WO2022204909A1 - 微波雷达及可移动平台 - Google Patents

微波雷达及可移动平台 Download PDF

Info

Publication number
WO2022204909A1
WO2022204909A1 PCT/CN2021/083806 CN2021083806W WO2022204909A1 WO 2022204909 A1 WO2022204909 A1 WO 2022204909A1 CN 2021083806 W CN2021083806 W CN 2021083806W WO 2022204909 A1 WO2022204909 A1 WO 2022204909A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
antenna assembly
microwave radar
bracket
link
Prior art date
Application number
PCT/CN2021/083806
Other languages
English (en)
French (fr)
Inventor
黄稀荻
王春明
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to PCT/CN2021/083806 priority Critical patent/WO2022204909A1/zh
Publication of WO2022204909A1 publication Critical patent/WO2022204909A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/02Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system using mechanical movement of antenna or antenna system as a whole

Definitions

  • the embodiments of the present application relate to the field of radar, and in particular, to a microwave radar and a movable platform.
  • the antenna assembly In the existing microwave radar technology, the antenna assembly is usually installed on the rotating base of the radar, which has only one rotational degree of freedom and cannot achieve omnidirectional scanning.
  • the movable platform on which this microwave radar is installed is also unable to achieve omnidirectional obstacle avoidance due to the limited rotational freedom. If omnidirectional obstacle avoidance is required, the antenna assembly needs to be installed in two positions, which greatly increases the cost.
  • embodiments of the present application provide a microwave radar and a movable platform.
  • the embodiments of the present application provide a microwave radar, which is characterized by comprising:
  • a first motor mounted on the base
  • bracket mechanically coupled with the rotor part or the stator part of the first motor, and driving the bracket to rotate relative to the base by the first motor;
  • the antenna assembly is movably connected to the bracket, and the radiation range of the antenna assembly can be adjusted by changing the inclination angle of the antenna assembly relative to the rotation axis of the bracket.
  • a movable platform characterized in that it includes:
  • a power system mounted on the fuselage, for providing the movement power of the movable platform
  • control system connected in communication with the power system, for controlling the power system to change the movement direction of the movable platform
  • Microwave radar a microwave radar installed on the fuselage, the microwave radar is connected to the control system in communication, used for sensing obstacles around the movable platform, and transmitting the position information of the obstacles
  • the control system controls the power system to avoid obstacles according to the position information of the obstacles
  • the microwave radar includes a base, a first motor, a bracket, and an antenna assembly, the first The motor is installed on the base; the bracket is mechanically coupled with the rotor or the stator of the first motor, and the first motor drives the bracket to rotate relative to the base; the antenna assembly is installed on the on the bracket, and rotate relative to the base along with the bracket;
  • the antenna assembly is movably connected to the bracket, and the radiation range of the antenna assembly can be adjusted by changing the inclination angle of the antenna assembly relative to the rotation axis of the bracket.
  • the microwave radar in the above solution is installed with a bracket on the base, and the antenna assembly is movably mounted on the bracket, so that the radar increases one degree of freedom compared with the prior art, thereby greatly reducing the cost of the radar.
  • the scanning range of the radar is increased, and the omnidirectional scanning is realized, which provides better support for functions such as obstacle avoidance of the movable platform, and improves the reliability.
  • FIG. 2 is a schematic structural diagram of a rotating radar provided by another embodiment of the present application.
  • a first feature "on” or “under” a second feature may be the direct contact between the first and second features, or the indirect contact between the first and second features through an intermediary touch.
  • the first feature being “above”, “over” and “above” the second feature may mean that the first feature is directly above or obliquely above the second feature, or simply means that the first feature is level higher than the second feature.
  • the first feature being “below”, “below” and “below” the second feature may mean that the first feature is directly below or obliquely below the second feature, or simply means that the first feature has a lower level than the second feature.
  • an embodiment of the present application provides a microwave radar 100 , including a base 110 , a first motor 111 , a bracket 130 and an antenna assembly 150 .
  • the antenna assembly 150 further includes a radio frequency board 151 .
  • the radio frequency board 151 may include an antenna for receiving/transmitting signals, and an intermediate frequency circuit for amplifying and filtering the difference frequency signal output by the antenna. For example, the microwave signal is transmitted through the antenna, and the echo signal is received through the antenna to obtain the difference frequency signal.
  • the intermediate frequency circuit amplifies and filters the difference frequency signal output by the antenna, and outputs a digital intermediate frequency signal.
  • the antenna assembly 150 further includes a control board 153 for processing the intermediate frequency signal received by the intermediate frequency circuit.
  • the radio frequency board 151 and the control board 153 are both substantially plate-shaped, and together form a substantially plate-shaped structure.
  • the microwave radar 100 may further include a wireless power supply coil, which is installed on the base 110 and used to provide power to the microwave radar 100.
