WO2022202427A1 - 熱硬化性樹脂組成物、ドライフィルム、硬化物、プリント配線板および電気電子部品 - Google Patents

熱硬化性樹脂組成物、ドライフィルム、硬化物、プリント配線板および電気電子部品 Download PDF

Info

Publication number
WO2022202427A1
WO2022202427A1 PCT/JP2022/011180 JP2022011180W WO2022202427A1 WO 2022202427 A1 WO2022202427 A1 WO 2022202427A1 JP 2022011180 W JP2022011180 W JP 2022011180W WO 2022202427 A1 WO2022202427 A1 WO 2022202427A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermosetting resin
resin composition
film
cured product
resins
Prior art date
Application number
PCT/JP2022/011180
Other languages
English (en)
French (fr)
Inventor
康代 金沢
衆 管
弘進 中居
和貴 仲田
Original Assignee
太陽インキ製造株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 太陽インキ製造株式会社 filed Critical 太陽インキ製造株式会社
Priority to CN202280023756.0A priority Critical patent/CN117120551A/zh
Priority to JP2023509026A priority patent/JP7417008B2/ja
Publication of WO2022202427A1 publication Critical patent/WO2022202427A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H3/00Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
    • H03H3/007Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks
    • H03H3/08Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of resonators or networks using surface acoustic waves
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/25Constructional features of resonators using surface acoustic waves
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/22Secondary treatment of printed circuits
    • H05K3/28Applying non-metallic protective coatings

Definitions

  • the present invention relates to thermosetting resin compositions.
  • the present invention also relates to a dry film having a resin layer formed of a dried coating film of the thermosetting resin composition, a cured product of the thermosetting resin composition, a printed wiring board and an electric/electronic component.
  • Chip-type devices such as semiconductor elements and electronic parts have been conventionally sealed by a transfer molding method using a powdery epoxy resin composition, a potting method using a liquid epoxy resin composition or a silicone resin, etc. It has been carried out by a dispensing method, a printing method, and the like. However, at present, it is suitable for mounting highly integrated devices, and for efficiently manufacturing devices such as surface acoustic wave (SAW) devices and crystal devices that need to be hollow after sealing. Therefore, there is a demand for collectively encapsulating and packaging a plurality of chip-type devices on a substrate.
  • SAW surface acoustic wave
  • the composition that can be sealed together is characterized by containing (A) a crosslinkable elastomer, (B) an epoxy resin, (C) an epoxy resin curing agent, and (D) an inorganic filler.
  • Thermosetting resin compositions have been proposed.
  • thermosetting resin composition a thermosetting resin composition
  • the inventors of the present invention have found that when individual chips are separated into individual chips, the cured product made of the thermosetting resin composition is too hard to crack easily, thermally expands, or warps. , found a problem that it is difficult to singulate chips.
  • an object of the present invention is to facilitate the production of SAW filters in a step of encapsulating a plurality of chips with a thermosetting resin composition and then singulating the chips one by one.
  • An object of the present invention is to provide a thermosetting resin composition that can be separated into pieces.
  • Another object of the present invention is a dry film using the thermosetting resin composition, a cured product of the thermosetting resin composition or the dry film, a printed wiring board comprising the cured product, and a printed wiring board It is to provide an electrical and electronic component with
  • thermosetting resin composition preferably further contains a curing agent and an inorganic filler.
  • the content of the inorganic filler is preferably 50% by mass or more of the total amount of the thermosetting resin composition in terms of solid content.
  • thermosetting resin is preferably an epoxy compound.
  • the curing agent is preferably at least one selected from phenolic resins and imidazoles.
  • a dry film according to another aspect of the present invention comprises a first film and a resin layer comprising a dry coating film of the above thermosetting resin composition formed on the first film. do.
  • a cured product according to another aspect of the present invention is characterized by being obtained by curing the resin layer of the thermosetting resin composition or the dry film.
  • a printed wiring board according to another aspect of the present invention comprises the cured product.
  • An electric/electronic component according to another aspect of the present invention comprises the printed wiring board.
  • the chips are easily singulated in the step of encapsulating a plurality of chips with a thermosetting resin composition and then singulating the chips one by one. It is possible to provide a thermosetting resin composition that can be converted into a in another aspect of the present invention, a dry film using the thermosetting resin composition, a cured product of the thermosetting resin composition or the dry film, a printed wiring board provided with the cured product, and a printed wiring An electrical and electronic component with a plate can be provided.
  • thermosetting resin composition The thermosetting resin composition according to the present invention satisfies the following conditions (i) to (iii) when cured by heating at 100° C. for 30 minutes and then heating at 180° C. for 60 minutes.
