WO2022205625A1 - 点胶轨迹生成方法、装置、电子设备和存储介质 - Google Patents

点胶轨迹生成方法、装置、电子设备和存储介质 Download PDF

Info

Publication number
WO2022205625A1
WO2022205625A1 PCT/CN2021/100509 CN2021100509W WO2022205625A1 WO 2022205625 A1 WO2022205625 A1 WO 2022205625A1 CN 2021100509 W CN2021100509 W CN 2021100509W WO 2022205625 A1 WO2022205625 A1 WO 2022205625A1
Authority
WO
WIPO (PCT)
Prior art keywords
dispensing
camera
field
size
view
Prior art date
Application number
PCT/CN2021/100509
Other languages
English (en)
French (fr)
Inventor
彭嘉潮
罗小军
贤昌锋
吴丰礼
Original Assignee
广东拓斯达科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东拓斯达科技股份有限公司 filed Critical 广东拓斯达科技股份有限公司
Publication of WO2022205625A1 publication Critical patent/WO2022205625A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/95Computational photography systems, e.g. light-field imaging systems
    • H04N23/951Computational photography systems, e.g. light-field imaging systems by using two or more images to influence resolution, frame rate or aspect ratio
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05CAPPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05C11/00Component parts, details or accessories not specifically provided for in groups B05C1/00 - B05C9/00
    • B05C11/10Storage, supply or control of liquid or other fluent material; Recovery of excess liquid or other fluent material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05CAPPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05C5/00Apparatus in which liquid or other fluent material is projected, poured or allowed to flow on to the surface of the work
    • B05C5/02Apparatus in which liquid or other fluent material is projected, poured or allowed to flow on to the surface of the work the liquid or other fluent material being discharged through an outlet orifice by pressure, e.g. from an outlet device in contact or almost in contact, with the work
    • B05C5/0208Apparatus in which liquid or other fluent material is projected, poured or allowed to flow on to the surface of the work the liquid or other fluent material being discharged through an outlet orifice by pressure, e.g. from an outlet device in contact or almost in contact, with the work for applying liquid or other fluent material to separate articles
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/222Studio circuitry; Studio devices; Studio equipment
    • H04N5/262Studio circuits, e.g. for mixing, switching-over, change of character of image, other special effects ; Cameras specially adapted for the electronic generation of special effects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/222Studio circuitry; Studio devices; Studio equipment
    • H04N5/262Studio circuits, e.g. for mixing, switching-over, change of character of image, other special effects ; Cameras specially adapted for the electronic generation of special effects
    • H04N5/265Mixing

