WO2022205504A1 - 一种功率半导体模块制造方法 - Google Patents

一种功率半导体模块制造方法 Download PDF

Info

Publication number
WO2022205504A1
WO2022205504A1 PCT/CN2021/087096 CN2021087096W WO2022205504A1 WO 2022205504 A1 WO2022205504 A1 WO 2022205504A1 CN 2021087096 W CN2021087096 W CN 2021087096W WO 2022205504 A1 WO2022205504 A1 WO 2022205504A1
Authority
WO
WIPO (PCT)
Prior art keywords
special
power semiconductor
shaped
water channel
channel layer
Prior art date
Application number
PCT/CN2021/087096
Other languages
English (en)
French (fr)
Inventor
雷光寅
邹强
范志斌
Original Assignee
光华临港工程应用技术研发(上海)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 光华临港工程应用技术研发(上海)有限公司 filed Critical 光华临港工程应用技术研发(上海)有限公司
Publication of WO2022205504A1 publication Critical patent/WO2022205504A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3107Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed
    • H01L23/3114Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed the device being a chip scale package, e.g. CSP
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/367Cooling facilitated by shape of device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/367Cooling facilitated by shape of device
    • H01L23/3672Foil-like cooling fins or heat sinks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/46Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids
    • H01L23/473Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids by flowing liquids

