WO2023078029A1 - 功率控制参数确定方法、装置及终端设备 - Google Patents

功率控制参数确定方法、装置及终端设备 Download PDF

Info

Publication number
WO2023078029A1
WO2023078029A1 PCT/CN2022/124351 CN2022124351W WO2023078029A1 WO 2023078029 A1 WO2023078029 A1 WO 2023078029A1 CN 2022124351 W CN2022124351 W CN 2022124351W WO 2023078029 A1 WO2023078029 A1 WO 2023078029A1
Authority
WO
WIPO (PCT)
Prior art keywords
dci
harq
ack
bits
parameter
Prior art date
Application number
PCT/CN2022/124351
Other languages
English (en)
French (fr)
Inventor
王俊伟
Original Assignee
大唐移动通信设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大唐移动通信设备有限公司 filed Critical 大唐移动通信设备有限公司
Publication of WO2023078029A1 publication Critical patent/WO2023078029A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/38TPC being performed in particular situations
    • H04W52/48TPC being performed in particular situations during retransmission after error or non-acknowledgment

Definitions

  • the present disclosure relates to the field of communication technologies, and in particular to a method, device and terminal equipment for determining power control parameters.
  • a physical uplink control channel bears the function of uplink control information (Uplink control information, UCI), and controls the transmission power of the PUCCH, wherein, when the UCI contains a hybrid automatic repeat request response (Hybrid Automatic Repeat Request acknowledgment, HARQ-ACK) feedback information, need to calculate the parameter n HARQ-ACK feedback HARQ-ACK , this parameter is actually received by the terminal Physical Downlink Shared Channel (Physical Downlink Shared Channel, PDSCH) corresponding The number of feedback bits, this parameter is used for the transmission power control of PUCCH.
  • HARQ-ACK Hybrid Automatic Repeat Request acknowledgment
  • New Radio (NR) version 17 (Release 17, R17) high-frequency standard
  • one DCI is supported to schedule multiple PDSCHs and multiple HARQ-ACKs need to be fed back, but related technologies do not address this n HARQ-ACK acquisition mode of the situation.
  • Embodiments of the present disclosure provide a power control parameter determination method, device, and terminal equipment to solve the problem that in the case of multi-PDSCH transmission scheduling, the related technology does not have a solution for how to obtain the power control parameters of PUCCH, which cannot ensure reliable network communication. sex issue.
  • an embodiment of the present disclosure provides a method for determining a power control parameter, which is executed by a terminal device, including:
  • the first parameter determine a control parameter for performing power control on the physical uplink control channel PUCCH
  • the first parameter is the number of bits of the HARQ-ACK bundled with the Hybrid Automatic Repeat Request Response HARQ-ACK when one downlink control information DCI schedules multiple physical downlink shared channels PDSCH.
  • the determining a control parameter for performing power control on a physical uplink control channel PUCCH according to the first parameter includes:
  • the terminal device determining the number of bits of the first HARQ-ACK corresponding to the first DCI according to the first parameter, where the first DCI is one or more DCIs not detected by the terminal device;
  • the first parameter and the received transport block TB determine the number of bits of the second HARQ-ACK corresponding to the first TB, where the first TB is one or more TBs received by the terminal device;
  • the number of bits of the first HARQ-ACK and the number of bits of the second HARQ-ACK determine a control parameter for performing power control on the PUCCH.
  • the determining the number of bits of the first HARQ-ACK corresponding to the first DCI according to the first parameter includes:
  • the determining the number of first DCIs includes:
  • the The value of the downlink allocation index DAI corresponding to the last DCI is the number of serving cells configured by the network device for the terminal device, and the U DAI,c is the number of received scheduling DCIs.
  • the determining the number of bits of the first HARQ-ACK corresponding to the first DCI according to the number of the first DCI and the first parameter includes:
  • the S is the number of the first DCI, and the The maximum number of feedback bits of a PDSCH scheduled for the first DCI, where N is a first parameter.
  • the determining the number of bits of the second HARQ-ACK corresponding to the first TB according to the first parameter and the received transport block TB includes:
  • the first information includes at least one of the following: the number of bits of the third HARQ-ACK that needs to be fed back for each scheduling DCI, and the fourth HARQ-ACK that needs to be fed back for semi-persistent scheduling multiple PDSCHs in each cell
  • the number of bits, the scheduling DCI is the DCI that requires HARQ-ACK feedback on the PUCCH
  • the cell is a serving cell configured by the network device for the terminal device;
  • the first information determine the number of bits of the second HARQ-ACK corresponding to the first TB.
  • the method for determining the number of bits of the third HARQ-ACK to be fed back for each scheduling DCI includes:
  • the second DCI is any scheduling DCI
  • the target information includes: valid PDSCH or valid transport block TB.
  • the third HARQ-ACK bit to be fed back by the second DCI is determined according to the first parameter and the number of target information scheduled by the second DCI number, including any of the following:
  • the first parameter and the number of effective TBs scheduled by the second DCI respectively determine the number of HARQ-ACK bits to be fed back corresponding to each type of TB scheduled by the second DCI, and assign all types of TBs scheduled by the second DCI
  • the sum of the corresponding number of bits of HARQ-ACK to be fed back is determined as the number of bits of the third HARQ-ACK to be fed back by the second DCI, and one type of TB corresponds to multiple PDSCHs scheduled by the second DCI with the same identified TB;
  • the second DCI determines the number of HARQ-ACK bits that need to be fed back corresponding to all valid TBs scheduled by the second DCI, and allocate all valid TBs scheduled by the second DCI
  • the number of bits of the HARQ-ACK that needs to be fed back corresponding to the TB is determined as the number of bits of the third HARQ-ACK that needs to be fed back by the second DCI.
  • the first parameter and the number of valid TBs scheduled by the second DCI respectively determine the number of bits of HARQ-ACK to be fed back corresponding to each type of TB scheduled by the second DCI, including any of the following :
  • min(N,X) determine the number of bits of HARQ-ACK to be fed back corresponding to each type of TB
  • min(N,X i ) determine the number of bits of the HARQ-ACK to be fed back corresponding to the i-th type of TB;
  • the N is the first parameter
  • the X is the number of effective PDSCHs scheduled by the second DCI
  • the X i is included in the i-th TB in the enabled state in the PDSCHs scheduled by the second DCI The number of TB.
  • determining the number of HARQ-ACK bits to be fed back corresponding to all valid TBs scheduled by the second DCI includes:
  • the N is the first parameter
  • the H is the maximum number of types of TBs allowed to be scheduled by the second DCI
  • the Xi is the i-th type of TBs in the enabled state in the PDSCH scheduled by the second DCI. The number of TB.
  • the method for determining the number of bits of the fourth HARQ-ACK that needs to be fed back by the semi-persistent scheduling multiple PDSCHs in each cell includes:
  • the second parameter is the number of effective PDSCHs actually transmitted during semi-static SPS transmission, or the number of PDSCHs scheduled by an activation command when SPS configuration is activated.
  • the fourth HARQ that needs to be fed back by the semi-persistent scheduling multiple PDSCHs in each cell is determined.
  • the number of bits of ACK including:
  • min(N2, K) determine the number of bits of the fourth HARQ-ACK that needs to be fed back by the semi-persistent scheduling multi-PDSCH in each cell;
  • N2 is the number of HARQ-ACK bits that need to be fed back in the case of single codeword transmission in the semi-persistent PDSCH scheduling
  • K is the second parameter.
  • the manner of obtaining the first parameter includes at least one of the following:
  • the value of the first parameter is less than or equal to the maximum number of PDSCHs scheduled by one DCI.
  • the method for obtaining the maximum number of PDSCHs scheduled by one DCI includes any of the following:
  • An embodiment of the present disclosure also provides a terminal device, including a memory, a transceiver, and a processor:
  • the memory is used to store computer programs; the transceiver is used to send and receive data under the control of the processor; the processor is used to read the computer programs in the memory and perform the following operations:
  • the first parameter determine a control parameter for performing power control on the physical uplink control channel PUCCH
  • the first parameter is the number of bits of the HARQ-ACK bundled with the Hybrid Automatic Repeat Request Response HARQ-ACK when one downlink control information DCI schedules multiple physical downlink shared channels PDSCH.
  • the processor is configured to read the computer program in the memory and perform the following operations:
  • the terminal device determining the number of bits of the first HARQ-ACK corresponding to the first DCI according to the first parameter, where the first DCI is one or more DCIs not detected by the terminal device;
  • the first parameter and the received transport block TB determine the number of bits of the second HARQ-ACK corresponding to the first TB, where the first TB is one or more TBs received by the terminal device;
  • the number of bits of the first HARQ-ACK and the number of bits of the second HARQ-ACK determine a control parameter for performing power control on the PUCCH.
  • the processor is configured to read the computer program in the memory and perform the following operations:
  • the processor is configured to read the computer program in the memory and perform the following operations:
  • the The value of the downlink allocation index DAI corresponding to the last DCI is the number of serving cells configured by the network device for the terminal device, and U DAI,c is the number of received scheduling DCIs.
  • the processor is configured to read the computer program in the memory and perform the following operations:
  • the S is the number of the first DCI, and the The maximum number of feedback bits of a PDSCH scheduled for the first DCI, where N is a first parameter.
  • the processor is configured to read the computer program in the memory and perform the following operations:
  • the first information includes at least one of the following: the number of bits of the third HARQ-ACK that needs to be fed back for each scheduling DCI, and the fourth HARQ-ACK that needs to be fed back for semi-persistent scheduling multiple PDSCHs in each cell
  • the number of bits, the scheduling DCI is the DCI that requires HARQ-ACK feedback on the PUCCH
  • the cell is a serving cell configured by the network device for the terminal device;
  • the first information determine the number of bits of the second HARQ-ACK corresponding to the first TB.
  • the processor is configured to read the computer program in the memory and perform the following operations:
  • the second DCI is any scheduling DCI
  • the target information includes: valid PDSCH or valid transport block TB.
  • the processor is configured to read a computer program in the memory and perform any one of the following operations:
  • the first parameter and the number of effective TBs scheduled by the second DCI respectively determine the number of HARQ-ACK bits to be fed back corresponding to each type of TB scheduled by the second DCI, and assign all types of TBs scheduled by the second DCI
  • the sum of the corresponding number of bits of HARQ-ACK to be fed back is determined as the number of bits of the third HARQ-ACK to be fed back by the second DCI, and one type of TB corresponds to multiple PDSCHs scheduled by the second DCI with the same identified TB;
  • the second DCI determines the number of HARQ-ACK bits that need to be fed back corresponding to all valid TBs scheduled by the second DCI, and allocate all valid TBs scheduled by the second DCI
  • the number of bits of the HARQ-ACK that needs to be fed back corresponding to the TB is determined as the number of bits of the third HARQ-ACK that needs to be fed back by the second DCI.
  • the processor is configured to read the computer program in the memory and perform any one of the following operations:
  • min(N,X) determine the number of bits of HARQ-ACK to be fed back corresponding to each type of TB
  • min(N,X i ) determine the number of bits of the HARQ-ACK to be fed back corresponding to the i-th type of TB;
  • the N is the first parameter
  • the X is the number of effective PDSCHs scheduled by the second DCI
  • the X i is included in the i-th TB in the enabled state in the PDSCHs scheduled by the second DCI The number of TB.
  • the processor is configured to read the computer program in the memory and perform the following operations:
  • the N is the first parameter
  • the H is the maximum number of types of TBs allowed to be scheduled by the second DCI
  • the Xi is the i-th type of TBs in the enabled state in the PDSCH scheduled by the second DCI. The number of TB.
  • the processor is configured to read the computer program in the memory and perform the following operations:
  • the second parameter is the number of effective PDSCHs actually transmitted during semi-static SPS transmission, or the number of PDSCHs scheduled by an activation command when SPS configuration is activated.
  • the processor is configured to read the computer program in the memory and perform the following operations:
  • min(N2, K) determine the number of bits of the fourth HARQ-ACK that needs to be fed back by the semi-persistent scheduling multi-PDSCH in each cell;
  • the N2 is the number of HARQ-ACK bits that need to be fed back in the case of single codeword transmission in the semi-persistent PDSCH scheduling
  • the K is the second parameter.
  • the manner of obtaining the first parameter includes at least one of the following:
  • the value of the first parameter is less than or equal to the maximum number of PDSCHs scheduled by one DCI.
  • the method for obtaining the maximum number of PDSCHs scheduled by one DCI includes any of the following:
  • An embodiment of the present disclosure also provides an apparatus for determining a power control parameter, which is applied to a terminal device, including:
  • a determining unit configured to determine a control parameter for performing power control on a physical uplink control channel PUCCH according to the first parameter
  • the first parameter is the number of bits of the HARQ-ACK bundled with the Hybrid Automatic Repeat Request Response HARQ-ACK when one downlink control information DCI schedules multiple physical downlink shared channels PDSCH.
  • An embodiment of the present disclosure further provides a processor-readable storage medium, where a computer program is stored in the processor-readable storage medium, and the computer program is configured to cause the processor to execute the above method.
  • the above solution determines the control parameters for power control of the PUCCH by determining the number of HARQ-ACK bits when multiple PDSCHs are scheduled according to one DCI when performing HARQ-ACK bundling, thereby perfecting the multi-PDSCH transmission scheduling.
  • the scheme for acquiring the control parameters for power control of the PUCCH can save the power consumption of the terminal for sending signals on the premise of maintaining transmission reliability.
  • FIG. 1 shows a structural diagram of a network system applicable to an embodiment of the present disclosure
  • FIG. 2 shows a schematic flowchart of a method for determining a power control parameter according to an embodiment of the present disclosure
  • FIG. 3 shows a schematic diagram of f(N, X) calculation results of HARQ-ACK fed back in a bundling mode
  • FIG. 4 shows a schematic diagram of the scheduling state of the transport block (Transport Block, TB) corresponding to each PDSCH;
  • FIG. 5 shows a schematic unit diagram of a device for determining power control parameters according to an embodiment of the present disclosure
  • FIG. 6 shows a structural diagram of a terminal device according to an embodiment of the present disclosure.
  • words such as “exemplary” or “for example” are used as examples, illustrations or illustrations. Any embodiment or design described as “exemplary” or “for example” in the embodiments of the present disclosure shall not be construed as being preferred or advantageous over other embodiments or designs. Rather, the use of words such as “exemplary” or “such as” is intended to present related concepts in a concrete manner.
  • the power control parameter determination method, device and terminal device provided in the embodiments of the present disclosure may be applied in a wireless communication system.
  • the wireless communication system may be a system using the fifth generation (5th Generation, 5G) mobile communication technology (hereinafter referred to as 5G system).
  • 5G system fifth generation mobile communication technology
  • 5G system is only an example and not a limitation.
  • FIG. 1 is a structural diagram of a network system applicable to an embodiment of the present disclosure.
  • the user terminal 11 may be a user equipment (User Equipment, UE ), for example: it can be a mobile phone, a tablet computer (Tablet Personal Computer), a laptop computer (Laptop Computer), a personal digital assistant (personal digital assistant, referred to as PDA), a mobile Internet device (Mobile Internet Device, MID) or a wearable
  • UE User Equipment
  • UE user equipment
  • PDA personal digital assistant
  • MID mobile Internet Device
  • the specific type of the user terminal 11 is not limited in the embodiment of the present disclosure.
  • the above-mentioned base station 12 may be a base station of 5G and later versions (for example: gNB, 5G NR NB), or a base station in other communication systems, or called Node B. It should be noted that in the embodiments of the present disclosure, only 5G The base station is taken as an example, but the specific type of the base station 12 is not limited.
  • Hybrid Automatic Repeat Request acknowledgment (HARQ-ACK) dynamic codebook type 2 (type-2) mechanism based on physical downlink shared channel (PDSCH) scheduling
  • the generation mechanism of the dynamic HARQ-ACK codebook is supported. ) indicates that the terminal side calculates the number of DCI and PDSCH actually sent by the base station according to the DAI count, so as to determine the number of PDSCH that needs to be fed back contained in the HARQ-ACK codebook.
  • j is the number of cycles used by the terminal side to calculate the DAI value (when the DAI in the current DCI is less than or equal to the DAI in the previous DCI, j is incremented by 1).
  • the terminal can calculate the number of DCIs sent by the base station.
  • the calculation method is as follows:
  • the terminal further calculates the number of fed back HARQ-ACK transport blocks and the corresponding number of HARQ codebook bits O ACK according to the number of scheduling DCIs.
  • O ACK When the base station schedules the codebook feedback that supports multicast, the number of bits of the HARQ-ACK codebook that the terminal feeds back on the Physical uplink control channel (PUCCH) O ACK is equal to the unicast HARQ sub-codebook and the multicast HARQ codebook. The sum of the number of bits in the sub-codebook.
  • O ACK (unicast) is the length of the HARQ-ACK sub-codebook for unicast calculation
  • O ACK(G-RNIT(I)) is the length of the sub-codebook corresponding to G-RNTI(i)
  • N is configured by the base station The length of the HARQ-ACK codebook fed back on the PUCCH.
  • One DCI schedules multiple PDSCHs and HARQ-ACK feedback mechanism
  • High frequency supports one DCI to schedule multiple PDSCHs.
  • the base station configures the HARQ-ACK codebook as a dynamic codebook (Type-2), it supports the DAI counting method based on each DCI.
  • N max_PDSCH, at this time, the number of bits fed back to HARQ-ACK is the same as the maximum number of scheduled PDSCHs, which is called feedback mode 1.
  • N ⁇ max_PDSCH at this time, the number of bits fed back to the HARQ-ACK is less than the maximum number of scheduled PDSCHs, which is called feedback mode 2 (also called bundling mode (bundling).
  • the maximum number of PDSCHs scheduled by each DCI is 4, but may be less than 4.
  • the maximum number of PDSCHs scheduled by each DCI is 4, but may be less than 4.
  • N bits are also fed back, and at this time, the feedback of multiple PDSCHs is bundled into one information for feedback.
  • N bits are also fed back, and at this time, 1 bit is fed back for each PDSCH, and information bits not fed back are supplemented as NACK.
  • the feedback information of PDSCH-1 and PDSCH-2 adopts bit OR (that is, both are ACK, then feedback ACK, as long as there is one is NACK, that is, feedback NACK), and occupies 1 bit, and the feedback information of PDSCH-3 and PDSCH-4 adopts bit or (that is, both are ACK, then feedback ACK, as long as one is NACK, that is, feedback NACK), And occupy 1 bit.