  • the microwave radar 100 may further include a power interface 115 installed on the base 110 for connecting to an external power source to provide power for the microwave radar.
  • the microwave radar 100 may further include a first wireless communication device and a second wireless communication device, the first wireless communication device is disposed on the base 110 , and the second wireless communication device is disposed on the antenna assembly 150 .
  • the first wireless communication device is configured to receive radar data sent by the second wireless communication device, and/or send a control instruction to the first wireless communication device to control the antenna assembly 150; the second wireless communication device
  • the communication device is configured to receive a control instruction sent by the second wireless communication device, and/or send radar data to the first wireless communication device.
  • the first wireless communication device and the second wireless communication device may communicate through wireless communication methods such as WIFI, Bluetooth, and infrared.
  • the first motor 111 is mounted on the base 100 .
  • the bracket 130 is mechanically coupled with the rotor part or the stator part of the first motor 111 , and the bracket 130 is driven to rotate relative to the base 110 by the first motor 111 . It is fixedly connected to the rotor part of the first motor 111.
  • both the bracket 130 and the rotor part can include a threaded hole, and a screw is passed through the threaded hole successively to lock the bracket 130 and the rotor part, or the
  • the bracket 130 may also include an engaging portion, and the motor rotor may also include a matching portion, and the engaging portion is engaged with the matching portion to connect the bracket 130 and the motor rotor.
  • the bracket 130 rotates with the rotation of the inner rotor part, or the bracket 130 can be coupled with the stator part of the first motor 111 through a transmission mechanism (for example, a gear, a worm, a worm wheel, etc.)
  • the outer stator drives the antenna assembly 150 to rotate, so as to change the rotation angle of the bracket 130 .
  • a microwave radar 100' including: a base 110', a first motor 111', a bracket 130', and an antenna assembly 150'.
  • the antenna assembly 150 is mounted on the bracket 130', and rotates relative to the base 110' along with the bracket 130'.
  • the antenna assembly 150' is movably connected to the bracket 130', and the radiation of the antenna assembly 150' can be adjusted by changing the inclination angle of the antenna assembly 150' relative to the rotation axis of the bracket 130'. scope.
  • the antenna assembly 150' can swing relative to the bracket 130', and the tilt angle can be changed by changing the swing angle of the antenna assembly 150'.
  • the microwave radar 110' further includes a connecting mechanism 133
  • the connecting mechanism 133 further includes a link mechanism
  • the link mechanism includes a first link 133a and a second link 133b
  • One end of the rod 133a can be rotatably connected to the antenna assembly 150' through a shaft mechanism.
  • One end of the second link 133b may be rotatably connected to the antenna assembly 150' through another rotating shaft mechanism.
  • the other end of the second link 133b and the first link 133a and the other end of the second link 133b can pass through the chute 134 provided on the first link 133a and the first link 133a is slidably connected, by changing the relative position of the second link 133b and the first link 133a to drive the antenna assembly 150' to swing, thereby changing its inclination relative to the rotation axis of the bracket 130' angle.
  • the microwave radar 100' further includes a driving device.
  • the driving device may include a second motor, which is provided at the end of the second link 133b in contact with the first link 133a for use in In order to drive the second link 133b to move along the first link, thereby driving the antenna assembly 150' to swing, or the driving device may further include a telescopic cylinder disposed on the second link 133b, by changing the first link 133b. The length of the second link 133b adjusts the tilt angle of the antenna assembly 150'.
  • the microwave radar 110' may further include an ESC component.
  • the ESC assembly can be disposed in the base 110'.
  • the ESC assembly can be used to control the motor to drive the other end of the second link to selectively stay at one of the multiple positions of the first link, and/or control the
  • the second motor drives the other end of the second link to move continuously at multiple positions of the first link.
  • the ESC assembly can control the rotation of the second motor through commands, and the second motor can drive the second link 133b to move on the first link to one or more links according to the received command.
  • the second motor can drive the second link 133b to continue on the first link according to the received command move, and then drive the antenna assembly 150' to swing continuously.
  • the microwave radar 110' may further include an inertial measurement unit (IMU) for acquiring the attitude of the base 110', so as to control the first motor according to the attitude of the base 110' Rotation of the rotor of 111' and/or the rotor of the second electric machine.
  • IMU inertial measurement unit
  • the IMU can obtain the attitude of the base and send it to the ESC, and the ESC can The rotor of the first motor 111 ′ and/or the rotor of the second motor is driven to rotate according to the received attitude, so as to adjust the inclination angle of the antenna assembly to correct possible measurement deviations.
  • the microwave radar 100 may further include a rotating shaft mechanism 131 , and the antenna assembly 150 is rotatably connected to the bracket 130 through the rotating shaft mechanism 131 .
