
显然,本领域的技术人员可以对本公开进行各种改动和变型而不脱离本公开的精神和范围。这样,倘若本公开的这些修改和变型属于本公开权利要求及其等同技术的范围之内,则本公开也意图包含这些改动和变型在内。

Claims (18)

  1. 一种信道复用方法,应用于通信设备,包括:
    当具有不同优先级的上行信道在时域上存在重叠时,确定是否允许所述上行信道之间进行复用传输;
    在确定允许所述上行信道之间进行复用传输时,确定所述上行信道需要满足预定的时间条件;
    在确定不允许所述上行信道之间进行复用传输时,确定所述上行信道不需要满足所述时间条件。
  2. 根据权利要求1所述的方法,其中,所述确定是否允许所述上行信道之间进行复用传输,包括:
    根据配置信令,确定是否允许所述上行信道之间进行复用传输;其中,所述配置信令包括以下至少之一:
    与所述上行信道对应的下行控制信道中的下行控制信息,所述下行控制信息携带指示信息;
    高层信令。
  3. 根据权利要求2所述的方法,其中,所述指示信息指示是否允许复用传输,或者,
    所述指示信息指示用于确定与所述上行信道承载的高优先级的上行控制信息在同一个上行信道上同时传输的低优先级的上行控制信息的第一参考比特数的信息,所述参考比特数用于确定是否允许所述上行信道之间进行复用传输。
  4. 根据权利要求1所述的方法,其中,所述确定是否允许所述上行信道之间进行复用传输,包括:
    根据所述上行信道中承载的高优先级的上行控制信息的比特数或比特数所对应的比特区间,确定与所述高优先级的上行控制信息在同一个上行信道上同时传输的低优先级的上行控制信息的第二参考比特数;其中,每一个高优先级的上行控制信息的比特数或比特数所对应的比特区间,分别对应一个低优先级的上行控制信息的第二参考比特数;
    根据所述第二参考比特数,确定是否允许所述上行信道之间进行复用传输。
  5. 根据权利要求1所述的方法,所述通信设备为基站;所述方法还包括:
    若确定所述上行信道不需要满足所述时间条件,在调度或配置所述上行信道时,不需要保证所述上行信道满足所述时间条件。
  6. 根据权利要求1所述的方法,所述通信设备为基站;所述方法还包括:
    若确定所述上行信道需要满足所述时间条件,在调度或配置所述上行信道时,需要保证所述上行信道满足所述时间条件。
  7. 根据权利要求1所述的方法,其中,所述通信设备为终端;所述方法还包括:
    若确定所述上行信道需要满足所述时间条件,在进行复用传输之前,检查所述上行信道是否满足所述时间条件。
  8. 根据权利要求1所述的方法,其中,所述通信设备为终端;所述方法还包括:
    若确定所述上行信道不需要满足所述时间条件,在进行复用传输之前,不需要检查所述上行信道是否满足所述时间条件。
  9. 一种通信设备,包括存储器,收发机,处理器:
    存储器,用于存储计算机程序;收发机,用于在所述处理器的控制下收发数据;处理器,用于读取所述存储器中的计算机程序并执行以下操作:
    当具有不同优先级的上行信道在时域上存在重叠时,确定是否允许所述上行信道之间进行复用传输;
    在确定允许所述上行信道之间进行复用传输时,确定所述上行信道需要满足预定的时间条件;
    在确定不允许所述上行信道之间进行复用传输时,确定所述上行信道不需要满足所述时间条件。
  10. 根据权利要求9所述的通信设备,其中,所述确定是否允许所述上行信道之间进行复用传输,包括:
    根据配置信令,确定是否允许所述上行信道之间进行复用传输;其中,所述配置信令包括以下至少之一:
    与所述上行信道对应的下行控制信道中的下行控制信息,所述下行控制信息携带指示信息;
    高层信令。
  11. 根据权利要求10所述的通信设备,其中,所述指示信息指示是否允许复用传输,或者,
    所述指示信息指示用于确定与所述上行信道承载的高优先级的上行控制信息在同一个上行信道上同时传输的低优先级的上行控制信息的第一参考比特数的信息,所述参考比特数用于确定是否允许所述上行信道之间进行复用传输。
  12. 根据权利要求9所述的通信设备,其中,所述确定是否允许所述上行信道之间进行复用传输,包括:
    根据所述上行信道中承载的高优先级的上行控制信息的比特数或比特数所对应的比特区间,确定与所述高优先级的上行控制信息在同一个上行信道上同时传输的低优先级的上行控制信息的第二参考比特数;其中,每一个高优先级的上行控制信息的比特数或比特数所对应的比特区间,分别对应一个低优先级的上行控制信息的第二参考比特数;
    根据所述第二参考比特数,确定是否允许所述上行信道之间进行复用传输。
  13. 根据权利要求9所述的通信设备,所述通信设备为基站;所述处理器,还用于执行以下操作:
    若确定所述上行信道不需要满足所述时间条件,在调度或配置所述上行信道时,不需要保证所述上行信道满足所述时间条件。
  14. 根据权利要求9所述的通信设备,所述通信设备为基站;所述处理器,还用于执行以下操作:
    若确定所述上行信道需要满足所述时间条件,在调度或配置所述上行信道时,需要保证所述上行信道满足所述时间条件。
  15. 根据权利要求9所述的通信设备,其中,所述通信设备为终端;所述处理器,还用于执行以下操作:
    若确定所述上行信道需要满足所述时间条件,在进行复用传输之前,检 查所述上行信道之间是否满足所述时间条件。
  16. 根据权利要求9所述的通信设备,其中,所述通信设备为终端;所述处理器,还用于执行以下操作:
    若确定所述上行信道不需要满足所述时间条件,在进行复用传输之前,不需要检查所述上行信道之间是否满足所述时间条件。
  17. 一种信道复用装置,包括:
    第一确定单元,用于当具有不同优先级的上行信道在时域上存在重叠时,确定是否允许所述上行信道之间进行复用传输;
    第二确定单元,用于在确定允许所述上行信道之间进行复用传输时,确定所述上行信道需要满足预定的时间条件;
    第三确定单元,用于在确定不允许所述上行信道之间进行复用传输时,确定所述上行信道不需要满足所述时间条件。
  18. 一种处理器可读存储介质,所述处理器可读存储介质存储有计算机程序,所述计算机程序用于使所述处理器执行权利要求1至8任一项所述的信道复用方法。
PCT/CN2022/080431 2021-04-02 2022-03-11 一种信道复用方法、装置及通信设备 WO2022206344A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US18/553,194 US20240196427A1 (en) 2021-04-02 2022-03-11 Channel multiplexing method and apparatus, and communication device
AU2022247620A AU2022247620A1 (en) 2021-04-02 2022-03-11 Channel multiplexing method and apparatus, and communication device
EP22778528.4A EP4319395A1 (en) 2021-04-02 2022-03-11 Channel multiplexing method and apparatus, and communication device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110361972.3A CN115175324A (zh) 2021-04-02 2021-04-02 一种信道复用方法、装置及通信设备
CN202110361972.3 2021-04-02