  • each PDSCH occupies 1 bit and occupies 2 bits of information in total.
  • Embodiments of the present disclosure provide a power control parameter determination method, device, and terminal equipment to solve the problem that the related technology does not have a solution for how to obtain the power control parameters of the PUCCH in the case of multi-PDSCH transmission scheduling, and the network communication cannot be guaranteed. Reliability issues.
  • the method and the device are conceived based on the same application. Since the principle of solving problems of the method and the device is similar, the implementation of the device and the method can be referred to each other, and the repetition will not be repeated.
  • an embodiment of the present disclosure provides a method for determining a power control parameter, which is executed by a terminal device, including:
  • Step S201 determine a control parameter for power control of the physical uplink control channel PUCCH;
  • the first parameter is to perform Hybrid Automatic Repeat Request Response (HARQ) when one downlink control information (DCI) schedules multiple (two or more) physical downlink shared channels (PDSCH).
  • DCI downlink control information
  • PDSCH physical downlink shared channels
  • -ACK The number of bundled HARQ-ACK bits.
  • the first parameter is configurable and can be in the following situations:
  • the first parameter is equal to max_PDSCH (max_PDSCH is the maximum number of PDSCHs scheduled by one DCI configured by the base station (or it can also be called the maximum number of PDSCHs scheduled by one DCI))
  • the maximum number of PDSCHs scheduled by one DCI is the same as the number of HARQ-ACK bits fed back; when the number of PDSCHs scheduled by one DCI is X, there are X PDSCHs to determine the HARQ-ACK bits according to the channel decoding results Value (X unknown information), max_PDSCH-X HARQ-ACK feedback information for known information filling (N-X known information, such as filling as NACK, or ACK)
  • the number of HARQ-ACK bits fed back is greater than 1 and less than the maximum number of PDSCHs scheduled by one DCI.
  • the number of PDSCHs scheduled by one DCI is X
  • the value of ACK (X unknown information), max_PDSCH-X HARQ-ACK feedback bits are filled with known information (N-X known information, such as filled with NACK, or ACK), and then max_PDSCH HARQ-ACK information bundling to N feedback HARQ-ACK information.
  • the acquisition method of the first parameter includes at least one of the following:
  • the first parameter can be configured in the PDSCH parameter configuration through high-layer signaling (RRC message), and the range of the first parameter can be from 1 to 8 , or 1 to 16.
  • RRC message high-layer signaling
  • the value of the first parameter configured through high layer signaling should be less than or equal to max_PDSCH.
  • the values of one or several first parameters are determined through agreement.
  • the first parameter is 1, max_PDSCH or min_PDSCH
  • min_PDSCH indicates the minimum number of PDSCH scheduling in the multi-PDSCH scheduling time domain information allocation table
  • the first parameter is 1, it is equivalent to 1 DCI scheduling, which feeds back the HARQ-ACK feedback of 1 PDSCH.
  • 1 DCI scheduling feeds back the HARQ-ACK feedback of 1 PDSCH.
  • NACK only all scheduling Only when the PDSCH decoding is correct, the NACK is fed back. This method is simple to implement, but it will cause invalid PDSCH retransmission.
  • the first parameter is max_PDSCH, it is equivalent to not performing HARQ-ACK feedback bunlding.
  • the first parameter is min_PDSCH
  • A13 determined according to the maximum number of PDSCHs scheduled by one DCI
  • the terminal device can determine the value of the first parameter by itself according to max_PDSCH.
  • the method for the terminal device to obtain the maximum number of PDSCHs scheduled by one DCI includes any of the following:
  • A21 configured by network equipment
  • the terminal equipment indirectly acquires max_PDSCH.
  • the PDSCH time domain scheduling parameter table is shown in Table 1:
  • row index 0 is configured with 7 schedulable PDSCHs; row index 1 is configured with 4 schedulable PDSCHs; row index 2 is configured with 3 schedulable PDSCHs; the terminal can calculate that max_PDSCH is 7.
  • step S201 mainly includes steps S2011 to S2013:
  • Step S2011 determining the number of bits of the first HARQ-ACK corresponding to the first DCI according to the first parameter
  • the first DCI is one or more DCIs not detected by the terminal device; this step is mainly to obtain the HARQ-ACK bits corresponding to all DCIs not detected (also can be understood as lost) number.
  • Step S2012 according to the first parameter and the received transport block TB, determine the number of bits of the second HARQ-ACK corresponding to the first TB;
  • the first TB is one or more TBs received by the terminal device, and this step is mainly used to obtain the number of bits of the second HARQ-ACK corresponding to all transport blocks received by the terminal device.
  • the second HARQ-ACK mainly refers to information determined by the terminal device itself and unknown to the network device in advance, and the second HARQ-ACK can also be understood as unknown information.
  • Step S2013 according to the number of bits of the first HARQ-ACK and the number of bits of the second HARQ-ACK, determine a control parameter for power control of the PUCCH;
  • the final control parameters can be obtained by adding the information obtained in the previous two steps.
  • step S2011 and step S2012 will be described in detail below.
  • step S2011 mainly includes steps S20111 to S20112:
  • Step S20111 determine the number of the first DCI
  • the value of the downlink allocation index DAI corresponding to the last DCI is the number of serving cells configured by the network device for the terminal device, and U DAI,c is the number of received scheduling DCIs.
  • the formula can be used: Determine the first number.
  • T D in the formula is the maximum counting range of DAI counting.
  • Step S20112 according to the number of the first DCI and the first parameter, determine the number of bits of the first HARQ-ACK corresponding to the first DCI;
  • S is the number of the first DCI, The maximum number of feedback bits of a PDSCH scheduled for the first DCI, where N is the first parameter.
  • step S2012 mainly includes steps S20121 to S20122:
  • Step S20121 determine the first information, the first information includes at least one of the following: the number of bits of the third HARQ-ACK that needs to be fed back for each scheduling DCI, and the number of bits that need to be fed back for the semi-persistent scheduling multiple PDSCHs in each cell.
  • the third HARQ-ACK is information determined by the terminal equipment and unknown to the network equipment in advance, and the third HARQ-ACK may also be understood as unknown information.
  • the scheduling DCI is the DCI that requires HARQ-ACK feedback on the PUCCH
  • the cell is a serving cell configured by the network device for the terminal device.
  • the method for determining the number of bits of the third HARQ-ACK that needs to be fed back for each scheduling DCI may be implemented in the following manner:
  • the second DCI is any scheduling DCI
  • the target information includes: valid PDSCH or valid transport block (TB).
  • the f(N, X) function can be used to determine the number of bits of the third HARQ-ACK to be fed back by the second DCI, where N is the first parameter, and X is the target information of the DCI scheduling number.
  • the number of target information is the number of valid PDSCHs
  • the base station is configured for multi-codeword transmission, but bundling operations are required between different TBs;
  • the HARQ-ACK information of TB1 and TB2 is bundled into one HARQ-ACK bit by bit-AND operation.
  • the base station configures the harq-ACK-SpatialBundlingPUCCH parameter.
  • this step is implemented by: determining the minimum of the first parameter and the number of effective PDSCHs scheduled by the second DCI as the third HARQ to be fed back by the second DCI -Number of bits of ACK.
  • f(N,X) can adopt the manner of min(N,X) described below, where X is the number of effective PDSCHs scheduled by the DCI.
  • the bundled PDSCH (or the number of TBs) changes dynamically, that is to say, when the actual scheduled effective number of PDSCHs (or the number of TBs) X is greater than or equal to N, the total It is to feed back N pieces of HARQ-ACK information.
  • the number of effective PDSCHs (or the number of TBs) X actually scheduled is less than N, X pieces of effective HARQ-ACK information are fed back.
  • a network device for example, a base station
  • step S20121 includes any one of the following B31 and B32:
  • the second DCI According to the first parameter and the number of effective TBs scheduled by the second DCI, respectively determine the number of bits of the HARQ-ACK to be fed back corresponding to each type of TB scheduled by the second DCI, and allocate all the bits of the second DCI scheduled The sum of the number of bits of the HARQ-ACK to be fed back corresponding to the class TB is determined as the number of bits of the third HARQ-ACK to be fed back by the second DCI;
  • a type of TB corresponds to TBs with the same identifier corresponding to multiple PDSCHs scheduled by the second DCI. It should be noted that, since each TB corresponding to a PDSCH has a TB identifier, for example, in the second DCI.
  • each PDSCH will correspond to a TB marked as first-TB (also can be regarded as TB1) and a TB marked as second-TB (also can be regarded as TB2), different All the TBs corresponding to the first-TB on the PDSCH of different PDSCHs are regarded as one type of TB, and all the TBs corresponding to the second-TB on different PDSCHs are regarded as another type of TB.
  • f(N,X) can use the min(N,X) function method described below, where X is the number of effective PDSCHs scheduled by DCI, and N is one after bundling between HARQ-ACK of PDSCH
  • the TB corresponds to the number of HARQ-ACK bits (N is configured by the base station, or indicated by default, for example, the feedback HARQ-ACK information bits of two codewords are 2N).
  • B311 and B312 For different transport blocks, use any one of the following B311 and B312:
  • min(N, X) determine the number of bits of the HARQ-ACK corresponding to each type of TB to be fed back
  • min(N,X) represents the number of HARQ-ACK bits corresponding to TB1 or TB2 that need to be fed back (that is, the number of HARQ-ACK bits (ACK or NACK) is uncertain).
  • ACK or NACK the number of HARQ-ACK bits (ACK or NACK) is uncertain.
  • N is the first parameter
  • Xi is the number of TBs included in the i-th type of TBs in the enabled state in the PDSCH scheduled by the second DCI.
  • min(N,X1) indicates the number of bits of HARQ-ACK that need to be fed back corresponding to TB1 (that is, the number of HARQ-ACK information (ACK or NACK) is uncertain), and X1 indicates that among the X PDSCHs scheduled, it is enabled
  • the number of TB1; min(N,X2) represents the number of bits of HARQ-ACK that need to be fed back corresponding to TB2 (that is, the number of HARQ-ACK information (ACK or NACK) is uncertain)
  • X2 represents the scheduled X PDSCH Among them, it is the number of TB2 in the enabled state.
  • the number of HARQ-ACK bits that need to be fed back corresponding to all valid TBs scheduled by the second DCI determine the number of HARQ-ACK bits that need to be fed back corresponding to all valid TBs scheduled by the second DCI, and schedule the second DCI
  • the number of bits of HARQ-ACK to be fed back corresponding to all valid TBs is determined as the number of bits of the third HARQ-ACK to be fed back by the second DCI;
  • the implementation in this case is as follows:
  • N is the first parameter
  • H is the maximum number of types of TBs allowed to be scheduled by the second DCI
  • Xi is the number of TBs contained in the i-th type of TBs in the enabled state in the PDSCH scheduled by the second DCI.
  • min(2N, X1+X2) represents the number of bits of HARQ-ACK that need to be fed back corresponding to TB1 and TB2 (that is, the number of HARQ-ACK information (ACK or NACK) is uncertain), and X1 represents the scheduled X PDSCH, is the number of TB1 in the enabled state, and X2 represents the number of TB2 in the enabled state among the scheduled X PDSCHs.
  • the number of bits of the third HARQ-ACK that needs to be fed back for all scheduling DCI obtained by using B311 is 8 bits; all scheduling DCI obtained by using B312
  • the number of bits of the third HARQ-ACK that needs to be fed back is 7 bits; the number of bits of the third HARQ-ACK that needs to be fed back for all the scheduling DCI obtained by using B32 is 8 bits.
  • the method for determining the number of bits of the fourth HARQ-ACK that needs to be fed back for the semi-persistent scheduling multiple PDSCHs in each cell can be implemented in the following manner;
  • the second parameter is the number of effective PDSCHs actually transmitted during semi-static SPS transmission, or the number of PDSCHs scheduled by an activation command when SPS configuration is activated.
  • the number of PDSCHs issued by the activation command may be different from the number of PDSCHs transmitted under no PDCCH scheduling. For example: when there is an invalid PDSCH among the PDSCHs scheduled by the activation command due to overlap of uplink symbols, when there is no PDCCH scheduling, the terminal still assumes that the time-domain scheduling information is valid.
  • min(N2, K) determine the number of bits of the fourth HARQ-ACK that needs to be fed back by the semi-persistent scheduling multi-PDSCH in each cell;
  • N2 is the number of HARQ-ACK bits that need to be fed back in the case of single codeword transmission in the semi-persistent PDSCH scheduling
  • K is the second parameter.
  • Step S20122 according to the first information, determine the number of bits of the second HARQ-ACK corresponding to the first TB.
  • n HARQ-ACK, multi-pdsch is the control parameter used to control the power of the physical uplink control channel PUCCH; N is the first parameter; M is the number of detection opportunities of PDCCH, SPS active is a PUCCH transmission
  • N2 SPS_multi-pdsch(i) is the number of HARQ-ACK bits that need to be fed back by the ith semi-persistent scheduling multi-PDSCH.
  • the part before the plus sign in the formula can be called the first part, and the part after the plus sign can be called the second part.
  • the first part is the number of bits of the dispatching signaling DCI that is missed (not detected) on the terminal side and corresponds to the HARQ-ACK feedback.
  • Part of it is the number of unknown HARQ-ACK information bits that the terminal side needs to feed back for the actual received scheduling signaling DCI and SPS PDSCH (that is, according to the PDSCH decoding result or other uncertain information fed back, that is, information that the base station cannot know in advance , for example: the base station configures two codewords for the terminal, and the HARQ-ACK between the codewords does not perform bundling, and the maximum number of scheduled PDSCHs is 1; in a certain DCI-1, it is indicated that only 1 TB is transmitted (for example, only TB1 is transmitted, TB2 is disabled), the terminal needs to feed back 2-bit information (b0, b1), the b0 information is determined for the decoding result of TB1, and is unknown information on the base station side; b1 is the NACK information filled by the terminal , which is known information from the perspective of the base station.
  • the number of bits of the result calculated by part2 is 1), and the calculation method of the second part is:
  • Part 2 is equal to the sum of the number of unknown information bits that need to be fed back by the multi-PDSCH dynamic scheduling DCI plus the number of location information bits that need to be fed back by the semi-persistent scheduling multi-PDSCH.
  • the number of unknown information bits that need to be fed back by multi-PDSCH dynamic scheduling DCI is calculated by f(N,X); the number of position information bits that need to be fed back by semi-persistent multi-scheduled PDSCH is based on the configuration of semi-persistent multi-PDSCH and the actual scheduled PDSCH when activated The number is determined.
  • the embodiment of the present disclosure provides a method for calculating the power control parameters of the PUCCH channel of the HARQ-ACK codebook when one DCI schedules multiple PDSCHs, and when bundling is supported between TBs and PDSCHs.
  • the calculation method enables the terminal to perform better power control, so as to maximize power efficiency, that is, to meet the requirements of PUCCH transmission power without wasting power.
  • the scenario of scheduling 1 PDSCH with a single DCI will also be configured.
  • n HARQ-ACK it is necessary to sum the values n HARQ-ACK calculated based on the single DPSCH and multiple PDSCH scheduling respectively.
  • n HARQ-ACK n HARQ-ACK, TB + n HARQ-ACK, CBG + n HARQ-ACK, multi-pdsch .
  • the first two items of the formula represent the calculation result of one DCI scheduling one PDSCH (when CBG transmission is not configured, the second item in the formula is 0, or does not appear in the calculation formula).
  • n HARQ-ACK, multi-pdsch indicates the calculation result of one DCI scheduling multiple PDSCHs.
  • the function function of calculating f(N,X) can be used to calculate the PUCCH power control parameters of the static HAQ-ACK codebook in addition to being applied to the dynamic HARQ-ACK codebook.
  • the first two items of the formula represent the calculation result of one DCI scheduling one PDSCH (when CBG transmission is not configured, the second item in the formula is 0, or does not appear in the calculation formula). Indicates the result of multi-PDSCH scheduling calculation for multiple detection opportunities in multiple cells.
  • the applicable system may be a global system of mobile communication (GSM) system, a code division multiple access (CDMA) system, a wideband code division multiple access (WCDMA) general packet Wireless business (general packet radio service, GPRS) system, long term evolution (long term evolution, LTE) system, LTE frequency division duplex (frequency division duplex, FDD) system, LTE time division duplex (time division duplex, TDD) system, Long term evolution advanced (LTE-A) system, universal mobile telecommunications system (UMTS), worldwide interoperability for microwave access (WiMAX) system, 5G new air interface (New Radio, NR) system, etc.
  • GSM global system of mobile communication
  • CDMA code division multiple access
  • WCDMA wideband code division multiple access
  • GPRS general packet Wireless business
  • long term evolution long term evolution
  • LTE long term evolution
  • LTE frequency division duplex frequency division duplex
  • FDD frequency division duplex
  • TDD time division duplex
  • LTE-A Long term evolution advanced
  • the terminal device involved in the embodiments of the present disclosure may be a device that provides voice and/or data connectivity to users, a handheld device with a wireless connection function, or other processing devices connected to a wireless modem.
  • the name of the terminal equipment may be different.
  • the terminal equipment may be called User Equipment (User Equipment, UE).
  • the wireless terminal equipment can communicate with one or more core networks (Core Network, CN) via the radio access network (Radio Access Network, RAN), and the wireless terminal equipment can be a mobile terminal equipment, such as a mobile phone (or called a "cellular "telephones) and computers with mobile terminal equipment, such as portable, pocket, hand-held, computer built-in or vehicle-mounted mobile devices, which exchange language and/or data with the radio access network.
  • a mobile terminal equipment such as a mobile phone (or called a "cellular "telephones) and computers with mobile terminal equipment, such as portable, pocket, hand-held, computer built-in or vehicle-mounted mobile devices, which exchange language and/or data with the radio access network.
  • PCS Personal Communication Service
  • SIP Session Initiated Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital Assistant
  • Wireless terminal equipment can also be called system, subscriber unit, subscriber station, mobile station, mobile station, remote station, access point , remote terminal (remote terminal), access terminal (access terminal), user terminal (user terminal), user agent (user agent), and user device (user device), which are not limited in the embodiments of the present disclosure.
  • the network device involved in the embodiments of the present disclosure may be a base station, and the base station may include multiple cells that provide services for terminals.
  • the base station can also be called an access point, or it can be a device in the access network that communicates with the wireless terminal device through one or more sectors on the air interface, or other names.
  • the network device can be used to interchange received over-the-air frames with Internet Protocol (IP) packets and act as a router between the wireless terminal device and the rest of the access network, which can include the Internet Protocol (IP) communication network.