  • the cured product used in the measurement of the following conditions (i) to (iii) is a thermosetting resin composition applied on a substrate so that the film thickness after curing is 100 ⁇ m, and heated with hot air. In a circulating drying furnace, it is put into a BOX furnace adjusted to 100°C, taken out after 30 minutes, immediately put into a BOX furnace adjusted to 180°C, taken out after 60 minutes, and cured.
  • thermosetting resin composition that allows chips to be easily separated into individual chips later in the process of individualizing the chips.
  • the breaking strength that indicates the ease of breaking the cured product the thermal expansion coefficient that indicates the degree of thermal expansion (difficulty in thermal expansion), and the storage modulus that indicates the degree of warping (difficulty in warping) are optimized. It is presumed that by doing so, the chip can be easily separated into individual pieces. However, this is only a speculation and is not necessarily limited to this.
  • the strength at break is 100 MPa or less.
  • the strength at break is preferably 30 MPa or more and 100 MPa or less, more preferably 35 MPa or more and 95 MPa or less. It has been found that chips can be easily singulated if the strength at break is within the above numerical range.
  • the strength at break is measured using a tensile tester (EZ-SX, manufactured by Shimadzu Corporation) using a cured product having a size of 70 mm ⁇ 5 mm ⁇ 100 ⁇ 5 ⁇ m (thickness) under the following measurement conditions. It is a value obtained by measuring at (Measurement condition) Pulling speed: 1 mm/min Measurement temperature: 23°C Distance between jigs: 50mm
  • Condition (ii) is a linear expansion coefficient of 35 ppm/°C or less.
  • the coefficient of linear expansion is preferably 3 ppm/°C or more and 35 ppm/°C or less, more preferably 4 ppm/°C or more and 33 ppm/°C or less. It has been found that chips can be easily singulated if the coefficient of linear expansion is within the above numerical range.
  • the coefficient of linear expansion is measured using a TMA measuring device (Q400EM manufactured by TA instruments) on a cured product having a size of 15 mm ⁇ 3 mm ⁇ 100 ⁇ 5 ⁇ m (thickness) under the following measurement conditions. is the value of the average coefficient of linear expansion from 30 to 100° C.
  • the storage modulus at 30°C is 2 GPa or more.
  • the storage modulus at 30°C is preferably 3 GPa or more and 10 GPa or less, more preferably 5 GPa or more and 10 GPa or less. It has been found that chips can be easily singulated if the storage elastic modulus at 30° C. is within the above numerical range.
  • the storage elastic modulus at 30 ° C. is obtained by measuring a cured product having a size of 30 mm ⁇ 5 mm ⁇ 100 ⁇ 5 ⁇ m (thickness) using a DMA measurement device (manufactured by Hitachi High-Tech Science Co., Ltd., DMA7100). It is a value calculated by performing measurement under measurement conditions. (Measurement condition) Measurement temperature: 30-300°C Heating rate: 5°C/min Loading gap: 10 min Frequency: 1 Hz Axial force: 0.05N
  • thermosetting resin composition that satisfies the above conditions (i) to (iii) preferably contains a thermosetting resin, further contains a curing agent and an inorganic filler, and may further contain other components.
  • the thermosetting resin composition for example, by appropriately adjusting the type of thermosetting resin, the amount of thermosetting resin, the type of inorganic filler, the amount of inorganic filler, etc., satisfies the above conditions ( i) to (iii) can be satisfied. Each component will be described below.
  • thermosetting resin Any known thermosetting resin can be used. By including a thermosetting resin in the thermosetting resin composition, the strength at break, coefficient of thermal expansion, and storage modulus of the cured coating film can be optimized.
  • thermosetting resins include melamine resins, benzoguanamine resins, melamine derivatives, amino resins such as benzoguanamine derivatives, isocyanate compounds, blocked isocyanate compounds, cyclocarbonate compounds, epoxy compounds, oxetane compounds, episulfide resins, bismaleimide, and carbodiimide resins. etc. can be used.
  • cyclic (thio)ether groups those having a plurality of cyclic ether groups or cyclic thioether groups (hereinafter abbreviated as cyclic (thio)ether groups) in the molecule are preferred.
  • Thermosetting resins may be used alone or in combination of two or more.
  • thermosetting resin having a plurality of cyclic (thio)ether groups in the molecule is a compound having either or both of a 3-, 4- or 5-membered cyclic ether group or a cyclic thioether group in the molecule.
  • a thermosetting resin having a plurality of cyclic (thio)ether groups in the molecule is a compound having either or both of a 3-, 4- or 5-membered cyclic ether group or a cyclic thioether group in the molecule.
  • compounds having multiple epoxy groups in the molecule i.e. polyfunctional epoxy compounds, compounds having multiple oxetanyl groups in the molecule, i.e. polyfunctional oxetane compounds, compounds having multiple thioether groups in the molecule, i.e. Episulfide resin etc. are mentioned.
  • epoxy compounds are preferred.
