WO2022205921A1 - 显示基板及其制备方法、显示装置 - Google Patents

显示基板及其制备方法、显示装置 Download PDF

Info

Publication number
WO2022205921A1
WO2022205921A1 PCT/CN2021/129430 CN2021129430W WO2022205921A1 WO 2022205921 A1 WO2022205921 A1 WO 2022205921A1 CN 2021129430 W CN2021129430 W CN 2021129430W WO 2022205921 A1 WO2022205921 A1 WO 2022205921A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
layer
opening
pixel
light
Prior art date
Application number
PCT/CN2021/129430
Other languages
English (en)
French (fr)
Inventor
梅文海
Original Assignee
京东方科技集团股份有限公司
北京京东方技术开发有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 北京京东方技术开发有限公司 filed Critical 京东方科技集团股份有限公司
Publication of WO2022205921A1 publication Critical patent/WO2022205921A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/122Pixel-defining structures or layers, e.g. banks
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • H10K71/13Deposition of organic active material using liquid deposition, e.g. spin coating using printing techniques, e.g. ink-jet printing or screen printing
    • H10K71/135Deposition of organic active material using liquid deposition, e.g. spin coating using printing techniques, e.g. ink-jet printing or screen printing using ink-jet printing
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass

Definitions

  • the present disclosure relates to the field of display technology, and in particular, to a display substrate, a preparation method thereof, and a display device.
  • QLED Quantum Dot Light Emitting Diodes
  • a display substrate including a substrate, a plurality of first electrodes, a first pixel defining layer, a second pixel defining layer, and a plurality of light-emitting functional layers.
  • a plurality of first electrodes are disposed on the substrate.
  • a first pixel definition layer is disposed on the substrate, the first pixel definition layer has a plurality of first openings, the first openings expose at least a part of the first electrode, and the sidewalls of the first openings are facing away from The direction of the center of the first opening is concave.
  • the second pixel definition layer is disposed on the side of the first pixel definition layer away from the substrate, the second pixel definition layer has a plurality of second openings, and the orthographic projection of the second openings on the substrate is the same as that of the substrate. Orthographic projections of the first opening on the substrate at least partially overlap.
  • the boundary of the orthographic projection of the end of the second opening close to the substrate on the substrate is located within the boundary of the orthographic projection of the end of the second opening away from the substrate on the substrate .
  • a plurality of light-emitting functional layers are located on one side of the plurality of first electrodes away from the substrate, and one light-emitting functional layer is disposed in one of the first openings.
  • the area of the cross section of the first opening along a direction parallel to the plane of the substrate changes from small to large and then from large to large Small.
  • the first pixel defining layer is a lyophobic layer.
  • the first pixel defining layer includes a first substrate layer, and a liquid repellent layer covering at least a sidewall of the first substrate layer.
  • the first pixel-defining layer includes inorganic nanoparticles, and ligands bound to the inorganic nanoparticles.
  • the ligand includes a fluorine-containing group.
  • the first pixel defining layer includes a plurality of silicon oxide nanoparticles, and/or a plurality of silicon nitride nanoparticles.
  • the ligand includes at least one of a fluorine atom, trifluoromethyl, hexafluorobenzene, decafluorobiphenyl, or perfluoroethylene.
  • the area of the cross-section of the second opening along a direction parallel to the plane of the substrate gradually increases.
  • the second opening is close to the boundary of the orthographic projection of one end of the substrate on the substrate, and the second opening is located on the substrate at the end of the first opening away from the substrate. within the boundaries of the orthographic projection.
  • the second pixel defining layer is a lyophilic layer.
  • the second pixel defining layer includes a second substrate layer, and a lyophilic layer covering at least a sidewall of the second substrate layer.
  • the second pixel defining layer includes a positive photoresist layer.
  • the included angle between the sidewall of the second opening and the surface of the second pixel definition layer close to the substrate ranges from 30° to 75°.
  • the ratio of the thickness of the first pixel definition layer to the thickness of the second pixel definition layer ranges from 1 to 3.
  • the sum of the thicknesses of the first electrode and the light-emitting functional layer is less than the thickness of the first pixel defining layer.
  • the display substrate further includes a second electrode layer
  • the second electrode layer includes a second electrode disposed on a side of the light-emitting functional layer away from the substrate, and covering the second pixel definition The surface of the layer on the side away from the substrate, and the connection pattern on the sidewall of the second opening.
  • a display device including the display substrate according to any one of the above embodiments.
  • a method for manufacturing a display substrate includes: forming a plurality of first electrodes on a substrate.
  • a first pixel-defining film and a second pixel-defining film are sequentially formed on one side of the plurality of first electrodes away from the substrate.
  • the second pixel-defining film is patterned to form a second pixel-defining layer.
  • the second pixel defining layer has a plurality of second openings, the second openings are close to the boundary of the orthographic projection of one end of the substrate on the substrate, and the second openings are located at the end of the second opening away from the substrate. within the boundaries of the orthographic projection on the substrate.
  • the first pixel definition film is patterned to form a first pixel definition layer.
  • the first pixel defining layer has a plurality of first openings, the first openings expose at least a part of the first electrodes, the orthographic projection of the first openings on the substrate and the second openings on the substrate The orthographic projections of the first opening are at least partially overlapped, and the side wall of the first opening is recessed in a direction away from the center of the first opening.
  • a light-emitting functional layer is formed in the first opening.
  • the patterning of the first pixel-defining film includes: patterning the first pixel-defining film by a dry etching process.
  • the forming the light-emitting functional layer in the first opening includes: inkjet printing the light-emitting functional layer ink in the first opening.
  • the light-emitting functional layer ink is dried to form the light-emitting functional layer.
  • FIG. 1 is a top view of a display substrate according to some embodiments of the present disclosure.
  • FIG. 2 is a cross-sectional view of the substrate shown in FIG. 1 along O-O';
  • FIG. 3 is a schematic diagram of a process of inkjet printing according to some embodiments of the present disclosure.
  • FIG. 4 is another schematic diagram of a process of inkjet printing according to some embodiments of the present disclosure.
  • FIG. 5 is a structural diagram of a display substrate according to some embodiments of the present disclosure.
  • FIG. 6 is another structural diagram of a display substrate according to some embodiments of the present disclosure.
  • FIG. 7 is a structural diagram of an inorganic nanoparticle binding ligand according to some embodiments of the present disclosure.
  • FIG. 8 is a structural diagram of a display device according to some embodiments of the present disclosure.
  • 9A is a flow chart of a method for fabricating a display substrate according to some embodiments of the present disclosure.
  • 9B is another flowchart of a method for fabricating a display substrate according to some embodiments of the present disclosure.
  • FIG. 10 is a diagram of steps for preparing a first electrode layer according to some embodiments of the present disclosure.
  • FIG. 11 is a step diagram of preparing a first electrode according to some embodiments of the present disclosure.
  • FIG. 12 is a diagram of steps for preparing a first pixel-defining film and a second pixel-defining film according to some embodiments of the present disclosure
  • FIG. 13 is a diagram of steps for preparing a second pixel definition layer according to some embodiments of the present disclosure.
  • FIG. 14 is a diagram of steps for preparing a first pixel definition layer according to some embodiments of the present disclosure.
  • 15 is a diagram of steps for preparing a light-emitting functional layer according to some embodiments of the present disclosure.
  • 16 is a diagram of steps for preparing a second electrode layer according to some embodiments of the present disclosure.
  • 17 is a diagram of steps for preparing an encapsulation layer according to some embodiments of the present disclosure.
  • first and second are only used for descriptive purposes, and should not be construed as indicating or implying relative importance or implicitly indicating the number of indicated technical features. Thus, a feature defined as “first” or “second” may expressly or implicitly include one or more of that feature.
  • plural means two or more.
  • the expression “electrically connected” and its derivatives may be used.
  • the term “connected” may be used in describing some embodiments to indicate that two or more components are in direct physical or electrical contact with each other.
  • a and/or B includes the following three combinations: A only, B only, and a combination of A and B.