  • the rotating shaft mechanism 131 can be inserted between the radio frequency board 151 and the control board 153 and fixed with the antenna assembly 150 , and both ends of the rotating shaft mechanism 131 are in contact with the bracket 130 .
  • the microwave radar 150 further includes a third motor mounted on the bracket 130 .
  • the rotor or stator of the third electric machine is mechanically coupled to the antenna assembly 150 .
  • the inner rotor of the third motor is fixed to one end of the rotating shaft mechanism 131, so that the rotating shaft mechanism 131 can rotate with the rotation of the third motor, thereby driving the antenna assembly 150 to rotate; or, the outer rotor of the third motor can pass through a
  • the transmission mechanism eg gear, worm gear, worm, etc.
  • the transmission mechanism is coupled with the shaft mechanism 131, and the rotation of the third motor drives the shaft mechanism 131 to rotate, thereby driving the antenna assembly 150 to rotate, so as to change the relative relationship between the antenna assembly 150 and the antenna assembly 150.
  • the inclination angle of the rotation axis of the bracket 130 is coupled with the shaft mechanism 131, and the rotation of the third motor drives the shaft mechanism 131 to rotate, thereby driving the antenna assembly 150 to rotate, so as to change the relative relationship between the antenna assembly 150 and the antenna assembly 150.
  • the microwave radar 150 further includes an ESC component.
  • the ESC assembly can be disposed in the base 110 .
  • the ESC is used to control the rotor of the third motor to selectively stay at a position in one of the directions, and/or to control the rotor of the third motor to continuously rotate.
  • the ESC assembly can control the rotation of the motor through an instruction, and the third motor can drive the rotating shaft mechanism 131 to rotate to one or more target angles according to the received instruction and stay there to drive the antenna assembly 150 rotates to one or more target angles and stays; and or the third motor can drive the rotating shaft mechanism 131 to rotate continuously according to the received command, thereby driving the antenna assembly to rotate continuously.
  • the microwave radar 100 may further include an inertial measurement unit (IMU) for acquiring the attitude of the base 111 to control the rotor and/or the first motor 110 according to the attitude of the base 110 . or the rotation of the rotor of the third motor.
  • IMU inertial measurement unit
  • the base 110 is in a non-horizontal state, if the base 110 is still in a horizontal state, it may cause a measurement deviation.
  • the IMU can obtain the attitude of the base and send it to the ESC component, and the ESC component can obtain the attitude according to the received attitude.
  • the rotor of a motor 111 and/or the rotor of the third motor is driven to rotate, thereby adjusting the inclination angle of the antenna assembly to correct possible measurement deviations.
  • an embodiment of the present application further provides a movable platform 300 , including a fuselage 310 , a power system 330 , a tripod 350 , a control system, and a sensor assembly 370 .
  • the sensor assembly 370 may be the microwave radar 100 or the microwave radar 100'.
  • the sensor assembly 370 may be disposed below the body 310 ; alternatively, the sensor assembly 370 may be disposed above the body 310 , or the movable platform may be disposed on the tripod 350 .
  • the communication connection with the power system 330 is used to control the power system to change the movement direction of the movable platform.
  • the sensor assembly 370 described in conjunction with FIG. 1 and FIG. 3 can be electrically connected to the movable platform 300 through the power interface 115 provided on the base 110 .
  • the power interface includes a protruding portion that is in contact with the concave portion of the fuselage, so as to use the power of the movable platform 300 to provide power for the microwave radar.
  • the base 110 can be coupled with the movable platform 300 .
  • the base 110 includes an engaging portion for abutting with the matching portion on the body 310 , so that the sensor assembly 370 can be connected with
  • the fuselage can be detachably connected; or the movable platform can be fixed on the tripod 350 of the movable platform through a fixing member.
  • the movable platform 300 may be an aircraft.
  • the power system 330 includes a plurality of power components (such as rotors and motors that drive the rotors to rotate), which are mounted on a plurality of arms to provide flying power for the aircraft.
  • the aircraft can be used to perform tasks such as aerial photography, transportation, monitoring, exploration, search and rescue, and sowing, with high target detection accuracy and good stability.
  • the aircraft may also include other components, which are not limited in this application. Other components may include structures such as an engine, a rotor control system, and a functional cabin.
  • the engine provides a power source to start and stop the aircraft, and the control system realizes the ground platform to control the operation and operation of the aircraft. Management and control, the function warehouse can be used for functions such as collecting and transmitting information and data.
  • the movable platform 300 may also be an unmanned vehicle, an unmanned ship, or other equipment that uses its own power system to provide motion power for itself.
  • first and second are only used for descriptive purposes, and should not be construed as indicating or implying relative importance or implying the number of indicated technical features. Thus, features delimited with “first”, “second” may expressly or implicitly include at least one of said features. In the description of the present application, “plurality” means at least two, such as two, three, unless expressly and specifically defined otherwise.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