  • epoxy compounds include bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, bisphenol E type epoxy resin, bisphenol M type epoxy resin, bisphenol P type epoxy resin, bisphenol Z type epoxy resin, and the like.
  • Bisphenol type epoxy resin, bisphenol A novolak type epoxy resin, phenol novolak type epoxy resin, cresol novolac type epoxy resin and other novolac type epoxy resins biphenyl type epoxy resin, biphenyl aralkyl type epoxy resin, arylalkylene type epoxy resin, tetraphenylolethane type epoxy resin, naphthalene type epoxy resin, anthracene type epoxy resin, phenoxy type epoxy resin, dicyclopentadiene type epoxy resin, norbornene type epoxy resin, adamantane type epoxy resin, fluorene type epoxy resin, glycidyl methacrylate copolymer type epoxy resin, Copolymer epoxy resin of cyclohexylmaleimide and glycidyl methacryl
  • bisphenol A-type epoxy resin, dicyclopentadiene-type epoxy resin, and phenol novolac-type epoxy resin are used from the viewpoint of optimizing the strength at break, thermal expansion coefficient, and storage modulus of the cured coating film. is preferred, two or more of these are more preferably used in combination, and three of these are even more preferably used in combination.
  • Examples of commercially available epoxy resins include jER 828, 806, 807, YX8000, YX8034, 834 manufactured by Mitsubishi Chemical Corporation, YD-128, YDF-170, ZX-1059 manufactured by Nippon Steel Chemical & Materials Co., Ltd.
  • Examples include ST-3000, EPICLON 830, 835, 840, 850, N-730A and N-695 manufactured by DIC Corporation, and RE-306 manufactured by Nippon Kayaku Co., Ltd.
  • polyfunctional oxetane compounds include bis[(3-methyl-3-oxetanylmethoxy)methyl]ether, bis[(3-ethyl-3-oxetanylmethoxy)methyl]ether, 1,4-bis[(3- methyl-3-oxetanylmethoxy)methyl]benzene, 1,4-bis[(3-ethyl-3-oxetanylmethoxy)methyl]benzene, (3-methyl-3-oxetanyl)methyl acrylate, (3-ethyl-3- Oxetanyl)methyl acrylate, (3-methyl-3-oxetanyl)methyl methacrylate, (3-ethyl-3-oxetanyl)methyl methacrylate, and polyfunctional oxetanes such as their oligomers or copolymers, as well as oxetane alcohols and novolak resins , poly(p-hydroxystyrene), cardo-type bisphenols,
  • Examples of compounds having multiple cyclic thioether groups in the molecule include bisphenol A-type episulfide resins. Also, an episulfide resin obtained by replacing the oxygen atom of the epoxy group of the novolac type epoxy resin with a sulfur atom by using a similar synthesis method can also be used.
  • Amino resins such as melamine derivatives and benzoguanamine derivatives include methylol melamine compounds, methylol benzoguanamine compounds, methylol glycoluril compounds and methylol urea compounds.
  • a polyisocyanate compound can be blended as the isocyanate compound.
  • Polyisocyanate compounds include 4,4′-diphenylmethane diisocyanate, 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, naphthalene-1,5-diisocyanate, o-xylylene diisocyanate, m-xylylene diisocyanate and Aromatic polyisocyanates such as 2,4-tolylene dimer; Aliphatic polyisocyanates such as tetramethylene diisocyanate, hexamethylene diisocyanate, methylene diisocyanate, trimethylhexamethylene diisocyanate, 4,4-methylenebis(cyclohexyl isocyanate) and isophorone diisocyanate; bicyclo alicyclic polyisocyanates such as heptane triisocyanate; and adducts, biurets and isocyanurates
  • An addition reaction product of an isocyanate compound and an isocyanate blocking agent can be used as the blocked isocyanate compound.
  • the isocyanate compound that can react with the isocyanate blocking agent include the aforementioned polyisocyanate compounds.
  • isocyanate blocking agents include phenolic blocking agents; lactam blocking agents; active methylene blocking agents; alcohol blocking agents; oxime blocking agents; mercaptan blocking agents; Amine-based blocking agents; imidazole-based blocking agents; imine-based blocking agents, and the like.
  • the amount of the thermosetting resin is preferably 3 to 40% by mass, more preferably 4 to 35% by mass, more preferably 5% by mass, based on the total amount of the thermosetting resin composition in terms of solid content. ⁇ 30% by mass.
  • the thermosetting resin composition may further contain a thermoplastic resin in order to improve the mechanical strength of the resulting cured coating film.
  • the thermoplastic resin is preferably soluble in solvents. When it is soluble in a solvent, the flexibility of the dry film is improved, and the occurrence of cracks and falling powder can be suppressed.
  • Thermoplastic resins include thermoplastic polyhydroxy polyether resins, phenoxy resins that are condensates of epichlorohydrin and various bifunctional phenol compounds, and various acid anhydrides and acid chlorides that replace the hydroxyl groups of the hydroxy ether portion present in the skeleton.