Definitions

  • the present application relates to the field of semiconductor manufacturing, and in particular, to a method for manufacturing a power semiconductor module.
  • the heat dissipation capability of a semiconductor power module depends greatly on the design of its heat dissipation channel.
  • the heat dissipation channel is usually realized by powder sintering, cold forging, or finishing.
  • the manufacturing cost is very high, the manufacturing cycle is very long, and the radiator is often restricted by the processing means, so that the optimal waterway design cannot be fully realized.
  • the heat dissipation device of the existing power semiconductor module is usually realized by means of finishing or cold forging. Finishing has incomparable advantages in dimensional control, but it is inevitably restricted by high processing costs, and it is not easy to achieve mass production. Cold forging is currently the most widely used processing technology.
  • Metals such as copper or aluminum are extruded into one or several dies at room temperature or slightly higher temperature by applying mechanical pressure, so as to achieve low-cost, high-output production. Production.
  • the disadvantage is that the shape of the heat sink cannot be too complicated, and it is limited by the mold design and mold removal requirements.
  • the present application provides a method for manufacturing a power semiconductor module.
  • the processing difficulty is reduced and the process cost is saved.
  • the present application provides a method for manufacturing a power semiconductor module, which includes the following steps: providing a heat dissipation substrate, disposing a power semiconductor chip on one surface of the heat dissipation substrate; forming a prefabricated water channel layer on the side of the heat dissipation substrate facing away from the power semiconductor chip, and the prefabricated water channel layer has A plurality of special-shaped grooves penetrating the prefabricated water channel layer, the special-shaped grooves expose the surface of the heat dissipation substrate on the side facing away from the power semiconductor chip; after the prefabricated water channel layer is formed, each special-shaped groove is filled with a thermally conductive material to form a plurality of special-shaped heat sinks connected to the heat dissipation substrate ; After forming the special-shaped heat sink, a top encapsulation layer is formed on the surface of the prefabricated water channel layer facing the heat dissipation substrate, and the top encapsulation layer covers the heat dissipation substrate and the power semiconductor chip; A bottom
  • the bottom encapsulation layer covers the surface of the prefabricated water channel layer on the side facing away from the power semiconductor chip; after the top encapsulation layer and the bottom encapsulation layer are formed, the prefabricated water channel layer is removed to form a water channel.
  • the prefabricated water channel layer is formed by 3D printing.
  • the step of forming the prefabricated water channel layer includes: using ABS plastic, ASA plastic or polypropylene to form the prefabricated water channel layer.
  • the special-shaped groove is a snowflake-shaped groove or a branch-shaped groove.
  • the branch-shaped groove is a special-shaped groove having a main trunk and at least two or more branches extending from the end of the main trunk.
  • the snowflake groove is: having a main trunk, at least two or more branches extending from the side of the main trunk, and at least two or more secondary branches extending from the side of the main trunk, and in any vertical direction.
  • the projection patterns on the cross-section of the heat dissipation base plate are all shaped grooves with centrally symmetric patterns.
  • the plurality of special-shaped grooves include a plurality of first special-shaped grooves and a plurality of second special-shaped grooves, and the structures of the first special-shaped grooves and the second special-shaped grooves are different.
  • the step of forming the special-shaped heat sink includes: forming a first special-shaped heat sink in the first special-shaped groove, forming a second special-shaped heat sink in the second special-shaped groove, and a difference between the first special-shaped heat sink and the second special-shaped heat sink. Materials are different.
  • the spacing between each of the first special-shaped grooves and the spacing between each of the first special-shaped grooves are different.
  • the power semiconductor module manufacturing method provided by this application is to manufacture a power semiconductor module with a special-shaped heat sink, by first forming a prefabricated water channel layer with a special-shaped groove, filling the special-shaped groove with a thermally conductive material to form a special-shaped heat sink, and completing the top packaging layer. By removing the prefabricated water channel layer to form the water channel after the bottom encapsulation layer is formed, the power semiconductor module with the special-shaped heat sink is formed, which reduces the difficulty of forming the special-shaped heat sink and saves the process cost.