一种微波雷达,包括:基座(110,110');第一电机(111,111'),安装在基座(110,110')上;支架(130,130'),与第一电机(111,111')的转子部件或定子部件机械耦合,通过第一电机(111,111')带动支架(130,130')相对于基座(110,110')转动;以及天线组件(150,150'),安装在支架(130,130')上,并且跟随支架(130,130')一起相对于基座(110,110')转动,其中,天线组件(150,150')与支架(130,130')可活动连接,通过改变天线组件(150,150')相对于支架(130,130')的旋转轴线的倾斜角度,以调节天线组件(150,150')的辐射范围。还提供了一种可移动平台(300)。

Description

微波雷达及可移动平台 技术领域
本申请实施例涉及雷达领域,尤其涉及一种微波雷达及可移动平台。
背景技术
在现有的微波雷达技术中,天线组件通常安装在雷达的旋转基座上,只有一个旋转自由度,无法做到全向扫描。安装这种微波雷达的可移动平台也因旋转自由度受限而无法实现全向避障功能。如果需要实现全向避障就需要在两个位置安装天线组件,这种做法很大程度上增加了成本。
发明内容
针对现有技术中的上述缺陷,本申请实施例提供微波雷达及一种可移动平台。
本申请实施例一方面提供一种微波雷达,其特征在于,包括:
基座;
第一电机,安装在所述基座上;
支架,与所述第一电机的转子部件或定子部件机械耦合,通过所述第一电机带动所述支架相对于所述基座转动;以及
天线组件,安装在所述支架上,并且跟随所述支架一起相对于所述基座转动,
其中,所述天线组件与所述支架可活动连接,通过改变所述天线组件相对于所述支架的旋转轴线的倾斜角度,以调节所述天线组件的辐射范围。
本申请实施例另一方面提供一种可移动平台,其特征在于,包括:
机身;
动力系统,安装在所述机身上,用于提供所述可移动平台的运动动力;
控制系统,与所述动力系统通信连接,用于控制动力系统,以改变所述可移动平台的运动方向;
微波雷达,安装在所述机身上的微波雷达,所述微波雷达与所述控制系统通信连接,用于感测所述可移动平台周围的障碍物,并将所述障 碍物的位置信息传输给所述控制系统,所述控制系统根据所述障碍物的位置信息,控制所述动力系统进行避障;所述微波雷达包括基座、第一电机、支架、以及天线组件,所述第一电机安装在所述基座上;所述支架与所述第一电机的转子或定子机械耦合,通过所述第一电机带动所述支架相对于所述基座转动;所述天线组件安装在所述支架上,并且跟随所述支架一起相对于所述基座转动;
其中,所述天线组件与所述支架可活动连接,通过改变所述天线组件相对于所述支架的旋转轴线的倾斜角度,以调节所述天线组件的辐射范围。
相较于现有技术,上述方案中的微波雷达在基座上安装了支架,并将天线组件可活动的安装在支架上,使得雷达相较于现有技术增加了一个自由度,从而极大地增加了雷达的扫描范围,实现了全向扫描为可移动平台的避障等功能提供了更好的支持,提高了可信度。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本申请一实施例提供的旋转雷达的结构示意图;
图2为本申请另一实施例提供的旋转雷达的结构示意图;
图3为本申请一实施例提供的可移动平台的结构示意图。
具体实施方式
以下结合附图对本申请的实施方式作进一步说明。附图中相同或类似的标号自始至终表示相同或类似的元件或具有相同或类似功能的元件。
另外,下面结合附图描述的本申请的实施方式是示例性的,仅用于解释本申请的实施方式,而不能理解为对本申请的限制。
在本申请中,除非另有明确的规定和限定,第一特征在第二特征“上” 或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
在本说明书的描述中,参考术语“某些实施方式”、“一个实施方式”、“一些实施方式”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本申请的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
尽管上面已经示出和描述了本申请的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本申请的限制,本领域的普通技术人员在本申请的范围内可以对上述实施例进行变化、修改、替换和变型。
参见图1,本申请的实施方式提供一种微波雷达100,包括:基座110、第一电机111、支架130以及天线组件150。
在一些实施例中,所述微波雷达100还可包括一保护罩170,所述保护罩170与所述基座110固定,并与所述基座110共同形成空腔,以使所述支架130、所述天线组件150收容在所述空腔内。
进一步的,所述天线组件150还包括射频板151。射频板151可包括天线,用于接收/发送信号,中频电路,用于对天线输出的差频信号进行放大和滤波处理。例如通过天线发射微波信号,并通过天线接收回波信号,得到差频信号,中频电路对天线输出的差频信号进行放大和滤波处理,并输出数字中频信号。所述天线组件150还包括控制板153,用于处理从中频电路接收到的中频信号。所述射频板151和控制板153均大致成板状,且共同组成大致板型的结构。
进一步的,所述微波雷达100还可包括无线供电线圈,安装在所述 基座110,用于为所述微波雷达100提供电能。
进一步的,所述微波雷达100还可包括电源接口115,安装在所述基座110,用于连接外部电源,以为所述微波雷达提供电能。
进一步的,所述微波雷达100还可包括第一无线通信装置和第二无线通信装置,所述第一无线通信装置设置于基座110,所述第二无线通信装置设置于所述天线组件150。所述第一无线通信装置用于接收所述第二无线通信装置发送的雷达数据,和/或向所述第一无线通信装置发送控制指令,以控制所述天线组件150;所述第二无线通信装置用于接收所述第二无线通信装置发送的控制指令,和/或向所述第一无线通信装置发送雷达数据。在一些实施例中,所述第一无线通信装置与所述第二无线通信装置可通过WIFI、蓝牙、红外等无线通信方式进行通信。
在一些实施例中,第一电机111安装在所述基座100上。支架130与所述第一电机111的转子部件或定子部件机械耦合,通过所述第一电机111带动所述支架130相对于所述基座110转动。与所述第一电机111的转子部件固定连接,例如:支架130与转子部件均可包含一螺纹孔,通过一螺钉先后穿过上述螺纹孔,以将支架130及转子部件锁合,或者所述支架130也可包括一卡合部,所述电机转子也可包括一配合部,通过所述卡合部与所述配合部相卡合,以将所述支架130及电机转子连接。所述支架130随内转子部件的转动而转动,或者支架130可与所述第一电机111的定子部件通过传动机构(例如:齿轮、蜗杆、蜗轮等)耦合,通过所述第一电机111的外定子带动所述天线组件150转动,以改变所述支架130的旋转角度。