Publications (1)

Publication Number Publication Date
WO2022206344A1 true WO2022206344A1 (zh) 2022-10-06

Family

ID=83456829

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/080431 WO2022206344A1 (zh) 2021-04-02 2022-03-11 一种信道复用方法、装置及通信设备

Country Status (5)

Country Link
US (1) US20240196427A1 (zh)
EP (1) EP4319395A1 (zh)
CN (1) CN115175324A (zh)
AU (1) AU2022247620A1 (zh)
WO (1) WO2022206344A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190320431A1 (en) * 2018-04-17 2019-10-17 Qualcomm Incorporated Selectively multiplexing physical uplink shared channel (pusch) and physical uplink control channel (pucch) communications
US20190335485A1 (en) * 2018-01-22 2019-10-31 Intel Corporation Handling overlapping of pucch and pusch for new radio systems
CN110798291A (zh) * 2018-08-02 2020-02-14 中兴通讯股份有限公司 一种信息传输的方法、装置、设备和计算机可读存储介质
WO2020069066A1 (en) * 2018-09-27 2020-04-02 Qualcomm Incorporated Multiplexing of harq and csi on pucch
CN112242884A (zh) * 2019-07-19 2021-01-19 大唐移动通信设备有限公司 信息传输方法及装置
CN112398614A (zh) * 2019-08-15 2021-02-23 大唐移动通信设备有限公司 一种上行控制信息uci的处理方法、终端及基站