  • the prefabricated water channel layer is formed by 3D printing technology, which can easily realize the special-shaped grooves of various structures, and ensure the structural integrity and firmness of the prefabricated water channel layer, avoiding the use of finishing or
  • the special-shaped groove or the special-shaped heat sink is formed by cold forging, which reduces the processing difficulty and saves the process cost.
  • the special-shaped groove may be a snowflake-shaped groove or a branch-shaped groove.
  • Snowflake fins or dendritic fins can be formed in subsequent steps by using snowflake grooves or dendritic grooves.
  • snowflake fins or dendritic fins with the same volume have more The better heat dissipation capability is beneficial to the improvement of the heat dissipation capability of the power semiconductor device, and the method can reduce the processing difficulty of the power semiconductor module with the snowflake heat sink or the branch heat sink, and save the process cost.
  • the plurality of special-shaped grooves include a plurality of first special-shaped grooves and a plurality of second special-shaped grooves, and the structures of the first special-shaped grooves and the second special-shaped grooves are different, so that different positions can be used.
  • heat dissipation areas with different heat dissipation capabilities can be formed in the power semiconductor module to meet different heat dissipation requirements.
  • the first special-shaped groove and the second special-shaped groove are formed of different materials, so that special-shaped heat sinks of different materials can be formed at different positions, and different heat dissipation capabilities can be formed in the power semiconductor module. heat dissipation area to meet different heat dissipation requirements.
  • the spacing between each first special-shaped groove and the spacing between each first special-shaped groove are different, so that each first special-shaped heat sink and each second special-shaped heat sink formed subsequently
  • the spacing between the chips is different, so that heat dissipation areas with different heat dissipation capabilities can be formed in the power semiconductor module to cope with different heat dissipation requirements.
  • FIG. 1 is a schematic flowchart of a method for manufacturing a power semiconductor module of the present application
  • FIGS. 2 to 6 are schematic state diagrams of various steps in the process of manufacturing a power semiconductor module according to an embodiment of the present application
  • FIGS. 7 to 8 are schematic structural diagrams of a special-shaped groove and a special-shaped heat sink in the method for manufacturing a power semiconductor module of the present application.
  • the present application provides a method for manufacturing a power semiconductor module.
  • the processing difficulty is reduced, and the process cost is saved.
  • the present embodiment provides a method for manufacturing a power semiconductor module, including the following steps:
  • a heat dissipation substrate is provided, and a power semiconductor chip 100 is disposed on one surface of the heat dissipation substrate.
  • the heat dissipation substrate includes an insulating layer 300 , a first metal layer 200 and a second metal layer 400 on both sides of the insulating layer, and the power semiconductor chip 100 is disposed on one side of the first metal layer 200 .
  • a prefabricated water channel layer 500 is formed on the side of the heat dissipation substrate facing away from the power semiconductor chip 100.
  • the prefabricated water channel layer 500 has a plurality of special-shaped grooves 501 penetrating the prefabricated water channel layer 500, and the special-shaped grooves 501 expose the heat dissipation substrate away from the power
  • the surface on one side of the semiconductor chip 100 ie, the surface of the second metal layer 400 ).
  • each special-shaped groove 501 is filled with a thermally conductive material to form a plurality of special-shaped heat sinks 401 connected to the heat dissipation substrate.
  • a top packaging layer 600 is formed on the surface of the prefabricated water channel layer 500 facing the heat dissipation substrate, and the top packaging layer covers the heat dissipation substrate and the power semiconductor chip 100 .
  • a bottom encapsulation layer 700 is formed on the surface of the prefabricated water channel layer 500 on the side facing away from the heat dissipation substrate, and the bottom encapsulation layer 700 covers the surface of the prefabricated water channel layer 500 on the side facing away from the power semiconductor chip 100 .
  • the prefabricated water channel layer 500 is formed by 3D printing.
  • the thermally conductive material includes copper, aluminum, carbon nanotubes or graphene.
  • the formation material of the top encapsulation layer 600 may be epoxy resin.
  • a power semiconductor module with a special-shaped heat sink 401 is manufactured, a prefabricated water channel layer with a special-shaped groove 501 is formed first, and the special-shaped groove 501 is filled with a thermally conductive material to form the special-shaped heat sink 401, and the special-shaped heat sink 401 is formed.