  • IP Internet Protocol
  • Network devices may also coordinate attribute management for the air interface.
  • the network equipment involved in the embodiments of the present disclosure may be a network equipment (Base Transceiver Station, BTS) in Global System for Mobile communications (GSM) or Code Division Multiple Access (Code Division Multiple Access, CDMA) ), it can also be a network device (NodeB) in Wide-band Code Division Multiple Access (WCDMA), or it can be an evolved network device in a long-term evolution (long term evolution, LTE) system (evolutional Node B, eNB or e-NodeB), 5G base station (gNB) in the 5G network architecture (next generation system), can also be a home evolved base station (Home evolved Node B, HeNB), relay node (relay node) , a home base station (femto), a pico base station (pico), etc., are not limited in this embodiment of the present disclosure.
  • a network device may include a centralized unit (centralized unit, CU) node and a distributed unit (distributed unit, DU) node
  • MIMO transmission can be Single User MIMO (Single User MIMO, SU-MIMO) or Multi-User MIMO (Multiple User MIMO, MU-MIMO).
  • MIMO transmission can be two-dimensional MIMO (2Dimension MIMO, 2D-MIMO), three-dimensional MIMO (3Dimension MIMO, 3D-MIMO), full-dimensional MIMO (Full Dimension MIMO, FD-MIMO) or ultra-large Scale MIMO (massive-MIMO) can also be diversity transmission, precoding transmission or beamforming transmission, etc.
  • an embodiment of the present disclosure provides an apparatus 500 for determining a power control parameter, which is applied to a terminal device, including:
  • a determining unit 501 configured to determine a control parameter for performing power control on a physical uplink control channel PUCCH according to the first parameter
  • the first parameter is the number of bits of the HARQ-ACK bundled with the Hybrid Automatic Repeat Request Response HARQ-ACK when one downlink control information DCI schedules multiple physical downlink shared channels PDSCH.
  • the determining unit 501 is configured to implement:
  • the terminal device determining the number of bits of the first HARQ-ACK corresponding to the first DCI according to the first parameter, where the first DCI is one or more DCIs not detected by the terminal device;
  • the first parameter and the received transport block TB determine the number of bits of the second HARQ-ACK corresponding to the first TB, where the first TB is one or more TBs received by the terminal device;
  • the number of bits of the first HARQ-ACK and the number of bits of the second HARQ-ACK determine a control parameter for performing power control on the PUCCH.
  • the implementation of determining the number of bits of the first HARQ-ACK corresponding to the first DCI according to the first parameter includes:
  • the implementation of determining the number of the first DCI includes:
  • the The value of the downlink allocation index DAI corresponding to the last DCI is the number of serving cells configured by the network device for the terminal device, and the U DAI,c is the number of received scheduling DCIs.
  • the implementation of determining the number of bits of the first HARQ-ACK corresponding to the first DCI according to the number of the first DCI and the first parameter includes:
  • the S is the number of the first DCI, and the The maximum number of feedback bits of a PDSCH scheduled for the first DCI, where N is the first parameter.
  • the implementation of determining the number of bits of the second HARQ-ACK corresponding to the first TB according to the first parameter and the received transport block TB includes:
  • the first information includes at least one of the following: the number of bits of the third HARQ-ACK that needs to be fed back for each scheduling DCI, and the fourth HARQ-ACK that needs to be fed back for semi-persistent scheduling multiple PDSCHs in each cell
  • the number of bits, the scheduling DCI is the DCI that requires HARQ-ACK feedback on the PUCCH
  • the cell is a serving cell configured by the network device for the terminal device;
  • the first information determine the number of bits of the second HARQ-ACK corresponding to the first TB.
  • the method for determining the number of bits of the third HARQ-ACK to be fed back for each scheduling DCI includes:
  • the second DCI is any scheduling DCI
  • the target information includes: valid PDSCH or valid transport block TB.
  • the third HARQ-ACK bit to be fed back by the second DCI is determined according to the first parameter and the number of target information scheduled by the second DCI.
  • the first parameter and the number of effective TBs scheduled by the second DCI respectively determine the number of HARQ-ACK bits to be fed back corresponding to each type of TB scheduled by the second DCI, and assign all types of TBs scheduled by the second DCI
  • the sum of the corresponding number of bits of HARQ-ACK to be fed back is determined as the number of bits of the third HARQ-ACK to be fed back by the second DCI, and one type of TB corresponds to multiple PDSCHs scheduled by the second DCI with the same identified TB;
  • the second DCI determines the number of HARQ-ACK bits that need to be fed back corresponding to all valid TBs scheduled by the second DCI, and allocate all valid TBs scheduled by the second DCI
  • the number of bits of the HARQ-ACK that needs to be fed back corresponding to the TB is determined as the number of bits of the third HARQ-ACK that needs to be fed back by the second DCI.
  • the implementation of determining the number of bits of the HARQ-ACK to be fed back corresponding to each type of TB scheduled by the second DCI includes the following Either:
  • min(N,X) determine the number of bits of HARQ-ACK to be fed back corresponding to each type of TB
  • min(N,X i ) determine the number of bits of the HARQ-ACK to be fed back corresponding to the i-th type of TB;
  • the N is the first parameter
  • the X is the number of effective PDSCHs scheduled by the second DCI
  • the X i is included in the i-th TB in the enabled state in the PDSCHs scheduled by the second DCI The number of TB.
  • the implementation of determining the number of HARQ-ACK bits that need to be fed back corresponding to all valid TBs scheduled by the second DCI according to the first parameter and the number of valid TBs scheduled by the second DCI includes :
  • the N is the first parameter
  • the H is the maximum number of types of TBs allowed to be scheduled by the second DCI
  • the Xi is the i-th type of TBs in the enabled state in the PDSCH scheduled by the second DCI. The number of TB.
  • the method for determining the number of bits of the fourth HARQ-ACK that needs to be fed back by the semi-persistent scheduling multiple PDSCHs in each cell includes:
  • the second parameter is the number of effective PDSCHs actually transmitted during semi-static SPS transmission, or the number of PDSCHs scheduled by an activation command when SPS configuration is activated.
  • the fourth HARQ that needs to be fed back by the semi-persistent scheduling multiple PDSCHs in each cell is determined.
  • the implementation of the number of bits of ACK including:
  • min(N2, K) determine the number of bits of the fourth HARQ-ACK that needs to be fed back by the semi-persistent scheduling multi-PDSCH in each cell;
  • the N2 is the number of HARQ-ACK bits that need to be fed back in the case of single codeword transmission in the semi-persistent PDSCH scheduling
  • the K is the second parameter.
  • the manner of obtaining the first parameter includes at least one of the following:
  • the value of the first parameter is less than or equal to the maximum number of PDSCHs scheduled by one DCI.
  • the method for obtaining the maximum number of PDSCHs scheduled by one DCI includes any of the following:
  • the device in the embodiment of the present disclosure further includes a transceiver unit configured to send and receive data.
  • this device embodiment is a device that corresponds one-to-one to the above-mentioned method embodiments, and all the implementation methods in the above-mentioned method embodiments are applicable to this device embodiment, and can also achieve the same technical effect.
  • each functional unit in each embodiment of the present disclosure may be integrated into one processing unit, each unit may exist separately physically, or two or more units may be integrated into one unit.
  • the above-mentioned integrated units can be implemented in the form of hardware or in the form of software functional units.
  • the integrated unit is implemented in the form of a software function unit and sold or used as an independent product, it can be stored in a processor-readable storage medium.
  • the essence of the technical solution of the present disclosure or the part that contributes to the related technology or all or part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium.
  • a computer device which may be a personal computer, a server, or a network device, etc.
  • a processor processor
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disc and other media that can store program codes. .
  • an embodiment of the present disclosure also provides a terminal device, including a processor 600, a transceiver 610, a memory 620, and a program stored in the memory 620 and operable on the processor 600; wherein , the transceiver 610 is connected to the processor 600 and the memory 620 through the bus interface, wherein the processor 600 is used to read the program in the memory and execute the following process:
  • the first parameter determine a control parameter for performing power control on the physical uplink control channel PUCCH
  • the first parameter is the number of bits of the HARQ-ACK bundled with the Hybrid Automatic Repeat Request Response HARQ-ACK when one downlink control information DCI schedules multiple physical downlink shared channels PDSCH.
  • the transceiver 610 is used for receiving and sending data under the control of the processor 600 .
  • the bus architecture may include any number of interconnected buses and bridges, specifically one or more processors represented by the processor 600 and various circuits of the memory represented by the memory 620 are linked together.
  • the bus architecture can also link together various other circuits such as peripherals, voltage regulators, and power management circuits, etc., which are well known in the art and therefore will not be further described herein.
  • the bus interface provides the interface.
  • Transceiver 610 may be a plurality of elements, including a transmitter and a receiver, providing a means for communicating with various other devices over transmission media, including wireless channels, wired channels, fiber optic cables, etc. Transmission medium.
  • the user interface 630 may also be an interface capable of connecting externally and internally to required equipment, and the connected equipment includes but not limited to a keypad, a display, a speaker, a microphone, a joystick, and the like.
  • the processor 600 is responsible for managing the bus architecture and general processing, and the memory 620 can store data used by the processor 600 when performing operations.
  • the processor 600 may be a central processing unit (Central Processing Unit, CPU), an application-specific integrated circuit (Application Specific Integrated Circuit, ASIC), a field-programmable gate array (Field-Programmable Gate Array, FPGA) or a complex programmable Logic device (Complex Programmable Logic Device, CPLD), the processor can also adopt a multi-core architecture.
  • CPU Central Processing Unit
  • ASIC Application Specific Integrated Circuit
  • FPGA Field-Programmable Gate Array
  • CPLD Complex Programmable Logic Device
  • the processor is used to execute any one of the methods provided by the embodiments of the present disclosure according to the obtained executable instructions by calling the computer program stored in the memory.
  • the processor and memory may also be physically separated.
  • processor is configured to read the computer program in the memory and perform the following operations:
  • the terminal device determining the number of bits of the first HARQ-ACK corresponding to the first DCI according to the first parameter, where the first DCI is one or more DCIs not detected by the terminal device;
  • the first parameter and the received transport block TB determine the number of bits of the second HARQ-ACK corresponding to the first TB, where the first TB is one or more TBs received by the terminal device;
  • the number of bits of the first HARQ-ACK and the number of bits of the second HARQ-ACK determine a control parameter for performing power control on the PUCCH.
  • processor is configured to read the computer program in the memory and perform the following operations:
  • the number of the first DCI and the first parameter determine the number of bits of the first HARQ-ACK corresponding to the first DCI.
  • processor is configured to read the computer program in the memory and perform the following operations:
  • the The value of the downlink allocation index DAI corresponding to the last DCI is the number of cells configured by the network device for the terminal device, and the U DAI,c is the number of received scheduling DCIs.
  • processor is configured to read the computer program in the memory and perform the following operations:
  • the S is the number of the first DCI, and the The maximum number of feedback bits of a PDSCH scheduled for the first DCI, where N is the first parameter.
  • processor is configured to read the computer program in the memory and perform the following operations:
  • the first information includes at least one of the following: the number of bits of the third HARQ-ACK that needs to be fed back for each scheduling DCI, and the fourth HARQ-ACK that needs to be fed back for semi-persistent scheduling multiple PDSCHs in each cell
  • the number of bits, the scheduling DCI is the DCI that requires HARQ-ACK feedback on the PUCCH
  • the cell is a serving cell configured by the network device for the terminal device;
  • the first information determine the number of bits of the second HARQ-ACK corresponding to the first TB.
  • processor is configured to read the computer program in the memory and perform the following operations:
  • the second DCI is any scheduling DCI
  • the target information includes: valid PDSCH or valid transport block TB.
  • the processor is configured to read the computer program in the memory and perform any one of the following operations:
  • the first parameter and the number of effective TBs scheduled by the second DCI respectively determine the number of HARQ-ACK bits to be fed back corresponding to each type of TB scheduled by the second DCI, and assign all types of TBs scheduled by the second DCI
  • the sum of the corresponding number of bits of HARQ-ACK to be fed back is determined as the number of bits of the third HARQ-ACK to be fed back by the second DCI, and one type of TB corresponds to multiple PDSCHs scheduled by the second DCI with the same identified TB;
  • the second DCI determines the number of HARQ-ACK bits that need to be fed back corresponding to all valid TBs scheduled by the second DCI, and allocate all valid TBs scheduled by the second DCI
  • the number of bits of the HARQ-ACK that needs to be fed back corresponding to the TB is determined as the number of bits of the third HARQ-ACK that needs to be fed back by the second DCI.
  • processor is configured to read the computer program in the memory and perform any one of the following operations:
  • min(N,X) determine the number of bits of HARQ-ACK to be fed back corresponding to each type of TB
  • min(N,X i ) determine the number of bits of the HARQ-ACK to be fed back corresponding to the i-th type of TB;
  • the N is the first parameter
  • the X is the number of effective PDSCHs scheduled by the second DCI
  • the X i is included in the i-th TB in the enabled state in the PDSCHs scheduled by the second DCI The number of TB.
  • processor is configured to read the computer program in the memory and perform the following operations:
  • the N is the first parameter
  • the H is the maximum number of types of TBs allowed to be scheduled by the second DCI
  • the Xi is the i-th type of TBs in the enabled state in the PDSCH scheduled by the second DCI. The number of TB.
  • processor is configured to read the computer program in the memory and perform the following operations:
  • the second parameter is the number of effective PDSCHs actually transmitted during semi-static SPS transmission, or the number of PDSCHs scheduled by an activation command when SPS configuration is activated.
  • processor is configured to read the computer program in the memory and perform the following operations:
  • min(N2, K) determine the number of bits of the fourth HARQ-ACK that needs to be fed back by the semi-persistent scheduling multi-PDSCH in each cell;
  • the N2 is the number of HARQ-ACK bits that need to be fed back in the case of single codeword transmission in the semi-persistent PDSCH scheduling
  • the K is the second parameter.
  • the manner of obtaining the first parameter includes at least one of the following:
  • the value of the first parameter is less than or equal to the maximum number of PDSCHs scheduled by one DCI.
  • the method for obtaining the maximum number of PDSCHs scheduled by one DCI includes any of the following:
  • An embodiment of the present disclosure further provides a computer-readable storage medium on which a computer program is stored, wherein, when the computer program is executed by a processor, the steps of a method for determining a power control parameter applied to a terminal device are implemented.
  • the processor-readable storage medium may be any available medium or data storage device that the processor can access, including but not limited to magnetic storage (such as floppy disk, hard disk, magnetic tape, magneto-optical disk (Magneto-Optical Disk, MO) etc.) , optical storage (such as compact disc (Compact Disk, CD), digital video disc (Digital Versatile Disc, DVD), Blu-ray Disc (Blu-ray Disc, BD), high-definition universal disc (High-Definition Versatile Disc, HVD), etc.), And semiconductor memory (such as read-only memory (Read-Only Memory, ROM), erasable programmable read-only memory (Erasable Programmable ROM, EPROM), charged erasable programmable read-
  • the embodiments of the present disclosure may be provided as methods, systems, or computer program products. Accordingly, the present disclosure can take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment combining software and hardware aspects. Furthermore, the present disclosure may take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage, optical storage, etc.) having computer-usable program code embodied therein.
  • processor-executable instructions may also be stored in a processor-readable memory capable of directing a computer or other programmable data processing device to operate in a specific manner, such that the instructions stored in the processor-readable memory produce a manufacturing product, the instruction device realizes the functions specified in one or more procedures of the flow chart and/or one or more blocks of the block diagram.
  • processor-executable instructions can also be loaded onto a computer or other programmable data processing device, causing a series of operational steps to be performed on the computer or other programmable device to produce a computer-implemented
  • the executed instructions provide steps for implementing the functions specified in the procedure or procedures of the flowchart and/or the block or blocks of the block diagrams.
  • the division of the above modules is only a division of logical functions, and may be fully or partially integrated into a physical entity or physically separated during actual implementation.
  • these modules can all be implemented in the form of calling software through processing elements; they can also be implemented in the form of hardware; some modules can also be implemented in the form of calling software through processing elements, and some modules can be implemented in the form of hardware.
  • the determining module may be a separate processing element, or may be integrated in a chip of the above-mentioned device.
  • it may be stored in the memory of the above-mentioned device in the form of program code, and a certain processing element of the above-mentioned device may Call and execute the functions of the modules identified above.
  • each step of the above method or each module above can be completed by an integrated logic circuit of hardware in the processor element or an instruction in the form of software.
  • each module, unit, subunit or submodule may be one or more integrated circuits configured to implement the above method, for example: one or more specific integrated circuits (Application Specific Integrated Circuit, ASIC), or, one or Multiple microprocessors (digital signal processor, DSP), or, one or more field programmable gate arrays (Field Programmable Gate Array, FPGA), etc.
  • ASIC Application Specific Integrated Circuit
  • DSP digital signal processor
  • FPGA Field Programmable Gate Array
  • the processing element may be a general-purpose processor, such as a central processing unit (Central Processing Unit, CPU) or other processors that can call program codes.
  • these modules can be integrated together and implemented in the form of a system-on-a-chip (SOC).
  • SOC system-on-a-chip

