WO2022042484A1 - 信息反馈方法、信息接收方法、终端和网络设备 - Google Patents

信息反馈方法、信息接收方法、终端和网络设备 Download PDF

Info

Publication number
WO2022042484A1
WO2022042484A1 PCT/CN2021/114074 CN2021114074W WO2022042484A1 WO 2022042484 A1 WO2022042484 A1 WO 2022042484A1 CN 2021114074 W CN2021114074 W CN 2021114074W WO 2022042484 A1 WO2022042484 A1 WO 2022042484A1
Authority
WO
WIPO (PCT)
Prior art keywords
harq
pdcch
ack
downlink allocation
terminal
Prior art date
Application number
PCT/CN2021/114074
Other languages
English (en)
French (fr)
Inventor
周雷
邢艳萍
高雪娟
Original Assignee
大唐移动通信设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大唐移动通信设备有限公司 filed Critical 大唐移动通信设备有限公司
Publication of WO2022042484A1 publication Critical patent/WO2022042484A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/06Optimizing the usage of the radio link, e.g. header compression, information sizing, discarding information

Definitions

  • the present disclosure relates to the field of communication technologies, and in particular, to an information feedback method, an information receiving method, a terminal and a network device.
  • PDCCH Physical downlink control channel
  • PDCCH repetition transmission (PDCCH repetition) is supported.
  • PDCCH repetitions supported by these communication systems are semi-statically configured.
  • some special terminals are tailored in terms of capability or complexity compared to general terminals, such as: Redcap terminals, which can be tailored to support the maximum bandwidth (such as reducing the bandwidth from 100MHz to 20MHz), reducing the number of antennas (such as from 4 The root receiving antenna is reduced to 2 or 1 receiving antenna.
  • the embodiments of the present disclosure provide an information feedback method, an information receiving method, a terminal, and a network device, so as to solve the problem that the demodulation performance of the terminal PDCCH is low.
  • Embodiments of the present disclosure provide an information feedback method, including:
  • the terminal receives the first PDCCH sent by the network device, where the first PDCCH is used to indicate the number of times of repeated transmission of the PDCCH;
  • the terminal feeds back the Hybrid Automatic Repeat request Acknowledgement (HARQ-ACK) of the first PDCCH to the network device.
  • HARQ-ACK Hybrid Automatic Repeat request Acknowledgement
  • the first PDCCH includes:
  • the cyclic redundancy check (Cyclic Redundancy Check, CRC) code adopts the PDCCH scrambled by a new radio network temporary identifier (Radio network temporary identifier, RNTI), wherein the new RNTI is the RNTI newly defined for the first PDCCH.
  • CRC Cyclic Redundancy Check
  • the number of times of repeated transmission of the PDCCH indicated by the first PDCCH is the number of times of repeated transmission of the updated PDCCH.
  • the first PDCCH is transmitted periodically or aperiodically.
  • one HARQ-ACK is fed back for K times of transmission of the first PDCCH, the one HARQ-ACK is 1 bit, and K is an integer greater than or equal to 1.
  • the HARQ-ACK adopts a dynamic codebook, or the HARQ-ACK adopts a semi-static codebook.
  • the HARQ-ACK is transmitted alone, or the HARQ-ACK is multiplexed and transmitted with other HARQ-ACKs.
  • the first PDCCH includes a downlink allocation index
  • the downlink allocation index is used for determining the mapping position of the HARQ-ACK in the dynamic codebook, wherein the downlink allocation index is a counting downlink allocation index C-DAI, or the downlink allocation index includes C-DAI and a total downlink allocation index T-DAI; or
  • the feedback codebook for the multiplexed transmission is determined based on the other HARQ-ACKs
  • a bit is added to the semi-static codebook, where the A bit is the HARQ-ACK of the first PDCCH, and A is an integer greater than or equal to 1.
  • A is equal to the number of the first PDCCHs for which HARQ-ACK feedback is performed in the feedback time domain resource, and the feedback time domain resource is the time domain resource for the multiplexed transmission.
  • the other HARQ-ACKs include:
  • the feedback time domain resource of the HARQ-ACK is determined according to an offset value, and the offset value is an offset value included in the first PDCCH, or the offset value is a preconfigured offset value. shift value.
  • Embodiments of the present disclosure also provide a method for receiving information, including:
  • the network device sends a first physical downlink control channel PDCCH to the terminal, where the first PDCCH is used to indicate the number of times of repeated transmission of the PDCCH;
  • the network device receives the HARQ-ACK of the HARQ-ACK of the first PDCCH fed back by the terminal.
  • the first PDCCH includes:
  • the cyclic redundancy check CRC code adopts the PDCCH scrambled by the new wireless network temporary identifier RNTI, wherein the new RNTI is the RNTI newly defined for the first PDCCH.
  • the number of times of repeated transmission of the PDCCH indicated by the first PDCCH is the number of times of repeated transmission of the updated PDCCH.
  • the first PDCCH is transmitted periodically or aperiodically.
  • one HARQ-ACK is fed back for K times of transmission of the first PDCCH, the one HARQ-ACK is 1 bit, and K is an integer greater than or equal to 1.
  • the HARQ-ACK adopts a dynamic codebook, or the HARQ-ACK adopts a semi-static codebook.
  • the HARQ-ACK is transmitted alone, or the HARQ-ACK is multiplexed and transmitted with other HARQ-ACKs.
  • the first PDCCH includes a downlink allocation index
  • the downlink allocation index is used for Determine the mapping position of the HARQ-ACK in the dynamic codebook, wherein the downlink assignment index is a count downlink assignment index (Counter Downlink Assignment Index, C-DAI), or the downlink assignment index includes C-DAI and total Downlink Assignment Index (Total Downlink Assignment Index, T-DAI); or
  • the feedback codebook for the multiplexed transmission is determined based on the other HARQ-ACKs
  • a bit is added to the semi-static codebook, where the A bit is the HARQ-ACK of the first PDCCH, and A is an integer greater than or equal to 1.
  • A is equal to the number of the first PDCCHs for which HARQ-ACK feedback is performed in the feedback time domain resource, and the feedback time domain resource is the time domain resource for the multiplexed transmission.
  • the other HARQ-ACKs include:
  • the feedback time domain resource of the HARQ-ACK is determined according to an offset value, and the offset value is an offset value included in the first PDCCH, or the offset value is a preconfigured offset value. shift value.
  • Embodiments of the present disclosure also provide a terminal, including a memory, a transceiver, and a processor, wherein:
  • a memory for storing a computer program
  • a transceiver for sending and receiving data under the control of the processor
  • a processor for reading the computer program in the memory and performing the following operations:
  • the HARQ-ACK of the first PDCCH is fed back to the network device.
  • the first PDCCH includes:
  • the cyclic redundancy check CRC code adopts the PDCCH scrambled by the new wireless network temporary identifier RNTI, wherein the new RNTI is the RNTI newly defined for the first PDCCH.
  • the number of times of repeated transmission of the PDCCH indicated by the first PDCCH is the number of times of repeated transmission of the updated PDCCH.
  • the HARQ-ACK is transmitted alone, or the HARQ-ACK is multiplexed and transmitted with other HARQ-ACKs.
  • the first PDCCH includes a downlink allocation index
  • the downlink allocation index is used for determining the mapping position of the HARQ-ACK in the dynamic codebook, wherein the downlink allocation index is a counting downlink allocation index C-DAI, or the downlink allocation index includes C-DAI and a total downlink allocation index T-DAI; or
  • the feedback codebook for the multiplexed transmission is determined based on the other HARQ-ACKs
  • a bit is added to the semi-static codebook, where the A bit is the HARQ-ACK of the first PDCCH, and A is an integer greater than or equal to 1.
  • Embodiments of the present disclosure also provide a network device, including a memory, a transceiver, and a processor, wherein:
  • a memory for storing a computer program
  • a transceiver for sending and receiving data under the control of the processor
  • a processor for reading the computer program in the memory and performing the following operations:
  • the first PDCCH includes:
  • the cyclic redundancy check CRC code adopts the PDCCH scrambled by the new wireless network temporary identifier RNTI, wherein the new RNTI is the RNTI newly defined for the first PDCCH.
  • the number of times of repeated transmission of the PDCCH indicated by the first PDCCH is the number of times of repeated transmission of the updated PDCCH.
  • the HARQ-ACK is transmitted alone, or the HARQ-ACK is multiplexed and transmitted with other HARQ-ACKs.
  • the first PDCCH includes a downlink allocation index
  • the downlink allocation index is used for determining the mapping position of the HARQ-ACK in the dynamic codebook, wherein the downlink allocation index is a counting downlink allocation index C-DAI, or the downlink allocation index includes C-DAI and a total downlink allocation index T-DAI; or
  • the feedback codebook for the multiplexed transmission is determined based on the other HARQ-ACKs
  • a bit is added to the semi-static codebook, where the A bit is the HARQ-ACK of the first PDCCH, and A is an integer greater than or equal to 1.
  • An embodiment of the present disclosure also provides a terminal, including:
  • a receiving unit configured to receive a first physical downlink control channel PDCCH sent by a network device, where the first PDCCH is used to indicate the number of times of repeated transmission of the PDCCH;
  • a feedback unit configured to feed back the HARQ-ACK of the HARQ-ACK of the first PDCCH to the network device.
  • Embodiments of the present disclosure also provide a network device, including:
  • a sending unit configured to send a first physical downlink control channel PDCCH to the terminal, where the first PDCCH is used to indicate the number of times of repeated transmission of the PDCCH;
  • a receiving unit configured to receive the HARQ-ACK of the HARQ-ACK of the first PDCCH fed back by the terminal.
  • An embodiment of the present disclosure further provides a processor-readable storage medium, where the processor-readable storage medium stores a computer program, and the computer program is used to make the processor execute the information feedback method provided by the embodiment of the present disclosure, Alternatively, the computer program is used to cause the processor to provide the information receiving method provided by the embodiments of the present disclosure.
  • the terminal receives the first PDCCH sent by the network device, where the first PDCCH is used to indicate the number of times of repeated transmission of the PDCCH; the terminal feeds back the HARQ-ACK of the first PDCCH to the network device.
  • the network device notifies the terminal of the number of repeated PDCCH transmissions, and the terminal reports the corresponding HARQ-ACK, the terminal and the network device have the same understanding of the number of repeated PDCCH transmissions, thereby improving the PDCCH demodulation performance of the terminal.
  • FIG. 1 is a schematic structural diagram of a network architecture to which an embodiment of the present disclosure can be applied;
  • FIG. 3 is a flowchart of an information receiving method provided by an embodiment of the present disclosure.
  • FIGS. 4 and 4A are schematic diagrams of a first PDCCH configuration provided by an embodiment of the present disclosure.
  • FIG. 5 is a schematic diagram of HARQ-ACK feedback provided by an embodiment of the present disclosure.
  • FIG. 6 is another schematic diagram of HARQ-ACK feedback provided by an embodiment of the present disclosure.
  • FIG. 7 is another schematic diagram of HARQ-ACK feedback provided by an embodiment of the present disclosure.
  • FIG. 8 is a structural diagram of a terminal provided by an embodiment of the present disclosure.
  • FIG. 9 is a structural diagram of a network device provided by an embodiment of the present disclosure.
  • FIG. 10 is another structural diagram of a terminal provided by an embodiment of the present disclosure.
  • FIG. 11 is another structural diagram of a network device provided by an embodiment of the present disclosure.
  • the term "and/or" describes the association relationship of associated objects, and indicates that there can be three kinds of relationships. For example, A and/or B can indicate that A exists alone, A and B exist at the same time, and B exists alone these three situations.
  • the character “/” generally indicates that the associated objects are an "or" relationship.
  • the term “plurality” refers to two or more than two, and other quantifiers are similar.
  • the embodiments of the present disclosure provide an information feedback method, an information receiving method, a terminal, and a network device, so as to solve the problem that the demodulation performance of the terminal PDCCH is low.
  • the method and the device are conceived based on the same application. Since the principles of the method and the device for solving the problem are similar, the implementation of the device and the method can be referred to each other, and the repetition will not be repeated.
  • applicable systems may be global system of mobile communication (GSM) system, code division multiple access (CDMA) system, wideband code division multiple access (Wideband Code Division Multiple Access, WCDMA) general packet Wireless service (general packet radio service, GPRS) system, long term evolution (long term evolution, LTE) system, LTE frequency division duplex (frequency division duplex, FDD) system, LTE time division duplex (time division duplex, TDD) system, Long term evolution advanced (LTE-A) system, universal mobile telecommunication system (UMTS), worldwide interoperability for microwave access (WiMAX) system, 5G New Radio (New Radio, NR) system, 6G system, etc.
  • GSM global system of mobile communication
  • CDMA code division multiple access
  • WCDMA Wideband Code Division Multiple Access
  • general packet Wireless service general packet Radio service
  • GPRS general packet Wireless service
  • LTE long term evolution
  • LTE long term evolution
  • LTE frequency division duplex frequency division duplex
  • TDD time division duplex
  • LTE-A Long term evolution
  • FIG. 1 is a schematic structural diagram of a network architecture applicable to the implementation of the present disclosure. As shown in FIG. 1 , it includes a terminal 11 and a network device 12 .
  • the terminal involved in the embodiments of the present disclosure may be a device that provides voice and/or data connectivity to a user, a handheld device with a wireless connection function, or other processing device connected to a wireless modem.
  • the name of the terminal device may be different.
  • the terminal device may be called user equipment (User Equipment, UE).
  • Wireless terminal equipment can communicate with one or more core networks (Core Network, CN) via a radio access network (Radio Access Network, RAN).
  • RAN Radio Access Network
  • "telephone) and computers with mobile terminal equipment eg portable, pocket-sized, hand-held, computer-built or vehicle-mounted mobile devices, which exchange language and/or data with the radio access network.
  • Wireless terminal equipment may also be referred to as system, subscriber unit, subscriber station, mobile station, mobile station, remote station, access point , a remote terminal device (remote terminal), an access terminal device (access terminal), a user terminal device (user terminal), a user agent (user agent), and a user device (user device), which are not limited in the embodiments of the present disclosure.
  • the network device involved in the embodiments of the present disclosure may be a base station, and the base station may include a plurality of cells providing services for the terminal.
  • the base station may also be called an access point, or may be a device in the access network that communicates with wireless terminal equipment through one or more sectors on the air interface, or other names.
  • the network device can be used to exchange received air frames with Internet Protocol (IP) packets, and act as a router between the wireless terminal device and the rest of the access network, which can include the Internet. Protocol (IP) communication network.
  • IP Internet Protocol
  • the network devices may also coordinate attribute management for the air interface.