Definitions

  • the present application relates to manufacturing technology, for example, to a method, device, electronic device and storage medium for generating a dispensing trajectory.
  • the dispensing line is usually drawn by tracing points. That is, first move the center of vision of the dispensing camera to the first position to be dispensed through the control axis, record the mechanical coordinate 1 of this position, and then move the center of the field of view of the dispensing camera to the second position to be dispensed, record this Mechanical coordinate 2 of the position, repeat the above operation until it moves to the last position to be dispensed, record the mechanical coordinate N of this position, N is a positive integer greater than 2, and finally put the obtained mechanical coordinates 1, 2...N in order Connect to form a dispensing track.
  • the current method of generating the dispensing trajectory relies on the trace points to determine the dispensing trajectory.
  • complex trajectories such as circular trajectories and radian trajectories, it is necessary to collect more points to ensure accuracy, which is cumbersome to operate, and this
  • the dispensing trajectory generated by this method is relatively abstract and cannot be displayed intuitively and visually.
  • Embodiments of the present application provide a method, device, electronic device, and storage medium for generating a dispensing trajectory, which can simplify operations, so that the generated dispensing trajectory can be displayed intuitively and visually.
  • an embodiment of the present application provides a method for generating a dispensing trajectory, including:
  • the dispensing camera is controlled to shoot the target item to obtain a plurality of partially overlapping images
  • an embodiment of the present application provides a device for generating a dispensing trajectory, including:
  • the first determination module is set to determine the field of view size of the dispensing camera
  • a second determining module configured to determine the shooting times and shooting steps of the dispensing camera according to the field of view size and the required size of the complete image
  • control module configured to control the dispensing camera to shoot the target item according to the shooting times and shooting steps to obtain a plurality of partially overlapping images
  • a processing module configured to perform deduplication and splicing processing on the multiple partially overlapping images to obtain the complete image
  • the drawing module is configured to draw the glue dispensing trajectory of the target item based on the complete image.
  • an embodiment of the present application provides an electronic device, including a memory, a processor, and a computer program stored on the memory and executable on the processor, and the processor implements the computer program when the processor executes the computer program.
  • the method for generating a dispensing trajectory according to any embodiment of the present application.
  • an embodiment of the present application provides a computer-readable storage medium, where a computer program is stored on the computer-readable storage medium, and when the program is executed by a processor, the glue dispensing described in any embodiment of the present application is implemented Trajectory generation method.
  • FIG. 1 is a schematic flowchart of a method for generating a dispensing trajectory provided by an embodiment of the present application.
  • FIG. 2 is a schematic flowchart of a method for determining a field of view size of a glue dispensing camera provided by an embodiment of the present application.
  • FIG. 3 is a schematic diagram of a movement trajectory of a glue dispensing camera provided by an embodiment of the present application.
  • FIG. 4 is an effect schematic diagram of the field of view size of the glue dispensing camera provided by the embodiment of the present application.
  • FIG. 5 is a schematic diagram of a method for determining a required size of a complete image provided by an embodiment of the present application.
  • FIG. 6 is a schematic flowchart of a method for acquiring a complete image provided by an embodiment of the present application.
  • FIG. 7 is a schematic diagram of an effect of image deduplication provided by an embodiment of the present application.
  • FIG. 8 is a schematic diagram of an effect of image stitching provided by an embodiment of the present application.
  • FIG. 9 is a schematic diagram of an effect of the glue dispensing circuit provided by the embodiment of the present application.
  • FIG. 10 is a schematic flowchart of the glue dispensing method provided by the embodiment of the present application.
  • FIG. 11 is a schematic structural diagram of the device for generating a dispensing trajectory provided by an embodiment of the present application.
  • FIG. 12 is a schematic structural diagram of an electronic device provided by an embodiment of the present application.
  • FIG. 1 is a schematic flowchart of a method for generating a dispensing trajectory provided by an embodiment of the present application.
  • the method may be executed by the dispensing trajectory generating device provided by the embodiment of the present application, and the device may be implemented in software and/or hardware.
  • the apparatus may be integrated in an electronic device, for example, the electronic device may be a personal computer (Personal Computer, PC), a tablet computer, a notebook computer, a desktop computer and other electronic devices.
  • PC Personal Computer
  • the method may include steps 101 to 105 .
  • Step 101 Determine the field of view size of the dispensing camera.
  • the size of the field of view of the dispensing camera will change with the height of the shot.
  • the size of the field of view of the dispensing camera is also a fixed value.
  • the dispensing camera is fixed at a certain height and does not move at a certain height.
  • the control axis including the three axes of X, Y, and Z as an example, in the embodiment of the present application, it can be considered that the dispensing camera is in Z
  • the axes are fixed, but the dispensing camera can move in the X and Y axes.
  • the size of the field of view of the dispensing camera can be determined by actual measurement.
  • the size of the field of view of the dispensing camera may be determined by the method shown in FIG. 2 , that is, step 101 may include:
  • Step 1011 place the center of the field of view of the dispensing camera at the preset mark point.
  • a dispensing camera can shoot a test product, use a certain obvious feature point on the test product as a preset mark point (Mark point), move the dispensing camera, and place the center of the dispensing camera's field of view on the preset mark. point.
  • Mark point a preset mark point
  • Step 1012 controlling the dispensing camera to move around the preset marking point, and finding multiple reference points in multiple preset directions during the movement, wherein the multiple preset directions correspond to the multiple reference points one-to-one.
  • each reference point in the plurality of reference points may be a point corresponding to the preset direction such that the preset marker point is located at the center of the field of view of the dispensing camera when the preset marker point is at the most edge of the field of view of the dispensing camera.
  • the preset directions may include eight directions of due east, due west, due south, due north, southeast, northeast, southwest and northwest. That is, you can take the preset marker point as the center, and control the dispensing camera to move around the center point, so as to find eight reference points in eight directions.
  • the dispensing camera can control the dispensing camera to move from the preset mark to the due west, and the center of the dispensing camera's field of view also moves to the due west.
  • the preset marker point at a certain position is already at the edge of the field of view of the dispensing camera (that is, if the preset marker point is moved westward, it will exceed the field of view of the dispensing camera, that is to say, the preset marker point is always guaranteed to be within the field of view during the movement. within the field of view of the dispensing camera), take the position of the center of the field of view of the dispensing camera as the reference point in the due west direction.
  • the reference points for the other seven directions can be found.
  • the dispensing camera can be moved according to the trajectory/sequence shown in Figure 3, and the eight reference points finally found can also be shown in Figure 3, including due east, due west, due Eight reference points in eight directions: south, due north, southeast, northeast, southwest, and northwest.
  • the pixel coordinates (u 0i , v 0i ) and mechanical coordinates (x 0i , y 0i ) of each of the eight reference points can be obtained, where 0 ⁇ i ⁇ 8.
  • Step 1013 Find two reference points with the largest distance from the multiple reference points to obtain two target points.
  • the distance between the eight reference points can be calculated, and the two reference points with the largest distance can be found to obtain two target points.
  • Step 1014 Determine the field of view size of the dispensing camera according to the pixel coordinates and the mechanical coordinates of the two target points.
  • Determination methods can include:
  • w p x *L
  • h p y *S
  • the resolution of the dispensing camera can be a known constant.
  • the embodiment of the present application only uses the method shown in FIG. 2 to determine the field of view size of the dispensing camera as an example. In practical applications, other moving methods and the number of moving points can also be used to determine the field of view size of the dispensing camera. There is no limitation here.
  • the size of the field of view of the dispensing camera can also be stored as a known constant for backup.
  • the obtained field size of the glue dispensing camera may be as shown in FIG. 4 , that is, the width is w and the height is h.
  • Step 102 Determine the shooting times and shooting steps of the dispensing camera according to the size of the field of view and the required size of the complete image.
  • the target item may be a product to be dispensed that exceeds the camera's field of view, that is, the entire image of the target item cannot be determined by photographing the target item once, so the embodiment of the present application may photograph the target item multiple times.
  • the shooting times and shooting steps of the dispensing camera can be determined according to the field size of the dispensing camera and the required size of the complete image.
  • the required size of the complete image can be determined according to the actual size of the target item
  • the shooting step can be the moving distance each time the dispensing camera is moved to shoot the target item.
  • the required size of the complete image can be determined as follows:
  • W
  • H
  • W represents the width of the complete image
  • H represents the height of the complete image
  • the starting point of image stitching may be set at the position of the upper left corner A(x 1 , y 1 ) of the target item, and the end point of image stitching may be set at the lower right corner B(x 2 ) of the target item. , y 2 ) the location of the point.
  • the shooting times and shooting steps of the dispensing camera can be determined as follows:
  • constraints 0 ⁇ ⁇ x ⁇ w and 0 ⁇ y ⁇ h may be set.
  • the dispensing camera takes a shot every time it moves, and the number of shots S x can also be understood as the number of moves, then the number of shots S x should satisfy:
  • Step 103 Control the dispensing camera to shoot the target item according to the shooting times and the shooting step, and obtain a plurality of partially overlapping images.
  • the dispensing camera can be controlled to shoot the target item to obtain the first partially overlapping image, and then the dispensing camera can be controlled to move and shoot the target according to the number of shots and the shooting step.
  • the object is moved until the lower right corner of the field of view of the dispensing camera coincides with the end point of image splicing, and the dispensing camera is controlled to shoot the target item for the last time to obtain the last partial overlapping image, and then obtain multiple partial overlapping images in turn.
  • the field of view of the dispensing camera can be The upper left corner coincides with point A, and in this case, shoot the target item to get the first partial overlapping image, then move the dispensing camera horizontally and vertically in sequence and take pictures until it moves to the bottom right corner of the dispensing camera's field of view and point B When overlapping, control the dispensing camera to shoot the target item, and obtain the last partial overlapping image.
  • Step 104 performing de-duplication and splicing processing on a plurality of partially overlapping images to obtain a complete image.
  • multiple partial overlapping images can be deduplicated and stitched in the manner shown in FIG. 6 :
  • Step 1041 Calculate the horizontal overlap k x and vertical overlap ky of adjacent images in the partially overlapped image according to the field size (w, h) of the dispensing camera, the horizontal shooting step ⁇ x and the vertical shooting step ⁇ y .
  • Step 1042 Calculate the horizontal overlapping area RX and the vertical overlapping area RY of the adjacent images according to the horizontal overlapping degree k x and the vertical overlapping degree ky of the adjacent images.
  • R X k x ⁇ w
  • R Y k Y ⁇ h
  • Step 1043 Perform de-duplication and splicing processing on a plurality of partially overlapping images according to the horizontal overlapping area RX and the vertical overlapping area RY of the adjacent images to obtain a complete image.
  • the horizontal overlapping area RX can be Divide into two parts, replace the horizontal overlapping area in image 1 with the left one, replace the horizontal overlapping area in image 1 with the right one, and then stitch the replaced image 1 and image 2.
  • deduplication and splicing methods can also be used.
  • the overlapping area is reserved for one of the images, and the overlapping area is directly removed for the other image.
  • Image stitching the embodiment of the present application does not limit the method of deduplication stitching.
  • the process of splicing the deduplicated images may be as shown in FIG. 8 , and after splicing, a complete image that can show the whole picture of the target product can be obtained.
  • Step 105 drawing the dispensing trajectory of the target item on the complete image.
  • the drawn dispensing trajectory is equivalent to the trajectory represented by pixel coordinates.
  • the drawn dispensing track can be, for example, the line shown by the arrow in FIG. 9 , and the glue path is clearly visible, which is convenient for comparison with the actual dispensing effect. If there is a deviation, it is also easy to modify.
  • the dispensing process can also be controlled according to the dispensing trajectory.