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开提供了一种功率控制参数确定方法、装置及终端设备,涉及通信技术领域。该方法,由终端设备执行,包括:根据第一参数,确定用于对物理上行控制信道PUCCH进行功率控制的控制参数;其中,所述第一参数为在一个下行控制信息DCI调度多个物理下行共享信道PDSCH的情况下,进行混合自动重传请求应答HARQ-ACK捆绑的HARQ-ACK的比特个数。

Description

功率控制参数确定方法、装置及终端设备
相关申请的交叉引用
本公开主张在2021年11月05日在中国提交的中国专利申请No.202111308588.3的优先权,其全部内容通过引用包含于此。
技术领域
本公开涉及通信技术领域,特别涉及一种功率控制参数确定方法、装置及终端设备。
背景技术
在相关技术,物理上行控制信道(Physical uplink control channel,PUCCH)承载上行控制信息(Uplink control information,UCI)的功能,并对PUCCH的发送功率进行控制,其中,当UCI包含混合自动重传请求应答(Hybrid Automatic Repeat Request acknowledgement,HARQ-ACK)的反馈信息时,需要计算反馈HARQ-ACK的参数n HARQ-ACK,此参数为终端实际接收到的物理下行共享信道(Physical Downlink Shared Channel,PDSCH)对应的反馈比特的个数,该参数用于PUCCH的发送功率控制。当UCI的比特数大于11时,n HARQ-ACK按照HARQ-ACK码本的长度计算,当UCI小于或等于11比特时,需要根据终端接收到的调度下行控制信息(Downlink Control Information,DCI),计算n HARQ-ACK
在新空口(New Radio,NR)版本17(Release 17,R17)高频标准中,支持1个DCI调度多个PDSCH且需要反馈多个HARQ-ACK的场景,但是相关技术中并没有针对此种情况的n HARQ-ACK的获取方式。
发明内容
本公开实施例提供一种功率控制参数确定方法、装置及终端设备,以解决因在多PDSCH传输调度的情况下,相关技术没有如何进行PUCCH的功率控制参数的获取的方案,无法保证网络通信可靠性的问题。
为了解决上述技术问题,本公开实施例提供一种功率控制参数确定方法,由终端设备执行,包括:
根据第一参数,确定用于对物理上行控制信道PUCCH进行功率控制的控制参数;
其中,所述第一参数为在一个下行控制信息DCI调度多个物理下行共享信道PDSCH的情况下,进行混合自动重传请求应答HARQ-ACK捆绑的HARQ-ACK的比特个数。
可选地,所述根据第一参数,确定用于对物理上行控制信道PUCCH进行功率控制的控制参数,包括:
根据第一参数确定第一DCI对应的第一HARQ-ACK的比特个数,所述第一DCI为终端设备没有检测到的一个或者多个DCI;
根据第一参数以及接收到的传输块TB,确定第一TB对应的第二HARQ-ACK的比特个数,所述第一TB为终端设备接收到的一个或者多个TB;
根据所述第一HARQ-ACK的比特个数和所述第二HARQ-ACK的比特个数,确定用于对PUCCH进行功率控制的控制参数。
可选地,所述根据第一参数确定第一DCI对应的第一HARQ-ACK的比特个数,包括:
确定第一DCI的个数;
根据所述第一DCI的个数以及所述第一参数,确定所述第一DCI对应的第一HARQ-ACK的比特个数。
可选地,所述确定第一DCI的个数,包括:
根据
Figure PCTCN2022124351-appb-000001
U DAI,c,确定第一DCI的个数;
其中,所述
Figure PCTCN2022124351-appb-000002
为最后一个DCI相应的下行分配索引DAI的取值,所述
Figure PCTCN2022124351-appb-000003
为网络设备为终端设备配置的服务小区的个数,所述U DAI,c为接收到的调度DCI的个数。
可选地,所述根据所述第一DCI的个数以及所述第一参数,确定第一DCI对应的第一HARQ-ACK的比特个数,包括:
根据公式:
Figure PCTCN2022124351-appb-000004
确定所述第一DCI对应的第一HARQ-ACK的比特个数;
其中,所述S为所述第一DCI的个数,所述
Figure PCTCN2022124351-appb-000005
为所述第一DCI调 度的一个PDSCH的最大反馈比特数,所述N为第一参数。
可选地,所述根据第一参数以及接收到的传输块TB,确定第一TB对应的第二HARQ-ACK的比特个数,包括:
确定第一信息,所述第一信息包括以下至少一项:每个调度DCI需反馈的第三HARQ-ACK的比特个数、每个小区中半持续调度多PDSCH需反馈的第四HARQ-ACK的比特个数,所述调度DCI为需在PUCCH上进行HARQ-ACK反馈的DCI,所述小区为网络设备为终端设备配置的服务小区;
根据所述第一信息,确定所述第一TB对应的第二HARQ-ACK的比特个数。
可选地,所述每个调度DCI需反馈的第三HARQ-ACK的比特个数的确定方式,包括:
根据第一参数以及第二DCI调度的目标信息的个数,确定所述第二DCI需反馈的第三HARQ-ACK的比特个数;
其中,所述第二DCI为任一调度DCI,所述目标信息包括:有效PDSCH或者有效传输块TB。
可选地,在所述目标信息为有效TB的情况下,所述根据第一参数以及第二DCI调度的目标信息的个数,确定所述第二DCI需反馈的第三HARQ-ACK的比特个数,包括以下任意一项:
根据第一参数以及第二DCI调度的有效TB的个数,分别确定第二DCI调度的每类TB对应的需反馈的HARQ-ACK的比特个数,将所述第二DCI调度的所有类TB对应的需反馈的HARQ-ACK的比特个数之和确定为第二DCI需反馈的第三HARQ-ACK的比特个数,一类TB对应所述第二DCI调度的多个PDSCH对应的具有相同标识的TB;
根据第一参数以及第二DCI调度的有效TB的个数,确定所述第二DCI调度的所有有效TB对应的需反馈的HARQ-ACK的比特个数,将所述第二DCI调度的所有有效TB对应的需反馈的HARQ-ACK的比特个数确定为第二DCI需反馈的第三HARQ-ACK的比特个数。
可选地,所述根据第一参数以及第二DCI调度的有效TB的个数,分别确定第二DCI调度的每类TB对应的需反馈的HARQ-ACK的比特个数,包 括以下任意一项:
根据公式:min(N,X),确定每一类TB对应的需反馈的HARQ-ACK的比特个数;
根据公式:min(N,X i),确定第i类TB对应的需反馈的HARQ-ACK的比特个数;
其中,所述N为第一参数,所述X为所述第二DCI调度的有效PDSCH的个数,所述X i为第二DCI调度的PDSCH中为使能状态的第i类TB所包含的TB的个数。
可选地,所述根据第一参数以及第二DCI调度的有效TB的个数,确定所述第二DCI调度的所有有效TB对应的需反馈的HARQ-ACK的比特个数,包括:
根据公式:
Figure PCTCN2022124351-appb-000006
确定所述第二DCI调度的所有有效TB对应的需反馈的HARQ-ACK的比特个数;
其中,所述N为第一参数,所述H为第二DCI允许调度的TB的最大类数,所述X i为第二DCI调度的PDSCH中为使能状态的第i类TB所包含的TB的个数。
可选地,所述每个小区中半持续调度多PDSCH需反馈的第四HARQ-ACK的比特个数的确定方式,包括:
根据半持续PDSCH调度在单码字传输的情况下需要反馈的HARQ-ACK的比特个数与第二参数,确定每个小区中半持续调度多PDSCH需反馈的第四HARQ-ACK的比特个数;
其中,所述第二参数为半静态SPS传输时实际传输的有效PDSCH个数,或者激活SPS配置时激活命令调度的PDSCH个数。
可选地,所述根据半持续PDSCH调度在单码字传输的情况下需要反馈的HARQ-ACK的比特个数与第二参数,确定每个小区中半持续调度多PDSCH需反馈的第四HARQ-ACK的比特个数,包括:
根据公式:min(N2,K),确定每个小区中半持续调度多PDSCH需反馈的第四HARQ-ACK的比特个数;
其中,所述N2为半持续PDSCH调度在单码字传输的情况下需要反馈的 HARQ-ACK的比特个数,所述K为第二参数。
可选地,所述第一参数的获取方式包括以下至少一项:
网络设备配置;
协议约定;
根据一个DCI调度的PDSCH的最大个数确定。
可选地,所述第一参数的取值小于或等于一个DCI调度的PDSCH的最大个数。
可选地,在所述第一参数为根据一个DCI调度的PDSCH的最大个数确定的情况下,所述一个DCI调度的PDSCH的最大个数的获取方式包括以下任意一项:
由网络设备配置;
从PDSCH时域调度参数表获取。
本公开实施例还提供一种终端设备,包括存储器,收发机,处理器:
存储器,用于存储计算机程序;收发机,用于在所述处理器的控制下收发数据;处理器,用于读取所述存储器中的计算机程序并执行以下操作:
根据第一参数,确定用于对物理上行控制信道PUCCH进行功率控制的控制参数;
其中,所述第一参数为在一个下行控制信息DCI调度多个物理下行共享信道PDSCH的情况下,进行混合自动重传请求应答HARQ-ACK捆绑的HARQ-ACK的比特个数。
可选地,所述处理器,用于读取所述存储器中的计算机程序并执行以下操作:
根据第一参数确定第一DCI对应的第一HARQ-ACK的比特个数,所述第一DCI为终端设备没有检测到的一个或者多个DCI;
根据第一参数以及接收到的传输块TB,确定第一TB对应的第二HARQ-ACK的比特个数,所述第一TB为终端设备接收到的一个或者多个TB;
根据所述第一HARQ-ACK的比特个数和所述第二HARQ-ACK的比特个数,确定用于对PUCCH进行功率控制的控制参数。
可选地,所述处理器,用于读取所述存储器中的计算机程序并执行以下 操作:
确定第一DCI的个数;
根据所述第一DCI的个数以及所述第一参数,确定所述第一DCI对应的第一HARQ-ACK的比特个数。
可选地,所述处理器,用于读取所述存储器中的计算机程序并执行以下操作:
根据
Figure PCTCN2022124351-appb-000007
U DAI,c,确定第一DCI的个数;
其中,所述
Figure PCTCN2022124351-appb-000008
为最后一个DCI相应的下行分配索引DAI的取值,所述
Figure PCTCN2022124351-appb-000009
为网络设备为终端设备配置的服务小区的个数,U DAI,c为接收到的调度DCI的个数。
可选地,所述处理器,用于读取所述存储器中的计算机程序并执行以下操作:
根据公式:
Figure PCTCN2022124351-appb-000010
确定所述第一DCI对应的第一HARQ-ACK的比特个数;
其中,所述S为所述第一DCI的个数,所述
Figure PCTCN2022124351-appb-000011
为所述第一DCI调度的一个PDSCH的最大反馈比特数,所述N为第一参数。
可选地,所述处理器,用于读取所述存储器中的计算机程序并执行以下操作:
确定第一信息,所述第一信息包括以下至少一项:每个调度DCI需反馈的第三HARQ-ACK的比特个数、每个小区中半持续调度多PDSCH需反馈的第四HARQ-ACK的比特个数,所述调度DCI为需在PUCCH上进行HARQ-ACK反馈的DCI,所述小区为网络设备为终端设备配置的服务小区;
根据所述第一信息,确定所述第一TB对应的第二HARQ-ACK的比特个数。
可选地,所述处理器,用于读取所述存储器中的计算机程序并执行以下操作:
根据第一参数以及第二DCI调度的目标信息的个数,确定所述第二DCI需反馈的第三HARQ-ACK的比特个数;
其中,所述第二DCI为任一调度DCI,所述目标信息包括:有效PDSCH或者有效传输块TB。
可选地,在所述目标信息为有效TB的情况下,所述处理器,用于读取所述存储器中的计算机程序并执行以下操作中的任意一项:
根据第一参数以及第二DCI调度的有效TB的个数,分别确定第二DCI调度的每类TB对应的需反馈的HARQ-ACK的比特个数,将所述第二DCI调度的所有类TB对应的需反馈的HARQ-ACK的比特个数之和确定为第二DCI需反馈的第三HARQ-ACK的比特个数,一类TB对应所述第二DCI调度的多个PDSCH对应的具有相同标识的TB;
根据第一参数以及第二DCI调度的有效TB的个数,确定所述第二DCI调度的所有有效TB对应的需反馈的HARQ-ACK的比特个数,将所述第二DCI调度的所有有效TB对应的需反馈的HARQ-ACK的比特个数确定为第二DCI需反馈的第三HARQ-ACK的比特个数。
可选地,所述处理器,用于读取所述存储器中的计算机程序并执行以下操作中的任意一项:
根据公式:min(N,X),确定每一类TB对应的需反馈的HARQ-ACK的比特个数;
根据公式:min(N,X i),确定第i类TB对应的需反馈的HARQ-ACK的比特个数;
其中,所述N为第一参数,所述X为所述第二DCI调度的有效PDSCH的个数,所述X i为第二DCI调度的PDSCH中为使能状态的第i类TB所包含的TB的个数。
可选地,所述处理器,用于读取所述存储器中的计算机程序并执行以下操作:
根据公式:
Figure PCTCN2022124351-appb-000012
确定所述第二DCI调度的所有有效TB对应的需反馈的HARQ-ACK的比特个数;
其中,所述N为第一参数,所述H为第二DCI允许调度的TB的最大类数,所述X i为第二DCI调度的PDSCH中为使能状态的第i类TB所包含的TB的个数。
可选地,所述处理器,用于读取所述存储器中的计算机程序并执行以下操作:
根据半持续PDSCH调度在单码字传输的情况下需要反馈的HARQ-ACK的比特个数与第二参数,确定每个小区中半持续调度多PDSCH需反馈的第四HARQ-ACK的比特个数;
其中,所述第二参数为半静态SPS传输时实际传输的有效PDSCH个数,或者激活SPS配置时激活命令调度的PDSCH个数。
可选地,所述处理器,用于读取所述存储器中的计算机程序并执行以下操作:
根据公式:min(N2,K),确定每个小区中半持续调度多PDSCH需反馈的第四HARQ-ACK的比特个数;
其中,所述N2为半持续PDSCH调度在单码字传输的情况下需要反馈的HARQ-ACK的比特个数,所述K为第二参数。
可选地,所述第一参数的获取方式包括以下至少一项:
网络设备配置;
协议约定;
根据一个DCI调度的PDSCH的最大个数确定。
可选地,所述第一参数的取值小于或等于一个DCI调度的PDSCH的最大个数。
可选地,在所述第一参数为根据一个DCI调度的PDSCH的最大个数确定的情况下,所述一个DCI调度的PDSCH的最大个数的获取方式包括以下任意一项:
由网络设备配置;
从PDSCH时域调度参数表获取。
本公开实施例还提供一种功率控制参数确定装置,应用于终端设备,包括:
确定单元,用于根据第一参数,确定用于对物理上行控制信道PUCCH进行功率控制的控制参数;
其中,所述第一参数为在一个下行控制信息DCI调度多个物理下行共享信道PDSCH的情况下,进行混合自动重传请求应答HARQ-ACK捆绑的HARQ-ACK的比特个数。
本公开实施例还提供一种处理器可读存储介质,所述处理器可读存储介质存储有计算机程序,所述计算机程序用于使所述处理器执行上述的方法。
本公开的有益效果是:
上述方案,通过根据一个DCI调度多个PDSCH时在进行HARQ-ACK捆绑时的HARQ-ACK比特数,确定用于对PUCCH进行功率控制的控制参数,以此完善了多PDSCH传输调度的情况下的对PUCCH进行功率控制的控制参数的获取方案,能够在保持传输可靠性的前提下,节省终端发送信号的功耗。
附图说明
为了更清楚地说明本公开实施例或相关技术中的技术方案,下面将对实施例或相关技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开中记载的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1表示适用于本公开实施例的一种网络系统的结构图;
图2表示本公开实施例的功率控制参数确定方法的流程示意图;
图3表示捆绑(bundling)方式反馈HARQ-ACK的f(N,X)计算结果示意图;
图4表示每个PDSCH对应的传输块(Transport Block,TB)的调度状态示意图;
图5表示本公开实施例的功率控制参数确定装置的单元示意图;
图6表示本公开实施例的终端设备的结构图。
具体实施方式
下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
本公开的说明书和权利要求书中的术语“第一”、“第二”等是用于区别 类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本公开的实施例,例如除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
本公开实施例中术语“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。本公开实施例中术语“多个”是指两个或两个以上,其它量词与之类似。