  • the network device involved in the embodiments of the present disclosure may be a network device (Base Transceiver Station, BTS) in the Global System for Mobile Communications (GSM) or Code Division Multiple Access (Code Division Multiple Access, CDMA). ), it can also be a network device (NodeB) in Wide-band Code Division Multiple Access (WCDMA), or it can be an evolved network device in a long term evolution (LTE) system (evolutional Node B, eNB or e-NodeB), 5G base station (gNB) in 5G network architecture (next generation system), or Home evolved Node B (HeNB), relay node (relay node) , a home base station (femto), a pico base station (pico), etc., which are not limited in the embodiments of the present disclosure.
  • a network device may include a centralized unit (CU) node and a distributed unit (DU) node, and the centralized unit and the distributed unit may also be geographically separated.
  • One or more antennas can be used between the network device and the terminal for multiple input multiple output (Multi Input Multi Output, MIMO) transmission, and the MIMO transmission can be single user MIMO (Single User MIMO, SU-MIMO) or multi-user MIMO ( Multiple User MIMO, MU-MIMO).
  • MIMO transmission can be 2D-MIMO, 3D-MIMO, FD-MIMO, or massive-MIMO, or diversity transmission, precoding transmission, or beamforming transmission.
  • FIG. 2 is a flowchart of an information feedback method provided by an embodiment of the present disclosure. As shown in FIG. 2, the following steps are included:
  • Step 201 The terminal receives the first PDCCH sent by the network device, where the first PDCCH is used to indicate the number of times of PDCCH repetition transmission (PDCCH repetition);
  • Step 202 the terminal feeds back the HARQ-ACK of the first PDCCH to the network device.
  • the first PDCCH may be understood as a PDCCH used to indicate the number of repeated transmissions of the PDCCH.
  • the first PDCCH may or may not indicate other information in addition to indicating the number of repeated transmissions of the PDCCH, which is not limited.
  • the other PDCCHs may be referred to as the second PDCCH or the third PDCCH or the like.
  • first PDCCH may also be repeated transmission, for example, repeated transmission K times, of course, this is not limited, for example, repeated transmission may not be used, such as once transmission.
  • the HARQ-ACK of the first PDCCH may be ACK or NACK, so as to help the network device to identify whether the indicated number of repeated transmissions is correctly received by the terminal.
  • the terminal and the network device since the network device notifies the terminal of the number of repeated transmissions of PDCCH, and the terminal reports the corresponding HARQ-ACK, the terminal and the network device have the same understanding of the number of repeated transmissions of the PDCCH, thereby improving the demodulation performance of the terminal's PDCCH, such as : It can avoid that the number of PDCCH repeated transmissions understood by the terminal is higher than the number of PDCCH repeated transmissions understood by the network side device, causing the terminal to perform useless PDCCH detection, or it can be avoided that the number of PDCCH repeated transmissions understood by the terminal is smaller than the number of PDCCH repeated transmissions understood by the network side device. As a result, the terminal misses some PDCCH detections.
  • the terminal may be a Redcap terminal or a general terminal.
  • the first PDCCH includes:
  • the CRC code uses a PDCCH scrambled by a new RNTI, where the new RNTI is a newly defined RNTI for the first PDCCH.
  • the above-mentioned new RNTI may be called PDCCH Repeated Transmission Times Wireless Network Temporary Identity (PDCCH RepK Radio Network Temporary Identity, PR-RNTI), of course, this is not limited, for example: it may also be other names.
  • the above-mentioned new RNTI may be a terminal-specific RNTI, for example, the network device configures a corresponding new RNTI for each terminal, of course, this is not limited, for example, multiple terminals may share the same new RNTI.
  • the terminal can accurately identify which PDCCHs are the first PDCCH. For example, when the terminal detects a PDCCH with a PR-RNTI for CRC scrambled , the terminal will know that the PDCCH is used to indicate the number of repeated transmissions of the PDCCH.
  • the PDCCH repeated transmission times indicated by the first PDCCH is the updated PDCCH repeated transmission times.
  • updating the number of repeated transmissions of the PDCCH may mean that the network device may update the number of repeated transmissions of the PDCCH according to channel conditions, terminal services, or terminal capabilities.
  • the network device can be supported to update the PDCCH repeated transmission times in time, so as to further improve the PDCCH demodulation performance of the terminal.
  • the first PDCCH is transmitted periodically or aperiodically.
  • the above-mentioned period may be configured by high-level signaling, and the above-mentioned first PDCCH may be transmitted in a specific time domain resource, for example, transmitted in a specific monitoring occasion (MO) in some specific time slots.
  • a specific monitoring occasion MO
  • the above-mentioned aperiodic transmission may be dynamically sent by the network device.
  • one HARQ-ACK is fed back for K times of transmission of the first PDCCH, where the one HARQ-ACK is 1 bit, and K is an integer greater than or equal to 1.
  • the above K times of transmission may be repeated transmission of the first PDCCH for K times.
  • the first PDCCH corresponds to 1-bit HARQ-ACK, which can reduce signaling overhead.
  • the HARQ-ACK feedback information reflects the demodulation result obtained after combining the K transmissions based on the first PDCCH.
  • the HARQ-ACK adopts a dynamic codebook, or the HARQ-ACK adopts a semi-static codebook.
  • the above-mentioned dynamic codebook can be a type 2 HARQ-ACK codebook (Type-2 HARQ-ACK codebook), and the above-mentioned semi-static codebook can be a type 1 HARQ-ACK codebook (Type-1 HARQ-ACK codebook) .
  • the above-mentioned HARQ-ACK is transmitted alone, or the HARQ-ACK is multiplexed and transmitted with other HARQ-ACKs.
  • the above-mentioned other HARQ-ACKs may be one or more HARQ-ACKs whose feedback time-domain resources are the same as the feedback time-domain resources of the above-mentioned HARQ-ACK of the first PDCCH.
  • the other HARQ-ACKs include:
  • Physical downlink shared channel Physical downlink shared channel (Physical downlink shared channel, HARQ-ACK of PDSCH) scheduled by PDCCH.
  • the first PDCCH and the PDSCH with PDCCH scheduling perform HARQ-ACK feedback (or called AN feedback, A means ACK, and N means NACK) in the same time slot or sub-slot
  • the first PDCCH and these PDSCHs are The HARQ-ACK is multiplexed for transmission on this slot or sub-slot.
  • the first PDCCH includes a downlink allocation index
  • the downlink allocation index is used for Determine the mapping position of the HARQ-ACK in the dynamic codebook, wherein the downlink allocation index is a count downlink allocation index C-DAI, or the downlink allocation index includes C-DAI and a total downlink allocation index T-DAI.
  • the mapping position of the HARQ-ACK of the first PDCCH in the dynamic codebook may be determined according to the downlink allocation index of the first PDCCH.
  • the feedback codebook for the multiplexed transmission is based on the other HARQ-ACK.
  • -A bit is added to the semi-static codebook determined by the ACK, where the A bit is the HARQ-ACK of the first PDCCH, and A is an integer greater than or equal to 1.
  • the semi-static codebook determined by the other HARQ-ACK may be a semi-static HARQ-ACK feedback codebook determined in a manner defined by the protocol, and then A bits are added to the codebook to obtain the final feedback codebook.
  • A is equal to the number of the first PDCCHs for which HARQ-ACK feedback is performed in the feedback time domain resource, and the feedback time domain resource is the time domain resource for the multiplexed transmission.
  • the above A is equal to 2, wherein the two first PDCCHs are different PDCCHs, and there are 1 in the above feedback time domain resources.
  • HARQ-ACK feedback of the first PDCCH the above A is equal to 1.
  • the above-mentioned number of the first PDCCH for HARQ-ACK feedback in the feedback time domain resources may be, the above-mentioned feedback time slot resources (for example: uplink time slots or sub-slots) are based on the feedback time domain set determined by the K1 set. It includes the number of MOs that can transmit the first PDCCH, where K1 can represent the time interval between the PDCCH or the PDSCH and the corresponding HARQ-ACK.
  • the feedback time domain resource of the HARQ-ACK is determined according to an offset value, and the offset value is an offset value included in the first PDCCH, or the offset value is a preconfigured offset value.
  • the above offset value is an offset value included in the first PDCCH
  • the first PDCCH itself includes a feedback timing indication field, so that an offset value indicated by this indication field and the first The time slot in which the PDCCH transmission is located determines the feedback time domain resource in which the HARQ-ACK transmission of the first PDCCH is located, such as a time slot or a sub-slot.
  • the above offset value is a preconfigured offset value
  • the first PDCCH itself does not include a feedback timing indication field, so that according to a preconfigured offset value and the time slot where the first PDCCH transmission is located, Determine the feedback time domain resource where the HARQ-ACK transmission of the first PDCCH is located, such as a time slot or a subslot.
  • the above-mentioned preconfigured offset value may be preconfigured by high-layer signaling or agreed in a protocol.
  • the terminal receives the first PDCCH sent by the network device, where the first PDCCH is used to indicate the number of times of repeated transmission of the PDCCH; the terminal feeds back the HARQ-ACK of the first PDCCH to the network device.
  • the network device notifies the terminal of the number of repeated PDCCH transmissions, and the terminal reports the corresponding HARQ-ACK, the terminal and the network device have the same understanding of the number of repeated PDCCH transmissions, thereby improving the PDCCH demodulation performance of the terminal.
  • FIG. 3 is a flowchart of an information receiving method provided by an embodiment of the present disclosure. As shown in FIG. 3, the method includes the following steps:
  • Step 301 The network device sends a first PDCCH to the terminal, where the first PDCCH is used to indicate the number of times of repeated transmission of the PDCCH;
  • Step 302 The network device receives the HARQ-ACK of the first PDCCH fed back by the terminal.
  • the first PDCCH includes:
  • the cyclic redundancy check CRC code adopts the PDCCH scrambled by the new wireless network temporary identifier RNTI, wherein the new RNTI is the RNTI newly defined for the first PDCCH.
  • the number of times of repeated transmission of the PDCCH indicated by the first PDCCH is the number of times of repeated transmission of the updated PDCCH.
  • the first PDCCH is transmitted periodically or aperiodically.
  • one HARQ-ACK is fed back for K times of transmission of the first PDCCH, the one HARQ-ACK is 1 bit, and K is an integer greater than or equal to 1.
  • the HARQ-ACK adopts a dynamic codebook, or the HARQ-ACK adopts a semi-static codebook.
  • the HARQ-ACK is transmitted alone, or the HARQ-ACK is multiplexed and transmitted with other HARQ-ACKs.
  • the first PDCCH includes a downlink allocation index
  • the downlink allocation index is used for determining the mapping position of the HARQ-ACK in the dynamic codebook, wherein the downlink allocation index is a counting downlink allocation index C-DAI, or the downlink allocation index includes C-DAI and a total downlink allocation index T-DAI; or
  • the feedback codebook for the multiplexed transmission is determined based on the other HARQ-ACKs
  • a bit is added to the semi-static codebook, where the A bit is the HARQ-ACK of the first PDCCH, and A is an integer greater than or equal to 1.
  • A is equal to the number of the first PDCCHs for which HARQ-ACK feedback is performed in the feedback time domain resource, and the feedback time domain resource is the time domain resource for the multiplexed transmission.
  • the other HARQ-ACKs include:
  • the feedback time domain resource of the HARQ-ACK is determined according to an offset value, and the offset value is an offset value included in the first PDCCH, or the offset value is a preconfigured offset value. shift value.
  • this embodiment is an implementation of the network device corresponding to the embodiment shown in FIG. 2 , and reference may be made to the relevant description of the embodiment shown in FIG. 2 for the specific implementation. The embodiments will not be repeated, and the same beneficial effects can also be achieved.
  • Embodiment 1 is a diagrammatic representation of Embodiment 1:
  • HARQ-ACK adopts a dynamic HARQ-ACK codebook for feedback as an example, which can be specifically as follows:
  • the first PDCCH may use a new radio network temporary identifier PR-RNT.
  • PR-RNT a new radio network temporary identifier
  • the terminal detects a PDCCH with PR-RNTI for CRC scramble, the terminal knows that the PDCCH is the first PDCCH.
  • the network device can allocate a PR-RNTI to each terminal through higher layer signaling or through DCI.
  • PR-RNTI range of possible values of PR-RNTI can be as shown in Table 1 below:
  • the first PDCCH is transmitted periodically, and its period is configured by high-layer signaling, that is, it is only transmitted in a specific MO in some specific frames/timeslots.
  • the configuration period of the first PDCCH may be as shown in FIG. 4 and FIG. 4A.
  • RepK represents the number of times of repeated transmission of the PDCCH.
  • the HARQ-ACK feedback mechanism of the first PDCCH using the dynamic codebook can be as shown in Figure 5, where the first PDCCH corresponds to K times of transmission, and K times of repeated transmission of the first PDCCH corresponds to 1-bit HARQ-ACK;
  • the first PDCCH contains at least C-DAI, which is used to determine the mapping position of the first PDCCH in the dynamic codebook.
  • the number of bits finally determined for HARQ-ACK feedback is 2, wherein 1 bit corresponds to PDSCH feedback, and 1 bit corresponds to the first PDCCH feedback.
  • the PDCCHs in time slot n+2 and time slot n+3 are K transmissions of the first PDCCH, and the repeated transmission of the first PDCCH is bundled feedback (bundle feedback), that is, only one HARQ is fed back -ACK.
  • the HARQ-ACK feedback mechanism of the first PDCCH using the dynamic codebook may be as shown in FIG. 6 .
  • the first PDCCH corresponds to K transmissions, and K repeated transmissions of the first PDCCH correspond to 1-bit HARQ-ACK; when the first PDCCH and the PDSCH with PDCCH scheduling are supported to perform HARQ-ACK feedback in the same time slot/sub-slot,
  • the first PDCCH includes at least C-DAI (in the case of multi-carrier, C-DAI+T-DAI), which is used to determine the mapping position of the first PDCCH in the dynamic codebook.
  • the feedback set of K1 is ⁇ 1, 2, 3 ⁇
  • the terminal receives a PDSCH and a first PDCCH on CC1, and on CC2 due to the received fallback DCI
  • the size of fallback DCI is fixed and therefore only includes a 2-bit C_DAI and thus no T-DAI.
  • the fallback DCI also schedules a PDSCH. Therefore, the size of the feedback codebook is 3 bits, of which 2 bits correspond to PDSCH feedback, and 1 bit corresponds to the first PDCCH feedback.
  • the HARQ-ACK adopts a static codebook for feedback as an example, and the details may be as follows:
  • the first PDCCH HARQ-ACK feedback mechanism using the semi-static codebook may be as shown in FIG. 7 .
  • For a certain UL time slot/subslot determine its semi-static HARQ-ACK feedback codebook according to the protocol, and then add the HARQ-ACK codebook that needs to be performed in this UL time slot/subslot to the determined HARQ-ACK codebook.
  • the HARQ-ACK of the first PDCCH fed back by the ACK how many bits are added depends on the number of HARQ-ACK feedback the first PDCCH may perform in this UL time slot/subslot, that is, this UL time slot/subslot is based on
  • the number of MOs that can transmit the first PDCCH included in the feedback time slot set determined by the K1 set determines the number of feedback bits that need to be increased.
  • the feedback set of K1 is ⁇ 1, 2, 3, 4 ⁇ .
  • the feedback set of K1 there may be 4 PDSCHs and 1 first PDCCH, so it can be determined that the feedback codebook is 5 bits. 4 bits are used for HARQ-ACK feedback of PDSCH, and 1 bit is used for HARQ-ACK feedback of first PDCCH.
  • the network device and the terminal can make the update mechanism for the number of times of PDCCH repeated transmissions updated between the network device and the terminal.
  • the communication mechanism is more efficient and accurate.
  • FIG. 8 is a structural diagram of a terminal provided by an embodiment of the present disclosure. As shown in FIG. 8, the terminal includes a memory 820, a transceiver 800, and a processor 810:
  • the memory 820 is used to store computer programs; the transceiver 800 is used to send and receive data under the control of the processor 810; the processor 810 is used to read the computer program in the memory 820 and perform the following operations:
  • the HARQ-ACK of the first PDCCH is fed back to the network device.
  • the transceiver 800 is used for receiving and transmitting data under the control of the processor 810 .
  • the bus architecture may include any number of interconnected buses and bridges, specifically one or more processors represented by processor 810 and various circuits of memory represented by memory 820 are linked together.
  • the bus architecture may also link together various other circuits, such as peripherals, voltage regulators, and power management circuits, which are well known in the art and, therefore, will not be described further herein.
  • the bus interface provides the interface.
  • Transceiver 800 may be a number of elements, including a transmitter and a receiver, providing means for communicating with various other devices over transmission media including wireless channels, wired channels, fiber optic cables, and the like Transmission medium.
  • the user interface 830 may also be an interface capable of externally connecting the required equipment, and the connected equipment includes but is not limited to a keypad, a display, a speaker, a microphone, a joystick, and the like.
  • the processor 810 is responsible for managing the bus architecture and general processing, and the memory 820 may store data used by the processor 800 in performing operations.
  • the processor 810 may be a CPU (central processing unit), an ASIC (Application Specific Integrated Circuit, an application-specific integrated circuit), an FPGA (Field-Programmable Gate Array, a field programmable gate array) or a CPLD (Complex Programmable Logic Device, Complex Programmable Logic Device), the processor can also use a multi-core architecture.
  • CPU central processing unit
  • ASIC Application Specific Integrated Circuit
  • FPGA Field-Programmable Gate Array
  • CPLD Complex Programmable Logic Device, Complex Programmable Logic Device
  • the processor can also use a multi-core architecture.
  • the processor is configured to execute any one of the methods provided by the embodiments of the present disclosure according to the obtained executable instructions by invoking the computer program stored in the memory.
  • the processor and memory may also be physically separated.
  • the first PDCCH includes:
  • the cyclic redundancy check CRC code adopts the PDCCH scrambled by the new wireless network temporary identifier RNTI, wherein the new RNTI is the RNTI newly defined for the first PDCCH.
  • the number of times of repeated transmission of the PDCCH indicated by the first PDCCH is the number of times of repeated transmission of the updated PDCCH.
  • the first PDCCH is transmitted periodically or aperiodically.
  • one HARQ-ACK is fed back for K times of transmission of the first PDCCH, the one HARQ-ACK is 1 bit, and K is an integer greater than or equal to 1.
  • the HARQ-ACK adopts a dynamic codebook, or the HARQ-ACK adopts a semi-static codebook.
  • the HARQ-ACK is transmitted alone, or the HARQ-ACK is multiplexed and transmitted with other HARQ-ACKs.
  • the first PDCCH includes a downlink allocation index
  • the downlink allocation index is used for determining the mapping position of the HARQ-ACK in the dynamic codebook, wherein the downlink allocation index is a counting downlink allocation index C-DAI, or the downlink allocation index includes C-DAI and a total downlink allocation index T-DAI; or
  • the feedback codebook for the multiplexed transmission is determined based on the other HARQ-ACKs
  • a bit is added to the semi-static codebook, where the A bit is the HARQ-ACK of the first PDCCH, and A is an integer greater than or equal to 1.
  • A is equal to the number of the first PDCCHs for which HARQ-ACK feedback is performed in the feedback time domain resource, and the feedback time domain resource is the time domain resource for the multiplexed transmission.
  • the other HARQ-ACKs include:
  • the feedback time domain resource of the HARQ-ACK is determined according to an offset value, and the offset value is an offset value included in the first PDCCH, or the offset value is a preconfigured offset value. shift value.
  • FIG. 9 is a structural diagram of a network device provided by an embodiment of the present disclosure. As shown in FIG. 9, it includes a memory 920, a transceiver 900, and a processor 910:
  • the memory 920 is used to store computer programs; the transceiver 900 is used to send and receive data under the control of the processor 910; the processor 910 is used to read the computer programs in the memory 920 and perform the following operations:
  • the transceiver 900 is used for receiving and transmitting data under the control of the processor 910 .
  • the bus architecture may include any number of interconnected buses and bridges, specifically one or more processors represented by processor 910 and various circuits of memory represented by memory 920 are linked together.
  • the bus architecture can also link together various other circuits, such as peripherals, voltage regulators, and power management circuits, which are well known in the art and therefore will not be described further herein.
  • the bus interface provides the interface.
  • Transceiver 900 may be multiple elements, including a transmitter and a receiver, providing means for communicating with various other devices over transmission media including wireless channels, wired channels, fiber optic cables, and the like.
  • the processor 910 is responsible for managing the bus architecture and general processing, and the memory 920 may store data used by the processor 910 in performing operations.
  • the processor 910 may be a central processing unit (CPU), an application specific integrated circuit (ASIC), a field programmable gate array (Field-Programmable Gate Array, FPGA) or a complex programmable logic device (Comple9Programmable Logic Device, CPLD) ), the processor can also use a multi-core architecture.
  • CPU central processing unit
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • CPLD complex programmable logic device
  • the processor is configured to execute any one of the methods provided by the embodiments of the present disclosure according to the obtained executable instructions by invoking the computer program stored in the memory.
  • the processor and memory may also be physically separated.
  • the first PDCCH includes:
  • the cyclic redundancy check CRC code adopts the PDCCH scrambled by the new wireless network temporary identifier RNTI, wherein the new RNTI is the RNTI newly defined for the first PDCCH.
  • the number of times of repeated transmission of the PDCCH indicated by the first PDCCH is the number of times of repeated transmission of the updated PDCCH.
  • the first PDCCH is transmitted periodically or aperiodically.
  • one HARQ-ACK is fed back for K times of transmission of the first PDCCH, the one HARQ-ACK is 1 bit, and K is an integer greater than or equal to 1.
  • the HARQ-ACK adopts a dynamic codebook, or the HARQ-ACK adopts a semi-static codebook.
  • the HARQ-ACK is transmitted alone, or the HARQ-ACK is multiplexed and transmitted with other HARQ-ACKs.
  • the first PDCCH includes a downlink allocation index
  • the downlink allocation index is used for determining the mapping position of the HARQ-ACK in the dynamic codebook, wherein the downlink allocation index is a counting downlink allocation index C-DAI, or the downlink allocation index includes C-DAI and a total downlink allocation index T-DAI; or
  • the feedback codebook for the multiplexed transmission is determined based on the other HARQ-ACKs
  • a bit is added to the semi-static codebook, where the A bit is the HARQ-ACK of the first PDCCH, and A is an integer greater than or equal to 1.
  • A is equal to the number of the first PDCCHs for which HARQ-ACK feedback is performed in the feedback time domain resource, and the feedback time domain resource is the time domain resource for the multiplexed transmission.
  • the other HARQ-ACKs include:
  • the feedback time domain resource of the HARQ-ACK is determined according to an offset value, and the offset value is an offset value included in the first PDCCH, or the offset value is a preconfigured offset value. shift value.
  • FIG. 10 is a structural diagram of a terminal provided by an embodiment of the present disclosure. As shown in FIG. 10, the terminal 1000 includes:
  • a receiving unit 1001 configured to receive a first physical downlink control channel PDCCH sent by a network device, where the first PDCCH is used to indicate the number of times of repeated transmission of the PDCCH;
  • the feedback unit 1002 is configured to feed back the HARQ-ACK of the hybrid automatic repeat request acknowledgement of the first PDCCH to the network device.
  • the first PDCCH includes:
  • the cyclic redundancy check CRC code adopts the PDCCH scrambled by the new wireless network temporary identifier RNTI, wherein the new RNTI is the RNTI newly defined for the first PDCCH.
  • the number of times of repeated transmission of the PDCCH indicated by the first PDCCH is the number of times of repeated transmission of the updated PDCCH.
  • the first PDCCH is transmitted periodically or aperiodically.
  • one HARQ-ACK is fed back for K times of transmission of the first PDCCH, the one HARQ-ACK is 1 bit, and K is an integer greater than or equal to 1.
  • the HARQ-ACK adopts a dynamic codebook, or the HARQ-ACK adopts a semi-static codebook.
  • the HARQ-ACK is transmitted alone, or the HARQ-ACK is multiplexed and transmitted with other HARQ-ACKs.
  • the first PDCCH includes a downlink allocation index
  • the downlink allocation index is used for determining the mapping position of the HARQ-ACK in the dynamic codebook, wherein the downlink allocation index is a counting downlink allocation index C-DAI, or the downlink allocation index includes C-DAI and a total downlink allocation index T-DAI; or
  • the feedback codebook for the multiplexed transmission is determined based on the other HARQ-ACKs
  • a bit is added to the semi-static codebook, where the A bit is the HARQ-ACK of the first PDCCH, and A is an integer greater than or equal to 1.
  • A is equal to the number of the first PDCCHs for which HARQ-ACK feedback is performed in the feedback time domain resource, and the feedback time domain resource is the time domain resource for the multiplexed transmission.
  • the other HARQ-ACKs include:
  • the feedback time domain resource of the HARQ-ACK is determined according to an offset value, and the offset value is an offset value included in the first PDCCH, or the offset value is a preconfigured offset value. shift value.
  • FIG. 11 is a structural diagram of a network device provided by an embodiment of the present disclosure. As shown in FIG. 11, the network device 1100 includes:
  • a sending unit 1101 configured to send a first physical downlink control channel PDCCH to a terminal, where the first PDCCH is used to indicate the number of times of repeated transmission of the PDCCH;
  • a receiving unit 1102 configured to receive the HARQ-ACK of the HARQ-ACK of the first PDCCH fed back by the terminal.
  • the first PDCCH includes:
  • the cyclic redundancy check CRC code adopts the PDCCH scrambled by the new wireless network temporary identifier RNTI, wherein the new RNTI is the RNTI newly defined for the first PDCCH.
  • the number of times of repeated transmission of the PDCCH indicated by the first PDCCH is the number of times of repeated transmission of the updated PDCCH.
  • the first PDCCH is transmitted periodically or aperiodically.
  • one HARQ-ACK is fed back for K times of transmission of the first PDCCH, the one HARQ-ACK is 1 bit, and K is an integer greater than or equal to 1.
  • the HARQ-ACK adopts a dynamic codebook, or the HARQ-ACK adopts a semi-static codebook.
  • the HARQ-ACK is transmitted alone, or the HARQ-ACK is multiplexed and transmitted with other HARQ-ACKs.
  • the first PDCCH includes a downlink allocation index
  • the downlink allocation index is used for determining the mapping position of the HARQ-ACK in the dynamic codebook, wherein the downlink allocation index is a counting downlink allocation index C-DAI, or the downlink allocation index includes C-DAI and a total downlink allocation index T-DAI; or
  • the feedback codebook for the multiplexed transmission is determined based on the other HARQ-ACKs
  • a bit is added to the semi-static codebook, where the A bit is the HARQ-ACK of the first PDCCH, and A is an integer greater than or equal to 1.
  • A is equal to the number of the first PDCCHs for which HARQ-ACK feedback is performed in the feedback time domain resource, and the feedback time domain resource is the time domain resource for the multiplexed transmission.
  • the other HARQ-ACKs include:
  • the feedback time domain resource of the HARQ-ACK is determined according to an offset value, and the offset value is an offset value included in the first PDCCH, or the offset value is a preconfigured offset value. shift value.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically alone, or two or more units may be integrated into one unit.
  • the above-mentioned integrated units may be implemented in the form of hardware, or may be implemented in the form of software functional units.
  • the integrated unit is implemented in the form of a software functional unit and sold or used as an independent product, it may be stored in a processor-readable storage medium.
  • the technical solutions of the present application can be embodied in the form of software products in essence, or the parts that contribute to the prior art, or all or part of the technical solutions, and the computer software products are stored in a storage medium , including several instructions for causing a computer device (which may be a personal computer, a server, or a network device, etc.) or a processor (processor) to execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage medium includes: U disk, mobile hard disk, read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disk and other media that can store program codes .
  • An embodiment of the present disclosure further provides a processor-readable storage medium, where the processor-readable storage medium stores a computer program, and the computer program is used to make the processor execute the information feedback method provided by the embodiment of the present disclosure, Alternatively, the computer program is used to cause the processor to execute the information receiving method provided by the embodiments of the present disclosure.
  • the processor-readable storage medium can be any available medium or data storage device that can be accessed by a processor, including, but not limited to, magnetic storage (eg, floppy disk, hard disk, magnetic tape, magneto-optical disk (MO), etc.), optical storage (eg, CD, DVD, BD, HVD, etc.), and semiconductor memory (eg, ROM, EPROM, EEPROM, non-volatile memory (NAND FLASH), solid-state disk (SSD)), etc.
  • magnetic storage eg, floppy disk, hard disk, magnetic tape, magneto-optical disk (MO), etc.
  • optical storage eg, CD, DVD, BD, HVD, etc.
  • semiconductor memory eg, ROM, EPROM, EEPROM, non-volatile memory (NAND FLASH), solid-state disk (SSD)
  • the embodiments of the present application may be provided as a method, a system, or a computer program product. Accordingly, the present application may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment combining software and hardware aspects. Furthermore, the present application may take the form of a computer program product embodied on one or more computer-usable storage media having computer-usable program code embodied therein, including but not limited to disk storage, optical storage, and the like.
  • processor-executable instructions may also be stored in a processor-readable memory capable of directing a computer or other programmable data processing apparatus to operate in a particular manner, such that the instructions stored in the processor-readable memory result in the manufacture of means including the instructions product, the instruction means implements the functions specified in the flow or flow of the flowchart and/or the block or blocks of the block diagram.
  • processor-executable instructions can also be loaded onto a computer or other programmable data processing device to cause a series of operational steps to be performed on the computer or other programmable device to produce a computer-implemented process that The executed instructions provide steps for implementing the functions specified in the flow diagram flow or flow diagrams and/or the block diagram block or blocks.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Detection And Prevention Of Errors In Transmission (AREA)