  • the dispensing control method may be shown in FIG. 10 , including steps 201 to 204 .
  • Step 201 Obtain pixel coordinates and mechanical coordinates of each reference point, and solve a transformation matrix according to the pixel coordinates and mechanical coordinates of each reference point, where the transformation matrix is a matrix for converting pixel coordinates into mechanical coordinates.
  • Step 202 acquiring the pixel coordinates of each point of the dispensing track.
  • Step 203 Convert the pixel coordinates of each point of the dispensing track into mechanical coordinates according to the conversion matrix.
  • each point of the dispensing track can be converted from pixel coordinates to mechanical coordinates according to the transformation matrix T, so that the dispensing track represented by the mechanical coordinates can be obtained.
  • Step 204 the dispensing process is performed according to the mechanical coordinates of each point of the dispensing track.
  • the field of view size of the dispensing camera can be determined, the shooting times and shooting steps of the dispensing camera can be determined according to the field of view size and the required size of the complete image, and the dispensing camera can be controlled to shoot the target item according to the shooting times and shooting steps. , obtain multiple partially overlapping images, perform de-duplication and splicing processing on multiple partially overlapping images, and obtain a complete image; draw the dispensing trajectory of the target item on the complete image.
  • a complete image that can show the whole picture of the target item is obtained, and then a dispensing trajectory is drawn on the complete image, and the dispensing trajectory is generated. It no longer relies on tracing points, which simplifies the operation and is suitable for the generation of complex dispensing trajectories; in addition, the dispensing trajectory of the target item is drawn on the complete image, and the mechanical trajectory is represented by the pixel trajectory, so that the generated dispensing trajectory can be intuitive, displayed visually.
  • FIG. 11 is a structural diagram of an apparatus for generating a dispensing trajectory provided by an embodiment of the present application, and the device is suitable for executing the method for generating a dispensing trajectory provided by an embodiment of the present application.
  • the apparatus may include:
  • the first determining module 301 is configured to determine the size of the field of view of the dispensing camera
  • the second determining module 302 is configured to determine the shooting times and shooting steps of the dispensing camera according to the field of view size and the required size of the complete image;
  • the control module 303 is configured to control the dispensing camera to shoot the target item according to the shooting times and shooting steps, so as to obtain a plurality of partially overlapping images;
  • the processing module 304 is configured to perform deduplication and splicing processing on the multiple partially overlapping images to obtain the complete image;
  • the drawing module 305 is configured to draw the glue dispensing trajectory of the target item based on the complete image.
  • the first determining module 301 determines the field of view size of the dispensing camera in the following manner:
  • each reference point in the plurality of reference points is the center of the field of view of the dispensing camera when the preset mark point is located at the most edge of the field of view of the dispensing camera in the corresponding preset direction point;
  • the size of the field of view of the dispensing camera is determined according to the pixel coordinates and the mechanical coordinates of the two target points.
  • the first determining module 301 determines the field of view size of the dispensing camera according to the pixel coordinates and mechanical coordinates of the target point in the following manner:
  • Pixel size (p x , py ) is calculated from the pixel coordinate differences ( ⁇ u max , ⁇ v max ) and the mechanical coordinate differences ( ⁇ x max , ⁇ y max ), where,
  • the plurality of preset directions include due east, due west, due south, due north, southeast, northeast, southwest, and northwest.
  • the required size of the complete image is determined in the following manner:
  • control module 303 controls the dispensing camera to shoot the target item according to the shooting times and shooting steps in the following manner, so as to obtain a plurality of partially overlapping images:
  • Control the dispensing camera to move and shoot the target object according to the shooting times and shooting steps, until the movement makes the lower right corner of the field of view of the dispensing camera coincide with the image stitching end point, control the dispensing camera The target item is photographed for the last time to obtain the last partial overlapping image.
  • the second determining module 302 determines the shooting times and shooting steps of the dispensing camera according to the field of view size and the required size of the complete image in the following manner:
  • (w, h) represents the size of the field of view
  • (W, H) represents the required size of the complete image
  • the processing module 304 performs de-duplication and splicing processing on the plurality of partially overlapping images in the following manner to obtain the complete image:
  • the lateral photographing step ⁇ x and the vertical photographing step ⁇ y , the horizontal coincidence degree k x and the vertical coincidence degree ky of adjacent images in the partially overlapped image are calculated .
  • the complete image is obtained by performing de-duplication and splicing processing on the plurality of partially overlapping images according to the horizontal overlapping area RX and the vertical overlapping area RY of the adjacent images.
  • the drawing module 305 draws the dispensing trajectory of the target item on the complete image in the following manner:
  • the dispensing trajectory is drawn on the contour edge of the target item shown in the complete image.
  • the device further includes a glue dispensing module, and the glue dispensing module is configured to:
  • the dispensing process is performed according to the mechanical coordinates of each point of the dispensing trajectory.
  • the device of the embodiment of the present application can determine the field of view size of the dispensing camera, determine the shooting times and shooting steps of the dispensing camera according to the field of view size and the required size of the complete image, and control the shooting target of the dispensing camera according to the shooting times and shooting steps Items, obtain multiple partially overlapping images, perform deduplication and splicing processing on multiple partially overlapping images, and obtain a complete image; draw the dispensing trajectory of the target item on the complete image.
  • a complete image that can show the whole picture of the target item is obtained, and then a dispensing trajectory is drawn on the complete image, and the dispensing trajectory is generated. It no longer relies on tracing points, which simplifies the operation and is suitable for the generation of complex dispensing trajectories; in addition, the dispensing trajectory of the target item is drawn on the complete image, and the mechanical trajectory is represented by the pixel trajectory, so that the generated dispensing trajectory can be intuitive, displayed visually.
  • Embodiments of the present application further provide an electronic device, including a memory, a processor, and a computer program stored on the memory and running on the processor, where the processor implements any of the above when executing the program
  • the embodiment provides a method for generating a dispensing trajectory.
  • Embodiments of the present application further provide a computer-readable medium, where a computer program is stored on the computer-readable medium, and when the program is executed by a processor, the method for generating a dispensing trajectory provided by any of the foregoing embodiments is implemented.
  • FIG. 12 shows a schematic structural diagram of a computer system 400 suitable for implementing the electronic device of the embodiment of the present application.
  • the electronic device shown in FIG. 12 is only an example, and should not impose any limitations on the functions and scope of use of the embodiments of the present application.
  • the computer system 400 includes a central processing unit (Central Processing Unit, CPU) 401, which can be loaded into random access according to a program stored in a read only memory (Read Only Memory, ROM) 402 or from a storage part 408
  • a program in a memory (Random Access Memory, RAM) 403 executes various appropriate actions and processes.
  • RAM Random Access Memory
  • various programs and data required for the operation of the system 400 are also stored.
  • the CPU 401, the ROM 402, and the RAM 403 are connected to each other through a bus 404.
  • An Input/Output (I/O) interface 405 is also connected to the bus 404 .
  • the following components are connected to the I/O interface 405: an input section 406 including a keyboard, a mouse, etc.; an output section 407 including a cathode ray tube (CRT), a liquid crystal display (LCD), etc., and a speaker, etc. ; a storage portion 408 including a hard disk, etc.; and a communication portion 409 including a network interface card such as a local area network (Local Area Network, LAN) card, a modem, and the like.
  • the communication section 409 performs communication processing via a network such as the Internet.
  • a drive 410 is also connected to the I/O interface 405 as needed.
  • a removable medium 411 such as a magnetic disk, an optical disk, a magneto-optical disk, a semiconductor memory, etc., is mounted on the drive 410 as needed so that a computer program read therefrom is installed into the storage section 408 as needed.
  • embodiments disclosed herein include a computer program product comprising a computer program carried on a computer-readable medium, the computer program containing program code for performing the method illustrated in the flowchart.
  • the computer program may be downloaded and installed from the network via the communication portion 409 and/or installed from the removable medium 411 .
  • CPU central processing unit
  • the computer-readable medium shown in this application may be a computer-readable signal medium or a computer-readable storage medium, or any combination of the above two.
  • the computer-readable storage medium can be, for example, but not limited to, an electrical, magnetic, optical, electromagnetic, infrared, or semiconductor system, apparatus or device, or a combination of any of the above.
  • Computer readable storage media may include, but are not limited to, electrical connections having at least one wire, portable computer disks, hard disks, random access memory (RAM), read only memory (ROM), erasable programmable Read memory ((Erasable Programmable Read-Only Memory, EPROM) or flash memory), optical fiber, portable compact disk read only memory (Compact Disc-Read Only Memory, CD-ROM), optical storage device, magnetic storage device, or any of the above suitable combination.
  • a computer-readable storage medium can be any tangible medium that contains or stores a program that can be used by or in conjunction with an instruction execution system, apparatus, or device.
  • a computer-readable signal medium may include a data signal propagated in baseband or as part of a carrier wave, carrying computer-readable program code therein. Such propagated data signals may take a variety of forms, including but not limited to electromagnetic signals, optical signals, or any suitable combination of the foregoing.
  • a computer-readable signal medium can also be any computer-readable medium other than a computer-readable storage medium that can transmit, propagate, or transport the program for use by or in connection with the instruction execution system, apparatus, or device .
  • the program code embodied on the computer readable medium may be transmitted by any suitable medium, including but not limited to: wireless, wire, optical fiber cable, radio frequency (RF), etc., or any suitable combination of the above.
  • each block in the flowchart or block diagrams may represent a module, segment, or portion of code that contains at least one configurable function for implementing the specified logical function. Execute the instruction.
  • the functions noted in the blocks may occur out of the order noted in the figures. For example, two blocks shown in succession may, in fact, be executed substantially concurrently, or the blocks may sometimes be executed in the reverse order, depending upon the functionality involved.
  • the modules and/or units involved in the embodiments of the present application may be implemented in a software manner, and may also be implemented in a hardware manner.
  • the described modules and/or units may also be provided in a processor, for example, it may be described as: a processor includes a first determination module, a second determination module, a control module, a processing module and a drawing module. Among them, the names of these modules do not constitute a limitation on the module itself under certain circumstances.
  • the present application also provides a computer-readable medium.
  • the computer-readable medium may be included in the device described in the above embodiments, or may exist alone without being assembled into the device.
  • the above-mentioned computer-readable medium carries at least one program, and when the above-mentioned at least one program is executed by a device, the device realizes: determining the size of the field of view of the dispensing camera; determining the size of the field of view and the required size of the complete image.
  • the field of view size of the dispensing camera can be determined, the shooting times and shooting steps of the dispensing camera can be determined according to the field of view size and the required size of the complete image, and the dispensing camera can be controlled according to the shooting times and shooting steps.
  • Shoot the target item to obtain multiple partially overlapping images perform de-duplication and splicing processing on the multiple partially overlapping images, and obtain a complete image; draw the dispensing trajectory of the target item on the complete image.
  • a complete image that can show the whole picture of the target item is obtained, and then a dispensing trajectory is drawn on the complete image, and the dispensing trajectory is generated. It no longer relies on tracing points, which simplifies the operation and is suitable for the generation of complex dispensing trajectories; in addition, the dispensing trajectory of the target item is drawn on the complete image, and the mechanical trajectory is represented by the pixel trajectory, so that the generated dispensing trajectory can be intuitive, displayed visually.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Computing Systems (AREA)
  • Theoretical Computer Science (AREA)
  • Studio Devices (AREA)