  • phenoxy resins polyvinyl acetal resins, polyamide resins, polyamide-imide resins, block copolymers, and polymer resins having a glass transition point of 20° C. or less and a weight average molecular weight of 10,000 or more.
  • a polymer resin having a glass transition point of 20° C. or less and a weight average molecular weight of 10,000 or more is preferable.
  • the polymer resin is preferably an acrylic acid ester copolymer.
  • the thermoplastic resin may be used singly or in combination of two or more.
  • the blending amount of the thermoplastic resin is preferably 0.5 to 15% by mass, more preferably 0.5 to 10% by mass in terms of solid content, based on the total amount of the thermosetting resin composition.
  • Curing agent As the curing agent, a known curing agent generally used for curing thermosetting resins can be used. Curing agents include phenol resins, polycarboxylic acids and acid anhydrides thereof, cyanate ester resins, active ester resins, maleimide compounds, alicyclic olefin polymers, amines, imidazoles and the like. Among these, phenol resins and imidazoles are preferred, and phenol resins are more preferred, from the viewpoint of optimizing the strength at break, thermal expansion coefficient, and storage elastic modulus of the cured coating film. Curing agents may be used singly or in combination of two or more.
  • Phenol resins include phenol novolak resins, alkylphenol borak resins, bisphenol A novolak resins, dicyclopentadiene type phenol resins, Xylok type phenol resins, terpene-modified phenol resins, cresol/naphthol resins, polyvinylphenols, phenol/naphthol resins, Conventionally known resins such as ⁇ -naphthol skeleton-containing phenolic resins, triazine skeleton-containing cresol novolac resins, biphenylaralkyl-type phenolic resins, and Zyloc-type phenolic novolac resins can be used singly or in combination of two or more.
  • the hydroxyl equivalent is 130 g/eq.
  • the above are preferable, and 150 g/eq. The above are more preferred.
  • the above phenol resins include dicyclopentadiene skeleton phenol novolac resins (GDP series, manufactured by Gun Ei Chemical Industry Co., Ltd.), Zyloc-type phenol novolac resins (MEH-7800, manufactured by Meiwa Kasei Co., Ltd.), and biphenylaralkyl-type novolak resins.
  • imidazoles include reaction products of epoxy resin and imidazole.
  • imidazoles such as 2E4MZ, C11Z, C17Z, and 2PZ (the above are reaction products of epoxy resin and imidazole), 2MZ-A, 2E4MZ-A, and 2MZA-PW (the above are imidazole AZINE (azine) compound), 2MZ-OK, 2PZ-OK (above, isocyanurate of imidazole), 2PHZ, 2P4MHZ (above, imidazole hydroxymethyl) (all of these are manufactured by Shikoku Kasei Co., Ltd.) etc. can be mentioned.
  • imidazoles such as 2E4MZ, C11Z, C17Z, and 2PZ (the above are reaction products of epoxy resin and imidazole), 2MZ-A, 2E4MZ-A, and 2MZA-PW (the above are imidazole AZINE (azine) compound), 2MZ-OK, 2PZ-OK (above, isocyanurate of imidazo
  • the amount of the curing agent in terms of solid content, is preferably 0.5 to 15% by mass, more preferably 0.5 to 10% by mass, relative to the total amount of the thermosetting resin composition.
  • the thermosetting resin composition may contain an inorganic filler.
  • the inorganic filler preferably improves properties such as adhesiveness, mechanical strength and linear expansion coefficient of the cured product.
  • examples of inorganic fillers include silica, barium sulfate, barium titanate, silicon oxide, calcium carbonate, silicon nitride, aluminum nitride, boron nitride, alumina, magnesium oxide, aluminum hydroxide, magnesium hydroxide, titanium oxide, mica, Talc, clay, organic bentonite, copper, gold, silver, palladium and the like.
  • An inorganic filler may be used individually by 1 type, or may use 2 or more types together.
  • calcium carbonate, silica, barium sulfate, and aluminum oxide which are excellent in low volume expansion properties, are preferably used, and among these, silica, aluminum oxide, and calcium carbonate are more preferably used.
  • Silica and aluminum oxide are more preferably used, and silica is particularly preferably used.
  • Silica may be amorphous, crystalline, or a mixture thereof. Amorphous (fused) silica is particularly preferred.
  • the aluminum oxide may be either spinel type ( ⁇ -alumina (low temperature)) or corundum type ( ⁇ -alumina (high temperature)).
  • Calcium carbonate may be either natural heavy calcium carbonate or synthetic precipitated calcium carbonate.
  • the shape of the inorganic filler is not particularly limited. A spherical shape is preferable from the viewpoint of compounding.