在本公开实施例中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。本公开实施例中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念。
下面结合附图介绍本公开的实施例。本公开实施例提供的功率控制参数确定方法、装置及终端设备可以应用于无线通信系统中。该无线通信系统可以为采用第五代(5th Generation,5G)移动通信技术的系统(以下均简称为5G系统),所述领域技术人员可以了解,5G NR系统仅为示例,不为限制。
参见图1,图1是本公开实施例可应用的一种网络系统的结构图,如图1所示,包括用户终端11和基站12,其中,用户终端11可以是用户设备(User Equipment,UE),例如:可以是手机、平板电脑(Tablet Personal Computer)、膝上型电脑(Laptop Computer)、个人数字助理(personal digital assistant,简称PDA)、移动上网装置(Mobile Internet Device,MID)或可穿戴式设备(Wearable Device)等终端侧设备,需要说明的是,在本公开实施例中并不限定用户终端11的具体类型。上述基站12可以是5G及以后版本的基站(例如:gNB、5G NR NB),或者其他通信系统中的基站,或者称之为节点B,需要说明的是,在本公开实施例中仅以5G基站为例,但是并不限定基站12的具体类型。
首先对与本公开实施例相关的一些概念进行说明如下。
一、基于单物理下行共享信道(Physical downlink shared channel,PDSCH)调度的混合自动重传请求应答(Hybrid Automatic Repeat Request acknowledgement,HARQ-ACK)动态码本类型2(即type-2)机制
在相关技术的5G系统中,支持动态HARQ-ACK码本的生成机制,其原理是:在发送调度信令下行控制信息(Downlink Control Information,DCI)时,增加下行分配索引(DownLink Assignment Index,DAI)指示,终端侧根据DAI计数来计算基站实际发送DCI和PDSCH的数目,从而确定HARQ-ACK码本中包含的需要反馈的PDSCH数目。
下面以单载波的场景下(仅仅有C-DAI),描述过程:
假设基站发送了9个调度PDSCH的DCI,分别为DCI-1到DCI-9。DAI计数的位宽是2比特,即最大计数范围为T D=4。j是终端侧用于计算DAI数值循环的次数(当出现当前DCI中的DAI小于等于上一个DCI中的DAI时,j加1)。
由当前DAI计数机制,终端可以计算出基站发送DCI的个数,计算方法如下:
Figure PCTCN2022124351-appb-000013
其中,
Figure PCTCN2022124351-appb-000014
为最后一个DCI的DAI数值(DCI-9中,DAI=1),即调度DCI的个数为1+4*2=9。终端根据调度DCI的个数进一步计算反馈HARQ-ACK传输块的个数,以及相应的HARQ码本比特数O ACK
当基站调度支持组播的码本反馈时,终端在物理上行控制信道(Physical uplink control channel,PUCCH)上反馈的HARQ-ACK码本比特数O ACK等于单播的HARQ子码本和组播HARQ子码本的比特数之和。如
Figure PCTCN2022124351-appb-000015
Figure PCTCN2022124351-appb-000016
这里:O ACK(unicast)是单播计算HARQ-ACK子码本的长度,O ACK(G-RNIT(I))是G-RNTI(i)对应的子码本的长度,N为基站配置在该PUCCH上反馈的HARQ-ACK码本的长度。
二、一个DCI调度多个PDSCH及HARQ-ACK反馈机制
高频支持1个DCI调度多个PDSCH。当基站配置HARQ-ACK码本为动态码本(Type-2)时,支持基于每个DCI的DAI计数方法,对于每个DCI 调度最多可以调度max_PDSCH个PDSCH(如:max_PDSCH=8),但反馈确认(ACK)/非确认(NACK)比特N是由基站之前配置的,或者由协议约定,分为两种情况:
1:N=max_PDSCH,此时反馈HARQ-ACK的比特数和最大调度PDSCH个数相同,称为反馈方式1.
2:N<max_PDSCH,此时反馈HARQ-ACK的比特数小于最大调度PDSCH个数,称为反馈方式2(也称为捆绑方式(bundling)。
下面分别举例描述这两种方式。
反馈方式1(N=max_PDSCH)
假设基站配置M=max_PDSCH,每个DCI最大调度的PDSCH个数为4,但可以小于4。
假设基站配置N=4,针对每个DCI调度,总是反馈4比特的HARQ-ACK反馈,无论实际调度的PDSCH个数。例如,DCI-1调度了X=4个PDSCH,在HARQ-ACK码本中,每个PDSCH占用1比特,即DCI-1调度的PDSCH总共占用了4比特的反馈信息;对于DCI-2调度X=2个PDSCH,在HARQ-ACK码本中,每个PDSCH占用比特,同时为了达到DCI-2也反馈4比特的要求,补充了两个NACK比特信息。
反馈方式2(N<max_PDSCH)
假设基站配置max_PDSCH=4,每个DCI最大调度的PDSCH个数为4,但可以小于4。
假设基站配置N=2,针对每个DCI调度,总是反馈2比特的HARQ-ACK反馈,无论实际调度的PDSCH个数。
当实际调度PDSCH个数大于N时,也反馈N比特,此时将多个PDSCH的反馈捆绑在一信息上进行反馈。
当实际调度PDSCH个数小于或等于N时,也反馈N比特,此时每个PDSCH反馈1比特,并将未反馈的信息位补充为NACK。
例如,DCI-1调度了X=4个PDSCH,在HARQ-ACK码本中,PDSCH-1和PDSCH-2的反馈信息采用比特或(即两个均为ACK,则反馈ACK,只要有1个是NACK,即反馈NACK),并占用1比特,PDSCH-3和PDSCH-4的 反馈信息采用比特或(即两个均为ACK,则反馈ACK,只要有1个是NACK,即反馈NACK),并占用1比特。
对于DCI-2调度X=2个PDSCH,在HARQ-ACK码本中,每个PDSCH占用1比特,共占用2比特信息。
特别的,当max_PDSCH=1时,每个DCI调度对应的所有PDSCH的HARQ-ACK反馈都绑定到1个比特上。
本公开实施例提供了一种功率控制参数确定方法、装置及终端设备,以解决因在多PDSCH传输调度的情况下,相关技术没有如何进行PUCCH的功率控制参数的获取的方案,无法保证网络通信可靠性的问题。
其中,方法和装置是基于同一申请构思的,由于方法和装置解决问题的原理相似,因此装置和方法的实施可以相互参见,重复之处不再赘述。
如图2所示,本公开实施例提供一种功率控制参数确定方法,由终端设备执行,包括:
步骤S201,根据第一参数,确定用于对物理上行控制信道PUCCH进行功率控制的控制参数;
需要说明的是,所述第一参数为在一个下行控制信息(DCI)调度多个(两个及两个以上)物理下行共享信道(PDSCH)的情况下,进行混合自动重传请求应答(HARQ-ACK)捆绑的HARQ-ACK的比特个数。
需要说明的是,第一参数是可以配置,可以由如下几种情况:
情况一、第一参数等于max_PDSCH(max_PDSCH是基站配置的一个DCI最多调度PDSCH的个数(或者也可以称为一个DCI调度的PDSCH的最大个数))
也就是说,一个DCI最多调度PDSCH的个数和反馈的HARQ-ACK比特数相同;当1个DCI调度PDSCH的个数为X时,其中有X个PDSCH根据信道译码结果确定HARQ-ACK的数值(X个未知信息),max_PDSCH-X个HARQ-ACK反馈信息进行已知信息填充(N-X个已知信息,如填充为NACK,或者ACK)
这里需要说明的是,在此种情况下,可以理解为PDSCH的HARQ-ACK反馈之间不做捆绑,可以看作是捆绑的一种特殊情况。
情况二、第一参数小于max_PDSCH
也就是说,反馈的HARQ-ACK比特数大于1、小于一个DCI最多调度PDSCH的个数.当1个DCI调度PDSCH的个数为X时,其中有X个PDSCH根据信道译码结果确定HARQ-ACK的数值(X个未知信息),max_PDSCH-X个HARQ-ACK反馈比特进行已知信息填充(N-X个已知信息,如填充为NACK,或者ACK),然后将max_PDSCH个HARQ-ACK信息bundling到N个反馈HARQ-ACK信息。
需要说明的是,所述第一参数的获取方式包括以下至少一项:
A11、网络设备配置;
可选地,对于动态DCI多PDSCH调度时,采用捆绑(bundling)方案时,可以通过高层信令(RRC消息)在PDSCH参数配置中,配置第一参数,第一参数的范围可以从1到8,或者1到16。
进一步需要说明的是,通过高层信令配置的第一参数的数值,应该小于或等于max_PDSCH。
A12、协议约定;
考虑到A11的灵活的第一参数的配置,会增加终端实现的复杂度,此种情况通过协议约定的方式确定一种或者几种第一参数的数值。例如,第一参数为1、max_PDSCH或者min_PDSCH,min_PDSCH表示多PDSCH调度时域信息分配表中最少PDSCH调度数,可选地,min_PDSCH的取值大于1或者2,如表1中,min_PDSCH=3。
对于第一参数为1的情况,相当于1个DCI调度,反馈1个PDSCH的HARQ-ACK反馈,当1个DCI调度多个PDSCH时,如果有一个PDSCH译码错误,则NACK,只有所有调度的PDSCH译码正确时,才反馈NACK,该方法实现简单,但会带来无效的PDSCH重传。
对于第一参数为max_PDSCH的情况,相当于不做HARQ-ACK反馈bunlding。
对于第一参数为min_PDSCH的情况,需要按照min_PDSCH的个数进行对PDSCH对应的反馈信息进行bunlding。
A13、根据一个DCI调度的PDSCH的最大个数确定;
需要说明的是,对于动态DCI多PDSCH调度时,采用非捆绑(bundling)方案时,终端设备可以根据max_PDSCH自行确定第一参数的取值。
可选地,在此种情况下,终端设备获取所述一个DCI调度的PDSCH的最大个数的方式包括以下任意一项:
A21、由网络设备配置;
A22、从PDSCH时域调度参数表获取;
需要说明的是,此种情况是终端设备间接进行max_PDSCH的获取,例如,PDSCH时域调度参数表如图表1所示:
表1 PDSCH时域调度参数表
Figure PCTCN2022124351-appb-000017
对于表1中,行索引0,配置了7个可调度PDSCH;行索引1,配置了4个可调度PDSCH;行索引2,配置了3个可调度PDSCH;终端可以计算出max_PDSCH为7。
进一步需要说明的是,步骤S201的可选实现过程主要包括步骤S2011至S2013:
步骤S2011,根据第一参数确定第一DCI对应的第一HARQ-ACK的比特个数;
需要说明的是,所述第一DCI为终端设备没有检测到的一个或者多个DCI;该步骤主要是为了获取没有检测到(也可以理解为丢失)的所有DCI所对应的HARQ-ACK的比特个数。
步骤S2012,根据第一参数以及接收到的传输块TB,确定第一TB对应 的第二HARQ-ACK的比特个数;
需要说明的是,所述第一TB为终端设备接收到的一个或者多个TB,该步骤主要用于获取终端设备接收到的所有传输块对应的第二HARQ-ACK的比特个数,该第二HARQ-ACK主要指的是由终端设备自己确定、网络设备预先不可知的信息,该第二HARQ-ACK也可以理解为未知信息。
步骤S2013,根据所述第一HARQ-ACK的比特个数和所述第二HARQ-ACK的比特个数,确定用于对PUCCH进行功率控制的控制参数;
通过将前面两个步骤获取的信息相加便能得到最终的控制参数。
下面分别对步骤S2011以及步骤S2012的具体实现进行详细说明如下。
可选地,本公开实施例中,步骤S2011的实现过程主要包括步骤S20111至步骤S20112:
步骤S20111,确定第一DCI的个数;
可选地,此步骤的进一步的实现方式为:
根据
Figure PCTCN2022124351-appb-000018
U DAI,c,确定第一DCI的个数;
其中,
Figure PCTCN2022124351-appb-000019
为最后一个DCI相应的下行分配索引DAI的取值,
Figure PCTCN2022124351-appb-000020
为网络设备为终端设备配置的服务小区的个数,U DAI,c为接收到的调度DCI的个数。
具体的,可以采用公式:
Figure PCTCN2022124351-appb-000021
进行第一个数的确定。
具体的,公式中的T D为DAI计数的最大计数范围。
步骤S20112,根据所述第一DCI的个数以及所述第一参数,确定第一DCI对应的第一HARQ-ACK的比特个数;
具体需要说明的是,此步骤的进一步实现方式为:
根据公式:
Figure PCTCN2022124351-appb-000022
确定所述第一DCI对应的第一HARQ-ACK的比特个数;
其中,S为所述第一DCI的个数,
Figure PCTCN2022124351-appb-000023
为第一DCI调度的一个PDSCH的最大反馈比特数,N为第一参数。
这里需要说明的是,优选地,本公开实施例中的
Figure PCTCN2022124351-appb-000024
等于1或者2。
进一步需要说明的是,步骤S2012的可选实现过程主要包括步骤S20121至步骤S20122:
步骤S20121,确定第一信息,所述第一信息包括以下至少一项:每个调 度DCI需反馈的第三HARQ-ACK的比特个数、每个小区中半持续调度多PDSCH需反馈的第四HARQ-ACK的比特个数;
需要说明的是,该所述第三HARQ-ACK为终端设备确定、且网络设备预先不可知的信息,该第三HARQ-ACK也可以理解为未知信息。
具体的,所述调度DCI为需在PUCCH上进行HARQ-ACK反馈的DCI,所述小区为网络设备为终端设备配置的服务小区。
具体的,对每个调度DCI需反馈的第三HARQ-ACK的比特个数的确定方式,可以采用如下实现方式:
根据第一参数以及第二DCI调度的目标信息的个数,确定所述第二DCI需反馈的第三HARQ-ACK的比特个数;
其中,所述第二DCI为任一调度DCI,所述目标信息包括:有效PDSCH或者有效传输块(TB)。
这里需要说明的是,可以用f(N,X)函数进行第二DCI需反馈的第三HARQ-ACK的比特个数的确定,其中,N为第一参数,X为DCI调度的目标信息的个数。
情况一、所述目标信息的个数为有效PDSCH的个数
需要说明的是,此种情况适用于以下配置A11和A12中的任一项:
A11、基站配置为单码字传输(maxNrofCodeWordsScheduledByDCI=1)或者没有配置最大码字个数但UE默认为单码字传输。
A12、基站配置为多码字传输,但不同TB之间需要做bundling操作;
例如,以基站配置两个码字传输为例,将TB1和TB2的HARQ-ACK信息,采用比特与的操作,捆绑到一个HARQ-ACK比特上,如:基站配置了harq-ACK-SpatialBundlingPUCCH参数。
可选地,此种情况下,该步骤的实现方式为:将所述第一参数和所述第二DCI调度的有效PDSCH的个数中的最小者确定为第二DCI需反馈的第三HARQ-ACK的比特个数。
也就是说,此种情况下,f(N,X)可采用下面描述的min(N,X)的方式,其中,X是DCI调度的有效PDSCH个数。
min(N,X)方式
此种情况,假设一个HARQ-ACK反馈信息,bundling的PDSCH(或者TB个数)是动态变化的,也就是说当实际调度的有效PDSCH个数(或者TB个数)X大于等于N时,总是反馈N个HARQ-ACK信息。当实际调度的有效PDSCH个数(或者TB个数)X小于N时,反馈X个有效HARQ-ACK信息。则:
f(N,X)=min(N,X)。
上述min()表示取最小值的意思,如N=4,X=3时,f(N,X)=3;或者,如:如N=4,X=5时,f(N,X)=4。
如图3所示,假设网络设备(例如,基站)配置一个小区,且max_PDSCH=8,N=4,DCI-1和DCI-2调度多个PDSCH、且通过指示信息计算得出指示反馈的HARQ-ACK在上行资源在一个PUCCH资源上。
对于DCI-1,调度了6个PDSCH,则f(N,X)=4
对于DCI-2,调度了2个PDSCH,则f(N,X)=2.
则所有计算调度的DCI需反馈的第三HARQ-ACK的比特个数的总和为:
Figure PCTCN2022124351-appb-000025
情况二、所述目标信息的个数为有效TB的个数
需要说明的是,此种情况适用于以下配置:
B21、基站配置为多码字传输(maxNrofCodeWordsScheduledByDCI=2),且码字之间的TB不需要做bundling操作。
可选地,此种情况下,步骤S20121的实现方式包括以下B31和B32中的任一项:
B31、根据第一参数以及第二DCI调度的有效TB的个数,分别确定第二DCI调度的每类TB对应的需反馈的HARQ-ACK的比特个数,将所述第二DCI调度的所有类TB对应的需反馈的HARQ-ACK的比特个数之和确定为第二DCI需反馈的第三HARQ-ACK的比特个数;