参见图2本申请的另一实施方式提供一种微波雷达100’,包括:基座110’、第一电机111’、支架130’以及天线组件150’。天线组件150安装在所述支架130’上,并且跟随所述支架130’一起相对于所述基座110’转动。其中,所述天线组件150’与所述支架130’可活动连接,通过改变所述天线组件150’相对于所述支架130’的旋转轴线的倾斜角度,以调节所述天线组件150’的辐射范围。所述天线组件150’可相对于所述支架130’摆动,通过改变所述天线组件150’的摆动角度,以改变所述倾斜角度。例如:所述微波雷达110’还包括连接机构133,通过 所述连接机构133还包括一连杆机构,所述连杆机构包括第一连杆133a和第二连杆133b,所述第一连杆133a的一端可通过一转轴机构与所述天线组件150’转动连接。所述第二连杆133b的一端可通过另一转轴机构与所述天线组件150’可转动连接。例如:所述第二连杆133b的另外一端与所述第一连杆133a第二连杆133b的另外一端与可通过设置在第一连杆133a上的滑槽134与所述第一连杆133a滑动连接,通过改变所述第二连杆133b与所述第一连杆133a的相对位置,以带动所述天线组件150’摆动,从而改变其相对于所述支架130’的旋转轴线的倾斜角度。
在一些实施例中,所述微波雷达100’还包括驱动装置,例如:所述驱动装置可以包括第二电机,设置在所述第二连杆133b与所述第一连杆133a接触的一端用于驱动所述第二连杆133b在沿所述第一连杆活动,从而带动所述天线组件150’摆动,或者所述驱动装置还可以包括伸缩气缸设置于第二连杆133b,通过改变第二连杆133b的长度来调节天线组件150’的倾斜角度。
在一些实施例中,所述微波雷达110’还可包括电调组件。所述电调组件可设置于基座110’内。所述电调组件可用于控制所述电机带动所述第二连杆的另外一端选择性地停留在所述第一连杆的多个位置中的一个所述位置上,和/或控制所述第二电机带动所述第二连杆的另外一端在所述第一连杆的多个位置持续活动。例如:所述电调组件可通过指令,控制所述第二电机的转动,所述第二电机可根据接收到的指令,带动第二连杆133b在第一连杆上活动至一个或多个目标位置并停留,进而带动天线组件150’摆动至一个或多个目标角度并停留;和或所述第二电机可根据接收到的指令,带动第二连杆133b在第一连杆上持续性活动,进而带动所述天线组件150’持续性摆动。
在一些实施例中,所述微波雷达110’还可包括惯性测量单元(IMU),用于获取所述基座110’的姿态,以根据所述基座110’的姿态控制所述第一电机111’的转子和/或所述第二电机的转子的转动。例如:基座110’处于非水平状态时,如果依然按照水平状态下的选择策略,可能会造成测量的偏差,此时IMU可获取基座的姿态,并发送给电调组件,电调组件可根据接收到的姿态驱动第一电机111’的转子和/或所述第二电机的 转子转动,从而调整天线组件的倾斜角度,以修正可能造成的测量偏差。
进一步的,参见图1,所述天线组件150能够相对于所述支架130转动,通过改变所述天线组件150的转动角度,以改变天线组件150相对于所述支架130’的旋转轴线的倾斜角度。所述微波雷达100还可包括转轴机构131,所述天线组件150通过所述转轴机构131与所述支架130可转动连接。例如:所述转轴机构131可穿设与所述射频板151和控制板153之间,并与所述天线组件150固定,所述转轴机构131的两端与所述支架130抵接。所述微波雷达150还包括第三电机,安装在所述支架130。所述第三电机的转子或定子与所述天线组件150机械耦合。例如:第三电机的内转子与转轴机构131的一端固定,以使转轴机构131可以随着第三电机的转动而转动,从而带动天线组件150转动;或者,第三电机的外转子可通过一传动机构(例如:齿轮、蜗轮、蜗杆等)与所述转轴机构131耦合,通过第三电机的转动带动所述转轴机构131转动,进而带动天线组件150转动,以改变所述天线组件150相对于所述支架130的旋转轴线的倾斜角度。
在一些实施例中,所述微波雷达150还包括电调组件。所述电调组件可设置于所述基座110内。所述电调用于控制所述第三电机的转子选择性地停留在多个方向中的一个所述方向的位置上,和/或控制所述第三电机的转子持续转动。例如:所述电调组件可通过指令,控制所述电机的转动,所述第三电机可根据接收到的指令,驱动转轴机构131转动至一个或多个目标角度并停留从而带动所述天线组件150转动至一个或多个目标角度并停留;和或所述第三电机可根据接收到的指令,驱动转轴机构131持续转动,进而带动所述天线组件持续转动。
在一些实施例中,所述微波雷达100还可包括惯性测量单元IMU,用于获取所述基座111的姿态,以根据所述基座110的姿态控制所述第一电机110的转子和/或所述第三电机的转子的转动。例如:基座110处于非水平状态时,如果依然按照水平状态,可能会造成测量的偏差,此时IMU可获取基座的姿态,并发送给电调组件,电调组件可根据接收到的姿态驱动一电机111的转子和/或所述第三电机的转子转动,从而调整天线组件的倾斜角度,以修正可能造成的测量偏差。
参见图3,本申请实施方式还提供一种可移动平台300,包括机身310、动力系统330、脚架350、控制系统以及传感器组件370。所述传感器组件370可以是微波雷达100也可以是微波雷达100’。
进一步的,传感器组件370可设置于机身310下方;或者,传感器组件370可设置于机身310上方,或者可移动平台可设置在脚架350上。所述与所述动力系统330通信连接,用于控制动力系统,以改变所述可移动平台的运动方向。
结合图1及图3所述传感器组件370可通过设置于基座110上的电源接口115与可移动平台300电连接。例如:所述电源接口包括一凸起部,与机身的凹陷部抵接,以利用可移动平台300的电源为所述微波雷达提供电能。所述基座110可与所述可移动平台300耦合,例如:所述基座110包括一卡合部,用于与所述机身310上的配合部抵接,以使传感器组件370可与所述机身可拆卸连接;或者所述可移动平台可通过一固定件固定于所述可移动平台的脚架350上。
所述可移动平台300可以是飞行器。所述动力系统330包括多个动力组件(例如旋翼及驱动旋翼旋转的电机),装载在多个机臂上,为飞行器提供飞行动力。飞行器可以用于执行航拍、运输、监测、勘探、搜救、播撒等任务,目标探测准确性高、稳定性好。飞行器还可以包括其他部件,本申请对此不作限定,其他元部件例如可以有发动机、旋翼控制系统、功能舱等结构,发动机提供动力源启动和停止飞行器,控制系统实现地面平台操控飞行器的运行和管控,功能仓可用于收集、传递信息数据等功能。可移动平台300还可以是无人车、无人船等使用自身动力系统为自身提供运动动力的设备。
在本说明书的描述中,参考术语“某些实施方式”、“一个实施方式”、“一些实施方式”、“示意性实施方式”、“示例”、“具体示例”、或“一些示例”的描述意指结合所述实施方式或示例描述的具体特征、结构、材料或者特点包含于本申请的至少一个实施方式或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施方式或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施方式或示例中以合适的方式结合。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个所述特征。在本申请的描述中,“多个”的含义是至少两个,例如两个,三个,除非另有明确具体的限定。
尽管上面已经示出和描述了本申请的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本申请的限制,本领域的普通技术人员在本申请的范围内可以对上述实施例进行变化、修改、替换和变型,本申请的范围由权利要求及其等同物限定。