  • Exemplary embodiments are described herein with reference to cross-sectional and/or plan views that are idealized exemplary drawings.
  • the thickness of layers and regions are exaggerated for clarity. Accordingly, variations from the shapes of the drawings due to, for example, manufacturing techniques and/or tolerances, are contemplated.
  • example embodiments should not be construed as limited to the shapes of the regions shown herein, but to include deviations in shapes due, for example, to manufacturing. For example, an etched area shown as a rectangle will typically have curved features.
  • the regions illustrated in the figures are schematic in nature and their shapes are not intended to illustrate the actual shape of a region of a device and are not intended to limit the scope of example embodiments.
  • the inkjet printing technology is used to print the light-emitting functional layer ink in the opening of the pixel defining layer (Pixel Defining Layer, PDL for short), and the light-emitting functional layer is formed after the ink is dried.
  • the ink will climb along the side wall of the retaining wall (Bank) of the pixel defining layer, forming a light-emitting functional layer with a thin middle and thick edges, and a film of the light-emitting functional layer.
  • the uneven thickness will reduce its service life and reduce the light extraction efficiency of the display device, thereby affecting the display quality of the display device. Therefore, how to prepare a light-emitting functional layer with a uniform film thickness has become one of the research directions in the field.
  • the display substrate 100 includes a substrate 101 and a plurality of first electrodes 103 disposed on the substrate 101 .
  • the display substrate 100 has a plurality of sub-pixel regions P, the display substrate 100 further includes a plurality of pixel driving circuits arranged on the substrate 101 , and one pixel driving circuit is arranged in one sub-pixel region P circuit.
  • each pixel driving circuit includes a plurality of thin film transistors T, and each thin film transistor T includes a gate electrode T1 , an active layer T2 , a source electrode T3 and a drain electrode T4 .
  • a gate insulating layer T5 is provided between the gate electrode T1 and the active layer T2 to insulate the gate electrode T1 from the active layer T2.
  • the display substrate 100 further includes a flat layer 102 covering a side of the plurality of pixel driving circuits away from the substrate 101 , and the flat layer 102 has a plurality of via holes.
  • Each first electrode 103 is electrically connected to the source T3 or the drain T4 of the thin film transistor T serving as a driving transistor among the plurality of thin film transistors T included in the pixel driving circuit through a via hole in the flat layer 102 (shown in FIG. 2 ).
  • the case where the first electrode 103 is electrically connected to the drain electrode T4 is shown), so as to transmit a voltage signal to the first electrode 103 .
  • the display substrate 100 further includes a first pixel defining layer 104 disposed on the substrate 101 , the first pixel defining layer 104 has a plurality of first openings H1 , and the first openings H1 expose at least a portion of the first electrode 103 part.
  • the side wall of the first opening H1 is recessed in the direction E away from the center C of the first opening H1.
  • the boundary of the orthographic projection of one end of the first opening H1 close to the substrate 101 on the substrate 101 is located within the boundary of the orthographic projection of the first electrode 103 on the substrate 101 . That is, one end of the first opening H1 close to the substrate 101 is covered by the first electrode 103 .
  • the "direction E" is in a plane parallel to the substrate 101, starting from the center C of the first opening H1, and radiating 360°, and the sidewall of the first opening H1 is along each divergent direction.
  • the direction E is recessed into the first pixel defining layer 104 to form the cross-sectional shape of the first opening H1 shown in FIG. 2 .
  • the display substrate 100 further includes a second pixel defining layer 105 disposed on the side of the first pixel defining layer 104 away from the substrate 101 .
  • the second pixel defining layer 105 has a plurality of second openings H2, the orthographic projections of the second openings H2 on the substrate 101 and the orthographic projections of the first openings H1 on the substrate 101 at least partially overlap, so that the first openings H1 and the The second openings H2 are connected to each other, so that the light-emitting functional layer ink can flow into the first openings H1 through the second openings H2.
  • the boundary G of the orthographic projection of the end of the second opening H2 close to the substrate 101 on the substrate 101 is located within the boundary I of the orthographic projection of the end of the second opening H2 away from the substrate 101 on the substrate 101 .
  • the opening area of the end of the second opening H2 close to the substrate 101 is smaller than the opening area of the end of the second opening H2 away from the substrate 101 , so that the sidewall of the second opening H2 is inclined. set up.
  • the cross-sectional shape of the second opening H2 is an inverted trapezoid, so that the shape of the second opening H2 is a "funnel shape”.
  • the display substrate 100 further includes a plurality of light-emitting functional layers 10 located on the side of the plurality of first electrodes 103 away from the substrate 101 , and one light-emitting functional layer 10 is disposed in one first opening H1 .
  • the inkjet printing process can be used to print the light emitting functional layer ink into the first opening H1 of the first pixel defining layer 104 through the second opening H2, and the light emitting functional layer 10 is formed after the ink is dried.
  • the display substrate 100 includes a light-emitting device D disposed in the first opening H1, and the light-emitting device D includes a first electrode 103 and a light-emitting functional layer 10 that are stacked and disposed, and are disposed on the light-emitting functional layer 10 away from the lining
  • the second electrode 110 on the side of the bottom 101 .
  • the first electrode 103 may be the anode of the light emitting device D
  • the second electrode 110 may be the cathode of the light emitting device D.
  • a voltage difference is formed between the first electrode 103 and the second electrode 110, so as to drive a voltage difference between the two electrodes.
  • the light-emitting functional layer 10 between them emits light, so as to realize the picture display of the display device.
  • the sidewalls of the first openings H1 are arranged to be recessed in the direction E away from the center C of the first openings H1, so as to reduce the emission of the light-emitting functional layer ink along the first openings H1.
  • the phenomenon of sidewall climbing please refer to FIG. 3 , during the process of ink climbing along the concave side wall of the first opening H1, the ink is caused to fall back to the central area of the first opening H1 by gravity, so that after the ink is dried, it is beneficial to The light-emitting functional layer 10 with a relatively uniform film thickness is formed to improve the light-emitting performance and service life of the light-emitting functional layer 10 .
  • the boundary G of the orthographic projection of the end of the second opening H2 close to the substrate 101 on the substrate 101 is located within the boundary I of the orthographic projection of the end of the second opening H2 away from the substrate 101 on the substrate 101, so that The side wall of the second opening H2 is inclined and is in the shape of a "funnel".
  • the ink can slide down the side wall of the second opening H2 into the first opening H1 to prevent the ink from flowing to the second pixel
  • the surface of the defining layer 105 on the side away from the substrate 101 forms a bridge phenomenon of the ink.
  • the light-emitting functional layer 10 includes at least a light-emitting layer 108 .
  • the light emitting layer 108 is a quantum dot light emitting layer
  • the material of the light emitting layer 108 may include cadmium selenide (chemical formula: CdSe), or zinc sulfide (chemical formula: ZnS), or cadmium selenide and zinc sulfide.
  • the light-emitting functional layer 10 further includes an electron transport layer (Election Transporting Layer, referred to as ETL), an electron injection layer (Election Injection Layer, referred to as EIL), a hole transport layer (Hole Transporting Layer, referred to as HTL) and a hollow One or more layers in a hole injection layer (Hole Injection Layer, HIL for short) to improve the luminous efficiency of the light-emitting device D.
  • ETL electron transport layer
  • EIL electron injection layer
  • HTL hole transport layer
  • HTL Hole Transporting Layer
  • HIL Hole Injection Layer
  • the light-emitting functional layer 10 may include a hole injection layer 106 , a hole transport layer 107 , and a light-emitting layer 108 that are sequentially stacked along the direction Y perpendicular to the substrate 101 and away from the substrate 101 . and the electron transport layer 109 .
  • the material of the hole injection layer 106 may include polyethylene dioxythiophene (ie, PEDOT).
  • PEDOT polyethylene dioxythiophene
  • the material of the hole transport layer 107 may include poly[(9,9-dioctylfluorenyl-2,7-diyl)-co-(4,4'-(N-p-butylphenyl)) ] (ie, TFB).
  • the material of the electron transport layer 109 may include zinc oxide (chemical formula: ZnO).
  • the sum of the thicknesses of the first electrode 103 and the light-emitting functional layer 10 is smaller than the thickness of the first pixel-defining layer 104 , so that the light-emitting functional layer 10 can be all disposed on the first pixel-defining layer. within the first opening H1 of the layer 104 .