其中,一类TB对应所述第二DCI调度的多个PDSCH对应的具有相同标识的TB,需要说明的是,因每个PDSCH对应的TB均会有一个TB标识,例如,在第二DCI调度两类传输块的情况下,每个PDSCH均会对应有标识为first-TB的一个TB(也可以看作是TB1)以及标识为second-TB(也可以 看作是TB2)的一个TB,不同的PDSCH的所有对应标识为first-TB的TB看作是一类TB,不同的PDSCH的所有对应标识为second-TB的TB看作是另一类TB。
在此情况下,f(N,X)可采用下面描述的min(N,X)功能方法,其中,X是DCI调度的有效PDSCH个数,N为PDSCH的HARQ-ACK之间bundling后的一个TB对应HARQ-ACK比特数(N由基站配置,或者默认指示,例如,两个码字的反馈HARQ-ACK的信息比特为2N)。对于不同传输块,采用如下B311和B312中的任一项:
B311、根据公式:min(N,X),确定每一类TB对应的需反馈的HARQ-ACK的比特个数;
例如,当一个DCI调度两类TB的情况下,f(N,X)=min(N,X)+min(N,X);
min(N,X)表示TB1或者TB2对应的需反馈的HARQ-ACK的比特个数(即不确定HARQ-ACK比特个数(ACK或者NACK)),这里假设一个有效的PDSCH调度中,至少有一个TB(TB1或/和TB2使能)传输,TB1的个数和TB2的个数等于调度的有效PDSCH个数。
B312、根据公式:min(N,X i),确定第i类TB对应的需反馈的HARQ-ACK的比特个数;
其中,N为第一参数,X i为第二DCI调度的PDSCH中为使能状态的第i类TB所包含的TB的个数。
例如,当一个DCI调度两类TB的情况下,f(N,X)=min(N,X1)+min(N,X2);
min(N,X1)表示TB1对应的需反馈的HARQ-ACK的比特个数(即不确定HARQ-ACK信息个数(ACK或者NACK)),X1表示调度的X个PDSCH中,为使能状态的TB1的个数;min(N,X2)表示TB2对应的需反馈的HARQ-ACK的比特个数(即不确定HARQ-ACK信息个数(ACK或者NACK)),X2表示调度的X个PDSCH中,为使能状态的TB2的个数。
B32、根据第一参数以及第二DCI调度的有效TB的个数,确定所述第二DCI调度的所有有效TB对应的需反馈的HARQ-ACK的比特个数,将所述第二DCI调度的所有有效TB对应的需反馈的HARQ-ACK的比特个数确定为第二DCI需反馈的第三HARQ-ACK的比特个数;
可选地,此种情况下的实现方式为:
根据公式:
Figure PCTCN2022124351-appb-000026
确定所述第二DCI调度的所有有效TB对应的需反馈的HARQ-ACK的比特个数;
其中,N为第一参数,H为第二DCI允许调度的TB的最大类数,X i为第二DCI调度的PDSCH中为使能状态的第i类TB所包含的TB的个数。
例如,当一个DCI调度两类TB的情况下,f(N,X)=min(2N,X1+X2);
min(2N,X1+X2)表示TB1和TB2对应的需反馈的HARQ-ACK的比特个数(即不确定HARQ-ACK信息个数(ACK或者NACK)),X1表示调度的X个PDSCH中,为使能状态的TB1的个数,X2表示调度的X个PDSCH中,为使能状态的TB2的个数。
如图4所示,假设基站配置一个小区,且max_PDSCH=8,N=4,1个DCI调度了7个PDSCH,即调度有效PDSCH个数为7,终端根据TB去使能的判断为使能状态的TB如图所示,其中,TB1对应有6个PDSCH的TB,即X1=6,TB2对应有3个PDSCH的TB,即X2=3。则对于该DCI调度,不同的方法计算出来的结果有所不同,具体的,采用B311得到的所有调度DCI需反馈的第三HARQ-ACK的比特个数为8比特;采用B312得到的所有调度DCI需反馈的第三HARQ-ACK的比特个数为7比特;采用B32得到的所有调度DCI需反馈的第三HARQ-ACK的比特个数为8比特。
具体地,对每个小区中半持续调度多PDSCH需反馈的第四HARQ-ACK的比特个数的确定方式,可以采用如下实现方式;
根据半持续PDSCH调度在单码字传输的情况下需要反馈的HARQ-ACK的比特个数与第二参数,确定每个小区中半持续调度多PDSCH需反馈的第四HARQ-ACK的比特个数;
其中,所述第二参数为半静态SPS传输时实际传输的有效PDSCH个数,或者激活SPS配置时激活命令调度的PDSCH个数。
这里需要说明的是,由于上下行时隙配比的问题,可能导致激活命令下发的PDSCH个数,与在无PDCCH调度下传输的PDSCH个数不同。比如:当激活命令调度的PDSCH中,存在因为上行符号交迭而无效的PDSCH时,在无PDCCH调度时,终端仍然假设该时域调度信息有效。
进一步地,根据半持续PDSCH调度在单码字传输的情况下需要反馈的HARQ-ACK的比特个数与第二参数,确定每个小区中半持续调度多PDSCH需反馈的第四HARQ-ACK的比特个数的实现方式为:
根据公式:min(N2,K),确定每个小区中半持续调度多PDSCH需反馈的第四HARQ-ACK的比特个数;
其中,N2为半持续PDSCH调度在单码字传输的情况下需要反馈的HARQ-ACK的比特个数,K为第二参数。
步骤S20122,根据所述第一信息,确定所述第一TB对应的第二HARQ-ACK的比特个数。
综上可知,可以采用如下公式进行控制参数的获取:
Figure PCTCN2022124351-appb-000027
其中,n HARQ-ACK,multi-pdsch为用于对物理上行控制信道PUCCH进行功率控制的控制参数;N为第一参数;M为PDCCH的检测时机的个数,SPS active为一个PUCCH上传输的HARQ-ACK码本中,对应激活的SPS配置的个数,N2 SPS_multi-pdsch(i),c为第i个半持续调度多PDSCH需反馈的HARQ-ACK的比特个数。
公式加号前面的可称为第一部分,加号后面的可以称为第二部分,第一部分为终端侧漏检(没有检测到)的调度信令DCI对应反馈HARQ-ACK的比特数,第二部分为终端侧针对实际收到的调度信令DCI及SPS PDSCH需要反馈的未知HARQ-ACK信息比特数(即根据PDSCH译码结果或者其他反馈的不确定的信息,也就是基站不能预先知晓的信息,比如:基站给终端配置了2个码字,且码字之间的HARQ-ACK不做bundling,最大调度PDSCH个数是1;在某DCI-1中指示只传输了1个TB(如只传输了TB1,TB2是去使能),则终端需要反馈2比特信息(b0,b1),b0信息是针对TB1的译码结果而确定,在基站侧是未知信息;b1是终端填充的NACK信息,在基站侧来看 是已知信息,此时part2计算出来的结果的比特数是1),第二部分的计算方法为:
Part 2等于多PDSCH动态调度DCI需要反馈的未知信息比特数加上半持续调度多PDSCH需要反馈的位置信息比特数之和。
其中,多PDSCH动态调度DCI需要反馈的未知信息比特数,由f(N,X)计算;半持续多调度PDSCH需要反馈的位置信息比特数根据半持续多PDSCH的配置和激活时实际调度的PDSCH个数确定。
综上所述,本公开实施例,提供了一种用于一个DCI调度多PDSCH时,且TB之间,PDSCH之间支持bundling时,如何计算HARQ-ACK码本的PUCCH信道的功率控制参数的计算方式,使得终端能够更好的进行功率控制,从而实现功率效能最大化,即满足PUCCH传输功率要求的诉求,同时又不浪费电能。
可选地,还需要说明的是,当基站给终端配置的调度小区中,除了配置单DCI调度多PDSCH的场景外,还会配置单DCI调度1个PDSCH的场景。此时计算PUCCH功率控制参数n HARQ-ACK时,需要将基于单DPSCH和多PDSCH的调度各自计算出来的数值n HARQ-ACK进行求和。
如:n HARQ-ACK=n HARQ-ACK,TB+n HARQ-ACK,CBG+n HARQ-ACK,multi-pdsch
其中:公式的前两项表示1个DCI调度1个PDSCH的计算结果(当没有配置CBG传输时,公式中的第二项为0,或者不出现在计算公式中)。n HARQ-ACK,multi-pdsch表示1个DCI调度多个PDSCH的计算结果。
可选地,本公开实施例中,计算f(N,X)的功能函数,除了应用于动态HARQ-ACK码本外,还可以用于计算静态HAQ-ACK码本PUCCH功率控制参数计算。
如:
Figure PCTCN2022124351-appb-000028
Figure PCTCN2022124351-appb-000029
公式的前两项表示1个DCI调度1个PDSCH的计算结果(当没有配置CBG传输时,公式中的第二项为0,或者不出现在计算公式中)。
Figure PCTCN2022124351-appb-000030
表示多个小区多个检测机会的多PDSCH调度计算的结果。
本公开实施例提供的技术方案可以适用于多种系统,尤其是第五代移动通信(5th-Generation,5G)系统。例如适用的系统可以是全球移动通讯(global system of mobile communication,GSM)系统、码分多址(code division multiple access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)通用分组无线业务(general packet radio service,GPRS)系统、长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)系统、高级长期演进(long term evolution advanced,LTE-A)系统、通用移动系统(universal mobile telecommunication system,UMTS)、全球互联微波接入(worldwide interoperability for microwave access,WiMAX)系统、5G新空口(New Radio,NR)系统等。这多种系统中均包括终端设备和网络设备。系统中还可以包括核心网部分,例如演进的分组系统(Evolved Packet System,EPS)、5G系统(5GS)等。
本公开实施例涉及的终端设备,可以是指向用户提供语音和/或数据连通性的设备,具有无线连接功能的手持式设备、或连接到无线调制解调器的其他处理设备等。在不同的系统中,终端设备的名称可能也不相同,例如在5G系统中,终端设备可以称为用户设备(User Equipment,UE)。无线终端设备可以经无线接入网(Radio Access Network,RAN)与一个或多个核心网(Core Network,CN)进行通信,无线终端设备可以是移动终端设备,如移动电话(或称为“蜂窝”电话)和具有移动终端设备的计算机,例如,可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置,它们与无线接入网交换语言和/或数据。例如,个人通信业务(Personal Communication Service,PCS)电话、无绳电话、会话发起协议(Session Initiated Protocol,SIP)话机、无线本地环路(Wireless Local Loop,WLL)站、个人数字助理(Personal Digital Assistant,PDA)等设备。无线终端设备也可以称为系统、订户单元(subscriber unit)、订户站(subscriber station),移动站(mobile station)、移动台(mobile)、远程站(remote station)、接入点(access point)、远程终端设备(remote terminal)、接入终端设备(access terminal)、用户终端设备(user terminal)、用户代理(user agent)、用户装置(user device),本公开实施例中并不限定。
本公开实施例涉及的网络设备,可以是基站,该基站可以包括多个为终端提供服务的小区。根据具体应用场合不同,基站又可以称为接入点,或者可以是接入网中在空中接口上通过一个或多个扇区与无线终端设备通信的设备,或者其它名称。网络设备可用于将收到的空中帧与网际协议(Internet Protocol,IP)分组进行相互更换,作为无线终端设备与接入网的其余部分之间的路由器,其中接入网的其余部分可包括网际协议(IP)通信网络。网络设备还可协调对空中接口的属性管理。例如,本公开实施例涉及的网络设备可以是全球移动通信系统(Global System for Mobile communications,GSM)或码分多址接入(Code Division Multiple Access,CDMA)中的网络设备(Base Transceiver Station,BTS),也可以是带宽码分多址接入(Wide-band Code Division Multiple Access,WCDMA)中的网络设备(NodeB),还可以是长期演进(long term evolution,LTE)系统中的演进型网络设备(evolutional Node B,eNB或e-NodeB)、5G网络架构(next generation system)中的5G基站(gNB),也可以是家庭演进基站(Home evolved Node B,HeNB)、中继节点(relay node)、家庭基站(femto)、微微基站(pico)等,本公开实施例中并不限定。在一些网络结构中,网络设备可以包括集中单元(centralized unit,CU)节点和分布单元(distributed unit,DU)节点,集中单元和分布单元也可以地理上分开布置。
网络设备与终端设备之间可以各自使用一或多根天线进行多输入多输出(Multi Input Multi Output,MIMO)传输,MIMO传输可以是单用户MIMO(Single User MIMO,SU-MIMO)或多用户MIMO(Multiple User MIMO,MU-MIMO)。根据根天线组合的形态和数量,MIMO传输可以是二维MIMO(2Dimension MIMO,2D-MIMO)、三维MIMO(3Dimension MIMO,3D-MIMO)、全维度MIMO(Full Dimension MIMO,FD-MIMO)或超大规模MIMO(massive-MIMO),也可以是分集传输或预编码传输或波束赋形传输等。
如图5所示,本公开实施例提供一种功率控制参数确定装置500,应用于终端设备,包括:
确定单元501,用于根据第一参数,确定用于对物理上行控制信道PUCCH 进行功率控制的控制参数;
其中,所述第一参数为在一个下行控制信息DCI调度多个物理下行共享信道PDSCH的情况下,进行混合自动重传请求应答HARQ-ACK捆绑的HARQ-ACK的比特个数。
可选地,所述确定单元501,用于实现:
根据第一参数确定第一DCI对应的第一HARQ-ACK的比特个数,所述第一DCI为终端设备没有检测到的一个或者多个DCI;
根据第一参数以及接收到的传输块TB,确定第一TB对应的第二HARQ-ACK的比特个数,所述第一TB为终端设备接收到的一个或者多个TB;
根据所述第一HARQ-ACK的比特个数和所述第二HARQ-ACK的比特个数,确定用于对PUCCH进行功率控制的控制参数。
可选地,所述根据第一参数确定第一DCI对应的第一HARQ-ACK的比特个数的实现方式,包括:
确定第一DCI的个数;
根据所述第一DCI的个数以及所述第一参数,确定所述第一DCI对应的第一HARQ-ACK的比特个数。
可选地,所述确定第一DCI的个数的实现方式,包括:
根据
Figure PCTCN2022124351-appb-000031
U DAI,c,确定第一DCI的个数;
其中,所述
Figure PCTCN2022124351-appb-000032
为最后一个DCI相应的下行分配索引DAI的取值,所述
Figure PCTCN2022124351-appb-000033
为网络设备为终端设备配置的服务小区的个数,所述U DAI,c为接收到的调度DCI的个数。
可选地,所述根据所述第一DCI的个数以及所述第一参数,确定第一DCI对应的第一HARQ-ACK的比特个数的实现方式,包括:
根据公式:
Figure PCTCN2022124351-appb-000034
确定第一DCI对应的第一HARQ-ACK的比特个数;
其中,所述S为所述第一DCI的个数,所述
Figure PCTCN2022124351-appb-000035
为第一DCI调度的一个PDSCH的最大反馈比特数,所述N为第一参数。
可选地,所述根据第一参数以及接收到的传输块TB,确定第一TB对应的第二HARQ-ACK的比特个数的实现方式,包括:
确定第一信息,所述第一信息包括以下至少一项:每个调度DCI需反馈 的第三HARQ-ACK的比特个数、每个小区中半持续调度多PDSCH需反馈的第四HARQ-ACK的比特个数,所述调度DCI为需在PUCCH上进行HARQ-ACK反馈的DCI,所述小区为网络设备为终端设备配置的服务小区;
根据所述第一信息,确定所述第一TB对应的第二HARQ-ACK的比特个数。
可选地,所述每个调度DCI需反馈的第三HARQ-ACK的比特个数的确定方式,包括:
根据第一参数以及第二DCI调度的目标信息的个数,确定所述第二DCI需反馈的第三HARQ-ACK的比特个数;