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190335485A1 (en) * 2018-01-22 2019-10-31 Intel Corporation Handling overlapping of pucch and pusch for new radio systems
US20190320431A1 (en) * 2018-04-17 2019-10-17 Qualcomm Incorporated Selectively multiplexing physical uplink shared channel (pusch) and physical uplink control channel (pucch) communications
CN110798291A (zh) * 2018-08-02 2020-02-14 中兴通讯股份有限公司 一种信息传输的方法、装置、设备和计算机可读存储介质
WO2020069066A1 (en) * 2018-09-27 2020-04-02 Qualcomm Incorporated Multiplexing of harq and csi on pucch
CN112242884A (zh) * 2019-07-19 2021-01-19 大唐移动通信设备有限公司 信息传输方法及装置
CN112398614A (zh) * 2019-08-15 2021-02-23 大唐移动通信设备有限公司 一种上行控制信息uci的处理方法、终端及基站

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LENOVO, MOTOROLA MOBILITY: "Intra-UE multiplexing enhancement for IIoT/URLLC", 3GPP DRAFT; R1-2009104, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20201026 - 20201113, 24 October 2020 (2020-10-24), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051946831 *

Also Published As

Publication number Publication date
AU2022247620A1 (en) 2023-11-02
US20240196427A1 (en) 2024-06-13
EP4319395A1 (en) 2024-02-07
CN115175324A (zh) 2022-10-11

Similar Documents

Publication Publication Date Title
WO2018027918A1 (zh) 上行信道发送方法和装置
WO2019213968A1 (zh) 上行信道的发送方法和终端设备
WO2021159419A1 (zh) 信息传输方法及相关装置
WO2020248101A1 (zh) 上报csi的方法和终端设备
WO2021143111A1 (zh) 一种上行控制信息的传输方法及装置
WO2022237611A1 (zh) 一种信息确认方法、装置及通信设备
WO2022117102A1 (zh) 上行控制信息传输方法、接收方法、终端和网络设备
WO2022117103A1 (zh) 上行控制信息传输方法、接收方法、终端和网络设备
WO2022218157A1 (zh) 信道处理方法、装置及存储介质
WO2022206344A1 (zh) 一种信道复用方法、装置及通信设备
WO2023134572A1 (zh) 上行传输方法、终端设备和网络设备
WO2022206347A1 (zh) 一种uci在pusch上传输的方法、终端及设备
WO2022206356A1 (zh) 复用传输方法、装置及存储介质
WO2023134661A1 (zh) Uci传输方法、终端、网络设备、装置及存储介质
CN115333699B (zh) 信道处理方法、装置及存储介质
CN115174008B (zh) 数据传输方法、装置及存储介质
WO2022206443A1 (zh) 上行复用传输方法、装置及存储介质
CN114765488B (zh) Harq-ack使能控制方法、装置、设备及存储介质
WO2022206351A1 (zh) 一种上行信道的传输方法及装置
WO2023155729A1 (zh) 一种信息处理方法、装置及可读存储介质
WO2022078285A1 (zh) 上行传输方法及装置
WO2024032274A1 (zh) 确定harq进程标识的方法及装置
WO2017139970A1 (zh) 信息传输装置、方法以及通信系统
WO2021204255A1 (zh) 信息传输方法及装置
CN117015044A (zh) C-dai顺序的确定方法、装置及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22778528

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18553194

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2022247620

Country of ref document: AU

Ref document number: AU2022247620

Country of ref document: AU

ENP Entry into the national phase

Ref document number: 2022247620

Country of ref document: AU

Date of ref document: 20220311

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2022778528

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022778528

Country of ref document: EP

Effective date: 20231102

NENP Non-entry into the national phase

Ref country code: DE