  • the average particle size of these inorganic fillers is not particularly limited, it is preferably 0.1 ⁇ m to 25 ⁇ m, more preferably 0.1 ⁇ m to 15 ⁇ m, and still more preferably 0.3 ⁇ m to 10 ⁇ m.
  • the average particle size means an average primary particle size, and can be measured by a laser diffraction/scattering method.
  • the content of the inorganic filler is preferably 50% by mass or more, more preferably 55% by mass or more and 90% by mass or less, and still more preferably, based on the total amount of the thermosetting resin composition in terms of solid content. It is 55 mass % or more and 85 mass % or less.
  • thermosetting resin composition may further contain a silane coupling agent.
  • silane coupling agent By adding a silane-based coupling agent, it is possible to improve the adhesion between the inorganic filler and the epoxy resin and suppress the occurrence of cracks in the cured product.
  • silane-based coupling agents examples include epoxysilane, vinylsilane, imidazolesilane, mercaptosilane, methacryloxysilane, aminosilane, styrylsilane, isocyanatesilane, sulfidesilane, and ureidosilane.
  • the silane coupling agent may be incorporated by using an inorganic filler that has been surface-treated with a silane coupling agent in advance.
  • the mixing ratio of the silane-based coupling agent is preferably 0.00 per 100 parts by mass of the inorganic filler in terms of solid content. 05 to 2.5 parts by mass.
  • thermosetting resin composition may contain a colorant.
  • the coloring agent is not particularly limited, and known coloring agents such as red, blue, green, and yellow can be used. It is preferable that the colorant does not contain halogen from the viewpoint of less
  • red colorants examples include monoazo, disazo, azo lake, benzimidazolone, perylene, diketopyrrolopyrrole, condensed azo, anthraquinone, and quinacridone colorants.
  • -Index C.I.; issued by The Society of Dyers and Colorists) numbered ones.
  • Monoazo red coloring agents include Pigment Red 1, 2, 3, 4, 5, 6, 8, 9, 12, 14, 15, 16, 17, 21, 22, 23, 31, 32, 112, 114, 146, 147, 151, 170, 184, 187, 188, 193, 210, 245, 253, 258, 266, 267, 268, 269 and the like.
  • Disazo-based red colorants include Pigment Red 37, 38, 41 and the like.
  • Examples of benzimidazolone-based red colorants include Pigment Red 171, 175, 176, 185, 208 and the like.
  • the perylene-based red coloring agent includes Solvent Red 135, 179, Pigment Red 123, 149, 166, 178, 179, 190, 194, 224 and the like.
  • Examples of diketopyrrolopyrrole-based red colorants include Pigment Red 254, 255, 264, 270, 272 and the like.
  • Examples of condensed azo red colorants include Pigment Red 220, 144, 166, 214, 220, 221, and 242.
  • anthraquinone-based red colorants include Pigment Red 168, 177, 216 and Solvent Red 149, 150, 52, 207.
  • quinacridone-based red colorants include Pigment Red 122, 202, 206, 207, and 209.
  • blue colorants include phthalocyanine-based and anthraquinone-based coloring agents, and pigment-based compounds classified as pigments, for example, Pigment Blue 15, 15: 1, 15: 2, 15: 3, 15: 4,15:6,16,60. Solvent Blue 35, 63, 68, 70, 83, 87, 94, 97, 122, 136, 67, 70 and the like can be used as dyes.
  • metal-substituted or unsubstituted phthalocyanine compounds can also be used.
  • yellow colorants examples include monoazo, disazo, condensed azo, benzimidazolone, isoindolinone, and anthraquinone colorants.
  • examples of anthraquinone yellow colorants include Solvent Yellow 163, Pigment Yellow 24, 108, 193, 147, 199, 202 and the like.
  • Examples of isoindolinone-based yellow colorants include Pigment Yellow 110, 109, 139, 179, 185 and the like.
  • condensed azo yellow colorant Pigment Yellow 93, 94, 95, 128, 155, 166, 180 and the like.
  • benzimidazolone yellow colorants examples include Pigment Yellow 120, 151, 154, 156, 175, 181 and the like.
  • Pigment Yellow 1 2, 3, 4, 5, 6, 9, 10, 12, 61, 62, 62: 1, 65, 73, 74, 75, 97, 100, 104, 105, 111, 116, 167, 168, 169, 182, 183 and the like.
  • Disazo yellow coloring agents include Pigment Yellow 12, 13, 14, 16, 17, 55, 63, 81, 83, 87, 126, 127, 152, 170, 172, 174, 176, 188, 198, etc. are mentioned.
  • coloring agents such as purple, orange, brown, black, and white may be added.
  • Pigment Black 1, 6, 7, 8, 9, 10, 11, 12, 13, 18, 20, 25, 26, 28, 29, 30, 31, 32, Pigment Violet 19, 23, 29 , 32, 36, 38, 42, Solvent Violet 13, 36, C.I. I. Pigment Orange 1, 5, 13, 14, 16, 17, 24, 34, 36, 38, 40, 43, 46, 49, 51, 61, 63, 64, 71, 73, Pigment Brown 23, 25, carbon black, Titanium oxide etc. are mentioned.