  • the display substrate 100 further includes a second electrode layer 112 covering the entire surface, and the second electrode layer 112 includes a second electrode 110 disposed on the side of the light-emitting functional layer 10 away from the substrate 101 . , and the connection pattern 111 covering the surface of the second pixel defining layer 105 on the side away from the substrate 101 and the sidewall of the second opening H2.
  • connection pattern 111 which is beneficial to reduce the overall impedance of the second electrode layer 112 , and can improve the voltage generated during the transmission of the voltage signal on the second electrode layer 112 .
  • Drop phenomenon namely IR drop (IR-Drop).
  • the second electrode layer 112 may also be a patterned film layer, and the second electrode layer 112 at least includes a second electrode 110 disposed on the side of the light-emitting functional layer 10 away from the substrate 101 .
  • the display substrate 100 further includes an encapsulation layer 113 disposed on the side of the second electrode layer 112 away from the substrate 101 , and the encapsulation layer 113 includes at least one barrier layer.
  • the encapsulation layer 113 includes an inorganic barrier layer, which has the function of blocking water vapor and oxygen, and is used to protect the film layer under the encapsulation layer 113 in the display substrate 100 .
  • the encapsulation layer 113 may include a first inorganic barrier layer 114 , an organic barrier layer 115 and a second inorganic barrier layer 114 , an organic barrier layer 115 and a second inorganic barrier layer stacked in sequence along a direction Y perpendicular to the substrate 101 and away from the substrate 101 .
  • the barrier layer 116 and the organic barrier layer 115 have certain flexibility and the function of absorbing water vapor, etc., combined with the first inorganic barrier layer 114 and the second inorganic barrier layer 116, a better encapsulation effect can be achieved.
  • the area of the cross section of the first opening H1 along the plane direction X parallel to the substrate 101 increases from small to large From big to small.
  • the sidewall of the first opening H1 is recessed in the direction E away from the center C of the first opening H1, and the sidewalls of the first opening H1 close to both ends are less recessed, located between the two ends of the first opening H1.
  • the concave degree of the side wall in the middle area of the first opening H1 is relatively large.
  • the sidewall of the first opening H1 is a curved surface.
  • the surface of the sidewall of the first opening H1 is smoother, which can further reduce the edge of the light-emitting functional layer ink. The phenomenon of climbing along the sidewall of the first opening H1.
  • the first pixel definition layer 104 is a lyophobic layer, that is, the material of the first pixel definition layer 104 includes a lyophobic material, which can weaken the light-emitting functional layer ink along the first opening H1 of the first pixel definition layer 104 the phenomenon of sidewall climbing.
  • the light-emitting functional layer ink may be an aqueous solution or an oily solution.
  • the material of the first pixel defining layer 104 includes a lyophobic material, so that the sidewalls of the first opening H1 are both hydrophobic and oleophobic. Therefore, regardless of whether the light-emitting functional layer ink is water-based or oily, the light-emitting functional layer ink can be reduced along the The phenomenon that the sidewall of the first opening H1 is climbing.
  • the first pixel definition layer 104 includes a first substrate layer, and a liquid repellent layer covering at least a sidewall of the first substrate layer.
  • the main body of the first pixel definition layer 104 is the first substrate layer, and the material of the main body includes the first substrate.
  • the lyophobic layer covers at least the sidewall of the first substrate layer, that is, the sidewall of the first opening H1 is covered with a lyophobic material, which can also reduce the phenomenon that the light-emitting functional layer ink climbs along the sidewall of the first opening H1.
  • the first pixel defining layer 104 includes inorganic nanoparticles 11 and ligands 12 bound to the inorganic nanoparticles 11 .
  • the ligand 12 includes a fluorine-containing group.
  • the inorganic nanoparticles 11 after the inorganic nanoparticles 11 bind the ligands 12 (fluorine-containing groups), the inorganic nanoparticles 11 have hydrophobic and oleophobic properties after binding the fluorine-containing groups.
  • the inorganic nanoparticles 11 are insulating materials with poor conductivity
  • the first pixel defining layer 104 may include a plurality of silicon oxide nanoparticles
  • the first pixel defining layer 104 may also include a plurality of silicon nitride nanoparticles
  • the first pixel defining layer 104 may include a plurality of silicon nitride nanoparticles.
  • a pixel defining layer 104 may also include a plurality of silicon oxide nanoparticles and a plurality of silicon nitride nanoparticles.
  • the ligand 12 bound to the inorganic nanoparticle 11 includes a fluorine-containing group such as at least one of a fluorine atom, trifluoromethyl, hexafluorobenzene, decafluorobiphenyl, or perfluoroethylene.
  • a fluorine-containing group such as at least one of a fluorine atom, trifluoromethyl, hexafluorobenzene, decafluorobiphenyl, or perfluoroethylene.
  • the chemical structural formulas of trifluoromethyl, hexafluorobenzene, decafluorobiphenyl and perfluoroethylene are as shown in Figure (a), Figure (b), Figure (c), Figure (d) respectively:
  • the total chain length of the ligand 12 is 8-18 carbon atoms, for example, the total chain length of the ligand 12 can be 8 carbon atoms, 10 carbon atoms, 13 carbon atoms, 15 carbon atoms or 18 carbon atoms.
  • ligand 12 is 1-butyl-4-nonyltetrafluorobenzene, and its chemical structure is shown in the following figure (e):
  • the area of the cross section of the second opening H2 along the plane direction X parallel to the substrate 101 gradually increases.
  • the sidewalls of the second opening H2 in the second pixel defining layer 105 are disposed obliquely, and the opening area of one end of the second opening H2 close to the substrate 101 is smaller than that far from the substrate 101 .
  • the opening area of one end makes the cross-sectional shape of the second opening H2 an inverted trapezoid, so that the ink of the light-emitting functional layer can slide down the sidewall of the second opening H2 into the first opening H1 to prevent the ink from flowing into the second pixel defining layer 105
  • a bridge phenomenon of the ink is formed on the surface away from the substrate 101.
  • the included angle ⁇ between the sidewall of the second opening H2 and the surface of the second pixel defining layer 105 close to the substrate 101 ranges from 30° to 75°, for example, the included angle ⁇ can be 30°, 45°, 50°, 60° or 75°, to ensure the inclination of the side wall of the second opening H2, to ensure that the light-emitting functional layer ink can slide down the side wall of the second opening H2 to the first opening within H1.
  • the second pixel defining layer 105 is a lyophilic layer, that is, the material of the second pixel defining layer 105 includes a lyophilic material, which facilitates the flow of the light-emitting functional layer ink to the second opening H2 of the second pixel defining layer 105 Inside, the collection of ink is realized.
  • the material of the second pixel defining layer 105 includes a lyophilic material, and the sidewall of the first opening H1 is both hydrophilic and lipophilic.
  • the second pixel defining layer 105 includes a second substrate layer, and a lyophilic layer covering at least a sidewall of the second substrate layer.
  • the main body of the second pixel definition layer 105 is the second substrate layer, and the material of the main body includes the second substrate.
  • the lyophilic layer covers at least the sidewall of the second substrate layer, that is, the sidewall of the second opening H2 is covered with a lyophilic material, which is also beneficial to the collection of the light-emitting functional layer ink by the second opening H2.
  • the second pixel defining layer 105 includes a positive photoresist layer, that is, the material of the second pixel defining layer 105 includes a positive photoresist, for example, a diazonaphthoquinone photoresist. Therefore, a plurality of second openings H2 can be formed on the second pixel defining layer 105 by using an exposure and developing process.
  • the boundary G of the orthographic projection of the end of the second opening H2 close to the substrate 101 on the substrate 101 is located on the substrate 101 at the end of the first opening H1 away from the substrate 101 within the boundary F of the orthographic projection.
  • the opening area of the end of the second opening H2 close to the substrate 101 is smaller than the opening area of the end of the first opening H1 away from the substrate 101, so that the second pixel defining layer 105 can block the first opening H1 away from the substrate.
  • the edge area of the opening at one end of the bottom 101 can play the role of shielding the ink of the light-emitting functional layer, so as to prevent the ink from splashing out from the first opening H1.
  • the climbing path of the ink is increased. Even if the ink climbs along the sidewall of the first opening H1 to the surface of the second pixel defining layer 105 near the substrate 101, it will fall back to the first opening H1 under the action of gravity. In the middle area, the ink is prevented from climbing along the sidewall of the first opening H1 into the second opening H2 of the second pixel defining layer 105 .
  • the ratio of the thickness of the first pixel definition layer 104 to the thickness of the second pixel definition layer 105 ranges from 1 to 3, for example, the ratio is 1, 1.5, 2, 2.6 or 3. That is, the thickness of the first pixel definition layer 104 may be equal to the thickness of the second pixel definition layer 105 , and the thickness of the first pixel definition layer 104 may also be greater than the thickness of the second pixel definition layer 105 .