Claims (46)

  1. 一种微波雷达,其特征在于,包括:
    基座;
    第一电机,安装在所述基座上;
    支架,与所述第一电机的转子部件或定子部件机械耦合,通过所述第一电机带动所述支架相对于所述基座转动;以及
    天线组件,安装在所述支架上,并且跟随所述支架一起相对于所述基座转动;
    其中,所述天线组件与所述支架可活动连接,通过改变所述天线组件相对于所述支架的旋转轴线的倾斜角度,以调节所述天线组件的辐射范围。
  2. 根据权利要求1所述的微波雷达,其特征在于,
    所述天线组件能够相对于所述支架摆动,通过改变所述天线组件的摆动角度,以改变所述倾斜角度。
  3. 根据权利要求2所述的微波雷达,其特征在于,
    所述微波雷达还包括连接机构,通过所述连接机构带动所述天线组件相对于所述支架摆动。
  4. 根据权利要求3所述的微波雷达,其特征在于,
    所述微波雷达还包括驱动装置,所述驱动装置通过所述连接机构带动所述天线组件。
  5. 根据权利要求4所述的微波雷达,其特征在于,
    所述驱动装置包括电机,或者伸缩气缸。
  6. 根据权利要求3所述的微波雷达,其特征在于,
    所述连接机构包括一连杆机构,所述连杆机构与所述天线组件可转动连接,通过所述连杆机构带动所述天线组件相对于所述支架摆动。
  7. 根据权利要求6所述的微波雷达,其特征在于,
    所述连杆机构包括第一连杆与第二连杆;
    所述第一连杆的一端与所述天线组件可转动连接;
    所述第二连杆的一端与所述天线组件可转动连接;
    所述第二连杆的另外一端与所述第一连杆活动连接,通过改变所述第二连杆与所述第一连杆的相对位置,以带动所述天线组件摆动,从而改变其相对于所述支架的旋转轴线的倾斜角度。
  8. 根据权利要求7所述的微波雷达,其特征在于,
    所述微波雷达还包括第二电机,所述第二电机安装在所述支架;
    通过所述第二电机带动所述第二连杆相对于所述第一连杆活动,以改变所述第二连杆与所述第一连杆的相对位置。
  9. 根据权利要求8所述的微波雷达,其特征在于,
    所述微波雷达还包括电调组件,
    所述电调组件用于控制所述第二电机带动所述第二连杆的另外一端选择性地停留在所述第一连杆的多个位置中的一个所述位置上,和/或
    控制所述第二电机带动所述第二连杆的另外一端在所述第一连杆的多个位置持续活动。
  10. 根据权利要求9所述的微波雷达,其特征在于,
    所述微波雷达还包括惯性测量单元,用于获取所述基座的姿态,以根据所述基座的姿态控制所述第一电机的转子和/或所述第二电机的转子的转动。
  11. 根据权利要求1所述的微波雷达,其特征在于,
    所述天线组件能够相对于所述支架转动,通过改变所述天线组件的转动角度,以改变所述倾斜角度。
  12. 根据权利要求11所述的微波雷达,其特征在于,
    所述微波雷达还包括转轴机构,所述天线组件通过所述转轴机构与所述支架可转动连接。
  13. 根据权利要求11所述的微波雷达,其特征在于,
    所述微波雷达还包括第三电机,安装在所述支架;
    所述第三电机的转子或定子与所述天线组件机械耦合;
    通过所述第三电机带动所述天线组件转动,以改变所述天线组件相对于所述支架的旋转轴线的倾斜角度。
  14. 根据权利要求13所述的微波雷达,其特征在于,
    所述第三电机的转子通过传动机构与所述天线组件机械耦合。
  15. 根据权利要求14所述的微波雷达,其特征在于,
    所述传动机构包括齿轮、蜗轮、蜗杆中的至少一个。
  16. 根据权利要求13所述的微波雷达,其特征在于,
    所述微波雷达还包括电调,
    所述电调用于控制所述第三电机的转子选择性地停留在多个方向中的一个所述方向的位置上,和/或
    控制所述第三电机的转子持续转动。
  17. 根据权利要求16所述的微波雷达,其特征在于,
    所述微波雷达还包括惯性测量单元组件,安装在所述基座,用于获取所述基座的姿态;
    所述电调根据所述基座的姿态调整所述第三电机的转子的转动。
  18. 根据权利要求16所述的微波雷达,其特征在于,
    所述微波雷达还包括角度传感器,用于感测所述第三电机的旋转角度,所述电调根据所述角度传感器感测的角度来控制所述电机转动。
  19. 根据权利要求1所述的微波雷达,其特征在于,
    所述微波雷达还包括电调,所述电调用于控制所述第一电机的转子选择性地停留在多个方向中的一个所述方向的位置上,和/或控制所述第一电机的转子转动。
  20. 根据权利要求19所述的微波雷达,其特征在于,
    所述微波雷达还包括角度传感器,用于感测所述第一电机的旋转角度,所述电调根据所述角度传感器感测的角度信息来控制所述电机转动。
  21. 根据权利要求1所述的微波雷达,其特征在于,
    所述微波雷达还包括无线供电线圈,安装在所述基座,用于为所述微波雷达提供电能。
  22. 根据权利要求1所述的微波雷达,其特征在于,
    所述天线组件包括发射器及接收器,所述发射器用于定向发射微波信号,所述接收器用于接收被反射回的微波信号。
  23. 一种可移动平台,其特征在于,包括:
    机身;
    动力系统,安装在所述机身上,用于提供所述可移动平台的运动动力;
    控制系统,与所述动力系统通信连接,用于控制动力系统,以改变所述可移动平台的运动方向;
    微波雷达,安装在所述机身上的微波雷达,所述微波雷达与所述控制系统通信连接,用于感测所述可移动平台周围的障碍物,并将所述障碍物的位置信息传输给所述控制系统,所述控制系统根据所述障碍物的位置信息,控制所述动力系统进行避障;所述微波雷达包括基座、第一电机、支架、以及天线组件,所述第一电机安装在所述基座上;所述支架与所述第一电机的转子或定子机械耦合,通过所述第一电机带动所述支架相对于所述基座转动;所述天线组件安装在所述支架上,并且跟随所述支架一起相对于所述基座转动;