Abstract

提供一种信息反馈方法、信息接收方法、终端和网络设备,该方法包括:终端接收网络设备发送的第一PDCCH,所述第一PDCCH用于指示PDCCH重复传输次数;所述终端向所述网络设备反馈所述第一PDCCH的HARQ-ACK。

Description

信息反馈方法、信息接收方法、终端和网络设备
相关申请的交叉引用
本申请主张在2020年8月28日在中国提交的中国专利申请号No.202010885443.9的优先权,其全部内容通过引用包含于此。
技术领域
本公开涉及通信技术领域,尤其涉及一种信息反馈方法、信息接收方法、终端和网络设备。
背景技术
在一些通信系统(例如:5G系统)支持物理下行控制信道(Physical downlink control channel,PDCCH)重复传输(PDCCH repetition)。但这些通信系统支持的PDCCH repetition是半静态配置的。另外,一些特殊终端在能力或者复杂上相对于通用终端进行了裁剪,例如:Redcap终端,具体可以是支持最大带宽的裁剪(如从100MHz带宽减少到20MHz带宽),天线数的减少(如从4根接收天线减少到2根或者1根接收天线。这样可能会导致终端对PDCCH repetition次数与网络设备对PDCCH repetition次数理解不一致,从而影响终端PDCCH的解调性能,进而导致终端PDCCH的解调性能较低。
发明内容
本公开实施例提供一种信息反馈方法、信息接收方法、终端和网络设备,以解决终端PDCCH的解调性能较低的问题。
本公开实施例提供一种信息反馈方法,包括:
终端接收网络设备发送的第一PDCCH,所述第一PDCCH用于指示PDCCH重复传输次数;
所述终端向所述网络设备反馈所述第一PDCCH的混合自动重传请求确认(Hybrid Automatic Repeat request Acknowledgement,HARQ-ACK)。
可选的,所述第一PDCCH包括:
循环冗余校验(Cyclic Redundancy Check,CRC)码采用新无线网络临时标识(Radio network temporary identifier,RNTI)加扰的PDCCH,其中,所述新RNTI是为所述第一PDCCH新定义的RNTI。
可选的,所述第一PDCCH指示的PDCCH重复传输次数为更新的PDCCH重复传输次数。
可选的,所述第一PDCCH是周期性或者非周期性传输的。
可选的,针对所述第一PDCCH的K次传输反馈一个HARQ-ACK,所述一个HARQ-ACK为1比特,K为大于或者等于1的整数。
可选的,所述HARQ-ACK采用动态码本,或者所述HARQ-ACK采用半静态码本。
可选的,所述HARQ-ACK单独传输,或者,所述HARQ-ACK与其他HARQ-ACK复用传输。
可选的,在所述HARQ-ACK与其他HARQ-ACK复用传输,且所述HARQ-ACK采用动态码本的情况下:所述第一PDCCH包括下行分配索引,所述下行分配索引用于确定所述HARQ-ACK在动态码本中的映射位置,其中,所述下行分配索引为计数下行分配索引C-DAI,或者所述下行分配索引包括C-DAI和总下行分配索引T-DAI;或者
在所述HARQ-ACK与其他HARQ-ACK复用传输,且所述HARQ-ACK采用半静态码本的情况下:所述复用传输的反馈码本是在基于所述其他HARQ-ACK确定的半静态码本上增加A比特得到,其中,所述A比特为所述第一PDCCH的HARQ-ACK,A为大于或者等于1的整数。
可选的,A等于在反馈时域资源进行HARQ-ACK反馈的第一PDCCH的个数,所述反馈时域资源为所述复用传输的时域资源。
可选的,所述其他HARQ-ACK包括:
PDCCH调度的物理下行共享信道PDSCH的HARQ-ACK。
可选的,所述HARQ-ACK的反馈时域资源是依据偏移值确定,所述偏移值为所述第一PDCCH包含的偏移值,或者,所述偏移值为预先配置的偏移值。
本公开实施例还提供一种信息接收方法,包括:
网络设备向终端发送第一物理下行控制信道PDCCH,所述第一PDCCH用于指示PDCCH重复传输次数;
所述网络设备接收所述终端反馈的所述第一PDCCH的混合自动重传请求确认HARQ-ACK。
可选的,所述第一PDCCH包括:
循环冗余校验CRC码采用新无线网络临时标识RNTI加扰的PDCCH,其中,所述新RNTI是为所述第一PDCCH新定义的RNTI。
可选的,所述第一PDCCH指示的PDCCH重复传输次数为更新的PDCCH重复传输次数。
可选的,所述第一PDCCH是周期性或者非周期性传输的。
可选的,针对所述第一PDCCH的K次传输反馈一个HARQ-ACK,所述一个HARQ-ACK为1比特,K为大于或者等于1的整数。
可选的,所述HARQ-ACK采用动态码本,或者所述HARQ-ACK采用半静态码本。
可选的,所述HARQ-ACK单独传输,或者,所述HARQ-ACK与其他HARQ-ACK复用传输。
可选的,在所述HARQ-ACK与其他HARQ-ACK复用传输,且所述HARQ-ACK采用动态码本的情况下:所述第一PDCCH包括下行分配索引,所述下行分配索引用于确定所述HARQ-ACK在动态码本中的映射位置,其中,所述下行分配索引为计数下行分配索引(Counter Downlink Assignment Index,C-DAI),或者所述下行分配索引包括C-DAI和总下行分配索引(Total Downlink Assignment Index,T-DAI);或者
在所述HARQ-ACK与其他HARQ-ACK复用传输,且所述HARQ-ACK采用半静态码本的情况下:所述复用传输的反馈码本是在基于所述其他HARQ-ACK确定的半静态码本上增加A比特得到,其中,所述A比特为所述第一PDCCH的HARQ-ACK,A为大于或者等于1的整数。
可选的,A等于在反馈时域资源进行HARQ-ACK反馈的第一PDCCH的个数,所述反馈时域资源为所述复用传输的时域资源。
可选的,所述其他HARQ-ACK包括:
PDCCH调度的物理下行共享信道PDSCH的HARQ-ACK。
可选的,所述HARQ-ACK的反馈时域资源是依据偏移值确定,所述偏移值为所述第一PDCCH包含的偏移值,或者,所述偏移值为预先配置的偏移值。
本公开实施例还提供一种终端,包括存储器、收发机和处理器,其中:
存储器,用于存储计算机程序;收发机,用于在所述处理器的控制下收发数据;处理器,用于读取所述存储器中的计算机程序并执行以下操作:
接收网络设备发送的第一物理下行控制信道PDCCH,所述第一PDCCH用于指示PDCCH重复传输次数;
向所述网络设备反馈所述第一PDCCH的混合自动重传请求确认HARQ-ACK。
可选的,所述第一PDCCH包括:
循环冗余校验CRC码采用新无线网络临时标识RNTI加扰的PDCCH,其中,所述新RNTI是为所述第一PDCCH新定义的RNTI。
可选的,所述第一PDCCH指示的PDCCH重复传输次数为更新的PDCCH重复传输次数。
可选的,所述HARQ-ACK单独传输,或者,所述HARQ-ACK与其他HARQ-ACK复用传输。
可选的,在所述HARQ-ACK与其他HARQ-ACK复用传输,且所述HARQ-ACK采用动态码本的情况下:所述第一PDCCH包括下行分配索引,所述下行分配索引用于确定所述HARQ-ACK在动态码本中的映射位置,其中,所述下行分配索引为计数下行分配索引C-DAI,或者所述下行分配索引包括C-DAI和总下行分配索引T-DAI;或者
在所述HARQ-ACK与其他HARQ-ACK复用传输,且所述HARQ-ACK采用半静态码本的情况下:所述复用传输的反馈码本是在基于所述其他HARQ-ACK确定的半静态码本上增加A比特得到,其中,所述A比特为所述第一PDCCH的HARQ-ACK,A为大于或者等于1的整数。
本公开实施例还提供一种网络设备,包括存储器、收发机和处理器,其中:
存储器,用于存储计算机程序;收发机,用于在所述处理器的控制下收发数据;处理器,用于读取所述存储器中的计算机程序并执行以下操作:
向终端发送第一物理下行控制信道PDCCH,所述第一PDCCH用于指示PDCCH重复传输次数;
接收所述终端反馈的所述第一PDCCH的混合自动重传请求确认HARQ-ACK。
可选的,所述第一PDCCH包括:
循环冗余校验CRC码采用新无线网络临时标识RNTI加扰的PDCCH,其中,所述新RNTI是为所述第一PDCCH新定义的RNTI。
可选的,所述第一PDCCH指示的PDCCH重复传输次数为更新的PDCCH重复传输次数。
可选的,所述HARQ-ACK单独传输,或者,所述HARQ-ACK与其他HARQ-ACK复用传输。
可选的,在所述HARQ-ACK与其他HARQ-ACK复用传输,且所述HARQ-ACK采用动态码本的情况下:所述第一PDCCH包括下行分配索引,所述下行分配索引用于确定所述HARQ-ACK在动态码本中的映射位置,其中,所述下行分配索引为计数下行分配索引C-DAI,或者所述下行分配索引包括C-DAI和总下行分配索引T-DAI;或者
在所述HARQ-ACK与其他HARQ-ACK复用传输,且所述HARQ-ACK采用半静态码本的情况下:所述复用传输的反馈码本是在基于所述其他HARQ-ACK确定的半静态码本上增加A比特得到,其中,所述A比特为所述第一PDCCH的HARQ-ACK,A为大于或者等于1的整数。
本公开实施例还提供一种终端,包括:
接收单元,用于接收网络设备发送的第一物理下行控制信道PDCCH,所述第一PDCCH用于指示PDCCH重复传输次数;
反馈单元,用于向所述网络设备反馈所述第一PDCCH的混合自动重传请求确认HARQ-ACK。
本公开实施例还提供一种网络设备,包括:
发送单元,用于向终端发送第一物理下行控制信道PDCCH,所述第一 PDCCH用于指示PDCCH重复传输次数;
接收单元,用于接收所述终端反馈的所述第一PDCCH的混合自动重传请求确认HARQ-ACK。
本公开实施例还提供一种处理器可读存储介质,所述处理器可读存储介质存储有计算机程序,所述计算机程序用于使所述处理器执行本公开实施例提供的信息反馈方法,或者,所述计算机程序用于使所述处理器本公开实施例提供的信息接收方法。
本公开实施例中,终端接收网络设备发送的第一PDCCH,所述第一PDCCH用于指示PDCCH重复传输次数;所述终端向所述网络设备反馈所述第一PDCCH的HARQ-ACK。这样由于网络设备通知终端PDCCH重复传输次数,且终端上报对应的HARQ-ACK,从而使得终端与网络设备对PDCCH重复传输次数理解一致,进而提高终端的PDCCH的解调性能。
附图说明
图1是本公开实施例可应用的网络构架的结构示意图;
图2是本公开实施例提供的信息反馈方法的流程图;
图3是本公开实施例提供的信息接收方法的流程图;
图4和图4A是本公开实施例提供的第一PDCCH配置的示意图;
图5是本公开实施例提供的HARQ-ACK反馈的示意图;
图6是本公开实施例提供的HARQ-ACK反馈的另一示意图;
图7是本公开实施例提供的HARQ-ACK反馈的另一示意图;
图8是本公开实施例提供的终端的结构图;
图9是本公开实施例提供的网络设备的结构图;
图10是本公开实施例提供的终端的另一结构图;
图11是本公开实施例提供的网络设备的另一结构图。
具体实施方式
为使本公开要解决的技术问题、技术方案和优点更加清楚,下面将结合附图及具体实施例进行详细描述。
本公开实施例中术语“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。
本公开实施例中术语“多个”是指两个或两个以上,其它量词与之类似。
下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,并不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本公开实施例提供一种信息反馈方法、信息接收方法、终端和网络设备,以解决终端PDCCH的解调性能较低的问题。
其中,方法和设备是基于同一申请构思的,由于方法和设备解决问题的原理相似,因此装置和方法的实施可以相互参见,重复之处不再赘述。
本公开实施例提供的技术方案可以适用于多种系统,尤其是5G系统。例如适用的系统可以是全球移动通讯(global system of mobile communication,GSM)系统、码分多址(code division multiple access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)通用分组无线业务(general packet radio service,GPRS)系统、长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)系统、高级长期演进(long term evolution advanced,LTE-A)系统、通用移动系统(universal mobile telecommunication system,UMTS)、全球互联微波接入(worldwide interoperability for microwave access,WiMAX)系统、5G新空口(New Radio,NR)系统、6G系统等。这多种系统中均包括终端设备和网络设备。系统中还可以包括核心网部分,例如演进的分组系统(Evloved Packet System,EPS)、5G系统(5G System,5GS)等。
请参见图1,图1是本公开实施可应用的网络构架的结构示意图,如图1所示,包括终端11和网络设备12。
其中,本公开实施例涉及的终端,可以是指向用户提供语音和/或数据连通性的设备,具有无线连接功能的手持式设备、或连接到无线调制解调器的 其他处理设备等。在不同的系统中,终端设备的名称可能也不相同,例如在5G系统中,终端设备可以称为用户设备(User Equipment,UE)。无线终端设备可以经无线接入网(Radio Access Network,RAN)与一个或多个核心网(Core Network,CN)进行通信,无线终端设备可以是移动终端设备,如移动电话(或称为“蜂窝”电话)和具有移动终端设备的计算机,例如,可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置,它们与无线接入网交换语言和/或数据。例如,个人通信业务(Personal Communication Service,PCS)电话、无绳电话、会话发起协议(Session Initiated Protocol,SIP)话机、无线本地环路(Wireless Local Loop,WLL)站、个人数字助理(Personal Digital Assistant,PDA)、Redcap终端等设备。无线终端设备也可以称为系统、订户单元(subscriber unit)、订户站(subscriber station),移动站(mobile station)、移动台(mobile)、远程站(remote station)、接入点(access point)、远程终端设备(remote terminal)、接入终端设备(access terminal)、用户终端设备(user terminal)、用户代理(user agent)、用户装置(user device),本公开实施例中并不限定。