Abstract

本申请实施例公开了一种点胶轨迹生成方法、装置、电子设备和存储介质,点胶轨迹生成方法包括:确定点胶相机的视野尺寸;根据该视野尺寸及完整图像的要求尺寸确定点胶相机的拍摄次数和拍摄步进;根据该拍摄次数和拍摄步进控制点胶相机拍摄目标物品,得到多张局部重叠图像;对多张局部重叠图像进行去重和拼接处理,得到完整图像;在完整图像上绘制目标物品的点胶轨迹。

Description

点胶轨迹生成方法、装置、电子设备和存储介质
本申请要求在2021年3月30日提交中国专利局、申请号为202110341257.3的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
技术领域
本申请涉及制造技术,例如涉及一种点胶轨迹生成方法、装置、电子设备和存储介质。
背景技术
在点胶行业中,为了满足超过相机视野的产品的点胶需求,通常采用描点的方式绘制点胶线路。即先通过控制轴将点胶相机的视野中心移动至第一个待点胶位,记录此位置的机械坐标1,然后将点胶相机的视野中心移动至第二个待点胶位,记录此位置的机械坐标2,重复上述操作,直至移动至最后一个待点胶位,记录此位置的机械坐标N,N为大于2的正整数,最后将得到的机械坐标1、2……N按顺序连接起来形成点胶轨迹。
从上面的描述可以看出,目前的点胶轨迹生成方法,依赖描点确定点胶轨迹,对于复杂轨迹比如圆形轨迹、有弧度的轨迹则需要采集比较多的点保证精度,操作繁琐,而且这种方法生成的点胶轨迹相对抽象,无法直观、可视化地显示。
发明内容
本申请实施例提供一种点胶轨迹生成方法、装置、电子设备和存储介质,能够简化操作,使得生成的点胶轨迹可以直观、可视化地显示。
第一方面,本申请实施例提供一种点胶轨迹生成方法,包括:
确定点胶相机的视野尺寸;
根据所述视野尺寸及完整图像的要求尺寸确定所述点胶相机的拍摄次数和 拍摄步进;
根据所述拍摄次数和拍摄步进控制所述点胶相机拍摄目标物品,得到多张局部重叠图像;
对所述多张局部重叠图像进行去重和拼接处理,得到所述完整图像;
在所述完整图像上绘制所述目标物品的点胶轨迹。
第二方面,本申请实施例提供一种点胶轨迹生成装置,包括:
第一确定模块,设置为确定点胶相机的视野尺寸;
第二确定模块,设置为根据所述视野尺寸及完整图像的要求尺寸确定所述点胶相机的拍摄次数和拍摄步进;
控制模块,设置为根据所述拍摄次数和拍摄步进控制所述点胶相机拍摄目标物品,得到多张局部重叠图像;
处理模块,设置为对所述多张局部重叠图像进行去重和拼接处理,得到所述完整图像;
绘制模块,设置为基于所述完整图像绘制所述目标物品的点胶轨迹。
第三方面,本申请实施例提供一种电子设备,包括存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现如本申请任一实施例所述的点胶轨迹生成方法。
第四方面,本申请实施例提供一种计算机可读存储介质,所述计算机可读存储介质上存储有计算机程序,该程序被处理器执行时实现如本申请任一实施例所述的点胶轨迹生成方法。
附图说明
图1是本申请实施例提供的点胶轨迹生成方法的一个流程示意图。
图2是本申请实施例提供的点胶相机的视野尺寸确定方法的一个流程示意图。
图3是本申请实施例提供的点胶相机的移动轨迹示意图。
图4是本申请实施例提供的点胶相机的视野尺寸的一个效果示意图。
图5是本申请实施例提供的确定完整图像的要求尺寸的一个方法示意图。
图6是本申请实施例提供的完整图像的获取方法的一个流程示意图。
图7是本申请实施例提供的图像去重的一个效果示意图。
图8是本申请实施例提供的图像拼接的一个效果示意图。
图9是本申请实施例提供的点胶线路的一个效果示意图。
图10是本申请实施例提供的点胶方法的一个流程示意图。
图11是本申请实施例提供的点胶轨迹生成装置的一个结构示意图。
图12是本申请实施例提供的电子设备的一个结构示意图。
具体实施方式
下面结合附图和实施例对本申请作详细说明。
图1为本申请实施例提供的点胶轨迹生成方法的一个流程示意图,该方法可以由本申请实施例提供的点胶轨迹生成装置来执行,该装置可采用软件和/或硬件的方式实现。在一个实施例中,该装置可以集成在电子设备中,电子设备比如可以是个人计算机(Personal Computer,PC)、平板电脑、笔记本电脑、台式电脑等电子设备。以下实施例将以该装置集成在电子设备中为例进行说明,参考图1,该方法可以包括步骤101至105。
步骤101,确定点胶相机的视野尺寸。
点胶相机的视野尺寸会随着拍照高度的变化而变化,当点胶相机的拍照高度固定时,点胶相机的视野尺寸也为固定值。在本申请实施例中,可以认为点胶相机是固定在某个高度上不动的,以控制轴包括X、Y、Z三轴为例,本申请实施例中,可以认为点胶相机在Z轴是固定不动的,但点胶相机可以在X、Y轴移动。在点胶相机的拍照高度固定时,点胶相机的视野尺寸可以通过实际测量确定。
在一个实施例中,点胶相机的视野尺寸可通过图2所示方法确定,即步骤101可以包括:
步骤1011,将点胶相机的视野中心置于预设标记点。
比如,可以利用点胶相机拍摄一个测试产品,将测试产品上的某个明显特征点作为预设标记点(Mark点),移动点胶相机,将点胶相机的视野中心置于该预设标记点。
步骤1012,控制点胶相机围绕预设标记点移动,并在移动的过程中找出多个预设方向上的多个参考点,其中多个预设方向和多个参考点一一对应。
示例地,多个参考点中的每个参考点可以为对应预设方向上使得预设标记点处于点胶相机的视野最边缘时的点胶相机的视野中心所在的点。其中,预设方向可以包括正东、正西、正南、正北、东南、东北、西南和西北这八个方向。即可以以预设标记点为中心,控制点胶相机围绕该中心点移动,从而找出八个方向上的八个参考点。
以寻找正西方向的参考点为例,比如,可以控制点胶相机从预设标记点向正西方向移动,点胶相机的视野中心也随之向正西方向移动,当移动至正西方向某个位置预设标记点已经处于点胶相机的视野最边缘(即如果再向西移动预设标记点将超出点胶相机的视野范围,也就是说移动过程中始终保证预设标记点处在点胶相机的视野范围内)时,将此时点胶相机的视野中心所在位置作为正西方向的参考点。以此类推,可以找出其他七个方向的参考点。
为了便于寻找这八个预设方向的参考点,可以按照图3所示轨迹/顺序移动点胶相机,最终找到的八个参考点也可如图3所示,包括正东、正西、正南、正北、东南、东北、西南和西北这八个方向上的八个参考点。
在找到这八个参考点之后,可以获取这八个参考点中每个参考点的像素坐标(u 0i,v 0i)和机械坐标(x 0i,y 0i),其中0<i≤8。
步骤1013,从多个参考点中找出间距最大的两个参考点,得到两个目标点。
示例地,可以计算这八个参考点两两之间的距离,找出间距最大的两个参 考点,得到两个目标点。
步骤1014,根据两个目标点的像素坐标和机械坐标确定点胶相机的视野尺寸。
确定方法可以包括:
(1)根据这两个目标点的像素坐标计算像素坐标差(Δu max、Δv max),根据这两个目标点的机械坐标计算机械坐标差(Δx max、Δy max)。
(2)根据像素坐标差(Δu max、Δv max)和机械坐标差(Δx max、Δy max)计算像素尺寸(p x、p y)。
其中,
Figure PCTCN2021100509-appb-000001
(3)根据像素尺寸(p x、p y)和点胶相机的分辨率(L×S)计算点胶相机的视野尺寸(w,h)。
其中,w=p x×L,h=p y×S,点胶相机的分辨率可以为已知常量。
需要说明的是,本申请实施例仅以图2所示方法确定点胶相机的视野尺寸为例进行说明,实际应用中,还可以采用其他移动方法、走点数量确定点胶相机的视野尺寸,此处不做限定。
另外,当点胶相机的拍照高度固定不变时,点胶相机的视野尺寸还可以作为一个已知常量存储备用。
在一个实施例中,所得到的点胶相机的视野尺寸可如图4所示,即宽度为w、高度为h。
步骤102,根据该视野尺寸及完整图像的要求尺寸确定点胶相机的拍摄次数和拍摄步进。
本申请实施例中,目标物品可以是超过相机视野的待点胶产品,即一次拍摄目标物品无法确定目标物品的全貌,因而本申请实施例可以多次拍摄目标物品。在多次拍摄目标物品之前,可以根据点胶相机的视野尺寸和完整图像的要求尺寸确定点胶相机的拍摄次数和拍摄步进。其中,完整图像的要求尺寸可根 据目标物品的实际大小确定,拍摄步进可以为每次移动点胶相机拍摄目标物品时的移动距离。
在一个实施例中,完整图像的要求尺寸可按照如下方式确定:
(1)确定为目标物品设置的图像拼接起点和图像拼接终点。
(2)根据图像拼接起点的机械坐标(x 1,y 1)和图像拼接终点的机械坐标(x 2,y 2)计算完整图像的要求尺寸(W,H)。
其中,W=|x 1-x 2|,H=|y 1-y 2|,W表示完整图像的宽、H表示完整图像的高。
为保证准确度,在为目标物品设置图像拼接起点和图像拼接终点时,可以使得(|x 1-x 2|,|y 1-y 2|)适当大于目标物品的尺寸。