  • the display device 200 includes a display substrate 100 and a polarizer 201 disposed on a light-emitting side of the display substrate 100 .
  • the polarizer 201 By arranging the polarizer 201 on the light-emitting side of the display substrate 100 , the reflection of the external ambient light by the light-reflecting structure in the display substrate 100 can be reduced, thereby avoiding influence on the screen display of the display device 200 .
  • the display device 200 in the above-mentioned embodiment of the present disclosure by setting the sidewall of the first opening H1 of the first pixel defining layer 104 to be recessed in the direction E away from the center C of the first opening H1, a relatively uniform film thickness can be formed.
  • the light-emitting functional layer 10 can improve the light-emitting performance and service life of the light-emitting functional layer 10, thereby improving the display effect of the display device 200.
  • the display device 200 can be an electroluminescence display device, and the electroluminescence display device can be an organic electroluminescence display device (Organic Light-Emitting Diode, OLED for short) or a quantum dot electroluminescence display device (Quantum Dot Light Emitting Diodes). , referred to as QLED).
  • OLED Organic Light-Emitting Diode
  • QLED Quantum Dot Light Emitting Diodes
  • the above-described display device 200 may be any device that displays images whether in motion (eg, video) or stationary (eg, still images) and whether text or images. More specifically, it is contemplated that the embodiments may be implemented in or associated with a wide variety of electronic devices, such as, but not limited to, mobile phones, wireless devices, personal data assistants (PDAs) , handheld or portable computers, GPS receivers/navigators, cameras, MP4 video players, camcorders, game consoles, watches, clocks, calculators, TV monitors, flat panel monitors, computer monitors, automotive monitors (e.g., odometer displays, etc.), navigators, cockpit controls and/or displays, displays of camera views (eg, displays of rear-view cameras in vehicles), electronic photographs, electronic billboards or signs, projectors, building structures, packaging and aesthetic structures (eg, a display for an image of a piece of jewelry), etc.
  • PDAs personal data assistants
  • handheld or portable computers GPS receivers/navigators
  • Some embodiments of the present disclosure also provide a method for preparing a display substrate. As shown in FIG. 9A , the preparation method includes the following S1 to S5:
  • a plurality of first electrodes 103 are formed on the substrate 101 .
  • S1 includes the following S11-S12:
  • the first electrode layer 13 is formed on the substrate 101 by using a film forming process.
  • the first electrode layer 13 is electrically connected to the drain electrode T4 of the thin film transistor T serving as the driving transistor among the plurality of thin film transistors T included in the pixel driving circuit through the via hole in the flat layer 102 .
  • the material of the first electrode layer 13 includes indium tin oxide (Indium Tin Oxide, ITO for short).
  • the first electrode layer 13 is patterned to form a plurality of first electrodes 103 .
  • a photoresist layer is formed on the side of the first electrode layer 13 away from the substrate 101 .
  • the first electrode layer 13 is etched by using the photoresist layer as a mask to form a plurality of first electrodes 103 .
  • a first pixel defining film 14 and a second pixel defining film 15 are sequentially formed on the side of the plurality of first electrodes 103 away from the substrate 101 .
  • a spin-coating process is used to spin-coat the solution of the first pixel-defining film 14 on the side of the plurality of first electrodes 103 away from the substrate 101 , and the first pixel-defining film 14 is obtained after heating and drying.
  • the solution of the first pixel-defining film 14 is a 500 mg/ml toluene solution of silicon oxide nanoparticles, and the chemical structural formula of the ligand is shown in the following figure (f):
  • a spin-coating process is used to spin-coat a positive photoresist on the side of the first pixel-defining film 14 away from the substrate 101 , and heat for 90 s at 90° C. to obtain the second pixel-defining film 15 .
  • the second pixel defining layer 105 has a plurality of second openings H2, the second openings H2 are located at the boundary G of the orthographic projection of one end of the second opening H2 on the substrate 101, and the end of the second opening H2 away from the substrate 101 is located in the substrate Within the boundary I of the orthographic projection on 101, the side wall of the second opening H2 is inclined and arranged in a "funnel" shape.
  • the ink can slide down the side wall of the second opening H2 into the first opening H1 to prevent the ink from flowing to the second pixel defining layer 105 and away from the substrate 101 On one side of the surface, the bridging phenomenon of the ink is formed.
  • the second pixel-defining film 15 is a positive photoresist layer, and the second pixel-defining film 15 is irradiated with ultraviolet light, and the region of the second pixel-defining film 15 irradiated by the ultraviolet light generates carboxylate , soluble in alkaline developer. Moreover, since ultraviolet light will absorb when it passes through the positive photoresist layer, the surface of the positive photoresist layer has more carboxylate groups than the interior, so that the positive photoresist layer can be developed in an alkaline developer. Afterwards, the surface dissolves more than the inside, forming a "funnel"-shaped second opening H2.
  • the second pixel-defining film 15 is exposed to ultraviolet light of 100 mj (millijoules), and after exposure is completed, it is developed in a 2.35% tetramethylammonium hydroxide aqueous solution, and the second pixel-defining layer 105 is formed after the development is completed. , annealing at 120° C. for 150 s, and removing the solvent to release the stress in the second pixel defining layer 105 .
  • the first pixel defining layer 104 has a plurality of first openings H1, the first openings H1 expose at least a part of the first electrode 103, and the orthographic projection of the first openings H1 on the substrate 101 and the second openings H2 on the substrate 101.
  • the orthographic projections overlap at least partially.
  • the side wall of the first opening H1 is concave in the direction E away from the center C of the first opening H1, so as to reduce the phenomenon that the ink of the light emitting functional layer climbs along the side wall of the first opening H1, which is conducive to the formation of light emission with a relatively uniform film thickness
  • the functional layer 10 can improve the light-emitting performance and service life of the light-emitting functional layer 10 .
  • a dry etching process is used to etch the first pixel defining film 14 by using the second pixel defining layer 105 as a mask to form a plurality of first openings H1 .
  • a reactive ion etching (Reactive Ion Etching, RIE for short) process is used to perform anisotropic etching on the first pixel defining film 14 using an etching gas.
  • RIE reactive Ion Etching
  • the area of the first pixel-defining film 14 not covered by the second pixel-defining layer 105 is completely etched, and since the etching gas moves laterally, the first pixel-defining film 14 is covered by the second pixel-defining layer 105 The area of is laterally etched to form a first opening H1.
  • the surface of the first pixel-defining film 14 on the side away from the substrate 101 is in contact with the second pixel-defining layer 105, so that the surface of the first pixel-defining film 14 on the side close to the substrate 101 is in contact with the first electrode 103, so that the first opening H1
  • the sidewall of the first opening H1 has less contact with the etching gas in the area close to the second pixel defining layer 105 and the area close to the first electrode 103, and the middle area of the sidewall of the first opening H1 along the direction Y has more contact with the etching gas, so
  • the side wall of the first opening H1 is recessed in the direction E away from the center C of the first opening H1.
  • the reactive ion etching machine used in the reactive ion etching process has an electrode power of 100W, an etching gas of trifluoromethane (chemical formula: CHF 3 ), an etching gas pressure of 0.5Pa, and an etching time of 2min.
  • the light-emitting functional layer 10 includes a hole injection layer 106 , a hole transport layer 107 , a light-emitting layer 108 and an electron transport layer 109 that are sequentially stacked along the direction Y perpendicular to and away from the substrate 101 .
  • S5 includes the following S51 to S54:
  • the preparation method further includes the following S6:
  • a second electrode layer 112 is formed on the side of the light-emitting functional layer 10 away from the substrate 101 and the side of the second pixel defining layer 105 away from the substrate 101 .
  • the second electrode layer 112 is evaporated in a vacuum environment using an evaporation process.
  • the preparation method further includes the following S7:
  • an encapsulation layer 113 is formed on the side of the second electrode layer 112 away from the substrate 101 .
  • the encapsulation layer 113 has the function of blocking water vapor and oxygen, and is used to protect the film layer under the encapsulation layer 113 in the display substrate 100 .
  • a chemical vapor deposition (Chemical Vapor Deposition, CVD for short) process is used to form the encapsulation layer 113 on the side of the second electrode layer 112 away from the substrate 101 .