本公开实施例涉及的网络设备,可以是基站,该基站可以包括多个为终端提供服务的小区。根据具体应用场合不同,基站又可以称为接入点,或者可以是接入网中在空中接口上通过一个或多个扇区与无线终端设备通信的设备,或者其它名称。网络设备可用于将收到的空中帧与网际协议(Internet Protocol,IP)分组进行相互更换,作为无线终端设备与接入网的其余部分之间的路由器,其中接入网的其余部分可包括网际协议(IP)通信网络。网络设备还可协调对空中接口的属性管理。例如,本公开实施例涉及的网络设备可以是全球移动通信系统(Global System for Mobile communications,GSM)或码分多址接入(Code Division Multiple Access,CDMA)中的网络设备(Base Transceiver Station,BTS),也可以是带宽码分多址接入(Wide-band Code Division Multiple Access,WCDMA)中的网络设备(NodeB),还可以是长期演进(long term evolution,LTE)系统中的演进型网络设备(evolutional Node B,eNB或e-NodeB)、5G网络架构(next generation system)中的5G基站(gNB),也可以是家庭演进基站(Home evolved Node B,HeNB)、中继节点(relay node)、 家庭基站(femto)、微微基站(pico)等,本公开实施例中并不限定。在一些网络结构中,网络设备可以包括集中单元(centralized unit,CU)节点和分布单元(distributed unit,DU)节点,集中单元和分布单元也可以地理上分开布置。
网络设备与终端之间可以各自使用一或多根天线进行多输入多输出(Multi Input Multi Output,MIMO)传输,MIMO传输可以是单用户MIMO(Single User MIMO,SU-MIMO)或多用户MIMO(Multiple User MIMO,MU-MIMO)。根据根天线组合的形态和数量,MIMO传输可以是2D-MIMO、3D-MIMO、FD-MIMO或massive-MIMO,也可以是分集传输或预编码传输或波束赋形传输等。
请参见图2,图2是本公开实施例提供的一种信息反馈方法的流程图,如图2所示,包括以下步骤:
步骤201、终端接收网络设备发送的第一PDCCH,所述第一PDCCH用于指示PDCCH重复传输(PDCCH repetition)次数;
步骤202、所述终端向所述网络设备反馈所述第一PDCCH的HARQ-ACK。
本公开实施例中,第一PDCCH可以理解为用于指示PDCCH重复传输次数的PDCCH,当然,第一PDCCH除了用于指示PDCCH重复传输次数也可以或者不指示其他信息,对此不作限定。而其他PDCCH可以称作第二PDCCH或者第三PDCCH等。
另外,上述第一PDCCH也可以是重复传输,例如:重复传输K次,当然,对此不作限定,例如:也可以不采用重复传输,如传输一次。
上述第一PDCCH的HARQ-ACK可以是ACK或者NACK,从而帮助网络设备识别所指示的重复传输次数是否被终端正确接收到。
本公开实施例中,由于网络设备通知终端PDCCH重复传输次数,且终端上报对应的HARQ-ACK,从而使得终端与网络设备对PDCCH重复传输次数理解一致,进而提高终端的PDCCH的解调性能,例如:可以避免终端理解的PDCCH重复传输次数高于网络侧设备理解的PDCCH重复传输次数而导致终端执行无用的PDCCH检测,或者可以避免终端理解的PDCCH重复传输次数小于网络侧设备理解的PDCCH重复传输次数而导致终端错过一些 PDCCH检测。
需要说明的是,本公开实施例中,终端可以是Redcap终端或者通用终端。
作为一种可选的实施方式,所述第一PDCCH包括:
CRC码采用新RNTI加扰的PDCCH,其中,所述新RNTI是为所述第一PDCCH新定义的RNTI。
其中,上述新RNTI可以称作PDCCH重复传输次数无线网络临时标识(PDCCH RepK Radio Network Temporary Identity,PR-RNTI),当然,对此不作限定,例如:也可以是其他名称。且上述新RNTI可以为终端专用RNTI,例如:网络设备为每个终端分别配置对应的新RNTI,当然,对此不作限定,例如:可以是多个终端共享同一个新RNTI。
该实施方式中,由于第一PDCCH为CRC码采用新RNTI加扰的PDCCH,这样终端可以准确是识别哪些PDCCH为第一PDCCH,例如:当终端检测到带有PR-RNTI进行CRC加扰的PDCCH的时候,终端就会知道该PDCCH是用于指示PDCCH重复传输次数。
作为一种可选的实施方式,所述第一PDCCH指示的PDCCH重复传输次数为更新的PDCCH重复传输次数。
其中,更新PDCCH重复传输次数可以是网络设备可以根据信道情况、终端业务或者终端能力等更新PDCCH重复传输次数。
该实施方式中,由于通过第一PDCCH通知终端更新的PDCCH重复传输次数,这样可以支持网络设备及时更新PDCCH重复传输次数,以进一步提高终端的PDCCH的解调性能。
作为一种可选的实施方式,所述第一PDCCH是周期性或者非周期性传输的。
其中,上述周期可以是高层信令配置的,且上述第一PDCCH可以是特定的时域资源中传输,例如:在某些特定的时隙中的特定监听时机(monitoring occasion,MO)中传输。
上述非周期性传输可以是网络设备动态发送的。
作为一种可选的实施方式,针对所述第一PDCCH的K次传输反馈一个HARQ-ACK,所述一个HARQ-ACK为1比特,K为大于或者等于1的整数。
其中,上述K次传输可以是第一PDCCH重复传输K次。
该第一PDCCH对应1比特HARQ-ACK,这样可以减少信令开销。例如:如果第一PDCCH本身对应了K次传输,HARQ-ACK反馈信息反映基于第一PDCCH的K次传输合并之后得到的解调结果。
作为一种可选的实施方式,所述HARQ-ACK采用动态码本,或者所述HARQ-ACK采用半静态码本。
其中,上述动态码本可以是类型2 HARQ-ACK码本(Type-2 HARQ-ACK码本),上述半静态码本可以是类型1 HARQ-ACK码本(Type-1 HARQ-ACK码本)。
另外,具体是采用动态码本还是半静态码本可以根据实际情况进行采用,以提高HARQ-ACK的灵活性。
作为一种可选的实施方式,上述HARQ-ACK单独传输,或者,所述HARQ-ACK与其他HARQ-ACK复用传输。
其中,上述其他HARQ-ACK可以是反馈时域资源与上述第一PDCCH的HARQ-ACK的反馈时域资源相同的一个或者多个HARQ-ACK。
可选的,所述其他HARQ-ACK包括:
PDCCH调度的物理下行共享信道(Physical downlink shared channel,PDSCH的HARQ-ACK。
例如:上述第一PDCCH与具有PDCCH调度的PDSCH在同一个时隙或者子时隙进行HARQ-ACK反馈(或者称作AN反馈,A表示ACK,N表示NACK)时,第一PDCCH与这些PDSCH的HARQ-ACK在该时隙或者子时隙上复用传输。
该实施方式中,由于支持HARQ-ACK与其他HARQ-ACK复用传输,这样可以节约传输资源。
可选的,在所述HARQ-ACK与其他HARQ-ACK复用传输,且所述HARQ-ACK采用动态码本的情况下:所述第一PDCCH包括下行分配索引,所述下行分配索引用于确定所述HARQ-ACK在动态码本中的映射位置,其中,所述下行分配索引为计数下行分配索引C-DAI,或者所述下行分配索引包括C-DAI和总下行分配索引T-DAI。
该实施方式中,可以根据第一PDCCH的下行分配索引确定第一PDCCH的HARQ-ACK在动态码本中的映射位置。
可选的,在所述HARQ-ACK与其他HARQ-ACK复用传输,且所述HARQ-ACK采用半静态码本的情况下:所述复用传输的反馈码本是在基于所述其他HARQ-ACK确定的半静态码本上增加A比特得到,其中,所述A比特为所述第一PDCCH的HARQ-ACK,A为大于或者等于1的整数。
其中,上述其他HARQ-ACK确定的半静态码本可以是按照协议定义的方式确定的半静态HARQ-ACK反馈码本,之后在该码本上增加A比特,以得到最终反馈的码本。
可选的,A等于在反馈时域资源进行HARQ-ACK反馈的第一PDCCH的个数,所述反馈时域资源为所述复用传输的时域资源。
例如:在上述反馈时域资源中有2个第一PDCCH的HARQ-ACK反馈,则上述A等于为2,其中,这2个第一PDCCH为不同的PDCCH,在上述反馈时域资源中有1个第一PDCCH的HARQ-ACK反馈,则上述A等于为1。
进一步的,上述在反馈时域资源进行HARQ-ACK反馈的第一PDCCH的个数可以是,上述反馈时隙资源(例如:上行时隙或者子时隙)基于K1集合确定的反馈时域集合中包括可以传输第一PDCCH的MO个数,其中,K1可以表示PDCCH或者PDSCH与对应的HARQ-ACK之间的时间间隔。
该实施方式中,由于可以在基于其他HARQ-ACK确定的半静态码本上增加A比特,这样可以降低HARQ-ACK复用传输的复杂度。
作为一种可选的实施方式,所述HARQ-ACK的反馈时域资源是依据偏移值确定,所述偏移值为所述第一PDCCH包含的偏移值,或者,所述偏移值为预先配置的偏移值。
在上述偏移值为所述第一PDCCH包含的偏移值的情况下,可以是第一PDCCH本身包含了一个反馈时序指示域,从而可以根据这个指示域所指示的一个偏移值以及第一PDCCH传输所在的时隙,确定第一PDCCH的HARQ-ACK传输所在的反馈时域资源,如时隙或者子时隙。
在上述偏移值为预先配置的偏移值的情况下,可以是第一PDCCH本身不包含反馈时序指示域,从而可以根据预先配置的一个偏移值以及以及第一 PDCCH传输所在的时隙,确定第一PDCCH的HARQ-ACK传输所在的反馈时域资源,如时隙或者子时隙。其中,上述预先配置的偏移值可以是高层信令预先配置的,或者协议约定的。
本公开实施例中,终端接收网络设备发送的第一PDCCH,所述第一PDCCH用于指示PDCCH重复传输次数;所述终端向所述网络设备反馈所述第一PDCCH的HARQ-ACK。这样由于网络设备通知终端PDCCH重复传输次数,且终端上报对应的HARQ-ACK,从而使得终端与网络设备对PDCCH重复传输次数理解一致,进而提高终端的PDCCH的解调性能。
请参见图3,图3是本公开实施例提供的一种信息接收方法的流程图,如图3所示,包括以下步骤:
步骤301、网络设备向终端发送第一PDCCH,所述第一PDCCH用于指示PDCCH重复传输次数;
步骤302、所述网络设备接收所述终端反馈的所述第一PDCCH的HARQ-ACK。
可选的,所述第一PDCCH包括:
循环冗余校验CRC码采用新无线网络临时标识RNTI加扰的PDCCH,其中,所述新RNTI是为所述第一PDCCH新定义的RNTI。
可选的,所述第一PDCCH指示的PDCCH重复传输次数为更新的PDCCH重复传输次数。
可选的,所述第一PDCCH是周期性或者非周期性传输的。
可选的,针对所述第一PDCCH的K次传输反馈一个HARQ-ACK,所述一个HARQ-ACK为1比特,K为大于或者等于1的整数。
可选的,所述HARQ-ACK采用动态码本,或者所述HARQ-ACK采用半静态码本。
可选的,所述HARQ-ACK单独传输,或者,所述HARQ-ACK与其他HARQ-ACK复用传输。
可选的,在所述HARQ-ACK与其他HARQ-ACK复用传输,且所述HARQ-ACK采用动态码本的情况下:所述第一PDCCH包括下行分配索引,所述下行分配索引用于确定所述HARQ-ACK在动态码本中的映射位置,其 中,所述下行分配索引为计数下行分配索引C-DAI,或者所述下行分配索引包括C-DAI和总下行分配索引T-DAI;或者
在所述HARQ-ACK与其他HARQ-ACK复用传输,且所述HARQ-ACK采用半静态码本的情况下:所述复用传输的反馈码本是在基于所述其他HARQ-ACK确定的半静态码本上增加A比特得到,其中,所述A比特为所述第一PDCCH的HARQ-ACK,A为大于或者等于1的整数。
可选的,A等于在反馈时域资源进行HARQ-ACK反馈的第一PDCCH的个数,所述反馈时域资源为所述复用传输的时域资源。
可选的,所述其他HARQ-ACK包括:
PDCCH调度的物理下行共享信道PDSCH的HARQ-ACK。
可选的,所述HARQ-ACK的反馈时域资源是依据偏移值确定,所述偏移值为所述第一PDCCH包含的偏移值,或者,所述偏移值为预先配置的偏移值。
需要说明的是,本实施例作为与图2所示的实施例中对应的网络设备的实施方式,其具体的实施方式可以参见图2所示的实施例的相关说明,为了避免重复说明,本实施例不再赘述,且还可以达到相同有益效果。
下面通过两个实施例对本公开实施例提供的方法进行举例说明:
实施例1:
该实施例以HARQ-ACK采用动态HARQ-ACK codebook进行反馈举例,具体可以如下:
第一PDCCH可以采用一种新的无线网络临时标识符PR-RNT,当终端检测到带有PR-RNTI进行CRC加扰的PDCCH的时候,终端就知道该PDCCH为第一PDCCH。网络设备可以通过高层信令或者通过DCI为每个终端分配一个PR-RNTI。
其中,PR-RNTI可以取值范围可以如下表1所示:
表1:
Figure PCTCN2021114074-appb-000001
第一PDCCH是周期性传输的,其周期是高层信令配置的,即仅在某些特定的帧/时隙中的特定MO中传输。例如:第一PDCCH的配置周期可以如图4和图4A所示,在图4和图4A中,第一PDCCH的配置周期为M帧,在每M帧有1或者多个第一PDCCH,(SFN/M)=0为起始帧。且在图4和图4A中RepK表示PDCCH重复传输次数。
采用动态码本的第一PDCCH的HARQ-ACK反馈机制可以如图5所示,其中,第一PDCCH对应K次传输,则K次第一PDCCH重复传输对应1比特HARQ-ACK;当支持第一PDCCH与具有PDCCH调度的PDSCH在同一个时隙/子时隙进行HARQ-ACK反馈时,第一PDCCH中至少包含C-DAI,用于确定第一PDCCH在动态码本中的映射位置。如图5所示,动态码本的K1反馈集合{1,3},在反馈集合中,K1=3对应的C-DAI为1,K1=1对应的C-DAI为2。最终确定的HARQ-ACK反馈的比特数为2,其中1比特对应PDSCH反馈,1比特对应第一PDCCH反馈。
其中,在图5中,时隙n+2和时隙n+3中的PDCCH为第一PDCCH的K次传输,且第一PDCCH的重复传输绑定反馈(bundle feedback),即只反馈一个HARQ-ACK。
进一步的,在多载波情况下,采用动态码本的第一PDCCH的HARQ-ACK反馈机制可以如图6所示。第一PDCCH对应K次传输,则K次第一PDCCH重复传输对应1比特HARQ-ACK;当支持第一PDCCH与具有PDCCH调度的PDSCH在同一个时隙/子时隙进行HARQ-ACK反馈时,针对多载波情况下,第一PDCCH中至少包含C-DAI(多载波情况下,C-DAI+T-DAI),用于确定第一PDCCH在动态码本中的映射位置。在图6中,有两个载波承载下行数据,K1的反馈集合为{1,2,3},终端在CC1上接收到一个PDSCH和一个第一PDCCH,在CC2上由于接收到回退DCI(fallback DCI)的大小固定因此仅仅包括一个2比特C_DAI因此没有T-DAI。该fallback DCI也调度了一个PDSCH。因此反馈的码本大小为3比特,其中2比特对应PDSCH反馈,1比特对应第一PDCCH反馈。
实施例2:
该实施例以HARQ-ACK采用静态码本进行反馈举例,具体可以如下:
采用半静态码本的第一PDCCH HARQ-ACK反馈机制可以如图7所示。对于某一个UL时隙/子时隙,按照协议约定确定其半静态HARQ-ACK反馈码本,然后在确定的HARQ-ACK码本中增加需要在这个UL时隙/子时隙中进行HARQ-ACK反馈的第一PDCCH的HARQ-ACK,具体增加多少比特,取决于第一PDCCH可能在这个UL时隙/子时隙进行HARQ-ACK反馈的个数,即这个UL时隙/子时隙基于K1集合确定的反馈时隙集合中包含的可以传输第一PDCCH的MO的个数来确定需要增加反馈比特数。在图7中,K1的反馈集合为{1,2,3,4},在K1反馈集合中,可能会有4个PDSCH和1个第一PDCCH,因此就可以确定反馈码本为5比特其中4比特用于PDSCH的HARQ-ACK反馈,1比特用于第一PDCCH的HARQ-ACK反馈。
本公开实施例中,通过引入第一PDCCH承载用于指示PDCCH重复传输次数的指示信息,以及终端进行相应的HARQ-ACK反馈机制,可以使得网络设备和终端之间针对PDCCH重复传输次数更新机制的沟通机制更加高效和准确。
请参见图8,图8是本公开实施例提供的一种终端的结构图,如图8所示,包括存储器820、收发机800和处理器810:
存储器820,用于存储计算机程序;收发机800,用于在所述处理器810的控制下收发数据;处理器810,用于读取所述存储器820中的计算机程序并执行以下操作:
接收网络设备发送的第一物理下行控制信道PDCCH,所述第一PDCCH用于指示PDCCH重复传输次数;
向所述网络设备反馈所述第一PDCCH的混合自动重传请求确认HARQ-ACK。
收发机800,用于在处理器810的控制下接收和发送数据。
其中,在图8中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器810代表的一个或多个处理器和存储器820代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机800可以是多个元件, 即包括发送机和接收机,提供用于在传输介质上与各种其他装置通信的单元,这些传输介质包括,这些传输介质包括无线信道、有线信道、光缆等传输介质。针对不同的用户设备,用户接口830还可以是能够外接内接需要设备的接口,连接的设备包括但不限于小键盘、显示器、扬声器、麦克风、操纵杆等。
处理器810负责管理总线架构和通常的处理,存储器820可以存储处理器800在执行操作时所使用的数据。
可选的,处理器810可以是CPU(中央处理器)、ASIC(Application Specific Integrated Circuit,专用集成电路)、FPGA(Field-Programmable Gate Array,现场可编程门阵列)或CPLD(Complex Programmable Logic Device,复杂可编程逻辑器件),处理器也可以采用多核架构。
处理器通过调用存储器存储的计算机程序,用于按照获得的可执行指令执行本公开实施例提供的任一所述方法。处理器与存储器也可以物理上分开布置。
可选的,所述第一PDCCH包括:
循环冗余校验CRC码采用新无线网络临时标识RNTI加扰的PDCCH,其中,所述新RNTI是为所述第一PDCCH新定义的RNTI。
可选的,所述第一PDCCH指示的PDCCH重复传输次数为更新的PDCCH重复传输次数。
可选的,所述第一PDCCH是周期性或者非周期性传输的。
可选的,针对所述第一PDCCH的K次传输反馈一个HARQ-ACK,所述一个HARQ-ACK为1比特,K为大于或者等于1的整数。
可选的,所述HARQ-ACK采用动态码本,或者所述HARQ-ACK采用半静态码本。
可选的,所述HARQ-ACK单独传输,或者,所述HARQ-ACK与其他HARQ-ACK复用传输。
可选的,在所述HARQ-ACK与其他HARQ-ACK复用传输,且所述HARQ-ACK采用动态码本的情况下:所述第一PDCCH包括下行分配索引,所述下行分配索引用于确定所述HARQ-ACK在动态码本中的映射位置,其 中,所述下行分配索引为计数下行分配索引C-DAI,或者所述下行分配索引包括C-DAI和总下行分配索引T-DAI;或者
在所述HARQ-ACK与其他HARQ-ACK复用传输,且所述HARQ-ACK采用半静态码本的情况下:所述复用传输的反馈码本是在基于所述其他HARQ-ACK确定的半静态码本上增加A比特得到,其中,所述A比特为所述第一PDCCH的HARQ-ACK,A为大于或者等于1的整数。
可选的,A等于在反馈时域资源进行HARQ-ACK反馈的第一PDCCH的个数,所述反馈时域资源为所述复用传输的时域资源。
可选的,所述其他HARQ-ACK包括:
PDCCH调度的物理下行共享信道PDSCH的HARQ-ACK。
可选的,所述HARQ-ACK的反馈时域资源是依据偏移值确定,所述偏移值为所述第一PDCCH包含的偏移值,或者,所述偏移值为预先配置的偏移值。
在此需要说明的是,本公开实施例提供的上述终端,能够实现上述方法实施例所实现的所有方法步骤,且能够达到相同的技术效果,在此不再对本实施例中与方法实施例相同的部分及有益效果进行具体赘述。
请参见图9,图9是本公开实施例提供的一种网络设备的结构图,如图9所示,包括存储器920、收发机900和处理器910:
存储器920,用于存储计算机程序;收发机900,用于在所述处理器910的控制下收发数据;处理器910,用于读取所述存储器920中的计算机程序并执行以下操作:
向终端发送第一物理下行控制信道PDCCH,所述第一PDCCH用于指示PDCCH重复传输次数;
接收所述终端反馈的所述第一PDCCH的混合自动重传请求确认HARQ-ACK。
收发机900,用于在处理器910的控制下接收和发送数据。
其中,在图9中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器910代表的一个或多个处理器和存储器920代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等 之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机900可以是多个元件,即包括发送机和接收机,提供用于在传输介质上与各种其他装置通信的单元,这些传输介质包括无线信道、有线信道、光缆等传输介质。处理器910负责管理总线架构和通常的处理,存储器920可以存储处理器910在执行操作时所使用的数据。
处理器910可以是中央处理器(CPU)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)或复杂可编程逻辑器件(Comple9Programmable Logic Device,CPLD),处理器也可以采用多核架构。
处理器通过调用存储器存储的计算机程序,用于按照获得的可执行指令执行本公开实施例提供的任一所述方法。处理器与存储器也可以物理上分开布置。
可选的,所述第一PDCCH包括:
循环冗余校验CRC码采用新无线网络临时标识RNTI加扰的PDCCH,其中,所述新RNTI是为所述第一PDCCH新定义的RNTI。
可选的,所述第一PDCCH指示的PDCCH重复传输次数为更新的PDCCH重复传输次数。
可选的,所述第一PDCCH是周期性或者非周期性传输的。
可选的,针对所述第一PDCCH的K次传输反馈一个HARQ-ACK,所述一个HARQ-ACK为1比特,K为大于或者等于1的整数。
可选的,所述HARQ-ACK采用动态码本,或者所述HARQ-ACK采用半静态码本。
可选的,所述HARQ-ACK单独传输,或者,所述HARQ-ACK与其他HARQ-ACK复用传输。
可选的,在所述HARQ-ACK与其他HARQ-ACK复用传输,且所述HARQ-ACK采用动态码本的情况下:所述第一PDCCH包括下行分配索引,所述下行分配索引用于确定所述HARQ-ACK在动态码本中的映射位置,其中,所述下行分配索引为计数下行分配索引C-DAI,或者所述下行分配索引 包括C-DAI和总下行分配索引T-DAI;或者
在所述HARQ-ACK与其他HARQ-ACK复用传输,且所述HARQ-ACK采用半静态码本的情况下:所述复用传输的反馈码本是在基于所述其他HARQ-ACK确定的半静态码本上增加A比特得到,其中,所述A比特为所述第一PDCCH的HARQ-ACK,A为大于或者等于1的整数。
可选的,A等于在反馈时域资源进行HARQ-ACK反馈的第一PDCCH的个数,所述反馈时域资源为所述复用传输的时域资源。
可选的,所述其他HARQ-ACK包括:
PDCCH调度的物理下行共享信道PDSCH的HARQ-ACK。
可选的,所述HARQ-ACK的反馈时域资源是依据偏移值确定,所述偏移值为所述第一PDCCH包含的偏移值,或者,所述偏移值为预先配置的偏移值。
在此需要说明的是,本公开实施例提供的上述网络设备,能够实现上述方法实施例所实现的所有方法步骤,且能够达到相同的技术效果,在此不再对本实施例中与方法实施例相同的部分及有益效果进行具体赘述。
请参见图10,图10是本公开实施例提供的一种终端的结构图,如图10所示,终端1000包括:
接收单元1001,用于接收网络设备发送的第一物理下行控制信道PDCCH,所述第一PDCCH用于指示PDCCH重复传输次数;
反馈单元1002,用于向所述网络设备反馈所述第一PDCCH的混合自动重传请求确认HARQ-ACK。
可选的,所述第一PDCCH包括:
循环冗余校验CRC码采用新无线网络临时标识RNTI加扰的PDCCH,其中,所述新RNTI是为所述第一PDCCH新定义的RNTI。
可选的,所述第一PDCCH指示的PDCCH重复传输次数为更新的PDCCH重复传输次数。
可选的,所述第一PDCCH是周期性或者非周期性传输的。
可选的,针对所述第一PDCCH的K次传输反馈一个HARQ-ACK,所述一个HARQ-ACK为1比特,K为大于或者等于1的整数。
可选的,所述HARQ-ACK采用动态码本,或者所述HARQ-ACK采用半静态码本。
可选的,所述HARQ-ACK单独传输,或者,所述HARQ-ACK与其他HARQ-ACK复用传输。
可选的,在所述HARQ-ACK与其他HARQ-ACK复用传输,且所述HARQ-ACK采用动态码本的情况下:所述第一PDCCH包括下行分配索引,所述下行分配索引用于确定所述HARQ-ACK在动态码本中的映射位置,其中,所述下行分配索引为计数下行分配索引C-DAI,或者所述下行分配索引包括C-DAI和总下行分配索引T-DAI;或者
在所述HARQ-ACK与其他HARQ-ACK复用传输,且所述HARQ-ACK采用半静态码本的情况下:所述复用传输的反馈码本是在基于所述其他HARQ-ACK确定的半静态码本上增加A比特得到,其中,所述A比特为所述第一PDCCH的HARQ-ACK,A为大于或者等于1的整数。
可选的,A等于在反馈时域资源进行HARQ-ACK反馈的第一PDCCH的个数,所述反馈时域资源为所述复用传输的时域资源。
可选的,所述其他HARQ-ACK包括:
PDCCH调度的物理下行共享信道PDSCH的HARQ-ACK。
可选的,所述HARQ-ACK的反馈时域资源是依据偏移值确定,所述偏移值为所述第一PDCCH包含的偏移值,或者,所述偏移值为预先配置的偏移值。
在此需要说明的是,本公开实施例提供的上述终端,能够实现上述方法实施例所实现的所有方法步骤,且能够达到相同的技术效果,在此不再对本实施例中与方法实施例相同的部分及有益效果进行具体赘述。
请参见图11,图11是本公开实施例提供的一种网络设备的结构图,如图11所示,网络设备1100包括:
发送单元1101,用于向终端发送第一物理下行控制信道PDCCH,所述第一PDCCH用于指示PDCCH重复传输次数;
接收单元1102,用于接收所述终端反馈的所述第一PDCCH的混合自动重传请求确认HARQ-ACK。
可选的,所述第一PDCCH包括:
循环冗余校验CRC码采用新无线网络临时标识RNTI加扰的PDCCH,其中,所述新RNTI是为所述第一PDCCH新定义的RNTI。
可选的,所述第一PDCCH指示的PDCCH重复传输次数为更新的PDCCH重复传输次数。
可选的,所述第一PDCCH是周期性或者非周期性传输的。
可选的,针对所述第一PDCCH的K次传输反馈一个HARQ-ACK,所述一个HARQ-ACK为1比特,K为大于或者等于1的整数。
可选的,所述HARQ-ACK采用动态码本,或者所述HARQ-ACK采用半静态码本。
可选的,所述HARQ-ACK单独传输,或者,所述HARQ-ACK与其他HARQ-ACK复用传输。
可选的,在所述HARQ-ACK与其他HARQ-ACK复用传输,且所述HARQ-ACK采用动态码本的情况下:所述第一PDCCH包括下行分配索引,所述下行分配索引用于确定所述HARQ-ACK在动态码本中的映射位置,其中,所述下行分配索引为计数下行分配索引C-DAI,或者所述下行分配索引包括C-DAI和总下行分配索引T-DAI;或者
在所述HARQ-ACK与其他HARQ-ACK复用传输,且所述HARQ-ACK采用半静态码本的情况下:所述复用传输的反馈码本是在基于所述其他HARQ-ACK确定的半静态码本上增加A比特得到,其中,所述A比特为所述第一PDCCH的HARQ-ACK,A为大于或者等于1的整数。
可选的,A等于在反馈时域资源进行HARQ-ACK反馈的第一PDCCH的个数,所述反馈时域资源为所述复用传输的时域资源。
可选的,所述其他HARQ-ACK包括:
PDCCH调度的物理下行共享信道PDSCH的HARQ-ACK。
可选的,所述HARQ-ACK的反馈时域资源是依据偏移值确定,所述偏移值为所述第一PDCCH包含的偏移值,或者,所述偏移值为预先配置的偏移值。
在此需要说明的是,本公开实施例提供的上述网络设备,能够实现上述 方法实施例所实现的所有方法步骤,且能够达到相同的技术效果,在此不再对本实施例中与方法实施例相同的部分及有益效果进行具体赘述。
需要说明的是,本公开实施例中对单元的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个处理器可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)或处理器(processor)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
本公开实施例还提供一种处理器可读存储介质,所述处理器可读存储介质存储有计算机程序,所述计算机程序用于使所述处理器执行本公开实施例提供的信息反馈方法,或者,所述计算机程序用于使所述处理器执行本公开实施例提供的信息接收方法。
所述处理器可读存储介质可以是处理器能够存取的任何可用介质或数据存储设备,包括但不限于磁性存储器(例如软盘、硬盘、磁带、磁光盘(MO)等)、光学存储器(例如CD、DVD、BD、HVD等)、以及半导体存储器(例如ROM、EPROM、EEPROM、非易失性存储器(NAND FLASH)、固态硬盘(SSD))等。
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘 存储器和光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本公开实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机可执行指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机可执行指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些处理器可执行指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的处理器可读存储器中,使得存储在该处理器可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些处理器可执行指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (35)