  • the prefabricated water channel layer 500 is removed to form a water channel. The structural integrity and firmness of the water channel layer 500 avoids the use of finishing or cold forging to form the special-shaped grooves 501 or the special-shaped heat sinks 401, which reduces the processing difficulty and saves the process cost.
  • the step of forming the prefabricated water channel layer 500 includes: using ABS plastic (Acrylonitrile Butadiene Styrene plastic, which is three kinds of acrylonitrile (A), butadiene (B) and styrene (S) Monomer terpolymer), ASA plastic (Acrylonitrile Styrene acrylate copolymer, which is a graft copolymer of acrylate rubber and acrylonitrile, styrene) or polypropylene to form a prefabricated water channel layer.
  • ABS plastic Acrylonitrile Butadiene Styrene plastic, which is three kinds of acrylonitrile (A), butadiene (B) and styrene (S) Monomer terpolymer
  • ASA plastic Acrylonitrile Styrene acrylate copolymer, which is a graft copolymer of acrylate rubber and acrylonitrile, styrene
  • polypropylene to
  • the special-shaped groove 501 and the special-shaped heat sink 401 are represented by regular graphics, which are only for the convenience of showing the positions of the special-shaped groove 501 and the special-shaped heat sink 401 .
  • the structures of the special-shaped grooves 501 and the special-shaped heat sinks 401 are not regular patterns, and the specific forms may refer to the following description.
  • the special-shaped groove 501 includes a branch-shaped groove 501a or a snowflake-shaped groove 501b.
  • the branch-shaped groove 501a is a special-shaped groove having a main trunk and at least two or more branches extending from the end of the main trunk.
  • the special-shaped heat sink 401 formed by filling it with a thermally conductive material is a dendritic heat sink 401a.
  • the dendritic groove has various forms, and only one form of the dendritic groove 501a is shown in FIG. 7 . Those satisfying the above definition and description are regarded as dendritic grooves.
  • the cooling fins 401 are all dendritic cooling fins 401a, and the selection of the specific form can be adjusted by those skilled in the art according to the actual situation. Referring to FIG.
  • the snowflake-shaped groove 501b has a main trunk, at least two or more branches extending from the side of the main trunk, and at least two or more secondary branches extending from the side of the main trunk, and at any
  • the projection patterns on the cross section of the vertical heat dissipation base plate are all shaped grooves with symmetrical patterns.
  • the special-shaped fins 401 formed by filling them with thermally conductive materials in subsequent steps are snowflake fins 401b. It should be noted that the snowflake-shaped groove has various forms, and only one form of the snowflake-shaped groove 501b is shown in FIG. 8 .
  • the cooling fins 401 are all snowflake-shaped cooling fins 401b, and the selection of the specific form can be adjusted by those skilled in the art according to the actual situation.
  • the special-shaped groove 501 may be a branch-shaped groove 501a or a snowflake-shaped groove 501b.
  • Snowflake-shaped fins 401b or dendritic fins 401a can be formed in subsequent steps by using snowflake-shaped grooves 501b or dendritic-shaped fins 401a.
  • the snowflake-shaped fins 401b or dendritic fins 401a with the same volume are compared to conventional column-shaped fins Or the plate type heat sink has better heat dissipation capability, which is beneficial to the improvement of the heat dissipation capability of the power semiconductor device.
  • This method can reduce the processing difficulty of the power semiconductor module with the snowflake type heat sink 401b or the branch type heat sink 401a, and save the process cost. .
  • the plurality of special-shaped grooves 501 may include a plurality of first special-shaped grooves and a plurality of second special-shaped grooves (not shown in the figure), and the structures of the first special-shaped grooves and the second special-shaped grooves are different.
  • the step of forming the special-shaped fins filling the various special-shaped grooves in the plurality of special-shaped grooves includes: forming a first special-shaped fins in the first special-shaped grooves, and forming a second special-shaped fins in the second special-shaped grooves, The materials of the first special-shaped heat sink and the second special-shaped heat sink are different.
  • the spacing between each first special-shaped groove and the spacing between each first special-shaped groove are different.
  • a plurality of first special-shaped heat sinks and a plurality of second special-shaped heat sinks with different structures, materials, and distances between each heat sink can be formed, and heat dissipation areas with different heat dissipation capabilities can be formed in the power semiconductor module to cope with different cooling requirements.
  • the step of removing the prefabricated water channel layer 500 may be washed with water or treated with an acetone solvent to remove the prefabricated water channel layer 500 .