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

一种显示基板,包括衬底、设置于衬底上的多个第一电极、第一像素界定层、第二像素界定层以及多个发光功能层。其中,第一像素界定层设置于衬底上,第一像素界定层具有多个第一开口,第一开口暴露第一电极的至少一部分,第一开口的侧壁向远离第一开口的中心的方向凹陷。第二像素界定层设置于第一像素界定层远离衬底的一侧,第二像素界定层具有多个第二开口,第二开口在衬底上的正投影与第一开口在衬底上的正投影至少部分重叠。第二开口靠近衬底的一端在衬底上的正投影的边界,位于第二开口远离衬底的一端在衬底上的正投影的边界之内。多个发光功能层位于多个第一电极远离衬底的一侧,一个发光功能层设置于一个第一开口内。

Description

显示基板及其制备方法、显示装置
本申请要求于2021年03月31日提交的、申请号为202110352002.7的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本公开涉及显示技术领域,尤其涉及一种显示基板及其制备方法、显示装置。
背景技术
随着量子点技术的发展,人们对量子点电致发光二极管(Quantum Dot Light Emitting Diodes,简称QLED)显示装置的研究日益深入,QLED显示装置的量子效率不断提升,已基本达到产业化的水平。
目前,采用喷墨打印(Ink-Jet Printing,简称IJP)技术形成发光功能层,以制备高分辨率的QLED显示装置已经成为领域内的发展趋势之一。
公开内容
一方面,提供一种显示基板,包括衬底、多个第一电极、第一像素界定层、第二像素界定层以及多个发光功能层。
其中,多个第一电极设置于所述衬底上。第一像素界定层设置于所述衬底上,所述第一像素界定层具有多个第一开口,第一开口暴露所述第一电极的至少一部分,所述第一开口的侧壁向远离所述第一开口的中心的方向凹陷。第二像素界定层设置于所述第一像素界定层远离所述衬底的一侧,所述第二像素界定层具有多个第二开口,第二开口在所述衬底上的正投影与所述第一开口在所述衬底上的正投影至少部分重叠。所述第二开口靠近所述衬底的一端在所述衬底上的正投影的边界,位于所述第二开口远离所述衬底的一端在所述衬底上的正投影的边界之内。多个发光功能层位于所述多个第一电极远离所述衬底的一侧,一个发光功能层设置于一个所述第一开口内。
在一些实施例中,沿垂直于所述衬底且远离所述衬底的方向,所述第一开口沿平行于所述衬底的平面方向的截面的面积,由小变大再由大变小。
在一些实施例中,所述第一像素界定层为疏液层。或,所述第一像素界定层包括第一基材层,以及至少覆盖所述第一基材层的侧壁的疏液层。
在一些实施例中,所述第一像素界定层包括无机纳米粒子,以及与无机纳米粒子结合的配体。其中,所述配体包括含氟基团。
在一些实施例中,所述第一像素界定层包括多个氧化硅纳米粒子,和/或,多个氮化硅纳米粒子。
在一些实施例中,所述配体包括氟原子、三氟甲基、六氟苯、十氟联苯或全氟乙烯中的至少一种。
在一些实施例中,沿垂直于所述衬底且远离所述衬底的方向,所述第二开口沿平行于所述衬底的平面方向的截面的面积逐渐变大。
在一些实施例中,所述第二开口靠近所述衬底的一端在所述衬底上的正投影的边界,位于所述第一开口远离所述衬底的一端在所述衬底上的正投影的边界之内。
在一些实施例中,所述第二像素界定层为亲液层。或,所述第二像素界定层包括第二基材层,以及至少覆盖所述第二基材层的侧壁的亲液层。
在一些实施例中,所述第二像素界定层包括正性光刻胶层。
在一些实施例中,所述第二开口的侧壁与所述第二像素界定层靠近所述衬底的表面之间的夹角范围为30°~75°。
在一些实施例中,所述第一像素界定层的厚度与所述第二像素界定层的厚度的比值范围为1~3。
在一些实施例中,所述第一电极和所述发光功能层的厚度的和,小于所述第一像素界定层的厚度。
在一些实施例中,显示基板还包括第二电极层,所述第二电极层包括设置于所述发光功能层远离所述衬底一侧的第二电极,以及覆盖在所述第二像素界定层远离所述衬底一侧的表面,和所述第二开口的侧壁上的连接图案。
另一方面,提供一种显示装置,包括如上述任一实施例所述的显示基板。
另一方面,提供一种显示基板的制备方法,包括:在衬底上形成多个第一电极。在所述多个第一电极远离所述衬底的一侧依次形成第一像素界定薄膜和第二像素界定薄膜。图案化所述第二像素界定薄膜,形成第二像素界定层。所述第二像素界定层具有多个第二开口,第二开口靠近所述衬底的一端在所述衬底上的正投影的边界,位于所述第二开口远离所述衬底的一端在所述衬底上的正投影的边界之内。以所述第二像素界定层为掩膜,图案化所述第一像素界定薄膜,形成第一像素界定层。所述第一像素界定层具有多个第一开口,第一开口暴露第一电极的至少一部分,所述第一开口在所述衬底上的正投影与所述第二开口在所述衬底上的正投影至少部分重叠,所述第一开口的侧壁向远离所述第一开口的中心的方向凹陷。在所述第一开口内形成发光功能层。
在一些实施例中,所述图案化所述第一像素界定薄膜,包括:采用干法刻蚀工艺,图案化所述第一像素界定薄膜。
在一些实施例中,所述在所述第一开口内形成发光功能层,包括:在所述第一开口内喷墨打印发光功能层墨水。烘干所述发光功能层墨水,形成所述发光功能层。
附图说明
为了更清楚地说明本公开中的技术方案,下面将对本公开一些实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例的附图,对于本领域普通技术人员来讲,还可以根据这些附图获得其他的附图。此外,以下描述中的附图可以视作示意图,并非对本公开实施例所涉及的产品的实际尺寸、方法的实际流程、信号的实际时序等的限制。
图1为根据本公开的一些实施例的显示基板的俯视图;
图2为图1中显示基板沿O-O'的剖面图;
图3为根据本公开的一些实施例的喷墨打印的过程的一种示意图;
图4为根据本公开的一些实施例的喷墨打印的过程的另一种示意图;
图5为根据本公开的一些实施例的显示基板的一种结构图;
图6为根据本公开的一些实施例的显示基板的另一种结构图;
图7为根据本公开的一些实施例的无机纳米粒子结合配体的结构图;
图8为根据本公开的一些实施例的显示装置的结构图;
图9A为根据本公开的一些实施例的显示基板的制备方法的一种流程图;
图9B为根据本公开的一些实施例的显示基板的制备方法的另一种流程图;
图10为根据本公开的一些实施例的制备第一电极层的步骤图;
图11为根据本公开的一些实施例的制备第一电极的步骤图;
图12为根据本公开的一些实施例的制备第一像素界定薄膜和第二像素界定薄膜的步骤图;
图13为根据本公开的一些实施例的制备第二像素界定层的步骤图;
图14为根据本公开的一些实施例的制备第一像素界定层的步骤图;
图15为根据本公开的一些实施例的制备发光功能层的步骤图;
图16为根据本公开的一些实施例的制备第二电极层的步骤图;
图17为根据本公开的一些实施例的制备封装层的步骤图。
具体实施方式
下面将结合附图,对本公开一些实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实 施例。基于本公开所提供的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本公开保护的范围。
除非上下文另有要求,否则,在整个说明书和权利要求书中,术语“包括(comprise)”及其其他形式例如第三人称单数形式“包括(comprises)”和现在分词形式“包括(comprising)”被解释为开放、包含的意思,即为“包含,但不限于”。在说明书的描述中,术语“一个实施例(one embodiment)”、“一些实施例(some embodiments)”、“示例性实施例(exemplary embodiments)”、“示例(example)”、“特定示例(specific example)”或“一些示例(some examples)”等旨在表明与该实施例或示例相关的特定特征、结构、材料或特性包括在本公开的至少一个实施例或示例中。上述术语的示意性表示不一定是指同一实施例或示例。此外,所述的特定特征、结构、材料或特点可以以任何适当方式包括在任何一个或多个实施例或示例中。
以下,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本公开实施例的描述中,除非另有说明,“多个”的含义是两个或两个以上。
在描述一些实施例时,可能使用了“电连接”及其衍伸的表达。例如,描述一些实施例时可能使用了术语“连接”以表明两个或两个以上部件彼此间有直接物理接触或电接触。
“A和/或B”,包括以下三种组合:仅A,仅B,及A和B的组合。
另外,“基于”的使用意味着开放和包容性,因为“基于”一个或多个所述条件或值的过程、步骤、计算或其他动作在实践中可以基于额外条件或超出所述的值。
本文参照作为理想化示例性附图的剖视图和/或平面图描述了示例性实施方式。在附图中,为了清楚,放大了层和区域的厚度。因此,可设想到由于例如制造技术和/或公差引起的相对于附图的形状的变动。因此,示例性实施方式不应解释为局限于本文示出的区域的形状,而是包括因例如制造而引起的形状偏差。例如,示为矩形的蚀刻区域通常将具有弯曲的特征。因此,附图中所示的区域本质上是示意性的,且它们的形状并非旨在示出设备的区域的实际形状,并且并非旨在限制示例性实施方式的范围。
在相关技术中,采用喷墨打印技术,将发光功能层墨水打印在像素界定层(Pixel Defining Layer,简称PDL)的开口内,待墨水烘干后形成发光功能 层。然而,在墨水烘干的过程中,由于马格兰尼效应,墨水会沿着像素界定层的挡墙(Bank)的侧壁攀爬,形成中间薄、边缘厚的发光功能层,发光功能层的膜厚不均匀会降低其使用寿命,并减小显示装置的出光效率,从而影响显示装置的显示质量。因此,如何制备出膜厚均匀的发光功能层,成为领域内的研究方向之一。
基于此,本公开的一些实施例提供了一种显示基板,如图1和图2所示,显示基板100包括衬底101,以及设置于衬底101上的多个第一电极103。
需要说明的是,如图1所示,显示基板100具有多个子像素区域P,显示基板100还包括设置于衬底101上的多个像素驱动电路,一个子像素区域P内设置有一个像素驱动电路。