  1. 一种信息反馈方法,包括:
    终端接收网络设备发送的第一物理下行控制信道PDCCH,所述第一PDCCH用于指示PDCCH重复传输次数;
    所述终端向所述网络设备反馈所述第一PDCCH的混合自动重传请求确认HARQ-ACK。
  2. 如权利要求1所述的方法,其中,所述第一PDCCH包括:
    循环冗余校验CRC码采用新无线网络临时标识RNTI加扰的PDCCH,其中,所述新RNTI是为所述第一PDCCH新定义的RNTI。
  3. 如权利要求1所述的方法,其中,所述第一PDCCH指示的PDCCH重复传输次数为更新的PDCCH重复传输次数。
  4. 如权利要求1所述的方法,其中,所述第一PDCCH是周期性或者非周期性传输的。
  5. 如权利要求1所述的方法,其中,针对所述第一PDCCH的K次传输反馈一个HARQ-ACK,所述一个HARQ-ACK为1比特,K为大于或者等于1的整数。
  6. 如权利要求1所述的方法,其中,所述HARQ-ACK采用动态码本,或者所述HARQ-ACK采用半静态码本。
  7. 如权利要求1所述的方法,其中,所述HARQ-ACK单独传输,或者,所述HARQ-ACK与其他HARQ-ACK复用传输。
  8. 如权利要求7所述的方法,其中,在所述HARQ-ACK与其他HARQ-ACK复用传输,且所述HARQ-ACK采用动态码本的情况下:所述第一PDCCH包括下行分配索引,所述下行分配索引用于确定所述HARQ-ACK在动态码本中的映射位置,其中,所述下行分配索引为计数下行分配索引C-DAI,或者所述下行分配索引包括C-DAI和总下行分配索引T-DAI;或者
    在所述HARQ-ACK与其他HARQ-ACK复用传输,且所述HARQ-ACK采用半静态码本的情况下:所述复用传输的反馈码本是在基于所述其他HARQ-ACK确定的半静态码本上增加A比特得到,其中,所述A比特为所 述第一PDCCH的HARQ-ACK,A为大于或者等于1的整数。
  9. 如权利要求8所述的方法,其中,A等于在反馈时域资源进行HARQ-ACK反馈的第一PDCCH的个数,所述反馈时域资源为所述复用传输的时域资源。
  10. 如权利要求8所述的方法,其中,所述其他HARQ-ACK包括:
    PDCCH调度的物理下行共享信道PDSCH的HARQ-ACK。
  11. 如权利要求1所述的方法,其中,所述HARQ-ACK的反馈时域资源是依据偏移值确定,所述偏移值为所述第一PDCCH包含的偏移值,或者,所述偏移值为预先配置的偏移值。
  12. 一种信息接收方法,包括:
    网络设备向终端发送第一物理下行控制信道PDCCH,所述第一PDCCH用于指示PDCCH重复传输次数;
    所述网络设备接收所述终端反馈的所述第一PDCCH的混合自动重传请求确认HARQ-ACK。
  13. 如权利要求12所述的方法,其中,所述第一PDCCH包括:
    循环冗余校验CRC码采用新无线网络临时标识RNTI加扰的PDCCH,其中,所述新RNTI是为所述第一PDCCH新定义的RNTI。
  14. 如权利要求12所述的方法,其中,所述第一PDCCH指示的PDCCH重复传输次数为更新的PDCCH重复传输次数。
  15. 如权利要求12所述的方法,其中,所述第一PDCCH是周期性或者非周期性传输的。
  16. 如权利要求12所述的方法,其中,针对所述第一PDCCH的K次传输反馈一个HARQ-ACK,所述一个HARQ-ACK为1比特,K为大于或者等于1的整数。
  17. 如权利要求12所述的方法,其中,所述HARQ-ACK采用动态码本,或者所述HARQ-ACK采用半静态码本。
  18. 如权利要求12所述的方法,其中,所述HARQ-ACK单独传输,或者,所述HARQ-ACK与其他HARQ-ACK复用传输。
  19. 如权利要求18所述的方法,其中,在所述HARQ-ACK与其他 HARQ-ACK复用传输,且所述HARQ-ACK采用动态码本的情况下:所述第一PDCCH包括下行分配索引,所述下行分配索引用于确定所述HARQ-ACK在动态码本中的映射位置,其中,所述下行分配索引为计数下行分配索引C-DAI,或者所述下行分配索引包括C-DAI和总下行分配索引T-DAI;或者
    在所述HARQ-ACK与其他HARQ-ACK复用传输,且所述HARQ-ACK采用半静态码本的情况下:所述复用传输的反馈码本是在基于所述其他HARQ-ACK确定的半静态码本上增加A比特得到,其中,所述A比特为所述第一PDCCH的HARQ-ACK,A为大于或者等于1的整数。
  20. 如权利要求19所述的方法,其中,A等于在反馈时域资源进行HARQ-ACK反馈的第一PDCCH的个数,所述反馈时域资源为所述复用传输的时域资源。
  21. 如权利要求19所述的方法,其中,所述其他HARQ-ACK包括:
    PDCCH调度的物理下行共享信道PDSCH的HARQ-ACK。
  22. 如权利要求12所述的方法,其中,所述HARQ-ACK的反馈时域资源是依据偏移值确定,所述偏移值为所述第一PDCCH包含的偏移值,或者,所述偏移值为预先配置的偏移值。
  23. 一种终端,包括存储器、收发机和处理器,其中:
    存储器,用于存储计算机程序;收发机,用于在所述处理器的控制下收发数据;处理器,用于读取所述存储器中的计算机程序并执行以下操作:
    接收网络设备发送的第一物理下行控制信道PDCCH,所述第一PDCCH用于指示PDCCH重复传输次数;
    向所述网络设备反馈所述第一PDCCH的混合自动重传请求确认HARQ-ACK。
  24. 如权利要求23所述的终端,其中,所述第一PDCCH包括:
    循环冗余校验CRC码采用新无线网络临时标识RNTI加扰的PDCCH,其中,所述新RNTI是为所述第一PDCCH新定义的RNTI。
  25. 如权利要求23所述的终端,其中,所述第一PDCCH指示的PDCCH重复传输次数为更新的PDCCH重复传输次数。
  26. 如权利要求23所述的终端,其中,所述HARQ-ACK单独传输,或 者,所述HARQ-ACK与其他HARQ-ACK复用传输。
  27. 如权利要求26所述的终端,其中,在所述HARQ-ACK与其他HARQ-ACK复用传输,且所述HARQ-ACK采用动态码本的情况下:所述第一PDCCH包括下行分配索引,所述下行分配索引用于确定所述HARQ-ACK在动态码本中的映射位置,其中,所述下行分配索引为计数下行分配索引C-DAI,或者所述下行分配索引包括C-DAI和总下行分配索引T-DAI;或者
    在所述HARQ-ACK与其他HARQ-ACK复用传输,且所述HARQ-ACK采用半静态码本的情况下:所述复用传输的反馈码本是在基于所述其他HARQ-ACK确定的半静态码本上增加A比特得到,其中,所述A比特为所述第一PDCCH的HARQ-ACK,A为大于或者等于1的整数。
  28. 一种网络设备,包括存储器、收发机和处理器,其中:
    存储器,用于存储计算机程序;收发机,用于在所述处理器的控制下收发数据;处理器,用于读取所述存储器中的计算机程序并执行以下操作:
    向终端发送第一物理下行控制信道PDCCH,所述第一PDCCH用于指示PDCCH重复传输次数;
    接收所述终端反馈的所述第一PDCCH的混合自动重传请求确认HARQ-ACK。
  29. 如权利要求28所述的网络设备,其中,所述第一PDCCH包括:
    循环冗余校验CRC码采用新无线网络临时标识RNTI加扰的PDCCH,其中,所述新RNTI是为所述第一PDCCH新定义的RNTI。
  30. 如权利要求28所述的网络设备,其中,所述第一PDCCH指示的PDCCH重复传输次数为更新的PDCCH重复传输次数。
  31. 如权利要求28所述的网络设备,其中,所述HARQ-ACK单独传输,或者,所述HARQ-ACK与其他HARQ-ACK复用传输。
  32. 如权利要求31所述的网络设备,其中,在所述HARQ-ACK与其他HARQ-ACK复用传输,且所述HARQ-ACK采用动态码本的情况下:所述第一PDCCH包括下行分配索引,所述下行分配索引用于确定所述HARQ-ACK在动态码本中的映射位置,其中,所述下行分配索引为计数下行分配索引C-DAI,或者所述下行分配索引包括C-DAI和总下行分配索引T-DAI;或者
    在所述HARQ-ACK与其他HARQ-ACK复用传输,且所述HARQ-ACK采用半静态码本的情况下:所述复用传输的反馈码本是在基于所述其他HARQ-ACK确定的半静态码本上增加A比特得到,其中,所述A比特为所述第一PDCCH的HARQ-ACK,A为大于或者等于1的整数。
  33. 一种终端,包括:
    接收单元,用于接收网络设备发送的第一物理下行控制信道PDCCH,所述第一PDCCH用于指示PDCCH重复传输次数;
    反馈单元,用于向所述网络设备反馈所述第一PDCCH的混合自动重传请求确认HARQ-ACK。
  34. 一种网络设备,包括:
    发送单元,用于向终端发送第一物理下行控制信道PDCCH,所述第一PDCCH用于指示PDCCH重复传输次数;
    接收单元,用于接收所述终端反馈的所述第一PDCCH的混合自动重传请求确认HARQ-ACK。
  35. 一种处理器可读存储介质,其中,所述处理器可读存储介质存储有计算机程序,所述计算机程序用于使所述处理器执行权利要求1至11任一项所述的信息反馈方法,或者,所述计算机程序用于使所述处理器执行权利要求12至22任一项所述的信息接收方法。
PCT/CN2021/114074 2020-08-28 2021-08-23 信息反馈方法、信息接收方法、终端和网络设备 WO2022042484A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010885443.9A CN114124315B (zh) 2020-08-28 2020-08-28 信息反馈方法、信息接收方法、终端和网络设备
CN202010885443.9 2020-08-28