    其中,所述天线组件与所述支架可活动连接,通过改变所述天线组件相对于所述支架的旋转轴线的倾斜角度,以调节所述天线组件的辐射范围。
  24. 根据权利要求23所述的可移动平台,其特征在于,
    所述天线组件能够相对于所述支架摆动,通过改变所述天线组件的摆动角度,以改变所述倾斜角度。
  25. 根据权利要求24所述的可移动平台,其特征在于,
    所述微波雷达还包括连接机构,通过所述连接机构带动所述天线组件相对于所述支架摆动。
  26. 根据权利要求25所述的可移动平台,其特征在于,
    所述微波雷达还包括驱动装置,所述驱动装置通过所述连接机构带动所述天线组件。
  27. 根据权利要求26所述的可移动平台,其特征在于,
    所述驱动装置包括电机,或者伸缩气缸。
  28. 根据权利要求25所述的可移动平台,其特征在于,
    所述连接机构包括一连杆机构,所述连杆机构与所述天线组件可转动连接,通过所述连杆机构带动所述天线组件相对于所述支架摆动。
  29. 根据权利要求28所述的可移动平台,其特征在于,
    所述连杆机构包括第一连杆与第二连杆;
    所述第一连杆的一端与所述天线组件可转动连接;
    所述第二连杆的一端与所述天线组件可转动连接,所述第二连杆的另外一端与所述第一连杆活动连接,通过改变所述第二连杆与所述第一连杆的相对位置,以带动所述天线组件摆动,从而改变其相对于所述支架的旋转轴线的倾斜角度。
  30. 根据权利要求29所述的可移动平台,其特征在于,
    所述微波雷达还包括第二电机,所述第二电机安装在所述支架;
    通过所述第二电机带动所述第二连杆相对于所述第一连杆活动,以改变所述第二连杆与所述第一连杆的相对位置。
  31. 根据权利要求30所述的可移动平台,其特征在于,
    所述微波雷达还包括电调,
    所述电调用于控制所述第二电机带动所述第二连杆的另外一端选择性地停留在所述第一连杆的多个位置中的一个所述位置上,和/或
    控制所述第二电机带动所述第二连杆的另外一端在所述第一连杆的多个位置持续活动。
  32. 根据权利要求30所述的可移动平台,其特征在于,
    所述雷达还包括惯性测量单元,用于获取所述基座的姿态,以根据所述基座的姿态控制所述第一电机的转子和/或第二电机的转子的转动。
  33. 根据权利要求23所述的可移动平台,其特征在于,
    所述天线组件能够相对于所述支架转动,通过改变所述天线组件的转动角度,以改变所述倾斜角度。
  34. 根据权利要求33所述的可移动平台,其特征在于,
    还包括转轴机构,所述天线组件通过所述转轴机构与所述支架可转动连接。
  35. 根据权利要求33所述的可移动平台,其特征在于,
    还包括第三电机,安装在所述支架;所述第三电机的转子或定子与所述天线组件机械耦合;通过所述第三电机带动所述天线组件转动,以改变所述天线组件相对于所述支架的旋转轴线的倾斜角度。
  36. 根据权利要求35所述的可移动平台,其特征在于,
    所述第三电机的转子通过传动机构与所述天线组件机械耦合。
  37. 根据权利要求36所述的可移动平台,其特征在于,
    所述传动机构包括齿轮、蜗轮、蜗杆中的至少一个。
  38. 根据权利要求37所述的可移动平台,其特征在于,
    所述微波雷达还包括电调,所述电调用于控制所述第三电机的转子选择性地停留在多个方向中的一个所述方向的位置上,和/或控制所述第三电机的转子持续转动。
  39. 根据权利要求38所述的可移动平台,其特征在于,
    所述微波雷达还包括惯性测量单元组件,安装在所述基座,用于获取所述基座的姿态;所述电调根据所述基座的姿态调整所述第三电机的转子的转动。
  40. 根据权利要求38所述的可移动平台,其特征在于,
    所述微波雷达还包括角度传感器,用于感测所述第三电机的旋转角度,所述电调根据所述角度传感器感测的角度来控制所述电机转动。
  41. 根据权利要求23所述的可移动平台,其特征在于,
    所述的天线组件的旋转轴线与所述可移动平台的偏航轴、俯仰轴、横滚轴其中之一基本平行。
  42. 根据权利要求23所述的可移动平台,其特征在于,
    所述微波雷达还包括电调,所述电调用于控制所述第一电机的转子选择性地停留在多个方向中的一个所述方向的位置上,和/或控制所述第一电机的转子的转动。
  43. 根据权利要求42所述的可移动平台,其特征在于,
    所述还包括角度传感器,用于感测所述第一电机的旋转角度,所述电调根据所述角度传感器感测的角度信息来控制所述电机转动。
  44. 根据权利要求23所述的可移动平台,其特征在于,
    所述支架的旋转轴线与所述可移动平台的偏航轴、俯仰轴、横滚轴其中之一基本平行。
  45. 根据权利要求23所述的可移动平台,其特征在于,
    还包括无线供电线圈,安装在所述基座,用于为所述微波雷达提供电能。
  46. 根据权利要求23所述的可移动平台,其特征在于,
    所述天线组件包括发射器及接收器,所述发射器用于定向发射微波信号,所述接收器用于接收被反射回的微波信号。
PCT/CN2021/083806 2021-03-30 2021-03-30 微波雷达及可移动平台 WO2022204909A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/083806 WO2022204909A1 (zh) 2021-03-30 2021-03-30 微波雷达及可移动平台