如图2所示,每个像素驱动电路包括多个薄膜晶体管T,每个薄膜晶体管T包括栅极T1、有源层T2、源极T3和漏极T4。在栅极T1与有源层T2之间设置有栅极绝缘层T5,以使栅极T1与有源层T2之间绝缘。
如图2所示,显示基板100还包括覆盖在多个像素驱动电路远离衬底101一侧的平坦层102,平坦层102中具有多个过孔。每个第一电极103通过平坦层102中的过孔,与像素驱动电路所包括的多个薄膜晶体管T中作为驱动晶体管的薄膜晶体管T的源极T3或漏极T4电连接(图2中示出了第一电极103与漏极T4电连接的情形),以向第一电极103传输电压信号。
如图2所示,显示基板100还包括设置于衬底101上的第一像素界定层104,第一像素界定层104具有多个第一开口H1,第一开口H1暴露第一电极103的至少一部分。第一开口H1的侧壁向远离第一开口H1的中心C的方向E凹陷。
可以理解的是,结合图2,第一开口H1靠近衬底101的一端在衬底101上的正投影的边界,位于第一电极103在衬底101上的正投影的边界之内。即第一开口H1靠近衬底101的一端被第一电极103遮住。
结合图1和图2可见,“方向E”在平行于衬底101的平面内,以第一开口H1的中心C为起点,呈360°发散,第一开口H1的侧壁沿着各发散的方向E向第一像素界定层104内凹陷,形成了图2示出的第一开口H1的剖面形状。
如图2所示,显示基板100还包括设置于第一像素界定层104远离衬底101一侧的第二像素界定层105。第二像素界定层105具有多个第二开口H2,第二开口H2在衬底101上的正投影与第一开口H1在衬底101上的正投影至少部分重叠,从而使第一开口H1与第二开口H2相连通,使发光功能层墨水 可经第二开口H2流入第一开口H1内。
并且,第二开口H2靠近衬底101的一端在衬底101上的正投影的边界G,位于第二开口H2远离衬底101的一端在衬底101上的正投影的边界I之内。
可以理解的是,结合图1和图2,第二开口H2靠近衬底101的一端的开口面积,小于第二开口H2远离衬底101的一端的开口面积,使第二开口H2的侧壁倾斜设置。例如,第二开口H2的剖面形状为倒置的梯形,使得第二开口H2的形状呈“漏斗状”。
如图2所示,显示基板100还包括位于多个第一电极103远离衬底101一侧的多个发光功能层10,一个发光功能层10设置于一个第一开口H1内。
需要说明的是,可采用喷墨打印工艺,将发光功能层墨水经第二开口H2打印至第一像素界定层104的第一开口H1内,待墨水烘干后形成发光功能层10。
并且,如图2所示,显示基板100包括设置于第一开口H1内的发光器件D,发光器件D包括层叠设置的第一电极103和发光功能层10,以及设置于发光功能层10远离衬底101一侧的第二电极110。
示例性地,第一电极103可以为发光器件D的阳极,第二电极110可以为发光器件D的阴极。通过向发光器件D的第一电极103传输电压信号,并且向发光器件D的第二电极110传输电压信号,使第一电极103与第二电极110之间形成电压差,从而驱动位于二者之间的发光功能层10发出光线,以实现显示装置的画面显示。
本公开的上述实施例中的显示基板100,通过将第一开口H1的侧壁设置成向远离第一开口H1的中心C的方向E凹陷,以减弱发光功能层墨水沿着第一开口H1的侧壁攀爬的现象。并且,请参见图3,在墨水沿着第一开口H1的凹陷的侧壁攀爬的过程中,使墨水受重力作用回落到第一开口H1的中心区域,从而在墨水烘干后,有利于形成膜厚较均匀的发光功能层10,以提高发光功能层10的发光性能和使用寿命。
并且,第二开口H2靠近衬底101的一端在衬底101上的正投影的边界G,位于第二开口H2远离衬底101的一端在衬底101上的正投影的边界I之内,使第二开口H2的侧壁倾斜设置,呈“漏斗”状。请参见图4所示,在墨水的下落轨迹发生偏离或墨水分裂成微型墨滴的情况下,墨水可沿第二开口H2的侧壁滑落至第一开口H1内,避免墨水流到第二像素界定层105远离衬底101一侧的表面上,而形成墨水的桥联现象。
在一些实施例中,如图2所示,发光功能层10至少包括发光层108。
示例性地,发光层108为量子点发光层,例如,发光层108的材料可包括硒化镉(化学式:CdSe),或硫化锌(化学式:ZnS),或硒化镉和硫化锌。
在一些实施例中,发光功能层10还包括电子传输层(Election Transporting Layer,简称ETL)、电子注入层(Election Injection Layer,简称EIL)、空穴传输层(Hole Transporting Layer,简称HTL)以及空穴注入层(Hole Injection Layer,简称HIL)中的一层或多层,以提高发光器件D的发光效率。
示例性地,如图2所示,发光功能层10可包括沿垂直于衬底101且远离衬底101的方向Y,依次层叠设置的空穴注入层106、空穴传输层107、发光层108以及电子传输层109。
例如,空穴注入层106的材料可包括聚乙烯二氧噻吩(即,PEDOT)。
例如,空穴传输层107的材料可包括聚[(9,9-二辛基芴基-2,7-二基)-共-(4,4'-(N-对丁基苯基))](即,TFB)。
例如,电子传输层109的材料可包括氧化锌(化学式:ZnO)。
在一些实施例中,如图2所示,第一电极103和发光功能层10的厚度的和,小于第一像素界定层104的厚度,以使发光功能层10可以全部设置于第一像素界定层104的第一开口H1内。
在一些实施例中,如图2所示,显示基板100还包括整面覆盖的第二电极层112,第二电极层112包括设置于发光功能层10远离衬底101一侧的第二电极110,以及覆盖在第二像素界定层105远离衬底101一侧的表面,和第二开口H2的侧壁上的连接图案111。
通过连接图案111实现位于第一开口H1内的第二电极110的电连接,有利于降低第二电极层112整体的阻抗,可改善电压信号在第二电极层112上传输的过程中产生的压降现象,即IR压降(IR-Drop)。
在一些实施例中,第二电极层112也可以是图案化的膜层,第二电极层112至少包括设置于发光功能层10远离衬底101一侧的第二电极110。
在一些实施例中,如图5所示,显示基板100还包括设置于第二电极层112远离衬底101一侧的封装层113,封装层113至少包括一层阻隔层。
示例性的,如图5所示,封装层113包括一层无机阻隔层,具有阻隔水汽和氧气的作用,用于保护显示基板100中位于封装层113下方的膜层。
在一些实施例中,如图6所示,封装层113可包括沿垂直于衬底101且远离衬底101的方向Y,依次层叠的第一无机阻隔层114、有机阻隔层115和第二无机阻隔层116,有机阻隔层115具有一定的柔性和吸收水汽的作用等,结合第一无机阻隔层114和第二无机阻隔层116,可达到更好的封装效果。
在一些实施例中,如图2所示,沿垂直于衬底101且远离衬底101的方向Y,第一开口H1沿平行于衬底101的平面方向X的截面的面积,由小变大再由大变小。
可以理解的是,第一开口H1的侧壁向远离第一开口H1的中心C的方向E凹陷,且第一开口H1靠近两端的侧壁的凹陷程度较小,位于第一开口H1两端之间的中间区域的侧壁的凹陷程度较大,通过将第一开口H1的侧壁设置成这种形状,使得墨水沿着第一开口H1的侧壁攀爬的过程中,受重力作用回落到第一开口H1的中心区域。
在一些实施例中,第一开口H1的侧壁为曲面,通过将第一开口H1的侧壁设置为曲面,使得第一开口H1的侧壁的表面较为光滑,可进一步减弱发光功能层墨水沿着第一开口H1的侧壁攀爬的现象。
在一些实施例中,第一像素界定层104为疏液层,即第一像素界定层104的材料包括疏液材料,可减弱发光功能层墨水沿着第一像素界定层104的第一开口H1的侧壁攀爬的现象。
需要说明的是,发光功能层墨水可以是水性的溶液,也可以是油性的溶液。第一像素界定层104的材料包括疏液材料,使得第一开口H1的侧壁既疏水又疏油,因此,无论发光功能层墨水是水性的还是油性的,都可以减弱发光功能层墨水沿着第一开口H1的侧壁攀爬的现象。
在另一些实施例中,第一像素界定层104包括第一基材层,以及至少覆盖第一基材层的侧壁的疏液层。
结合图2,第一像素界定层104的主体为第一基材层,主体的材料包括第一基材。疏液层至少覆盖第一基材层的侧壁,即第一开口H1的侧壁覆盖有疏液材料,也可以减弱发光功能层墨水沿着第一开口H1的侧壁攀爬的现象。
在一些实施例中,如图7所示,第一像素界定层104包括无机纳米粒子11,以及与无机纳米粒子11结合的配体12。其中,配体12包括含氟基团。
需要说明的是,无机纳米粒子11结合配体12(含氟基团)后,使得无机纳米粒子11结合含氟基团后具有疏水和疏油的特性。
示例性地,无机纳米粒子11为导电性较差的绝缘材料,第一像素界定层104可包括多个氧化硅纳米粒子,第一像素界定层104也可包括多个氮化硅纳米粒子,第一像素界定层104还可包括多个氧化硅纳米粒子和多个氮化硅纳米粒子。
示例性地,与无机纳米粒子11结合的配体12包括含氟基团,例如氟原子、三氟甲基、六氟苯、十氟联苯或全氟乙烯中的至少一种。其中,三氟甲 基、六氟苯、十氟联苯以及全氟乙烯的化学结构式分别为如下图(a)、图(b)图(c)、图(d):
Figure PCTCN2021129430-appb-000001
示例性地,配体12的总链长为8~18个碳原子,例如,配体12的总链长可以为8个碳原子、10个碳原子、13个碳原子、15个碳原子或18个碳原子。
例如,配体12为1-丁基-4-壬基四氟苯,其化学结构式为如下图(e):
Figure PCTCN2021129430-appb-000002
在一些实施例中,如图2所示,沿垂直于衬底101且远离衬底101的方向Y,第二开口H2沿平行于衬底101的平面方向X的截面的面积逐渐变大。
可以理解的是,结合图1和图2,第二像素界定层105中第二开口H2的侧壁倾斜设置,且第二开口H2靠近衬底101的一端的开口面积,小于远离衬底101的一端的开口面积,使得第二开口H2的剖面形状为倒置的梯形,以便于发光功能层墨水沿第二开口H2的侧壁滑落至第一开口H1内,避免墨水流到第二像素界定层105远离衬底101一侧的表面上,而形成墨水的桥联现象。
在一些实施例中,如图2所示,第二开口H2的侧壁与第二像素界定层105靠近衬底101的表面之间的夹角α范围为30°~75°,例如,夹角α可为30°、45°、50°、60°或75°,保证第二开口H2的侧壁的倾斜度,以保证发光功能层墨水可以沿第二开口H2的侧壁滑落至第一开口H1内。