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

本申请提供一种功率半导体模块制造方法,包括以下步骤:提供散热基板,在散热基板一侧表面设置功率半导体芯片;在散热基板背向功率半导体芯片的一侧形成预制水道层,预制水道层具有多个贯通预制水道层的异形槽,异形槽暴露散热基板背向功率半导体芯片一侧的表面;以导热材料填充各个异形槽,形成多个连接散热基板的异形散热片;在预制水道层朝向散热基板一侧表面形成顶封装层,顶封装层包覆散热基板和功率半导体芯片;在预制水道层背向散热基板一侧表面形成底封装层,底封装层覆盖预制水道层背向功率半导体芯片一侧的表面;去除预制水道层,形成水道。本方法可以实现具有异形散热片的功率半导体模块的形成,降低了异形散热片的形成难度,节省了工艺成本。

Description

一种功率半导体模块制造方法 技术领域
本申请涉及半导体制造领域,具体涉及一种功率半导体模块制造方法。
背景技术
半导体功率模块的散热能力极大地依赖于其散热水道的设计。在传统模块封装工艺中,散热水道通常使用粉末烧结、冷锻、或者精加工的方式实现。其制造成本非常高昂、制造周期很长,并且散热器也常常受到加工手段的制约,不能充分实现最优化的水道设计。现有功率半导体模块的散热装置通常经过精加工或者冷锻的方式实现。精加工在尺度控制上具有不可比拟的优势,但是不可避免的受到了加工成本高的制约,不容易实现大批量生产。冷锻是目前应用范围最广的加工工艺,将铜或者铝等金属在常温或者略高一点的温度通过施加机械压力的方式挤压进一个或者数个模具,从而实现低成本、高产出的生产。其缺点在于散热器的形状不能太复杂,且受到模具设计和退模需求的限制。
发明内容
因此,本申请提供一种功率半导体模块制造方法。以实现具有异形散热片的功率半导体模块的形成,同时降低加工难度,节省工艺成本。
本申请提供一种功率半导体模块制造方法,包括以下步骤:提供散热基板,在散热基板一侧表面设置功率半导体芯片;在散热基板背向功率半导体芯片的一侧形成预制水道层,预制水道层具有多个贯通预制水道层的 异形槽,异形槽暴露散热基板背向功率半导体芯片一侧的表面;在形成预制水道层之后,以导热材料填充各个异形槽,形成多个连接散热基板的异形散热片;在形成异形散热片之后,在预制水道层朝向散热基板一侧表面形成顶封装层,顶封装层包覆散热基板和功率半导体芯片;在预制水道层背向散热基板一侧表面形成底封装层,底封装层覆盖预制水道层背向功率半导体芯片一侧的表面;在形成顶封装层和底封装层之后,去除预制水道层,形成水道。
可选的,预制水道层通过3D打印形成。
可选的,形成预制水道层的步骤包括:使用ABS塑料、ASA塑料或聚丙烯形成预制水道层。
可选的,异形槽为雪花型槽或树枝型槽。
可选的,树枝型槽为:具有一个主干及自主干末端延伸出的至少两个以上的支干的异形槽。
可选的,雪花型槽为:具有一个主干、自主干侧部延伸出的至少两个以上的支干以及自支干侧部延伸出的至少两个以上的次级支干,且在任意垂直散热基板的截面上的投影图形均为中心对称图形的异形槽。
可选的,多个异形槽包括多个第一异形槽和多个第二异形槽,第一异形槽和第二异形槽的结构不同。
可选的,形成异形散热片的步骤包括:在第一异形槽中形成第一异形散热片,在第二异形槽中形成第二异形散热片,第一异形散热片和第二异形散热片的材料不同。
可选的,形成预制水道层的步骤中,各个第一异形槽之间的间距和各个第一异形槽之间的间距不同。
本申请的有益效果在于:
1.本申请提供的功率半导体模块制造方法,制造具有异形散热片的功率半导体模块,通过先行形成带有异形槽的预制水道层,以导热材料填充异形槽形成异形散热片,在完成顶封装层和底封装层后去除预制水道层以形成水道的方式,具有异形散热片的功率半导体模块的形成,降低了异形散热片的形成难度,节省了工艺成本。
2.本申请提供的功率半导体模块制造方法,预制水道层利用3D打印技术形成,可轻易实现各种结构的异形槽,并且保证预制水道层的结构完整性和坚固程度,避免了使用精加工或冷锻的方式形成异形槽或异形散热片,降低了加工难度,节省了工艺成本。
3.本申请提供的功率半导体模块制造方法中,异形槽可以为雪花型槽或树枝型槽。利用雪花型槽或树枝型槽可在后续步骤中形成雪花型散热片或树枝型散热片,相同体积的雪花型散热片或树枝型散热片相较传统的柱型散热片或板型散热片具有更好的散热能力,有利于功率半导体器件的散热能力提升,通过本方法可降低具有雪花型散热片或树枝型散热片的功率半导体模块的加工难度,节省工艺成本。
4.本申请提供的功率半导体模块制造方法中,多个异形槽包括多个第一异形槽和多个第二异形槽,第一异形槽和第二异形槽的结构不同,使得可以在不同位置形成不同的异形散热片,可以在功率半导体模块内形成不同散热能力的散热区,以应对不同的散热需求。
5.本申请提供的功率半导体模块制造方法中,第一异形槽和第二异形槽的形成材料不同,使得可以在不同位置形成不同材料的异形散热片,可以在功率半导体模块内形成不同散热能力的散热区,以应对不同的散热需求。
6.本申请提供的功率半导体模块制造方法中,各个第一异形槽之间的间距和各个第一异形槽之间的间距不同,使得后续形成的各个第一异形散热片和各个第二异形散热片之间的间距不同,从而可以在功率半导体模块 内形成不同散热能力的散热区,以应对不同的散热需求。
附图说明
为了更清楚地说明本申请具体实施方式或现有技术中的技术方案,下面将对具体实施方式或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请的功率半导体模块制造方法的流程示意图;
图2至图6为本申请一实施例的功率半导体模块制造方法过程中各个步骤的状态示意图;
图7至图8为本申请的功率半导体模块制造方法中异形槽和异形散热片的结构示意图。
具体实施方式
本申请提供一种功率半导体模块制造方法。以满足复杂形状的散热器的制造需求,同时降低加工难度,节省工艺成本。