其中,所述第二DCI为任一调度DCI,所述目标信息包括:有效PDSCH或者有效传输块TB。
可选地,在所述目标信息为有效TB的情况下,所述根据第一参数以及第二DCI调度的目标信息的个数,确定所述第二DCI需反馈的第三HARQ-ACK的比特个数的实现方式,包括以下任意一项:
根据第一参数以及第二DCI调度的有效TB的个数,分别确定第二DCI调度的每类TB对应的需反馈的HARQ-ACK的比特个数,将所述第二DCI调度的所有类TB对应的需反馈的HARQ-ACK的比特个数之和确定为第二DCI需反馈的第三HARQ-ACK的比特个数,一类TB对应所述第二DCI调度的多个PDSCH对应的具有相同标识的TB;
根据第一参数以及第二DCI调度的有效TB的个数,确定所述第二DCI调度的所有有效TB对应的需反馈的HARQ-ACK的比特个数,将所述第二DCI调度的所有有效TB对应的需反馈的HARQ-ACK的比特个数确定为第二DCI需反馈的第三HARQ-ACK的比特个数。
可选地,所述根据第一参数以及第二DCI调度的有效TB的个数,分别确定第二DCI调度的每类TB对应的需反馈的HARQ-ACK的比特个数的实现方式,包括以下任意一项:
根据公式:min(N,X),确定每一类TB对应的需反馈的HARQ-ACK的比特个数;
根据公式:min(N,X i),确定第i类TB对应的需反馈的HARQ-ACK的 比特个数;
其中,所述N为第一参数,所述X为所述第二DCI调度的有效PDSCH的个数,所述X i为第二DCI调度的PDSCH中为使能状态的第i类TB所包含的TB的个数。
可选地,所述根据第一参数以及第二DCI调度的有效TB的个数,确定所述第二DCI调度的所有有效TB对应的需反馈的HARQ-ACK的比特个数的实现方式,包括:
根据公式:
Figure PCTCN2022124351-appb-000036
确定所述第二DCI调度的所有有效TB对应的需反馈的HARQ-ACK的比特个数;
其中,所述N为第一参数,所述H为第二DCI允许调度的TB的最大类数,所述X i为第二DCI调度的PDSCH中为使能状态的第i类TB所包含的TB的个数。
可选地,所述每个小区中半持续调度多PDSCH需反馈的第四HARQ-ACK的比特个数的确定方式,包括:
根据半持续PDSCH调度在单码字传输的情况下需要反馈的HARQ-ACK的比特个数与第二参数,确定每个小区中半持续调度多PDSCH需反馈的第四HARQ-ACK的比特个数;
其中,所述第二参数为半静态SPS传输时实际传输的有效PDSCH个数,或者激活SPS配置时激活命令调度的PDSCH个数。
可选地,所述根据半持续PDSCH调度在单码字传输的情况下需要反馈的HARQ-ACK的比特个数与第二参数,确定每个小区中半持续调度多PDSCH需反馈的第四HARQ-ACK的比特个数的实现方式,包括:
根据公式:min(N2,K),确定每个小区中半持续调度多PDSCH需反馈的第四HARQ-ACK的比特个数;
其中,所述N2为半持续PDSCH调度在单码字传输的情况下需要反馈的HARQ-ACK的比特个数,所述K为第二参数。
可选地,所述第一参数的获取方式包括以下至少一项:
网络设备配置;
协议约定;
根据一个DCI调度的PDSCH的最大个数确定。
可选地,所述第一参数的取值小于或等于一个DCI调度的PDSCH的最大个数。
可选地,在所述第一参数为根据一个DCI调度的PDSCH的最大个数确定的情况下,所述一个DCI调度的PDSCH的最大个数的获取方式包括以下任意一项:
由网络设备配置;
从PDSCH时域调度参数表获取。
需要说明的是,本公开实施例的装置还包括收发单元,该收发单元用于收发数据。
需要说明的是,该装置实施例是与上述方法实施例一一对应的装置,上述方法实施例中所有实现方式均适用于该装置的实施例中,也能达到相同的技术效果。
需要说明的是,本公开实施例中对单元的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。另外,在本公开各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个处理器可读取存储介质中。基于这样的理解,本公开的技术方案本质上或者说对相关技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)或处理器(processor)执行本公开各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
如图6所示,本公开实施例还提供一种终端设备,包括处理器600、收发机610、存储器620及存储在所述存储器620上并可在所述处理器600上 运行的程序;其中,收发机610通过总线接口与处理器600和存储器620连接,其中,所述处理器600用于读取存储器中的程序,执行下列过程:
根据第一参数,确定用于对物理上行控制信道PUCCH进行功率控制的控制参数;
其中,所述第一参数为在一个下行控制信息DCI调度多个物理下行共享信道PDSCH的情况下,进行混合自动重传请求应答HARQ-ACK捆绑的HARQ-ACK的比特个数。
收发机610,用于在处理器600的控制下接收和发送数据。
其中,在图6中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器600代表的一个或多个处理器和存储器620代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机610可以是多个元件,即包括发送机和接收机,提供用于在传输介质上与各种其他装置通信的单元,这些传输介质包括,这些传输介质包括无线信道、有线信道、光缆等传输介质。针对不同的用户设备,用户接口630还可以是能够外接内接需要设备的接口,连接的设备包括但不限于小键盘、显示器、扬声器、麦克风、操纵杆等。
处理器600负责管理总线架构和通常的处理,存储器620可以存储处理器600在执行操作时所使用的数据。
可选地,处理器600可以是中央处理器(Central Processing Unit,CPU)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)或复杂可编程逻辑器件(Complex Programmable Logic Device,CPLD),处理器也可以采用多核架构。
处理器通过调用存储器存储的计算机程序,用于按照获得的可执行指令执行本公开实施例提供的任一所述方法。处理器与存储器也可以物理上分开布置。
进一步地,所述处理器,用于读取所述存储器中的计算机程序并执行以下操作:
根据第一参数确定第一DCI对应的第一HARQ-ACK的比特个数,所述第一DCI为终端设备没有检测到的一个或者多个DCI;
根据第一参数以及接收到的传输块TB,确定第一TB对应的第二HARQ-ACK的比特个数,所述第一TB为终端设备接收到的一个或者多个TB;
根据所述第一HARQ-ACK的比特个数和所述第二HARQ-ACK的比特个数,确定用于对PUCCH进行功率控制的控制参数。
进一步地,所述处理器,用于读取所述存储器中的计算机程序并执行以下操作:
确定第一DCI的个数;
根据所述第一DCI的个数以及所述第一参数,确定第一DCI对应的第一HARQ-ACK的比特个数。
进一步地,所述处理器,用于读取所述存储器中的计算机程序并执行以下操作:
根据
Figure PCTCN2022124351-appb-000037
U DAI,c,确定第一DCI的个数;
其中,所述
Figure PCTCN2022124351-appb-000038
为最后一个DCI相应的下行分配索引DAI的取值,所述
Figure PCTCN2022124351-appb-000039
为网络设备为终端设备配置的小区的个数,所述U DAI,c为接收到的调度DCI的个数。
进一步地,所述处理器,用于读取所述存储器中的计算机程序并执行以下操作:
根据公式:
Figure PCTCN2022124351-appb-000040
确定所述第一DCI对应的第一HARQ-ACK的比特个数;
其中,所述S为所述第一DCI的个数,所述
Figure PCTCN2022124351-appb-000041
为第一DCI调度的一个PDSCH的最大反馈比特数,所述N为第一参数。
进一步地,所述处理器,用于读取所述存储器中的计算机程序并执行以下操作:
确定第一信息,所述第一信息包括以下至少一项:每个调度DCI需反馈的第三HARQ-ACK的比特个数、每个小区中半持续调度多PDSCH需反馈的第四HARQ-ACK的比特个数,所述调度DCI为需在PUCCH上进行HARQ-ACK反馈的DCI,所述小区为网络设备为终端设备配置的服务小区;
根据所述第一信息,确定所述第一TB对应的第二HARQ-ACK的比特个 数。
进一步地,所述处理器,用于读取所述存储器中的计算机程序并执行以下操作:
根据第一参数以及第二DCI调度的目标信息的个数,确定所述第二DCI需反馈的第三HARQ-ACK的比特个数;
其中,所述第二DCI为任一调度DCI,所述目标信息包括:有效PDSCH或者有效传输块TB。
进一步地,在所述目标信息为有效TB的情况下,所述处理器,用于读取所述存储器中的计算机程序并执行以下操作中的任意一项:
根据第一参数以及第二DCI调度的有效TB的个数,分别确定第二DCI调度的每类TB对应的需反馈的HARQ-ACK的比特个数,将所述第二DCI调度的所有类TB对应的需反馈的HARQ-ACK的比特个数之和确定为第二DCI需反馈的第三HARQ-ACK的比特个数,一类TB对应所述第二DCI调度的多个PDSCH对应的具有相同标识的TB;
根据第一参数以及第二DCI调度的有效TB的个数,确定所述第二DCI调度的所有有效TB对应的需反馈的HARQ-ACK的比特个数,将所述第二DCI调度的所有有效TB对应的需反馈的HARQ-ACK的比特个数确定为第二DCI需反馈的第三HARQ-ACK的比特个数。
进一步地,所述处理器,用于读取所述存储器中的计算机程序并执行以下操作中的任意一项:
根据公式:min(N,X),确定每一类TB对应的需反馈的HARQ-ACK的比特个数;
根据公式:min(N,X i),确定第i类TB对应的需反馈的HARQ-ACK的比特个数;
其中,所述N为第一参数,所述X为所述第二DCI调度的有效PDSCH的个数,所述X i为第二DCI调度的PDSCH中为使能状态的第i类TB所包含的TB的个数。
进一步地,所述处理器,用于读取所述存储器中的计算机程序并执行以下操作:
根据公式:
Figure PCTCN2022124351-appb-000042
确定所述第二DCI调度的所有有效TB对应的需反馈的HARQ-ACK的比特个数;
其中,所述N为第一参数,所述H为第二DCI允许调度的TB的最大类数,所述X i为第二DCI调度的PDSCH中为使能状态的第i类TB所包含的TB的个数。
进一步地,所述处理器,用于读取所述存储器中的计算机程序并执行以下操作:
根据半持续PDSCH调度在单码字传输的情况下需要反馈的HARQ-ACK的比特个数与第二参数,确定每个小区中半持续调度多PDSCH需反馈的第四HARQ-ACK的比特个数;
其中,所述第二参数为半静态SPS传输时实际传输的有效PDSCH个数,或者激活SPS配置时激活命令调度的PDSCH个数。
进一步地,所述处理器,用于读取所述存储器中的计算机程序并执行以下操作:
根据公式:min(N2,K),确定每个小区中半持续调度多PDSCH需反馈的第四HARQ-ACK的比特个数;
其中,所述N2为半持续PDSCH调度在单码字传输的情况下需要反馈的HARQ-ACK的比特个数,所述K为第二参数。
进一步地,所述第一参数的获取方式包括以下至少一项:
网络设备配置;
协议约定;
根据一个DCI调度的PDSCH的最大个数确定。
进一步地,所述第一参数的取值小于或等于一个DCI调度的PDSCH的最大个数。
进一步地,在所述第一参数为根据一个DCI调度的PDSCH的最大个数确定的情况下,所述一个DCI调度的PDSCH的最大个数的获取方式包括以下任意一项:
由网络设备配置;
从PDSCH时域调度参数表获取。
在此需要说明的是,本公开实施例提供的上述终端设备,能够实现上述方法实施例所实现的所有方法步骤,且能够达到相同的技术效果,在此不再对本实施例中与方法实施例相同的部分及有益效果进行具体赘述。
本公开实施例还提供一种计算机可读存储介质,其上存储有计算机程序,其中,所述计算机程序被处理器执行时实现应用于终端设备的功率控制参数确定方法的步骤。所述处理器可读存储介质可以是处理器能够存取的任何可用介质或数据存储设备,包括但不限于磁性存储器(例如软盘、硬盘、磁带、磁光盘(Magneto-Optical Disk,MO)等)、光学存储器(例如光盘(Compact Disk,CD)、数字视频光盘(Digital Versatile Disc,DVD)、蓝光光碟(Blu-ray Disc,BD)、高清通用光盘(High-Definition Versatile Disc,HVD)等)、以及半导体存储器(例如只读存储器(Read-Only Memory,ROM)、可擦除可编程只读存储器(Erasable Programmable ROM,EPROM)、带电可擦可编程只读存储器(Electrically EPROM,EEPROM)、非易失性存储器(NAND FLASH)、固态硬盘(Solid State Disk或Solid State Drive,SSD))等。
本领域内的技术人员应明白,本公开的实施例可提供为方法、系统、或计算机程序产品。因此,本公开可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本公开可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器和光学存储器等)上实施的计算机程序产品的形式。
本公开是参照根据本公开实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机可执行指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机可执行指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些处理器可执行指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的处理器可读存储器中,使得存储在该处理器可读存储 器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些处理器可执行指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
需要说明的是,应理解以上各个模块的划分仅仅是一种逻辑功能的划分,实际实现时可以全部或部分集成到一个物理实体上,也可以物理上分开。且这些模块可以全部以软件通过处理元件调用的形式实现;也可以全部以硬件的形式实现;还可以部分模块通过处理元件调用软件的形式实现,部分模块通过硬件的形式实现。例如,确定模块可以为单独设立的处理元件,也可以集成在上述装置的某一个芯片中实现,此外,也可以以程序代码的形式存储于上述装置的存储器中,由上述装置的某一个处理元件调用并执行以上确定模块的功能。其它模块的实现与之类似。此外这些模块全部或部分可以集成在一起,也可以独立实现。这里所述的处理元件可以是一种集成电路,具有信号的处理能力。在实现过程中,上述方法的各步骤或以上各个模块可以通过处理器元件中的硬件的集成逻辑电路或者软件形式的指令完成。
例如,各个模块、单元、子单元或子模块可以是被配置成实施以上方法的一个或多个集成电路,例如:一个或多个特定集成电路(Application Specific Integrated Circuit,ASIC),或,一个或多个微处理器(digital signal processor,DSP),或,一个或者多个现场可编程门阵列(Field Programmable Gate Array,FPGA)等。再如,当以上某个模块通过处理元件调度程序代码的形式实现时,该处理元件可以是通用处理器,例如中央处理器(Central Processing Unit,CPU)或其它可以调用程序代码的处理器。再如,这些模块可以集成在一起,以片上系统(system-on-a-chip,SOC)的形式实现。
本公开的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本公开的实施例,例如除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以 及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。此外,说明书以及权利要求中使用“和/或”表示所连接对象的至少其中之一,例如A和/或B和/或C,表示包含单独A,单独B,单独C,以及A和B都存在,B和C都存在,A和C都存在,以及A、B和C都存在的7种情况。类似地,本说明书以及权利要求中使用“A和B中的至少一个”应理解为“单独A,单独B,或A和B都存在”。
显然,本领域的技术人员可以对本公开进行各种改动和变型而不脱离本公开的精神和范围。这样,倘若本公开的这些修改和变型属于本公开权利要求及其等同技术的范围之内,则本公开也意图包含这些改动和变型在内。