在一些实施例中,第二像素界定层105为亲液层,即第二像素界定层105 的材料包括亲液材料,有利于发光功能层墨水流至第二像素界定层105的第二开口H2内,实现对墨水的收集。
可以理解的是,第二像素界定层105的材料包括亲液材料,第一开口H1的侧壁既亲水又亲油,因此,无论发光功能层墨水是水性的还是油性的,都有利于第二开口H2对发光功能层墨水的收集。
在另一些实施例中,第二像素界定层105包括第二基材层,以及至少覆盖第二基材层的侧壁的亲液层。
结合图2,第二像素界定层105的主体为第二基材层,主体的材料包括第二基材。亲液层至少覆盖第二基材层的侧壁,即第二开口H2的侧壁覆盖有亲液材料,也有利于第二开口H2对发光功能层墨水的收集。
在一些实施例中,第二像素界定层105包括正性光刻胶层,即第二像素界定层105的材料包括正性光刻胶,例如,重氮萘醌类光刻胶。因此,可采用曝光显影工艺,在第二像素界定层105上形成多个第二开口H2。
在一些实施例中,如图2所示,第二开口H2靠近衬底101的一端在衬底101上的正投影的边界G,位于第一开口H1远离衬底101的一端在衬底101上的正投影的边界F之内。
可以理解的是,第二开口H2靠近衬底101的一端的开口面积,小于第一开口H1远离衬底101的一端的开口面积,使第二像素界定层105可以遮住第一开口H1远离衬底101的一端开口的边缘区域,可起到遮挡发光功能层墨水的作用,避免墨水从第一开口H1溅出。并且,增加了墨水的攀爬路径,即使墨水沿第一开口H1的侧壁攀爬到第二像素界定层105靠近衬底101一侧的表面,也会受重力作用回落到第一开口H1的中间区域,避免墨水沿第一开口H1的侧壁攀爬到第二像素界定层105的第二开口H2内。
在一些实施例中,第一像素界定层104的厚度与第二像素界定层105的厚度的比值范围为1~3,例如,比值为1、1.5、2、2.6或3。即,第一像素界定层104的厚度可以与第二像素界定层105的厚度相等,第一像素界定层104的厚度也可以大于第二像素界定层105的厚度。
本公开的一些实施例还提供了一种显示装置,如图8所示,该显示装置200包括显示基板100,以及设置于显示基板100的出光侧的偏光片201。通过在显示基板100的出光侧设置偏光片201,可减小显示基板100中的反光结构对外界环境光的反射,从而可避免对显示装置200的画面显示造成影响。
本公开的上述实施例中的显示装置200,通过将第一像素界定层104的第一开口H1的侧壁设置成向远离第一开口H1的中心C的方向E凹陷,可形成 膜厚较均匀的发光功能层10,提高发光功能层10的发光性能和使用寿命,从而可改善显示装置200的显示效果。
该显示装置200可以为电致发光显示装置,该电致发光显示装置可以为有机电致发光显示装置(Organic Light-Emitting Diode,简称OLED)或量子点电致发光显示装置(Quantum Dot Light Emitting Diodes,简称QLED)。
上述显示装置200可以是显示不论运动(例如,视频)还是固定(例如,静止图像)的且不论文字还是的图像的任何装置。更明确地说,预期所述实施例可实施在多种电子装置中或与多种电子装置关联,所述多种电子装置例如(但不限于)移动电话、无线装置、个人数据助理(PDA)、手持式或便携式计算机、GPS接收器/导航器、相机、MP4视频播放器、摄像机、游戏控制台、手表、时钟、计算器、电视监视器、平板显示器、计算机监视器、汽车显示器(例如,里程表显示器等)、导航仪、座舱控制器和/或显示器、相机视图的显示器(例如,车辆中后视相机的显示器)、电子相片、电子广告牌或指示牌、投影仪、建筑结构、包装和美学结构(例如,对于一件珠宝的图像的显示器)等。
本公开的一些实施例还提供了一种显示基板的制备方法,如图9A所示,制备方法包括如下S1~S5:
S1:在衬底101上形成多个第一电极103。
示例性地,S1包括如下S11~S12:
S11:如图10所示,采用成膜工艺,在衬底101上形成第一电极层13。第一电极层13通过平坦层102中的过孔,与像素驱动电路所包括的多个薄膜晶体管T中作为驱动晶体管的薄膜晶体管T的漏极T4电连接。
例如,第一电极层13的材料包括氧化铟锡(Indium Tin Oxide,简称ITO)。
S12:如图11所示,图案化第一电极层13,形成多个第一电极103。
例如,采用光刻工艺,在第一电极层13远离衬底101的一侧形成光刻胶层。采用刻蚀工艺,以光刻胶层为掩膜刻蚀第一电极层13,形成多个第一电极103。
S2:如图12所示,在多个第一电极103远离衬底101的一侧依次形成第一像素界定薄膜14和第二像素界定薄膜15。
示例性地,采用旋涂工艺,在多个第一电极103远离衬底101的一侧旋涂第一像素界定薄膜14的溶液,加热烘干后得到第一像素界定薄膜14。
例如,第一像素界定薄膜14的溶液为500mg/ml的氧化硅纳米粒子甲苯溶液,配体的化学结构式为如下图(f):
Figure PCTCN2021129430-appb-000003
在120℃的环境下加热10min,烘干后得到第一像素界定薄膜14。
示例性地,采用旋涂工艺,在第一像素界定薄膜14远离衬底101的一侧旋涂正性光刻胶,在90℃的环境下加热90s,得到第二像素界定薄膜15。
S3:如图13所示,图案化第二像素界定薄膜15,形成第二像素界定层105。
第二像素界定层105具有多个第二开口H2,第二开口H2靠近衬底101的一端在衬底101上的正投影的边界G,位于第二开口H2远离衬底101的一端在衬底101上的正投影的边界I之内,使第二开口H2的侧壁倾斜设置,呈“漏斗”状。在墨水的下落轨迹发生偏离或墨水分裂成微型墨滴的情况下,墨水可沿第二开口H2的侧壁滑落至第一开口H1内,避免墨水流到第二像素界定层105远离衬底101一侧的表面上,而形成墨水的桥联现象。
示例性地,如图13所示,第二像素界定薄膜15为正性光刻胶层,采用紫外光照射第二像素界定薄膜15,第二像素界定薄膜15被紫外光照射的区域产生羧酸根,可溶解于碱性显影液。并且,由于紫外光经过正性光刻胶层时会有吸收,因此正性光刻胶层的表面比内部产生的羧酸根数量更多,使得正性光刻胶层在碱性显影液中显影后,表面比内部溶解的多,形成“漏斗”状的第二开口H2。
例如,采用100mj(毫焦耳)的紫外光对第二像素界定薄膜15进行曝光,曝光完成后,采用2.35%的四甲基氢氧化铵水溶液中进行显影,显影完成后形成第二像素界定层105,在120℃的环境下退火150s,去除溶剂以释放第二像素界定层105内的应力。
S4:以第二像素界定层105为掩膜,图案化第一像素界定薄膜14,形成第一像素界定层104。
第一像素界定层104具有多个第一开口H1,第一开口H1暴露第一电极103的至少一部分,第一开口H1在衬底101上的正投影与第二开口H2在衬 底101上的正投影至少部分重叠。第一开口H1的侧壁向远离第一开口H1的中心C的方向E凹陷,以减弱发光功能层墨水沿着第一开口H1的侧壁攀爬的现象,有利于形成膜厚较均匀的发光功能层10,以提高发光功能层10的发光性能和使用寿命。
示例性地,如图14所示,采用干法刻蚀工艺,以第二像素界定层105为掩膜,刻蚀第一像素界定薄膜14形成多个第一开口H1。
例如,采用反应离子腐蚀(Reactive Ion Etching,简称RIE)工艺,使用刻蚀气体对第一像素界定薄膜14进行各向异性刻蚀。参考图14,第一像素界定薄膜14未被第二像素界定层105覆盖的区域被完全刻蚀,并且由于刻蚀气体会侧向运动,第一像素界定薄膜14被第二像素界定层105覆盖的区域会发生侧向刻蚀,形成第一开口H1。
由于第一像素界定薄膜14远离衬底101一侧的表面与第二像素界定层105接触,第一像素界定薄膜14靠近衬底101一侧的表面与第一电极103接触,使得第一开口H1的侧壁靠近第二像素界定层105以及靠近第一电极103的区域与刻蚀气体的接触较少,第一开口H1的侧壁沿方向Y的中间区域与刻蚀气体的接触较多,从而使第一开口H1的侧壁向远离第一开口H1的中心C的方向E凹陷。
其中,反应离子腐蚀工艺所使用的反应离子刻蚀机,其电极功率为100W,刻蚀气体为三氟甲烷(化学式:CHF 3),刻蚀气体的压强为0.5Pa,刻蚀时间为2min。
S5:如图15所示,在第一开口H1内形成发光功能层10。
示例性地,发光功能层10包括沿垂直于衬底101且远离衬底101的方向Y,依次层叠设置的空穴注入层106、空穴传输层107、发光层108以及电子传输层109。在此情况下,S5包括如下S51~S54:
S51:在第一开口H1内喷墨打印空穴注入层墨水,烘干空穴注入层墨水,形成空穴注入层106。
S52:在第一开口H1内喷墨打印空穴传输层墨水,烘干空穴传输层墨水,形成空穴传输层107。
S53:在第一开口H1内喷墨打印发光层墨水,烘干发光层墨水,形成发光层108。
S54:在第一开口H1内喷墨打印电子传输层墨水,烘干电子传输层墨水,形成电子传输层109。
需要说明的是,上述S51~S54中,在第一开口H1内喷墨打印相应的墨水 后,通过抽真空去除墨水中的溶剂进行膜层的定形,再退火完全去除墨水中的溶剂,得到的溶质即形成了相应的膜层。
在一些实施例中,如图9B所示,在S5之后,制备方法还包括如下S6:
S6:如图16所示,在发光功能层10远离衬底101的一侧,以及第二像素界定层105远离衬底101的一侧,形成第二电极层112。
示例性地,如图16所示,采用蒸镀工艺,在真空环境下蒸镀第二电极层112。
在一些实施例中,如图9B所示,在S6之后,制备方法还包括如下S7:
S7:如图17所示,在第二电极层112远离衬底101的一侧形成封装层113。
封装层113具有阻隔水汽和氧气的作用,用于保护显示基板100中位于封装层113下方的膜层。
示例性地,采用化学气相沉积(Chemical Vapor Deposition,简称CVD)工艺,在第二电极层112远离衬底101的一侧形成封装层113。
以上所述,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,想到变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应以所述权利要求的保护范围为准。