  • the amount of the coloring agent is not particularly limited, but is preferably 0.01 to 20% by mass, more preferably 0.05 to 10% by mass, based on the total amount of the thermosetting resin composition in terms of solid content. , more preferably 0.1 to 5% by mass.
  • the thermosetting resin composition may contain an organic solvent used for preparing the composition and adjusting the viscosity.
  • organic solvents include ketones such as methyl ethyl ketone and cyclohexanone; aromatic hydrocarbons such as toluene, xylene and tetramethylbenzene; cellosolve, methyl cellosolve, butyl cellosolve, carbitol, methyl carbitol, butyl carbitol, propylene glycol; Glycol ethers such as monomethyl ether, dipropylene glycol monomethyl ether (DPM), dipropylene glycol diethyl ether, tripropylene glycol monomethyl ether; ethyl acetate, butyl acetate, butyl lactate, cellosolve acetate, butyl cellosolve acetate, carbitol acetate, butyl carbi Esters such as tall acetate, propylene glycol monomethyl ether
  • thermosetting resin composition according to the present invention may contain a photocurable resin in combination with the thermosetting resin.
  • Photocurable resins include curable resins that can be cured by radical addition polymerization reaction with active energy rays.
  • Specific examples of radical addition polymerization reactive components having one or more ethylenically unsaturated groups in the molecule include commonly known polyester (meth)acrylates, polyether (meth)acrylates, and urethane (meth)acrylates. Acrylate, carbonate (meth)acrylate, epoxy (meth)acrylate and the like can be mentioned.
  • glycol diacrylates such as ethylene glycol, methoxytetraethylene glycol, polyethylene glycol and propylene glycol
  • acrylamides such as N,N-dimethylacrylamide, N-methylolacrylamide and N,N-dimethylaminopropylacrylamide
  • Aminoalkyl acrylates such as N,N-dimethylaminoethyl acrylate and N,N-dimethylaminopropyl acrylate
  • Polyhydric alcohols such as hexanediol, trimethylolpropane, pentaerythritol, dipentaerythritol and tris-hydroxyethyl isocyanurate or polyvalent acrylates such as ethylene oxide adducts, propylene oxide adducts, or ⁇ -caprolactone adducts thereof; phenoxy acrylate, bisphenol A diacrylate, and ethylene oxide adducts or propylene oxide adduct
  • a carboxyl group-containing It can contain a resin.
  • the carboxyl group-containing resin may be a carboxyl group-containing photosensitive resin having an ethylenically unsaturated group, and may or may not have an aromatic ring.
  • thermosetting resin composition of the present invention When using a photocurable resin, it is preferable to add a photopolymerization initiator to the thermosetting resin composition of the present invention.
  • a photopolymerization initiator include benzoin compounds such as benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, benzoin isobutyl ether, and benzyl methyl ketal, and their alkyl ethers.
  • acetophenone 2,2-dimethoxy-2-phenylacetophenone, 2-hydroxy-2-methyl-1-phenylpropan-1-one, diethoxyacetophenone, 2,2-diethoxy-2-phenylacetophenone, 1,1- Acetophenones such as dichloroacetophenone, 1-hydroxycyclohexylphenyl ketone, 2-methyl-1-[4-(methylthio)phenyl]-2-morpholino-propan-1-one; methylanthraquinone, 2-ethylanthraquinone, 2-tertiary -anthraquinones such as butylanthraquinone, 1-chloroanthraquinone, and 2-amylanthraquinone; Thioxanthones such as; Ketals such as acetophenone dimethyl ketal and benzyl dimethyl ketal; Benzophenones such as benzophenone and 4,4-bismethylaminobenzophenone; oxi
  • tertiary amines such as triethanolamine and methyldiethanolamine; 2-dimethylaminoethylbenzoic acid, ethyl 4-dimethylaminobenzoate and the like.
  • a photopolymerization initiation aid such as a benzoic acid derivative.
  • the photopolymerization initiator preferably has a function as a photobase generator when used for heat curing after light irradiation, which will be described later.
  • photopolymerization initiators also functioning as photobase generators include ⁇ -aminoacetophenones, oxime esters, acyloxyimino groups, N-formylated aromatic amino groups, N-acylated aromatic and compounds having substituents such as group amino groups, nitrobenzylcarbamate groups, alkoxybenzylcarbamate groups, and the like.
  • the thermosetting resin composition according to the present invention can be preferably used for sealing and protecting SAW filters. In addition to the above uses, it is preferably for forming a cured film of a printed wiring board, more preferably for forming a permanent protective film, such as an interlayer insulating material, a coverlay, a solder resist composition, or a hole filling. It is particularly preferred for lumber.