示例性地,比如可以如图5所示,将图像拼接起点设置在目标物品的左上角A(x 1,y 1)点的位置,将图像拼接终点设置在目标物品的右下角B(x 2,y 2)点的位置。
在一个实施例中,可以按照如下方法确定点胶相机的拍摄次数和拍摄步进:
(1)根据视野尺寸及完整图像的要求尺寸确定点胶相机的横向拍摄次数S x和横向拍摄步进Δ x
(2)根据视野尺寸及完整图像的要求尺寸确定点胶相机的纵向拍摄次数S y和纵向拍摄步进Δ y
示例地,可以设置约束条件0<Δ x<w,0<Δ y<h。
点胶相机每移动一次即进行一次拍摄,拍摄次数S x也可以理解为移动次数,则拍摄次数S x应该满足:
S x×Δ x≥W
为了保证后续拼接时不会出现“缝隙”,令:
Figure PCTCN2021100509-appb-000002
Figure PCTCN2021100509-appb-000003
Figure PCTCN2021100509-appb-000004
同理,可以求得
Figure PCTCN2021100509-appb-000005
步骤103,根据该拍摄次数和拍摄步进控制点胶相机拍摄目标物品,得到多张局部重叠图像。
示例地,可以在点胶相机的视野左上角与图像拼接起点重合时控制点胶相机拍摄目标物品,得到第一张局部重叠图像,然后根据拍摄次数和拍摄步进控制点胶相机移动并拍摄目标物品,直至移动使得点胶相机的视野右下角与图像拼接终点重合时,控制点胶相机最后一次拍摄目标物品,得到最后一张局部重叠图像,依次得到多张局部重叠图像。
示例性地,比如图像拼接起点设置在图5的A(x 1,y 1)点、图像拼接终点设置在图5的B(x 2,y 2)点时,可以先将点胶相机的视野左上角与A点重合,并在这种情况下拍摄目标物品得到第一张局部重叠图像,然后按顺序横向、纵向移动点胶相机并拍照,直至移动至点胶相机的视野右下角与B点重合时,控制点胶相机拍摄目标物品,得到最后一张局部重叠图像。
步骤104,对多张局部重叠图像进行去重和拼接处理,得到完整图像。
在一个实施例中,可按照图6所示方式对多张局部重叠图像进行去重和拼接处理:
步骤1041,根据点胶相机的视野尺寸(w,h)、横向拍摄步进Δ x和纵向拍摄步进Δ y计算局部重叠图像中相邻图像的横向重合度k x和纵向重合度k y
其中,
Figure PCTCN2021100509-appb-000006
步骤1042,根据相邻图像的横向重合度k x和纵向重合度k y计算相邻图像的横向重合区域R X和纵向重合区域R Y
其中,R X=k x×w,R Y=k Y×h;
步骤1043,根据相邻图像的横向重合区域R X和纵向重合区域R Y对多张局部重叠图像进行去重和拼接处理,得到完整图像。
比如,以对如图7所示相邻图像(例如图像1和图像2)进行横向去重和拼接为例,在得到这两张图像的横向重合区域R X之后,可以将横向重合区域R X均分成两份,用左边一份替换图像1中的横向重合区域,用右边一份替换图像1中的横向重合区域,然后将替换后的图像1和图像2拼接。
当然,实际应用中,还可以采用其他的去重和拼接方法,比如在相邻两张图像中,针对其中的一张图像保留重合区域,针对另外一张图像直接去除重合区域,然后将两张图像拼接,本申请实施例对去重拼接方法不做限定。
在一个实施例中,对去重后的图像进行拼接的过程可如图8所示,拼接之后可以得到能够展示目标产品的全貌的完整图像。
步骤105,在完整图像上绘制目标物品的点胶轨迹。
可以借助绘图工具中的画线、画圆、画弧等工具,在完整图像中显示的目标物品的轮廓边缘上绘制点胶轨迹,所绘制的点胶轨迹相当于是用像素坐标表示的轨迹。
在一个实施例中,所绘制的点胶轨迹比如可以为如图9箭头所示线路,胶路清晰可视,方便与实际点胶效果对比,若有偏差部分,也方便修改。
在一个实施例中,在得到目标物品的点胶轨迹之后,还可以根据点胶轨迹控制点胶过程,点胶控制方法可如图10所示,包括步骤201至204。
步骤201,获取每个参考点的像素坐标和机械坐标,并根据每个参考点的像素坐标和机械坐标求解转换矩阵,转换矩阵为将像素坐标转换为机械坐标的矩阵。
即可以根据前面得到的参考点求解转换矩阵T,使得下面公式成立:
Figure PCTCN2021100509-appb-000007
步骤202,获取点胶轨迹的每个点的像素坐标。
步骤203,根据转换矩阵将点胶轨迹的每个点的像素坐标转换成机械坐标。
即可以根据转换矩阵T将点胶轨迹的每个点由像素坐标转换成机械坐标,从而可以得到用机械坐标表示的点胶轨迹。
步骤204,根据点胶轨迹的每个点的机械坐标执行点胶过程。
本申请实施例中,可以确定点胶相机的视野尺寸,根据视野尺寸及完整图像的要求尺寸确定点胶相机的拍摄次数和拍摄步进,根据拍摄次数和拍摄步进控制点胶相机拍摄目标物品,得到多张局部重叠图像,对多张局部重叠图像进行去重和拼接处理,得到完整图像;在完整图像上绘制目标物品的点胶轨迹。即本申请实施例中,通过对拍摄目标物品得到的多张局部重叠图像进行去重拼接处理,得到能够展示目标物品全貌的完整图像,然后在完整图像上绘制点胶轨迹,点胶轨迹的生成不再依赖描点,简化了操作,能够适用于复杂点胶轨迹的生成;另外,在完整图像上绘制目标物品的点胶轨迹,将机械轨迹通过像素轨迹表示,使得生成的点胶轨迹可以直观、可视化地显示。
图11是本申请是实施例提供的点胶轨迹生成装置的一个结构图,该装置适用于执行本申请实施例提供的点胶轨迹生成方法。如图11所示,该装置可以包括:
第一确定模块301,设置为确定点胶相机的视野尺寸;
第二确定模块302,设置为根据所述视野尺寸及完整图像的要求尺寸确定所述点胶相机的拍摄次数和拍摄步进;
控制模块303,设置为根据所述拍摄次数和拍摄步进控制所述点胶相机拍摄目标物品,得到多张局部重叠图像;
处理模块304,设置为对所述多张局部重叠图像进行去重和拼接处理,得到所述完整图像;
绘制模块305,设置为基于所述完整图像绘制所述目标物品的点胶轨迹。
一实施例中,所述第一确定模块301通过以下方式确定点胶相机的视野尺寸:
将所述点胶相机的视野中心置于预设标记点;
控制所述点胶相机围绕所述预设标记点移动,并在移动的过程中找出多个预设方向上的多个参考点,所述多个预设方向与所述多个参考点一一对应,所述多个参考点中的每个参考点为对应预设方向上使得所述预设标记点处于所述点胶相机的视野最边缘时的所述点胶相机的视野中心所在的点;
从所述多个参考点中找出间距最大的两个参考点,得到两个目标点;
根据所述两个目标点的像素坐标和机械坐标确定所述点胶相机的视野尺寸。
一实施例中,所述第一确定模块301通过以下方式根据所述目标点的像素坐标和机械坐标确定所述点胶相机的视野尺寸:
根据所述两个目标点的像素坐标计算像素坐标差(Δu max、Δv max),根据所述两个目标点的机械坐标计算机械坐标差(Δx max、Δy max);
根据所述像素坐标差(Δu max、Δv max)和所述机械坐标差(Δx max、Δy max)计算像素尺寸(p x、p y),其中,
Figure PCTCN2021100509-appb-000008
根据所述像素尺寸(p x、p y)和所述点胶相机的分辨率(L×S)计算所述点胶相机的视野尺寸(w,h),其中,w=p x×L,h=p y×S。
一实施例中,所述多个预设方向包括正东、正西、正南、正北、东南、东北、西南和西北。
一实施例中,所述完整图像的要求尺寸通过如下方式确定:
确定为所述目标物品设置的图像拼接起点和图像拼接终点;
根据所述图像拼接起点的机械坐标(x 1,y 1)和所述图像拼接终点的机械坐标(x 2,y 2)计算所述完整图像的要求尺寸(W,H),W=|x 1-x 2|,H=|y 1-y 2|。
一实施例中,所述控制模块303通过以下方式根据所述拍摄次数和拍摄步进控制所述点胶相机拍摄目标物品,得到多张局部重叠图像:
在所述点胶相机的视野左上角与所述图像拼接起点重合时控制所述点胶相机拍摄所述目标物品,得到第一张局部重叠图像;
根据所述拍摄次数和拍摄步进控制所述点胶相机移动并拍摄所述目标物品,直至移动使得所述点胶相机的视野右下角与所述图像拼接终点重合时,控制所述点胶相机最后一次拍摄所述目标物品,得到最后一张局部重叠图像。
一实施例中,所述第二确定模块302通过以下方式根据所述视野尺寸及完整图像的要求尺寸确定所述点胶相机的拍摄次数和拍摄步进:
根据所述视野尺寸及所述完整图像的要求尺寸确定所述点胶相机的横向拍摄次数S x和横向拍摄步进Δ x
Figure PCTCN2021100509-appb-000009
以及根据所述视野尺寸及所述完整图像的要求尺寸确定所述点胶相机的纵向拍摄次数S y和纵向拍摄步进Δ y
Figure PCTCN2021100509-appb-000010
其中,(w,h)表示所述视野尺寸,(W,H)表示所述完整图像的要求尺寸。
一实施例中,所述处理模块304通过以下方式对所述多张局部重叠图像进行去重和拼接处理,得到所述完整图像:
根据所述视野尺寸(w,h)、所述横向拍摄步进Δ x和所述纵向拍摄步进Δ y计算所述局部重叠图像中相邻图像的横向重合度k x和纵向重合度k y
Figure PCTCN2021100509-appb-000011
Figure PCTCN2021100509-appb-000012
根据相邻图像的横向重合度k x和纵向重合度k y计算相邻图像的横向重合区域R X和纵向重合区域R Y,R X=k x×w,R Y=k Y×h;
根据相邻图像的横向重合区域R X和纵向重合区域R Y对所述多张局部重叠图像进行去重和拼接处理,得到所述完整图像。
一实施例中,所述绘制模块305通过以下方式在所述完整图像上绘制所述目标物品的点胶轨迹:
在所述完整图像中显示的所述目标物品的轮廓边缘上绘制所述点胶轨迹。
一实施例中,所述装置还包括点胶模块,所述点胶模块设置为:
获取每个所述参考点的像素坐标和机械坐标,并根据每个所述参考点的像素坐标和机械坐标求解转换矩阵,所述转换矩阵为将像素坐标转换为机械坐标的矩阵;
获取所述点胶轨迹的每个点的像素坐标;
根据所述转换矩阵将所述点胶轨迹的每个点的像素坐标转换成机械坐标;
根据所述点胶轨迹的每个点的机械坐标执行点胶过程。
本领域的技术人员可以清楚地了解到,为描述的方便和简洁,仅以上述各功能模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能模块完成,即将装置的内部结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。上述描述功能模块的工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
本申请实施例的装置,可以确定点胶相机的视野尺寸,根据视野尺寸及完整图像的要求尺寸确定点胶相机的拍摄次数和拍摄步进,根据拍摄次数和拍摄步进控制点胶相机拍摄目标物品,得到多张局部重叠图像,对多张局部重叠图像进行去重和拼接处理,得到完整图像;在完整图像上绘制目标物品的点胶轨迹。即本申请实施例中,通过对拍摄目标物品得到的多张局部重叠图像进行去重拼接处理,得到能够展示目标物品全貌的完整图像,然后在完整图像上绘制 点胶轨迹,点胶轨迹的生成不再依赖描点,简化了操作,能够适用于复杂点胶轨迹的生成;另外,在完整图像上绘制目标物品的点胶轨迹,将机械轨迹通过像素轨迹表示,使得生成的点胶轨迹可以直观、可视化地显示。
本申请实施例还提供了一种电子设备,包括存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述处理器执行所述程序时实现上述任一实施例提供的点胶轨迹生成方法。
本申请实施例还提供了一种计算机可读介质,所述计算机可读介质上存储有计算机程序,所述程序被处理器执行时实现上述任一实施例提供的点胶轨迹生成方法。
下面参考图12,其示出了适于用来实现本申请实施例的电子设备的计算机系统400的结构示意图。图12示出的电子设备仅仅是一个示例,不应对本申请实施例的功能和使用范围带来任何限制。
如图12所示,计算机系统400包括中央处理单元(Central Processing Unit,CPU)401,其可以根据存储在只读存储器(Read Only Memory,ROM)402中的程序或者从存储部分408加载到随机访问存储器(Random Access Memory,RAM)403中的程序而执行各种适当的动作和处理。在RAM 403中,还存储有系统400操作所需的各种程序和数据。CPU 401、ROM 402以及RAM 403通过总线404彼此相连。输入/输出(Input/Output,I/O)接口405也连接至总线404。
以下部件连接至I/O接口405:包括键盘、鼠标等的输入部分406;包括诸如阴极射线管(Cathode Ray Tube,CRT)、液晶显示器(Liquid Crystal Display,LCD)等以及扬声器等的输出部分407;包括硬盘等的存储部分408;以及包括诸如局域网(Local Area Network,LAN)卡、调制解调器等的网络接口卡的通信部分409。通信部分409经由诸如因特网的网络执行通信处理。驱动器410也根据需要连接至I/O接口405。可拆卸介质411,诸如磁盘、光盘、磁光盘、半导 体存储器等等,根据需要安装在驱动器410上,以便于从其上读出的计算机程序根据需要被安装入存储部分408。
特别地,根据本申请公开的实施例,上文参考流程图描述的过程可以被实现为计算机软件程序。例如,本申请公开的实施例包括一种计算机程序产品,其包括承载在计算机可读介质上的计算机程序,该计算机程序包含用于执行流程图所示的方法的程序代码。在这样的实施例中,该计算机程序可以通过通信部分409从网络上被下载和安装,和/或从可拆卸介质411被安装。在该计算机程序被中央处理单元(CPU)401执行时,执行本申请的系统中限定的上述功能。
需要说明的是,本申请所示的计算机可读介质可以是计算机可读信号介质或者计算机可读存储介质或者是上述两者的任意组合。计算机可读存储介质例如可以是——但不限于——电、磁、光、电磁、红外线、或半导体的系统、装置或器件,或者任意以上的组合。计算机可读存储介质的更具体的例子可以包括但不限于:具有至少一个导线的电连接、便携式计算机磁盘、硬盘、随机访问存储器(RAM)、只读存储器(ROM)、可擦式可编程只读存储器((Erasable Programmable Read-Only Memory,EPROM)或闪存)、光纤、便携式紧凑磁盘只读存储器(Compact Disc-Read Only Memory,CD-ROM)、光存储器件、磁存储器件、或者上述的任意合适的组合。在本申请中,计算机可读存储介质可以是任何包含或存储程序的有形介质,该程序可以被指令执行系统、装置或者器件使用或者与其结合使用。而在本申请中,计算机可读的信号介质可以包括在基带中或者作为载波一部分传播的数据信号,其中承载了计算机可读的程序代码。这种传播的数据信号可以采用多种形式,包括但不限于电磁信号、光信号或上述的任意合适的组合。计算机可读的信号介质还可以是计算机可读存储介质以外的任何计算机可读介质,该计算机可读介质可以发送、传播或者传输用于由指令执行系统、装置或者器件使用或者与其结合使用的程序。计算机可读介质上包含的程序代码可以用任何适当的介质传输,包括但不限于:无线、电线、光缆、射频(Radio Frequency,RF)等等,或者上述的任意合适的组合。
附图中的流程图和框图,图示了按照本申请各种实施例的系统、方法和计算机程序产品的可能实现的体系架构、功能和操作。在这点上,流程图或框图中的每个方框可以代表一个模块、程序段、或代码的一部分,上述模块、程序段、或代码的一部分包含至少一个用于实现规定的逻辑功能的可执行指令。也应当注意,在有些作为替换的实现中,方框中所标注的功能也可以以不同于附图中所标注的顺序发生。例如,两个接连地表示的方框实际上可以基本并行地执行,它们有时也可以按相反的顺序执行,这依所涉及的功能而定。也要注意的是,框图或流程图中的每个方框、以及框图或流程图中的方框的组合,可以用执行规定的功能或操作的专用的基于硬件的系统来实现,或者可以用专用硬件与计算机指令的组合来实现。
描述于本申请实施例中所涉及到的模块和/或单元可以通过软件的方式实现,也可以通过硬件的方式来实现。所描述的模块和/或单元也可以设置在处理器中,例如,可以描述为:一种处理器包括第一确定模块、第二确定模块、控制模块、处理模块和绘制模块。其中,这些模块的名称在某种情况下并不构成对该模块本身的限定。
作为另一方面,本申请还提供了一种计算机可读介质,该计算机可读介质可以是上述实施例中描述的设备中所包含的;也可以是单独存在,而未装配入该设备中。上述计算机可读介质承载有至少一个程序,当上述至少一个程序被一个该设备执行时,使得该设备实现:确定点胶相机的视野尺寸;根据所述视野尺寸及完整图像的要求尺寸确定所述点胶相机的拍摄次数和拍摄步进;根据所述拍摄次数和拍摄步进控制所述点胶相机拍摄目标物品,得到多张局部重叠图像;对所述多张局部重叠图像进行去重和拼接处理,得到所述完整图像;在所述完整图像上绘制所述目标物品的点胶轨迹。
根据本申请实施例的技术方案,可以确定点胶相机的视野尺寸,根据视野尺寸及完整图像的要求尺寸确定点胶相机的拍摄次数和拍摄步进,根据拍摄次数和拍摄步进控制点胶相机拍摄目标物品,得到多张局部重叠图像,对多张局 部重叠图像进行去重和拼接处理,得到完整图像;在完整图像上绘制目标物品的点胶轨迹。即本申请实施例中,通过对拍摄目标物品得到的多张局部重叠图像进行去重拼接处理,得到能够展示目标物品全貌的完整图像,然后在完整图像上绘制点胶轨迹,点胶轨迹的生成不再依赖描点,简化了操作,能够适用于复杂点胶轨迹的生成;另外,在完整图像上绘制目标物品的点胶轨迹,将机械轨迹通过像素轨迹表示,使得生成的点胶轨迹可以直观、可视化地显示。