Claims (18)

  1. 一种显示基板,包括:
    衬底;
    多个第一电极,设置于所述衬底上;
    第一像素界定层,设置于所述衬底上;所述第一像素界定层具有多个第一开口,第一开口暴露所述第一电极的至少一部分;所述第一开口的侧壁向远离所述第一开口的中心的方向凹陷;
    第二像素界定层,设置于所述第一像素界定层远离所述衬底的一侧;所述第二像素界定层具有多个第二开口,第二开口在所述衬底上的正投影与所述第一开口在所述衬底上的正投影至少部分重叠;所述第二开口靠近所述衬底的一端在所述衬底上的正投影的边界,位于所述第二开口远离所述衬底的一端在所述衬底上的正投影的边界之内;
    多个发光功能层,位于所述多个第一电极远离所述衬底的一侧,一个发光功能层设置于一个所述第一开口内。
  2. 根据权利要求1所述的显示基板,其中,沿垂直于所述衬底且远离所述衬底的方向,所述第一开口沿平行于所述衬底的平面方向的截面的面积,由小变大再由大变小。
  3. 根据权利要求1或2所述的显示基板,其中,所述第一像素界定层为疏液层;或,
    所述第一像素界定层包括第一基材层,以及至少覆盖所述第一基材层的侧壁的疏液层。
  4. 根据权利要求1~3中任一项所述的显示基板,其中,所述第一像素界定层包括无机纳米粒子,以及与无机纳米粒子结合的配体;
    其中,所述配体包括含氟基团。
  5. 根据权利要求4所述的显示基板,其中,所述第一像素界定层包括多个氧化硅纳米粒子,和/或,多个氮化硅纳米粒子。
  6. 根据权利要求4或5所述的显示基板,其中,所述配体包括氟原子、三氟甲基、六氟苯、十氟联苯或全氟乙烯中的至少一种。
  7. 根据权利要求1~6中任一项所述的显示基板,其中,沿垂直于所述衬底且远离所述衬底的方向,所述第二开口沿平行于所述衬底的平面方向的截面的面积逐渐变大。
  8. 根据权利要求1~7中任一项所述的显示基板,其中,所述第二开口靠近所述衬底的一端在所述衬底上的正投影的边界,位于所述第一开口远离所 述衬底的一端在所述衬底上的正投影的边界之内。
  9. 根据权利要求1~8中任一项所述的显示基板,其中,所述第二像素界定层为亲液层;或,
    所述第二像素界定层包括第二基材层,以及至少覆盖所述第二基材层的侧壁的亲液层。
  10. 根据权利要求1~9中任一项所述的显示基板,其中,所述第二像素界定层包括正性光刻胶层。
  11. 根据权利要求1~10中任一项所述的显示基板,其中,所述第二开口的侧壁与所述第二像素界定层靠近所述衬底的表面之间的夹角范围为30°~75°。
  12. 根据权利要求1~11中任一项所述的显示基板,其中,所述第一像素界定层的厚度与所述第二像素界定层的厚度的比值范围为1~3。
  13. 根据权利要求1~12中任一项所述的显示基板,其中,所述第一电极和所述发光功能层的厚度的和,小于所述第一像素界定层的厚度。
  14. 根据权利要求1~13中任一项所述的显示基板,还包括:
    第二电极层;所述第二电极层包括设置于所述发光功能层远离所述衬底一侧的第二电极,以及覆盖在所述第二像素界定层远离所述衬底一侧的表面,和所述第二开口的侧壁上的连接图案。
  15. 一种显示装置,包括如权利要求1~14中任一项所述的显示基板。
  16. 一种显示基板的制备方法,包括:
    在衬底上形成多个第一电极;
    在所述多个第一电极远离所述衬底的一侧依次形成第一像素界定薄膜和第二像素界定薄膜;
    图案化所述第二像素界定薄膜,形成第二像素界定层;所述第二像素界定层具有多个第二开口,第二开口靠近所述衬底的一端在所述衬底上的正投影的边界,位于所述第二开口远离所述衬底的一端在所述衬底上的正投影的边界之内;
    以所述第二像素界定层为掩膜,图案化所述第一像素界定薄膜,形成第一像素界定层;所述第一像素界定层具有多个第一开口,第一开口暴露第一电极的至少一部分,所述第一开口在所述衬底上的正投影与所述第二开口在所述衬底上的正投影至少部分重叠,所述第一开口的侧壁向远离所述第一开口的中心的方向凹陷;
    在所述第一开口内形成发光功能层。
  17. 根据权利要求16所述的制备方法,其中,所述图案化所述第一像素界定薄膜,包括:
    采用干法刻蚀工艺,图案化所述第一像素界定薄膜。
  18. 根据权利要求16或17所述的制备方法,其中,所述在所述第一开口内形成发光功能层,包括:
    在所述第一开口内喷墨打印发光功能层墨水;
    烘干所述发光功能层墨水,形成所述发光功能层。
PCT/CN2021/129430 2021-03-31 2021-11-09 显示基板及其制备方法、显示装置 WO2022205921A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110352002.7A CN115148917A (zh) 2021-03-31 2021-03-31 显示基板及其制备方法、显示装置
CN202110352002.7 2021-03-31

Publications (1)

Publication Number Publication Date
WO2022205921A1 true WO2022205921A1 (zh) 2022-10-06

Family

ID=83405354

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/129430 WO2022205921A1 (zh) 2021-03-31 2021-11-09 显示基板及其制备方法、显示装置

Country Status (2)

Country Link
CN (1) CN115148917A (zh)
WO (1) WO2022205921A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115696976A (zh) * 2022-10-28 2023-02-03 京东方科技集团股份有限公司 显示模组及显示装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110121301A1 (en) * 2009-11-26 2011-05-26 Samsung Mobile Display Co., Ltd. Organic light emitting display device and method of manufacturing the same
CN108231856A (zh) * 2018-01-12 2018-06-29 京东方科技集团股份有限公司 像素界定层、显示面板及显示装置
CN109509782A (zh) * 2019-01-02 2019-03-22 京东方科技集团股份有限公司 像素界定层及其制造方法、自发光显示面板、显示装置
CN110265428A (zh) * 2018-03-12 2019-09-20 京东方科技集团股份有限公司 显示面板及其制备方法、显示装置
CN110634924A (zh) * 2019-09-25 2019-12-31 合肥京东方卓印科技有限公司 显示背板、显示装置
CN111293147A (zh) * 2020-02-19 2020-06-16 合肥鑫晟光电科技有限公司 一种显示用基板及其制备方法、显示装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110121301A1 (en) * 2009-11-26 2011-05-26 Samsung Mobile Display Co., Ltd. Organic light emitting display device and method of manufacturing the same
CN108231856A (zh) * 2018-01-12 2018-06-29 京东方科技集团股份有限公司 像素界定层、显示面板及显示装置
CN110265428A (zh) * 2018-03-12 2019-09-20 京东方科技集团股份有限公司 显示面板及其制备方法、显示装置
CN109509782A (zh) * 2019-01-02 2019-03-22 京东方科技集团股份有限公司 像素界定层及其制造方法、自发光显示面板、显示装置
CN110634924A (zh) * 2019-09-25 2019-12-31 合肥京东方卓印科技有限公司 显示背板、显示装置
CN111293147A (zh) * 2020-02-19 2020-06-16 合肥鑫晟光电科技有限公司 一种显示用基板及其制备方法、显示装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115696976A (zh) * 2022-10-28 2023-02-03 京东方科技集团股份有限公司 显示模组及显示装置

Also Published As

Publication number Publication date
CN115148917A (zh) 2022-10-04

Similar Documents

Publication Publication Date Title
WO2021023189A1 (zh) 显示基板及其制备方法、显示装置
US11844239B2 (en) Display substrate and preparation method thereof, and display apparatus
US10804344B2 (en) Display substrate and method for fabricating the same, and display apparatus
WO2020207124A1 (zh) 显示基板及其制造方法、显示装置
US7777411B2 (en) Light-emitting device, method of producing light-emitting device, exposure unit, and electronic device
US20220085329A1 (en) Display panel, method for manufacturing the same, and display apparatus
WO2020088432A1 (zh) 显示基板及其制造方法、显示装置
US20230040100A1 (en) Display substrate, preparation method therefor, and display apparatus
TWI469194B (zh) 有機電致發光裝置之畫素結構
WO2019041946A1 (zh) 显示基板及其制造方法、显示装置
US11569476B2 (en) Display substrate and display apparatus
US8872200B2 (en) Display device and electronic apparatus
WO2020010847A1 (zh) 显示面板及其制造方法和显示装置
KR102024098B1 (ko) 표시장치 및 이의 제조방법
US8624233B2 (en) Organic electroluminescence display device and electronic apparatus
TW201034505A (en) Method of manufacturing display device and display device
CN214898497U (zh) 显示基板及显示装置
WO2021239127A1 (zh) 柔性显示面板及其制备方法和显示装置
US8173485B2 (en) Method of manufacturing organic light emitting device
US20200286948A1 (en) Array substrate and manufacturing method thereof, display panel and display device
WO2021238645A1 (zh) 显示用基板及其制备方法、显示装置
WO2022205921A1 (zh) 显示基板及其制备方法、显示装置
CN109599430B (zh) Oled基板及其制备方法、oled显示装置
US11626458B2 (en) Transparent display panel and method for manufacturing the same, display device
JP2008004376A (ja) デバイス、薄膜形成方法及びデバイスの製造方法並びに電子機器

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 17916427

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21934557

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 17.01.2024)