  • a permanent protective film such as an interlayer insulating material, a coverlay, a solder resist composition, or a hole filling. It is particularly preferred for lumber.
  • the thermosetting resin composition of the present invention can form a cured product having excellent film strength even in a thin film, a printed wiring board that requires a thin film, such as a package substrate (printed wiring board used in a semiconductor package). It can also be suitably used for the formation of a patterned coating in.
  • the thermosetting resin composition of the present invention can also be suitably used for flexible printed wiring boards.
  • a dry film according to the present invention comprises a first film and a resin layer comprising a dry coating film of the above thermosetting resin composition formed on the first film.
  • the thermosetting resin composition is diluted with the above organic solvent to adjust it to an appropriate viscosity, and a comma coater, blade coater, lip coater, rod coater, squeeze coater, reverse coater, transfer roll coater, gravure.
  • a film can be obtained by coating the first film with a uniform thickness using a coater, spray coater, or the like, and drying at a temperature of 50 to 130° C. for 1 to 30 minutes.
  • the film thickness of the coating is not particularly limited, but it is appropriately selected in the range of 10 to 250 ⁇ m, preferably 30 to 200 ⁇ m, in terms of the film thickness after drying, since it is easier to singulate.
  • any known film can be used without any particular limitation.
  • a film made of a plastic resin can be preferably used.
  • a polyester film is preferable from the viewpoint of heat resistance, mechanical strength, handleability, and the like.
  • a laminate of these films can also be used as the first film.
  • thermoplastic resin film as described above is preferably a uniaxially or biaxially stretched film from the viewpoint of improving mechanical strength.
  • the thickness of the first film is not particularly limited, it can be, for example, 10 ⁇ m to 150 ⁇ m.
  • the dry film has a first film for the purpose of supporting the resin layer of the structure.
  • the first film in the present invention means that when the resin layer side composed of the curable resin layer formed on the dry film is in contact with the base material such as a substrate by heating or the like and integrally molded, at least It refers to the one adhered to the resin layer.
  • the first film may be peeled off from the resin layer in a step after lamination. Particularly in the present invention, it is preferable to separate from the resin layer in a step after curing. After forming a resin layer consisting of a dry coating film of a curable resin composition on the first film, it can be peeled off from the surface of the resin layer for the purpose of preventing dust from adhering to the surface of the resin layer.
  • the second film in the present invention refers to a film that is peeled off from the structure before lamination when the resin layer side of the dry film is laminated on a base material such as a substrate by heating or the like and integrally molded.
  • a peelable second film for example, polyethylene film, polytetrafluoroethylene film, polypropylene film, surface-treated paper, or the like can be used. It is sufficient that the adhesive strength between the resin layer and the second film is smaller than the adhesive strength with the film.
  • the thickness of the second film is not particularly limited, but can be, for example, 10 ⁇ m to 150 ⁇ m.
  • the second film is peeled off from the dry film, the exposed resin layer of the dry film is overlaid on the circuit-formed substrate, and a laminator or the like is used. and a resin layer is formed on the circuit-formed substrate. Then, if the formed resin layer is cured by heating, a cured product can be formed. Also, if necessary, exposure and development may be performed before heat curing.
  • the first film may be peeled off either before or after curing, and when exposure is performed, it may be peeled off either before or after exposure.
  • a cured product according to the present invention is obtained by curing the above thermosetting resin composition.
  • the cured product according to the present invention can be suitably used for printed wiring boards, electric and electronic parts, and the like.
  • the cured product according to the present invention is easy to break, hard to thermally expand, and hard to warp, so that the chips can be easily singulated in the step of singulating the chips one by one after collectively encapsulating a plurality of chips. can do.
  • a printed wiring board according to the present invention comprises the above cured product.
  • the thermosetting resin composition of the present invention is adjusted to a viscosity suitable for the coating method using the above organic solvent, and is coated on the substrate by a dip coating method. , flow coating method, roll coating method, bar coating method, screen printing method, curtain coating method, etc., and then evaporate and dry the organic solvent contained in the thermosetting resin composition at a temperature of 60 to 100 ° C. By (temporary drying), a tack-free resin layer is formed. Furthermore, the resin layer can be cured by heating at a high temperature. In the case of a dry film, the resin layer is formed on the substrate by laminating it on the substrate with a laminator or the like so that the resin layer is in contact with the substrate, and then peeling off the first film.
  • the substrate examples include printed wiring boards and flexible printed wiring boards on which circuits are formed in advance using copper or the like, paper phenol, paper epoxy, glass cloth epoxy, glass polyimide, glass cloth/non-woven cloth epoxy, glass cloth/paper epoxy. , Synthetic fiber epoxy, fluororesin, polyethylene, polyphenylene ether, polyphenylene oxide, cyanate, and other materials such as copper-clad laminates for high-frequency circuits, all grades (FR-4, etc.) of copper-clad laminates Plates, metal substrates, polyimide films, polyethylene terephthalate films, polyethylene naphthalate (PEN) films, glass substrates, ceramic substrates, wafer plates and the like can also be used.