Claims (13)

  1. 一种点胶轨迹生成方法,包括:
    确定点胶相机的视野尺寸;
    根据所述视野尺寸及完整图像的要求尺寸确定所述点胶相机的拍摄次数和拍摄步进;
    根据所述拍摄次数和拍摄步进控制所述点胶相机拍摄目标物品,得到多张局部重叠图像;
    对所述多张局部重叠图像进行去重和拼接处理,得到所述完整图像;
    在所述完整图像上绘制所述目标物品的点胶轨迹。
  2. 根据权利要求1所述的点胶轨迹生成方法,其中,所述确定点胶相机的视野尺寸,包括:
    将所述点胶相机的视野中心置于预设标记点;
    控制所述点胶相机围绕所述预设标记点移动,并在移动的过程中找出多个预设方向上的多个参考点,所述多个预设方向与所述多个参考点一一对应,所述多个参考点中的每个参考点为对应预设方向上使得所述预设标记点处于所述点胶相机的视野最边缘时的所述点胶相机的视野中心所在的点;
    从所述多个参考点中找出间距最大的两个参考点,得到两个目标点;
    根据所述两个目标点的像素坐标和机械坐标确定所述点胶相机的视野尺寸。
  3. 根据权利要求2所述的点胶轨迹生成方法,其中,所述根据所述两个目标点的像素坐标和机械坐标确定所述点胶相机的视野尺寸,包括:
    根据所述两个目标点的像素坐标计算像素坐标差(Δu max、Δv max),根据所述两个目标点的机械坐标计算机械坐标差(Δx max、Δy max);
    根据所述像素坐标差(Δu max、Δv max)和所述机械坐标差(Δx max、Δy max)计算像素尺寸(p x、p y),其中,
    Figure PCTCN2021100509-appb-100001
    根据所述像素尺寸(p x、p y)和所述点胶相机的分辨率(L×S)计算所 述点胶相机的视野尺寸(w,h),其中,w=p x×L,h=p y×S。
  4. 根据权利要求2所述的点胶轨迹生成方法,其中,所述多个预设方向包括正东、正西、正南、正北、东南、东北、西南和西北。
  5. 根据权利要求1所述的点胶轨迹生成方法,其中,所述完整图像的要求尺寸通过如下方式确定:
    确定为所述目标物品设置的图像拼接起点和图像拼接终点;
    根据所述图像拼接起点的机械坐标(x 1,y 1)和所述图像拼接终点的机械坐标(x 2,y 2)计算所述完整图像的要求尺寸(W,H),其中,W=|x 1-x 2|,H=|y 1-y 2|。
  6. 根据权利要求5所述的点胶轨迹生成方法,其中,所述根据所述拍摄次数和拍摄步进控制所述点胶相机拍摄目标物品,得到多张局部重叠图像,包括:
    在所述点胶相机的视野左上角与所述图像拼接起点重合时控制所述点胶相机拍摄所述目标物品,得到第一张局部重叠图像;
    根据所述拍摄次数和拍摄步进控制所述点胶相机移动并拍摄所述目标物品,直至移动使得所述点胶相机的视野右下角与所述图像拼接终点重合时,控制所述点胶相机最后一次拍摄所述目标物品,得到最后一张局部重叠图像。
  7. 根据权利要求1所述的点胶轨迹生成方法,其中,所述视野尺寸用(w,h)表示,所述完整图像的要求尺寸用(W,H)表示,所述根据所述视野尺寸及完整图像的要求尺寸确定所述点胶相机的拍摄次数和拍摄步进,包括:
    根据所述视野尺寸及所述完整图像的要求尺寸确定所述点胶相机的横向拍摄次数S x和横向拍摄步进Δ x
    Figure PCTCN2021100509-appb-100002
    以及根据所述视野尺寸及所述完整图像的要求尺寸确定所述点胶相机的纵向拍摄次数S y和纵向拍摄步进Δ y
    Figure PCTCN2021100509-appb-100003
  8. 根据权利要求7所述的点胶轨迹生成方法,其中,所述对所述多张局部重叠图像进行去重和拼接处理,得到所述完整图像,包括:
    根据所述视野尺寸(w,h)、所述横向拍摄步进Δ x和所述纵向拍摄步进Δ y计算所述局部重叠图像中相邻图像的横向重合度k x和纵向重合度k y
    Figure PCTCN2021100509-appb-100004
    根据相邻图像的横向重合度k x和纵向重合度k y计算相邻图像的横向重合区域R X和纵向重合区域R Y,R X=k x×w,R Y=k Y×h;
    根据相邻图像的横向重合区域R X和纵向重合区域R Y对所述多张局部重叠图像进行去重和拼接处理,得到所述完整图像。
  9. 根据权利要求1所述的点胶轨迹生成方法,其中,所述在所述完整图像上绘制所述目标物品的点胶轨迹,包括:
    在所述完整图像中显示的所述目标物品的轮廓边缘上绘制所述点胶轨迹。
  10. 根据权利要求2所述的点胶轨迹生成方法,其中,所述方法还包括:
    获取每个所述参考点的像素坐标和机械坐标,并根据每个所述参考点的像素坐标和机械坐标求解转换矩阵,所述转换矩阵为将像素坐标转换为机械坐标的矩阵;
    获取所述点胶轨迹的每个点的像素坐标;
    根据所述转换矩阵将所述点胶轨迹的每个点的像素坐标转换成机械坐标;
    根据所述点胶轨迹的每个点的机械坐标执行点胶过程。
  11. 一种点胶轨迹生成装置,包括:
    第一确定模块,设置为确定点胶相机的视野尺寸;
    第二确定模块,设置为根据所述视野尺寸及完整图像的要求尺寸确定所述点胶相机的拍摄次数和拍摄步进;
    控制模块,设置为根据所述拍摄次数和拍摄步进控制所述点胶相机拍摄目标物品,得到多张局部重叠图像;
    处理模块,设置为对所述多张局部重叠图像进行去重和拼接处理,得到所述完整图像;
    绘制模块,设置为基于所述完整图像绘制所述目标物品的点胶轨迹。
  12. 一种电子设备,包括存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现如权利要求1至10中任一所述的点胶轨迹生成方法。
  13. 一种计算机可读存储介质,所述计算机可读存储介质上存储有计算机程序,所述计算机程序被处理器执行时实现如权利要求1至10中任一所述的点胶轨迹生成方法。
PCT/CN2021/100509 2021-03-30 2021-06-17 点胶轨迹生成方法、装置、电子设备和存储介质 WO2022205625A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110341257.3A CN113099111A (zh) 2021-03-30 2021-03-30 点胶轨迹生成方法、装置、电子设备和存储介质
CN202110341257.3 2021-03-30