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/083806 WO2022204909A1 (zh) 2021-03-30 2021-03-30 微波雷达及可移动平台

Publications (1)

Publication Number Publication Date
WO2022204909A1 true WO2022204909A1 (zh) 2022-10-06

Family

ID=83457508

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/083806 WO2022204909A1 (zh) 2021-03-30 2021-03-30 微波雷达及可移动平台

Country Status (1)

Country Link
WO (1) WO2022204909A1 (zh)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105738900A (zh) * 2016-02-17 2016-07-06 陈杨珑 一种具有环境感知能力的智能机器人
EP3225952A1 (en) * 2016-03-31 2017-10-04 Topcon Corporation Laser scanner with mopa laser and adjustable amplification factor
CN206583978U (zh) * 2016-12-27 2017-10-24 四川九洲电器集团有限责任公司 一种天线测试俯仰台
US20180328728A1 (en) * 2017-05-12 2018-11-15 Topcon Corporation Deflecting device and surveying instrument
CN208805572U (zh) * 2018-09-13 2019-04-30 成都慧创无限科技有限公司 一种雷达目标识别设备
CN109782296A (zh) * 2019-02-01 2019-05-21 广东博智林机器人有限公司 具有建筑工地室内定位智能装置的机器人及其控制方法
CN110794370A (zh) * 2019-10-24 2020-02-14 合肥天品电子科技有限公司 一种用于雷达设备的转向底座
CN210535824U (zh) * 2019-02-26 2020-05-15 长沙天仪空间科技研究院有限公司 一种平面角度可调节的卫星天线
CN211180184U (zh) * 2019-11-04 2020-08-04 深圳市大疆创新科技有限公司 机械旋转微波雷达及可移动平台
CN111773585A (zh) * 2020-06-24 2020-10-16 深圳国人通信技术服务有限公司 一种宽角度覆盖天线
CN111946971A (zh) * 2020-08-31 2020-11-17 上海公路桥梁(集团)有限公司 用于桥梁检测的雷达架设用调节式支架

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105738900A (zh) * 2016-02-17 2016-07-06 陈杨珑 一种具有环境感知能力的智能机器人
EP3225952A1 (en) * 2016-03-31 2017-10-04 Topcon Corporation Laser scanner with mopa laser and adjustable amplification factor
CN206583978U (zh) * 2016-12-27 2017-10-24 四川九洲电器集团有限责任公司 一种天线测试俯仰台
US20180328728A1 (en) * 2017-05-12 2018-11-15 Topcon Corporation Deflecting device and surveying instrument
CN208805572U (zh) * 2018-09-13 2019-04-30 成都慧创无限科技有限公司 一种雷达目标识别设备
CN109782296A (zh) * 2019-02-01 2019-05-21 广东博智林机器人有限公司 具有建筑工地室内定位智能装置的机器人及其控制方法
CN210535824U (zh) * 2019-02-26 2020-05-15 长沙天仪空间科技研究院有限公司 一种平面角度可调节的卫星天线
CN110794370A (zh) * 2019-10-24 2020-02-14 合肥天品电子科技有限公司 一种用于雷达设备的转向底座
CN211180184U (zh) * 2019-11-04 2020-08-04 深圳市大疆创新科技有限公司 机械旋转微波雷达及可移动平台
CN111773585A (zh) * 2020-06-24 2020-10-16 深圳国人通信技术服务有限公司 一种宽角度覆盖天线
CN111946971A (zh) * 2020-08-31 2020-11-17 上海公路桥梁(集团)有限公司 用于桥梁检测的雷达架设用调节式支架

Similar Documents

Publication Publication Date Title
US20220402607A1 (en) Foldable multi-rotor aerial vehicle
CN109070989B (zh) 可折叠无人飞行器
WO2018191965A1 (zh) 天线对准方法和地面控制端
US20230249813A1 (en) Ganged servo flight control system for an unmanned aerial vehicle
US7894144B2 (en) High accuracy optical pointing apparatus
TW201810203A (zh) 全方向無人飛行載具之控制天線方位定向的系統與裝置
EP3400171B1 (en) Multirotor aircraft
CN107040080B (zh) 一种云台
WO2019128421A1 (zh) 无人飞行器跟踪天线,遥控器套件以及无人飞行器套件
WO2019056865A1 (zh) 云台及具有此云台的无人机
US20210016881A1 (en) Stability systems for tethered unmanned aerial vehicles
US10608317B2 (en) Communication system and communication method
US20200142283A1 (en) Gimbal, photographing assembly and unmanned aerial vehicle (uav) that have gimbal
WO2022204909A1 (zh) 微波雷达及可移动平台
AU2018353842B2 (en) Low profile gimbal for airborne radar
KR101715637B1 (ko) 드론에 탑재된 전파 수집 유닛의 모션 제어 기구
CN215264008U (zh) 微波雷达及可移动平台
KR101316851B1 (ko) 카메라가 장착된 소형 짐벌
JP3645376B2 (ja) アンテナ装置
WO2020029282A1 (zh) 可旋转通信连接器及具有其的雷达、无人飞行器
JP2007106267A (ja) 無人ヘリコプタ
WO2021087703A1 (zh) 飞行器
WO2020220234A1 (zh) 无人机的控制方法和无人机
US11898690B1 (en) Spherical field of view (FOV) multiple payloads gimbal system and method of manufacturing and using the same
CN220492215U (zh) 一种5g光谱流媒体传输设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21933594

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21933594

Country of ref document: EP

Kind code of ref document: A1