下面将结合附图对本申请的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
在本申请的描述中,需要说明的是,术语“中心”、“上”、“下”、“左”、“右”、“竖直”、“水平”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,术语“第一”、“第二”、“第三”仅用 于描述目的,而不能理解为指示或暗示相对重要性。
此外,下面所描述的本申请不同实施方式中所涉及的技术特征只要彼此之间未构成冲突就可以相互结合。
实施例1
参考图1至图9,本实施例提供一种功率半导体模块制造方法,包括以下步骤:
S01:参考图2,提供散热基板,在散热基板一侧表面设置功率半导体芯片100。其中散热基板包括绝缘层300,位于绝缘层两侧的第一金属层200和第二金属层400,功率半导体芯片100设置在一侧的第一金属层200上。
S02:参考图3,在散热基板背向功率半导体芯片100的一侧形成预制水道层500,预制水道层500具有多个贯通预制水道层500的异形槽501,异形槽501暴露散热基板背向功率半导体芯片100一侧的表面(即第二金属层400表面)。
S03:参考图4,在形成预制水道层500之后,以导热材料填充各个异形槽501,形成多个连接散热基板的异形散热片401。
S04:参考图5,在形成异形散热片401之后,在预制水道层500朝向散热基板一侧表面形成顶封装层600,顶封装层包覆散热基板和功率半导体芯片100。在预制水道层500背向散热基板一侧表面形成底封装层700,底封装层700覆盖预制水道层500背向功率半导体芯片100一侧的表面。
S05:参考图6,在形成顶封装层600和底封装层700之后,去除预制水道层500,形成水道800。
具体的,预制水道层500通过3D打印形成。其中导热材料包括铜、铝、碳纳米管或石墨烯。顶封装层600的形成材料可以为环氧树脂。
本实施例提供的功率半导体模块制造方法,制造具有异形散热片401的功率半导体模块,通过先行形成带有异形槽501的预制水道层,以导热材料填充异形槽501形成异形散热片401,在完成顶封装层600和底封装层700后去除预制水道层500以形成水道的方式,特别是,利用3D打印方式形成预制水道层500的形式,可轻易实现各种结构的异形槽501,并且保证预制水道层500的结构完整性和坚固程度,避免了使用精加工或冷锻的方式形成异形槽501或异形散热片401,降低了加工难度,节省了工艺成本。
本实施例的功率半导体模块制造方法中,形成预制水道层500的步骤包括:使用ABS塑料(Acrylonitrile Butadiene Styrene plastic,是丙烯腈(A)、丁二烯(B)、苯乙烯(S)三种单体的三元共聚物)、ASA塑料(Acrylonitrile Styrene acrylate copolymer,是丙烯酸酯类橡胶体与丙烯腈、苯乙烯的接枝共聚物)或聚丙烯形成预制水道层。
需要特别说明的是,在图2至图6中,以规则图形表示异形槽501和异形散热片401,仅仅是为简便图示以显示异形槽501和异形散热片401的位置而为之,本领域技术人员应当知晓,实际上异形槽501和异形散热片401的结构不是规则图形,具体的形式可参考以下说明。
参考图7和图8,在本申请的一些实施例中,异形槽501包括树枝型槽501a或雪花型槽501b。
具体的,参考图7,树枝型槽501a为:具有一个主干及自主干末端延伸出的至少两个以上的支干的异形槽。在后续步骤中以导热材料填充其形成的异形散热片401为树枝型散热片401a。需要说明的是,树枝型槽具有多种形式,图7中仅示出了一种树枝型槽501a的形式,满足上述定义描述的,均视为树枝型槽,以导热材料填充其形成的异形散热片401均为树枝型散热片401a,具体形式的选择本领域技术人员可根据实际情况进行调整。参考图8,雪花型槽501b为:有一个主干、自主干侧部延伸出的至少两个 以上的支干以及自支干侧部延伸出的至少两个以上的次级支干,且在任意垂直散热基板的截面上的投影图形均为中心对称图形的异形槽。在后续步骤中以导热材料填充其形成的异形散热片401为雪花型散热片401b。需要说明的是,雪花型槽具有多种形式,图8中仅示出了一种雪花型槽501b的形式,满足上述定义描述的,均视为雪花型槽,以导热材料填充其形成的异形散热片401均为雪花型散热片401b,具体的形式的选择本领域技术人员可根据实际情况进行调整。
本实施例提供的功率半导体模块制造方法中,异形槽501可以为树枝型槽501a或雪花型槽501b。利用雪花型槽501b或树枝型槽501a可在后续步骤中形成雪花型散热片401b或树枝型散热片401a,相同体积的雪花型散热片401b或树枝型散热片401a相较传统的柱型散热片或板型散热片具有更好的散热能力,有利于功率半导体器件的散热能力提升,通过本方法可降低具有雪花型散热片401b或树枝型散热片401a的功率半导体模块的加工难度,节省工艺成本。
在一些实施例中,多个异形槽501可以包括多个第一异形槽和多个第二异形槽(图中未示出),第一异形槽和第二异形槽的结构不同。进一步的,在多个所述异形槽中形成填充各个异形槽的异形散热片的步骤包括:在第一异形槽中形成第一异形散热片,在第二异形槽中形成第二异形散热片,第一异形散热片和第二异形散热片的材料不同。进一步的,形成预制水道层的步骤中,各个第一异形槽之间的间距和各个第一异形槽之间的间距不同。如此可形成结构、材料、及各个散热片之间间距都不同的多个第一异形散热片和多个第二异形散热片,可以在功率半导体模块内形成不同散热能力的散热区,以应对不同的散热需求。
此外,在本实施例中,去除预制水道层500的步骤可以通过水冲洗或丙酮溶剂处理,以去除预制水道层500。
显然,上述实施例仅仅是为清楚地说明所作的举例,而并非对实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。而由此所引伸出的显而易见的变化或变动仍处于本申请的保护范围之中。