Publications (1)

Publication Number Publication Date
WO2022205625A1 true WO2022205625A1 (zh) 2022-10-06

Family

ID=76670960

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/100509 WO2022205625A1 (zh) 2021-03-30 2021-06-17 点胶轨迹生成方法、装置、电子设备和存储介质

Country Status (2)

Country Link
CN (1) CN113099111A (zh)
WO (1) WO2022205625A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116912302A (zh) * 2023-09-12 2023-10-20 湖南大学 一种基于深度图像配准网络的高精度成像方法及系统

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114602744B (zh) * 2022-04-08 2023-09-05 深圳市鑫龙邦科技有限公司 一种太阳能板灌胶机
CN116786373B (zh) * 2023-08-28 2023-11-10 苏州希盟科技股份有限公司 一种点胶设备的点胶控制方法、装置、设备及存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106391397A (zh) * 2016-09-07 2017-02-15 广东欧珀移动通信有限公司 一种喷胶装置及边框轨迹的确定方法
CN106733464A (zh) * 2016-12-30 2017-05-31 深圳市卓翼科技股份有限公司 点胶控制方法和点胶装置
CN109489560A (zh) * 2018-11-21 2019-03-19 中国联合网络通信集团有限公司 一种线性尺寸测量方法及装置、智能终端
CN110213475A (zh) * 2019-02-14 2019-09-06 南京泓众电子科技有限公司 一种全景图像的拍摄方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110049226B (zh) * 2018-01-16 2021-01-29 飞狐信息技术(天津)有限公司 一种全景图片素材的拍摄方法及系统
CN112495700A (zh) * 2020-11-25 2021-03-16 厦门特盈自动化科技股份有限公司 全自动点胶智能控制系统及其控制方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106391397A (zh) * 2016-09-07 2017-02-15 广东欧珀移动通信有限公司 一种喷胶装置及边框轨迹的确定方法
CN106733464A (zh) * 2016-12-30 2017-05-31 深圳市卓翼科技股份有限公司 点胶控制方法和点胶装置
CN109489560A (zh) * 2018-11-21 2019-03-19 中国联合网络通信集团有限公司 一种线性尺寸测量方法及装置、智能终端
CN110213475A (zh) * 2019-02-14 2019-09-06 南京泓众电子科技有限公司 一种全景图像的拍摄方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116912302A (zh) * 2023-09-12 2023-10-20 湖南大学 一种基于深度图像配准网络的高精度成像方法及系统
CN116912302B (zh) * 2023-09-12 2023-12-01 湖南大学 一种基于深度图像配准网络的高精度成像方法及系统

Also Published As

Publication number Publication date
CN113099111A (zh) 2021-07-09

Similar Documents

Publication Publication Date Title
WO2022205625A1 (zh) 点胶轨迹生成方法、装置、电子设备和存储介质
WO2016017932A1 (ko) 사용자의 시점을 고려하여 동작인식하는 인터페이스 제공방법 및 제공장치
US10969949B2 (en) Information display device, information display method and information display program
EP2790089A1 (en) Portable device and method for providing non-contact interface
CN108604379A (zh) 用于确定图像中的区域的系统及方法
WO2016168786A1 (en) Augmented interface authoring
US20110169776A1 (en) Image processor, image display system, and image processing method
WO2021004412A1 (zh) 手持输入设备及其指示图标的显示位置控制方法和装置
CN103412720A (zh) 处理触控式输入信号的方法及其装置
JP2014029656A (ja) 画像処理装置および画像処理方法
WO2022083003A1 (zh) 触控屏放大镜调用方法、装置、电子设备及存储介质
WO2021004413A1 (zh) 一种手持输入设备及其指示图标的消隐控制方法和装置
US20190138106A1 (en) Screen display control method and screen display control system
KR101709529B1 (ko) 휴대 단말을 이용한 영상 화면 제어 방법 및 장치
WO2018195973A1 (zh) 利用手持终端进行光标定位的方法、手持终端和电子设备
EP4170588A2 (en) Video photographing method and apparatus, and device and storage medium
CN115097976A (zh) 用于图像处理的方法、装置、设备和存储介质
CN110322484B (zh) 多设备共享的增强现实虚拟空间的校准方法及系统
US10281294B2 (en) Navigation system and navigation method
JP6342832B2 (ja) 入力装置
WO2019100547A1 (zh) 投影控制方法、装置、投影交互系统及存储介质
JP6617061B2 (ja) 作業支援プログラム、作業支援方法、情報処理装置、及び作業支援システム
CN104571817A (zh) 用于移动gis平台的数据采集方法和装置
CN111273802A (zh) 一种在屏幕上移动对象的方法及触摸显示装置
EP3962062A1 (en) Photographing method and apparatus, electronic device, and storage medium

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21934274

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21934274

Country of ref document: EP

Kind code of ref document: A1