Publications (1)

Publication Number Publication Date
WO2022042484A1 true WO2022042484A1 (zh) 2022-03-03

Family

ID=80354625

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/114074 WO2022042484A1 (zh) 2020-08-28 2021-08-23 信息反馈方法、信息接收方法、终端和网络设备

Country Status (2)

Country Link
CN (1) CN114124315B (zh)
WO (1) WO2022042484A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018170896A1 (zh) * 2017-03-24 2018-09-27 华为技术有限公司 一种指示信息的传输方法和装置
CN108632960A (zh) * 2017-03-24 2018-10-09 中兴通讯股份有限公司 一种物理下行控制信道的传输方法及装置
CN108988996A (zh) * 2017-06-05 2018-12-11 普天信息技术有限公司 一种物理下行控制信道的数据发送和接收处理方法及装置
CN110324117A (zh) * 2018-03-30 2019-10-11 电信科学技术研究院有限公司 一种数据传输方法、终端设备及网络设备
CN110521271A (zh) * 2019-07-10 2019-11-29 北京小米移动软件有限公司 物理下行控制信道的传输参数更新方法、装置及存储介质
WO2020006416A1 (en) * 2018-06-29 2020-01-02 Qualcomm Incorporated Pdcch with repetition

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102148672B (zh) * 2011-04-18 2014-04-02 电信科学技术研究院 发送应答反馈传输配置信息及应答反馈方法、系统和设备
US10750488B2 (en) * 2017-09-11 2020-08-18 Apple Inc. Hybrid automatic repeat request (HARQ) based on codeblock groups in new radio systems
CN110166214B (zh) * 2018-02-13 2020-08-21 华为技术有限公司 传输反馈信息的方法和通信设备
CN110324126B (zh) * 2018-03-30 2020-12-04 电信科学技术研究院有限公司 一种数据传输方法、终端设备及网络设备
CN110536459A (zh) * 2018-08-10 2019-12-03 中兴通讯股份有限公司 一种重复传输方法及装置、通信设备和存储介质

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018170896A1 (zh) * 2017-03-24 2018-09-27 华为技术有限公司 一种指示信息的传输方法和装置
CN108632960A (zh) * 2017-03-24 2018-10-09 中兴通讯股份有限公司 一种物理下行控制信道的传输方法及装置
CN108988996A (zh) * 2017-06-05 2018-12-11 普天信息技术有限公司 一种物理下行控制信道的数据发送和接收处理方法及装置
CN110324117A (zh) * 2018-03-30 2019-10-11 电信科学技术研究院有限公司 一种数据传输方法、终端设备及网络设备
WO2020006416A1 (en) * 2018-06-29 2020-01-02 Qualcomm Incorporated Pdcch with repetition
CN110521271A (zh) * 2019-07-10 2019-11-29 北京小米移动软件有限公司 物理下行控制信道的传输参数更新方法、装置及存储介质

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
XIAOMI: ""Initial Discussion on the Reduced PDCCH Monitoring for Reduced Capability Devices"", 3GPP TSG RAN WG1 #101 R1-2004514 E-MEETING, 16 May 2020 (2020-05-16), XP051886236 *

Also Published As

Publication number Publication date
CN114124315A (zh) 2022-03-01
CN114124315B (zh) 2024-02-02

Similar Documents

Publication Publication Date Title
US20200128536A1 (en) Method, terminal device and network device for transmitting uplink control information
WO2022151868A1 (zh) 一种dmrs绑定窗口确定方法、装置及存储介质
WO2021238545A1 (zh) 信息传输方法及装置
WO2022078204A1 (zh) Pucch重复传输次数的确定方法、终端及基站
WO2021017765A1 (zh) 通信方法和通信装置
WO2021227624A1 (zh) 一种确定反馈信息传输位置的方法及设备
US11924830B2 (en) Communication method and communications apparatus
WO2022117102A1 (zh) 上行控制信息传输方法、接收方法、终端和网络设备
EP4325759A1 (en) Transmission processing method and apparatus in carrier switching
WO2022042484A1 (zh) 信息反馈方法、信息接收方法、终端和网络设备
WO2020156002A1 (zh) 通信方法及通信装置
WO2022028579A1 (zh) Uci传输方法、接收方法、终端和网络设备
WO2022206364A1 (zh) Harq码本发送方法、接收方法、装置及存储介质
WO2022237539A1 (zh) 反馈处理方法、发送方法、反馈方法、设备和存储介质
WO2022206457A1 (zh) 信息传输方法、装置、设备以及存储介质
WO2022206347A1 (zh) 一种uci在pusch上传输的方法、终端及设备
WO2024032274A1 (zh) 确定harq进程标识的方法及装置
TWI786585B (zh) 資訊傳輸方法及裝置
US20240064743A1 (en) Uci multiplexing transmission method and apparatus, and storage medium
WO2022028064A1 (zh) 信息传输方法、装置、终端、基站及存储介质
US20240179715A1 (en) Multiplexing transmission method and apparatus, and storage medium
WO2022148404A1 (zh) 数据传输方法、数据传输装置、通信设备及存储介质
WO2022028410A1 (zh) 半静态反馈码本的确定方法、装置及存储介质
WO2022037674A1 (zh) 下行信道传输方法及装置
WO2022206344A1 (zh) 一种信道复用方法、装置及通信设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21860319

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21860319

Country of ref document: EP

Kind code of ref document: A1