Claims (32)

  1. 一种功率控制参数确定方法,包括:
    根据第一参数,确定用于对物理上行控制信道PUCCH进行功率控制的控制参数;
    其中,所述第一参数为在一个下行控制信息DCI调度多个物理下行共享信道PDSCH的情况下,进行混合自动重传请求应答HARQ-ACK捆绑的HARQ-ACK的比特个数。
  2. 根据权利要求1所述的方法,其中,所述根据第一参数,确定用于对物理上行控制信道PUCCH进行功率控制的控制参数,包括:
    根据第一参数确定第一DCI对应的第一HARQ-ACK的比特个数,所述第一DCI为终端设备没有检测到的一个或者多个DCI;
    根据第一参数以及接收到的传输块TB,确定第一TB对应的第二HARQ-ACK的比特个数,所述第一TB为终端设备接收到的一个或者多个TB;
    根据所述第一HARQ-ACK的比特个数和所述第二HARQ-ACK的比特个数,确定用于对PUCCH进行功率控制的控制参数。
  3. 根据权利要求2所述的方法,其中,所述根据第一参数确定第一DCI对应的第一HARQ-ACK的比特个数,包括:
    确定第一DCI的个数;
    根据所述第一DCI的个数以及所述第一参数,确定所述第一DCI对应的第一HARQ-ACK的比特个数。
  4. 根据权利要求3所述的方法,其中,所述确定第一DCI的个数,包括:
    根据
    Figure PCTCN2022124351-appb-100001
    U DAI,c,确定第一DCI的个数;
    其中,所述
    Figure PCTCN2022124351-appb-100002
    为最后一个DCI相应的下行分配索引DAI的取值,所述
    Figure PCTCN2022124351-appb-100003
    为网络设备为终端设备配置的服务小区的个数,所述U DAI,c为接收到的调度DCI的个数。
  5. 根据权利要求3所述的方法,其中,所述根据所述第一DCI的个数以及所述第一参数,确定第一DCI对应的第一HARQ-ACK的比特个数,包括:
    根据公式:
    Figure PCTCN2022124351-appb-100004
    确定所述第一DCI对应的第一HARQ-ACK的比特个数;
    其中,所述S为所述第一DCI的个数,所述
    Figure PCTCN2022124351-appb-100005
    为所述第一DCI调度的一个PDSCH的最大反馈比特数,所述N为第一参数。
  6. 根据权利要求2所述的方法,其中,所述根据第一参数以及接收到的传输块TB,确定第一TB对应的第二HARQ-ACK的比特个数,包括:
    确定第一信息,所述第一信息包括以下至少一项:每个调度DCI需反馈的第三HARQ-ACK的比特个数、每个小区中半持续调度多PDSCH需反馈的第四HARQ-ACK的比特个数,所述调度DCI为需在PUCCH上进行HARQ-ACK反馈的DCI,所述小区为网络设备为终端设备配置的服务小区;
    根据所述第一信息,确定所述第一TB对应的第二HARQ-ACK的比特个数。
  7. 根据权利要求6所述的方法,其中,所述每个调度DCI需反馈的第三HARQ-ACK的比特个数的确定方式,包括:
    根据第一参数以及第二DCI调度的目标信息的个数,确定所述第二DCI需反馈的第三HARQ-ACK的比特个数;
    其中,所述第二DCI为任一调度DCI,所述目标信息包括:有效PDSCH或者有效传输块TB。
  8. 根据权利要求7所述的方法,其中,在所述目标信息为有效TB的情况下,所述根据第一参数以及第二DCI调度的目标信息的个数,确定所述第二DCI需反馈的第三HARQ-ACK的比特个数,包括以下任意一项:
    根据第一参数以及第二DCI调度的有效TB的个数,分别确定第二DCI调度的每类TB对应的需反馈的HARQ-ACK的比特个数,将所述第二DCI调度的所有类TB对应的需反馈的HARQ-ACK的比特个数之和确定为第二DCI需反馈的第三HARQ-ACK的比特个数,一类TB对应所述第二DCI调度的多个PDSCH对应的具有相同标识的TB;
    根据第一参数以及第二DCI调度的有效TB的个数,确定所述第二DCI调度的所有有效TB对应的需反馈的HARQ-ACK的比特个数,将所述第二DCI调度的所有有效TB对应的需反馈的HARQ-ACK的比特个数确定为第二DCI需反馈的第三HARQ-ACK的比特个数。
  9. 根据权利要求8所述的方法,其中,所述根据第一参数以及第二DCI调度的有效TB的个数,分别确定第二DCI调度的每类TB对应的需反馈的HARQ-ACK的比特个数,包括以下任意一项:
    根据公式:min(N,X),确定每一类TB对应的需反馈的HARQ-ACK的比特个数;
    根据公式:min(N,X i),确定第i类TB对应的需反馈的HARQ-ACK的比特个数;
    其中,所述N为第一参数,所述X为所述第二DCI调度的有效PDSCH的个数,所述X i为第二DCI调度的PDSCH中为使能状态的第i类TB所包含的TB的个数。
  10. 根据权利要求8所述的方法,其中,所述根据第一参数以及第二DCI调度的有效TB的个数,确定所述第二DCI调度的所有有效TB对应的需反馈的HARQ-ACK的比特个数,包括:
    根据公式:
    Figure PCTCN2022124351-appb-100006
    确定所述第二DCI调度的所有有效TB对应的需反馈的HARQ-ACK的比特个数;
    其中,所述N为第一参数,所述H为第二DCI允许调度的TB的最大类数,所述X i为第二DCI调度的PDSCH中为使能状态的第i类TB所包含的TB的个数。
  11. 根据权利要求6所述的方法,其中,所述每个小区中半持续调度多PDSCH需反馈的第四HARQ-ACK的比特个数的确定方式,包括:
    根据半持续PDSCH调度在单码字传输的情况下需要反馈的HARQ-ACK的比特个数与第二参数,确定每个小区中半持续调度多PDSCH需反馈的第四HARQ-ACK的比特个数;
    其中,所述第二参数为半静态SPS传输时实际传输的有效PDSCH个数,或者激活SPS配置时激活命令调度的PDSCH个数。
  12. 根据权利要求11所述的方法,其中,所述根据半持续PDSCH调度在单码字传输的情况下需要反馈的HARQ-ACK的比特个数与第二参数,确定每个小区中半持续调度多PDSCH需反馈的第四HARQ-ACK的比特个数,包括:
    根据公式:min(N2,K),确定每个小区中半持续调度多PDSCH需反馈的第四HARQ-ACK的比特个数;
    其中,所述N2为半持续PDSCH调度在单码字传输的情况下需要反馈的HARQ-ACK的比特个数,所述K为第二参数。
  13. 根据权利要求1所述的方法,其中,所述第一参数的获取方式包括以下至少一项:
    网络设备配置;
    协议约定;
    根据一个DCI调度的PDSCH的最大个数确定。
  14. 根据权利要求13所述的方法,其中,所述第一参数的取值小于或等于一个DCI调度的PDSCH的最大个数。
  15. 根据权利要求13所述的方法,其中,在所述第一参数为根据一个DCI调度的PDSCH的最大个数确定的情况下,所述一个DCI调度的PDSCH的最大个数的获取方式包括以下任意一项:
    由网络设备配置;
    从PDSCH时域调度参数表获取。
  16. 一种终端设备,包括存储器,收发机,处理器:
    存储器,用于存储计算机程序;收发机,用于在所述处理器的控制下收发数据;处理器,用于读取所述存储器中的计算机程序并执行以下操作:
    根据第一参数,确定用于对物理上行控制信道PUCCH进行功率控制的控制参数;
    其中,所述第一参数为在一个下行控制信息DCI调度多个物理下行共享信道PDSCH的情况下,进行混合自动重传请求应答HARQ-ACK捆绑的HARQ-ACK的比特个数。
  17. 根据权利要求16所述的终端设备,其中,所述处理器用于读取所述存储器中的计算机程序并执行以下操作:
    根据第一参数确定第一DCI对应的第一HARQ-ACK的比特个数,所述第一DCI为终端设备没有检测到的一个或者多个DCI;
    根据第一参数以及接收到的传输块TB,确定第一TB对应的第二 HARQ-ACK的比特个数,所述第一TB为终端设备接收到的一个或者多个TB;
    根据所述第一HARQ-ACK的比特个数和所述第二HARQ-ACK的比特个数,确定用于对PUCCH进行功率控制的控制参数。
  18. 根据权利要求17所述的终端设备,其中,所述处理器用于读取所述存储器中的计算机程序并执行以下操作:
    确定第一DCI的个数;
    根据所述第一DCI的个数以及所述第一参数,确定所述第一DCI对应的第一HARQ-ACK的比特个数。
  19. 根据权利要求18所述的终端设备,其中,所述处理器用于读取所述存储器中的计算机程序并执行以下操作:
    根据
    Figure PCTCN2022124351-appb-100007
    U DAI,c,确定第一DCI的个数;
    其中,所述
    Figure PCTCN2022124351-appb-100008
    为最后一个DCI相应的下行分配索引DAI的取值,所述
    Figure PCTCN2022124351-appb-100009
    为网络设备为终端设备配置的服务小区的个数,所述U DAI,c为接收到的调度DCI的个数。
  20. 根据权利要求18所述的终端设备,其中,所述处理器用于读取所述存储器中的计算机程序并执行以下操作:
    根据公式:
    Figure PCTCN2022124351-appb-100010
    确定所述第一DCI对应的第一HARQ-ACK的比特个数;
    其中,所述S为所述第一DCI的个数,所述
    Figure PCTCN2022124351-appb-100011
    为所述第一DCI调度的一个PDSCH的最大反馈比特数,所述N为第一参数。
  21. 根据权利要求17所述的终端设备,其中,所述处理器用于读取所述存储器中的计算机程序并执行以下操作:
    确定第一信息,所述第一信息包括以下至少一项:每个调度DCI需反馈的第三HARQ-ACK的比特个数、每个小区中半持续调度多PDSCH需反馈的第四HARQ-ACK的比特个数,所述调度DCI为需在PUCCH上进行HARQ-ACK反馈的DCI,所述小区为网络设备为终端设备配置的服务小区;
    根据所述第一信息,确定所述第一TB对应的第二HARQ-ACK的比特个数。
  22. 根据权利要求21所述的终端设备,其中,所述处理器用于读取所述存储器中的计算机程序并执行以下操作:
    根据第一参数以及第二DCI调度的目标信息的个数,确定所述第二DCI需反馈的第三HARQ-ACK的比特个数;
    其中,所述第二DCI为任一调度DCI,所述目标信息包括:有效PDSCH或者有效传输块TB。
  23. 根据权利要求22所述的终端设备,其中,在所述目标信息为有效TB的情况下,所述处理器用于读取所述存储器中的计算机程序并执行以下操作中的任意一项:
    根据第一参数以及第二DCI调度的有效TB的个数,分别确定第二DCI调度的每类TB对应的需反馈的HARQ-ACK的比特个数,将所述第二DCI调度的所有类TB对应的需反馈的HARQ-ACK的比特个数之和确定为第二DCI需反馈的第三HARQ-ACK的比特个数,一类TB对应所述第二DCI调度的多个PDSCH对应的具有相同标识的TB;
    根据第一参数以及第二DCI调度的有效TB的个数,确定所述第二DCI调度的所有有效TB对应的需反馈的HARQ-ACK的比特个数,将所述第二DCI调度的有效TB对应的需反馈的HARQ-ACK的比特个数确定为第二DCI需反馈的第三HARQ-ACK的比特个数。
  24. 根据权利要求23所述的终端设备,其中,所述处理器用于读取所述存储器中的计算机程序并执行以下操作中的任意一项:
    根据公式:min(N,X),确定每一类TB对应的需反馈的HARQ-ACK的比特个数;
    根据公式:min(N,X i),确定第i类TB对应的需反馈的HARQ-ACK的比特个数;
    其中,所述N为第一参数,所述X为所述第二DCI调度的有效PDSCH的个数,所述X i为第二DCI调度的PDSCH中为使能状态的第i类TB所包含的TB的个数。
  25. 根据权利要求23所述的终端设备,其中,所述处理器用于读取所述存储器中的计算机程序并执行以下操作:
    根据公式:
    Figure PCTCN2022124351-appb-100012
    确定所述第二DCI调度的所有有效TB对应的需反馈的HARQ-ACK的比特个数;
    其中,所述N为第一参数,所述H为第二DCI允许调度的TB的最大类数,所述X i为第二DCI调度的PDSCH中为使能状态的第i类TB所包含的TB的个数。
  26. 根据权利要求21所述的终端设备,其中,所述处理器用于读取所述存储器中的计算机程序并执行以下操作:
    根据半持续PDSCH调度在单码字传输的情况下需要反馈的HARQ-ACK的比特个数与第二参数,确定每个小区中半持续调度多PDSCH需反馈的第四HARQ-ACK的比特个数;
    其中,所述第二参数为半静态SPS传输时实际传输的有效PDSCH个数,或者激活SPS配置时激活命令调度的PDSCH个数。
  27. 根据权利要求26所述的终端设备,其中,所述处理器用于读取所述存储器中的计算机程序并执行以下操作:
    根据公式:min(N2,K),确定每个小区中半持续调度多PDSCH需反馈的第四HARQ-ACK的比特个数;
    其中,所述N2为半持续PDSCH调度在单码字传输的情况下需要反馈的HARQ-ACK的比特个数,所述K为第二参数。
  28. 根据权利要求16所述的终端设备,其中,所述第一参数的获取方式包括以下至少一项:
    网络设备配置;
    协议约定;
    根据一个DCI调度的PDSCH的最大个数确定。
  29. 根据权利要求28所述的终端设备,其中,所述第一参数的取值小于或等于一个DCI调度的PDSCH的最大个数。
  30. 根据权利要求28所述的终端设备,其中,在所述第一参数为根据一个DCI调度的PDSCH的最大个数确定的情况下,所述一个DCI调度的PDSCH的最大个数的获取方式包括以下任意一项:
    由网络设备配置;
    从PDSCH时域调度参数表获取。
  31. 一种功率控制参数确定装置,应用于终端设备,包括:
    确定单元,用于根据第一参数,确定用于对物理上行控制信道PUCCH进行功率控制的控制参数;
    其中,所述第一参数为在一个下行控制信息DCI调度多个物理下行共享信道PDSCH的情况下,进行混合自动重传请求应答HARQ-ACK捆绑的HARQ-ACK的比特个数。
  32. 一种处理器可读存储介质,所述处理器可读存储介质存储有计算机程序,所述计算机程序用于使所述处理器执行权利要求1至15任一项所述的方法。
PCT/CN2022/124351 2021-11-05 2022-10-10 功率控制参数确定方法、装置及终端设备 WO2023078029A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111308588.3A CN116095806A (zh) 2021-11-05 2021-11-05 功率控制参数确定方法、装置及终端设备
CN202111308588.3 2021-11-05

Publications (1)

Publication Number Publication Date
WO2023078029A1 true WO2023078029A1 (zh) 2023-05-11

Family

ID=86197878

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/124351 WO2023078029A1 (zh) 2021-11-05 2022-10-10 功率控制参数确定方法、装置及终端设备

Country Status (3)

Country Link
CN (1) CN116095806A (zh)
TW (1) TWI831431B (zh)
WO (1) WO2023078029A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105578608A (zh) * 2015-12-23 2016-05-11 工业和信息化部电信研究院 一种下行控制信息的发送、接收方法和设备
WO2021162857A1 (en) * 2020-02-14 2021-08-19 Qualcomm Incorporated Downlink assignment index for multi-component carrier scheduling
WO2021162845A1 (en) * 2020-02-14 2021-08-19 Qualcomm Incorporated Acknowledgement feedback for multi-component carrier scheduling with separate feedback-related control fields

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10548096B2 (en) * 2017-04-21 2020-01-28 Samsung Electronics Co., Ltd. Information type multiplexing and power control

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105578608A (zh) * 2015-12-23 2016-05-11 工业和信息化部电信研究院 一种下行控制信息的发送、接收方法和设备
WO2021162857A1 (en) * 2020-02-14 2021-08-19 Qualcomm Incorporated Downlink assignment index for multi-component carrier scheduling
WO2021162845A1 (en) * 2020-02-14 2021-08-19 Qualcomm Incorporated Acknowledgement feedback for multi-component carrier scheduling with separate feedback-related control fields

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HUAWEI: "Feature lead summary of HARQ enhancements for NR-U", 3GPP DRAFT; R1-1909496 FEATURE LEAD SUMMARY FOR 7.2.2.2.3 NRU HARQ RAN1#98V4, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Prague, Czech Republic; 20190826 - 20190830, 3 September 2019 (2019-09-03), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051766098 *

Also Published As

Publication number Publication date
TW202320568A (zh) 2023-05-16
CN116095806A (zh) 2023-05-09
TWI831431B (zh) 2024-02-01

Similar Documents

Publication Publication Date Title
US20210029732A1 (en) Uplink control information sending and receiving method and apparatus
WO2019029287A1 (zh) Pucch传输方法、用户设备和装置
WO2019047819A1 (zh) 发送上行控制信道的方法和装置
WO2021159857A1 (zh) 码本传输方法及装置
WO2022117103A1 (zh) 上行控制信息传输方法、接收方法、终端和网络设备
WO2022117102A1 (zh) 上行控制信息传输方法、接收方法、终端和网络设备
WO2023078029A1 (zh) 功率控制参数确定方法、装置及终端设备
WO2021036423A1 (zh) 信息传输方法及装置
WO2021088260A1 (zh) 传输反馈信息的方法、终端设备和网络设备
KR20230088907A (ko) 데이터 전송 방법, 장치 및 기기
WO2023078102A1 (zh) 混合自动重传请求应答反馈方法、装置及终端设备
WO2020156002A1 (zh) 通信方法及通信装置
WO2023155729A1 (zh) 一种信息处理方法、装置及可读存储介质
WO2022237539A1 (zh) 反馈处理方法、发送方法、反馈方法、设备和存储介质
WO2024017389A1 (zh) 一种信息处理方法、装置及可读存储介质
WO2023226967A1 (zh) 确定动态码本的方法、装置及通信设备
WO2022237298A1 (zh) 信息传输方法、装置及存储介质
WO2022206344A1 (zh) 一种信道复用方法、装置及通信设备
WO2023207397A1 (zh) 一种dci确定方法、设备及装置
WO2023208194A1 (zh) 一种混合自动重传反馈方法及装置
CN114760006B (zh) 数据传输方法、装置、通信设备及存储介质
WO2022206364A1 (zh) Harq码本发送方法、接收方法、装置及存储介质
WO2023155614A1 (zh) 一种信息处理方法、装置及可读存储介质
WO2022042484A1 (zh) 信息反馈方法、信息接收方法、终端和网络设备
WO2023011030A1 (zh) 一种数据包激活方法、装置、网络设备和终端

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22889055

Country of ref document: EP

Kind code of ref document: A1