Claims (9)

  1. 一种功率半导体模块制造方法,其特征在于,包括以下步骤:
    提供散热基板,在所述散热基板一侧表面设置功率半导体芯片;
    在所述散热基板背向所述功率半导体芯片的一侧形成预制水道层,所述预制水道层具有多个贯通所述预制水道层的异形槽,所述异形槽暴露所述散热基板背向所述功率半导体芯片一侧的表面;
    在形成所述预制水道层之后,以导热材料填充各个所述异形槽,形成多个连接所述散热基板的异形散热片;
    在形成所述异形散热片之后,在所述预制水道层朝向所述散热基板一侧表面形成顶封装层,所述顶封装层包覆所述散热基板和所述功率半导体芯片;在所述预制水道层背向所述散热基板一侧表面形成底封装层,所述底封装层覆盖所述预制水道层背向所述功率半导体芯片一侧的表面;
    在形成所述顶封装层和所述底封装层之后,去除所述预制水道层,形成水道。
  2. 根据权利要求1所述的功率半导体模块制造方法,其特征在于,
    所述预制水道层通过3D打印形成。
  3. 根据权利要求1所述的功率半导体模块制造方法,其特征在于,
    形成所述预制水道层的步骤包括:
    使用ABS塑料、ASA塑料或聚丙烯形成所述预制水道层。
  4. 根据权利要求1所述的功率半导体模块制造方法,其特征在于,
    所述异形槽包括雪花型槽或树枝型槽。
  5. 根据权利要求4所述的功率半导体模块制造方法,其特征在于,
    所述树枝型槽为:具有一个主干及自主干末端延伸出的至少两个以上的支干的异形槽。
  6. 根据权利要求4所述的功率半导体模块制造方法,其特征在于,
    所述雪花型槽为:具有一个主干、自主干侧部延伸出的至少两个以上的支干、自支干侧部延伸出的至少两个以上的次级支干,且在任意垂直散热基板的截面上的投影图形均为中心对称图形的异形槽。
  7. 根据权利要求1所述的功率半导体模块制造方法,其特征在于,
    所述多个异形槽包括多个第一异形槽和多个第二异形槽,所述第一异形槽和所述第二异形槽的结构不同。
  8. 根据权利要求7所述的功率半导体模块制造方法,其特征在于,
    所述形成所述异形散热片的步骤包括:
    在所述第一异形槽中形成第一异形散热片,在所述第二异形槽中形成第二异形散热片,所述第一异形散热片和所述第二异形散热片的材料不同。
  9. 根据权利要求8所述的功率半导体模块制造方法,其特征在于,
    所述形成所述预制水道层的步骤中,
    各个所述第一异形槽之间的间距和各个所述第一异形槽之间的间距不同。
PCT/CN2021/087096 2021-03-31 2021-04-14 一种功率半导体模块制造方法 WO2022205504A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110349044.5 2021-03-31
CN202110349044.5A CN113097079B (zh) 2021-03-31 2021-03-31 一种功率半导体模块制造方法

Publications (1)

Publication Number Publication Date
WO2022205504A1 true WO2022205504A1 (zh) 2022-10-06

Family

ID=76671797

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/087096 WO2022205504A1 (zh) 2021-03-31 2021-04-14 一种功率半导体模块制造方法

Country Status (2)

Country Link
CN (1) CN113097079B (zh)
WO (1) WO2022205504A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023093740A1 (zh) * 2021-11-23 2023-06-01 苏州汉天下电子有限公司 器件芯片及其制造方法、散热基板及其制造方法、封装结构及其制造方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120275116A1 (en) * 2011-04-28 2012-11-01 Samsung Electro-Mechanics Co., Ltd. Heat radiating substrate
CN206217110U (zh) * 2016-12-07 2017-06-06 东莞市康铭光电科技有限公司 一种三维打印成型的并联随形冷却水路模具镶件
CN107852811A (zh) * 2015-07-06 2018-03-27 Zkw集团有限责任公司 印刷电路板以及用于制造印刷电路板的方法
CN108269772A (zh) * 2017-01-03 2018-07-10 意法半导体(格勒诺布尔2)公司 包括开槽芯片的电子器件
CN109789486A (zh) * 2016-09-27 2019-05-21 业纳激光有限公司 光学或光电子组件及其制造方法
CN111108819A (zh) * 2017-10-02 2020-05-05 丹佛斯硅动力有限责任公司 具有集成的冷却装置的功率模块
CN111554644A (zh) * 2020-06-12 2020-08-18 厦门通富微电子有限公司 一种芯片、芯片封装体及晶圆

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0661400A (ja) * 1992-08-10 1994-03-04 Fujitsu Ltd ヒートシンク付樹脂パッケージ半導体装置の製造方法
US6432749B1 (en) * 1999-08-24 2002-08-13 Texas Instruments Incorporated Method of fabricating flip chip IC packages with heat spreaders in strip format
CN101697448B (zh) * 2009-10-24 2012-09-05 永济新时速电机电器有限责任公司 变流器功率模块双面水冷散热基板
CN105127370B (zh) * 2014-05-28 2018-01-02 刘忠男 快速加热模具的冷却系统成型方法
CN105377002B (zh) * 2015-12-04 2018-07-06 太仓陶氏电气有限公司 一种雪花形液体散热器
US10898946B2 (en) * 2016-06-16 2021-01-26 Mitsubishi Electric Corporation Semiconductor-mounting heat dissipation base plate and production method therefor
CN107045989A (zh) * 2016-12-20 2017-08-15 杰群电子科技(东莞)有限公司 一种半导体元件的封装方法及封装结构
CN109378938A (zh) * 2018-10-26 2019-02-22 中车株洲电机有限公司 电机的水冷却方法及电机机座
CN212544348U (zh) * 2020-04-08 2021-02-12 合肥阳光电动力科技有限公司 液冷散热器及功率组件
CN112040751A (zh) * 2020-09-28 2020-12-04 臻驱科技(上海)有限公司 一种水冷散热器和新能源汽车用电机控制器

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120275116A1 (en) * 2011-04-28 2012-11-01 Samsung Electro-Mechanics Co., Ltd. Heat radiating substrate
CN107852811A (zh) * 2015-07-06 2018-03-27 Zkw集团有限责任公司 印刷电路板以及用于制造印刷电路板的方法
CN109789486A (zh) * 2016-09-27 2019-05-21 业纳激光有限公司 光学或光电子组件及其制造方法
CN206217110U (zh) * 2016-12-07 2017-06-06 东莞市康铭光电科技有限公司 一种三维打印成型的并联随形冷却水路模具镶件
CN108269772A (zh) * 2017-01-03 2018-07-10 意法半导体(格勒诺布尔2)公司 包括开槽芯片的电子器件
CN111108819A (zh) * 2017-10-02 2020-05-05 丹佛斯硅动力有限责任公司 具有集成的冷却装置的功率模块
CN111554644A (zh) * 2020-06-12 2020-08-18 厦门通富微电子有限公司 一种芯片、芯片封装体及晶圆

Also Published As

Publication number Publication date
CN113097079B (zh) 2023-11-17
CN113097079A (zh) 2021-07-09

Similar Documents

Publication Publication Date Title
US10247488B2 (en) Heat dissipation device
KR20130052521A (ko) 액냉식 냉각 장치 및 그 제조 방법
WO2014109235A1 (ja) 冷却器及び放熱部材の製造方法
CN203432427U (zh) 均温板结构
JP3186291U (ja) 均温板構造
WO2022205504A1 (zh) 一种功率半导体模块制造方法
JP3181382U (ja) 放熱装置
TW201822621A (zh) 熱管併列式散熱裝置及其製法
KR100381303B1 (ko) 다공성 히트싱크
JP2018006649A (ja) 冷却器の製造方法
CN216244096U (zh) 车灯散热器
JP2006313038A (ja) ヒートパイプ回路基板の製造方法とヒートパイプ回路基板
KR101856388B1 (ko) 히트싱크 주조용 금형
CN202836325U (zh) 散热器翅片嵌入结构
KR20240024636A (ko) 방열핀 일체형 방열판 및 그 제조용 하이브리드 금형
KR102604349B1 (ko) 전자기기 방열판 제조방법
TW201502457A (zh) 均溫板結構及其製造方法
CN220189631U (zh) 一种散热晶闸管装置
CN217978666U (zh) 一种新型冷锻散热器结构
JP2019107679A (ja) 鍛造加工装置
CN219698283U (zh) 带自散热腔体的铝合金型材
KR100382118B1 (ko) 방열기
JP2001284505A (ja) ヒートシンク及びその製造方法
CN213483737U (zh) 针式散热器和功率模块
CN220108552U (zh) 一种鳍片型散热器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21934158

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 28.02.2024)