  • Synthetic fiber epoxy, fluororesin, polyethylene, polyphenylene ether, polyphenylene oxide, cyanate, and other materials such as copper-clad laminates for high-frequency circuits, all grades (FR-4, etc.) of copper-clad laminates Plates, metal substrates, polyimide films,
  • thermosetting resin composition When the thermosetting resin composition is made into a dry film, it is preferable that lamination onto the base material is performed under pressure and heat using a vacuum laminator or the like.
  • a vacuum laminator By using such a vacuum laminator, even if a substrate having a circuit formed thereon is used, even if the surface of the circuit substrate is uneven, the vacuum laminator can adhere to the circuit substrate.
  • the fillability of the concave portion is also improved.
  • the pressure condition is preferably about 0.1 to 2.0 MPa, and the heating condition is preferably 40 to 120°C.
  • Curing after applying the thermosetting resin composition is performed by using a hot air circulation drying oven, IR oven, hot plate, convection oven, etc. method of contacting with flow and method of spraying onto the support from a nozzle).
  • a hot air circulation drying oven For example, after performing the first stage heating at 80 to 120°C, preferably 90 to 110°C for 10 to 60 minutes, preferably 20 to 40 minutes, further 180 to 220°C, preferably 190 to 210°C.
  • the second step of heat curing can be performed for 30 to 120 minutes, preferably 50 to 70 minutes, to form a cured product.
  • the two-step curing is preferable in that the generation of air bubbles during curing can be suppressed. Specifically, by volatilizing the residual solvent in the first step, it is possible to suppress the generation of air bubbles during the main curing. Curing can be completed by further curing at a higher temperature in the second step.
  • An electric/electronic component according to the present invention includes the printed wiring board described above.
  • the electrical/electronic component according to the present invention can be used in various conventionally known electrical devices. Among them, SAW filters are preferred.
  • the substrate examples include printed wiring boards, LTCC (Low Temperature Co-fired Ceramics) substrates (hereinafter also referred to as low temperature co-fired ceramic substrates), ceramic substrates, silicon substrates, and metal substrates.
  • Electrical and electronic components include sensors, MEMS, SAW chips, and the like. Among them, pressure sensors, vibration sensors, and SAW chips can be preferably used, and SAW chips are particularly preferable.
  • thermosetting resin composition When the thermosetting resin composition is made into a dry film, it is preferable that lamination onto the base material is performed under pressure and heat using a vacuum laminator or the like.
  • a vacuum laminator By using such a vacuum laminator, when using a substrate on which components are mounted, even if there are unevenness, the laminator adheres to the substrate, so there is no entrapment of air bubbles, and electrical and electronic components can be sealed. improves.
  • the pressure condition is preferably about 0.1 to 2.0 MPa, and the heating condition is preferably 40 to 120°C.
  • Curing after applying the thermosetting resin composition is performed by using a hot air circulation drying oven, IR oven, hot plate, convection oven, etc. method of contacting with flow and method of spraying onto the support from a nozzle).
  • a hot air circulation drying oven For example, after performing the first stage heating at 80 to 120°C, preferably 90 to 110°C for 10 to 60 minutes, preferably 20 to 40 minutes, further 180 to 220°C, preferably 190 to 210°C.
  • the second step of heat curing can be performed for 30 to 120 minutes, preferably 50 to 70 minutes, to form a cured product.
  • the two-step curing is preferable in that the generation of air bubbles during curing can be suppressed. Specifically, by volatilizing the residual solvent in the first step, it is possible to suppress the generation of air bubbles during the main curing. Curing can be completed by further curing at a higher temperature in the second step.
  • thermosetting resin composition contains, for example, a photopolymerization initiator or a photobase generator also functioning as a photobase generator
  • the generated base is generated by light irradiation before the heating step.
  • a liquid thermosetting resin such as an epoxy resin having a bisphenol skeleton
  • thermosetting resin composition > (Examples 1 to 3, 5, Comparative Examples 1 to 4)
  • a solvent having the composition shown in each example and comparative example shown in Table 1 below was placed in a container, heated to 50° C. so as not to volatilize the solvent, and each epoxy resin was added and thoroughly stirred to dissolve. After that, additives and fillers are added and kneaded in a three-roll mill, and a curing agent, a curing accelerator, and other resins are added and sufficiently stirred with a stirrer to obtain a curable resin composition. rice field.
  • Example 4 Each component was blended according to the formulation shown in Table 1 below and dispersed using a three-roll mill to obtain a curable resin composition.
  • thermosetting resin composition obtained in each example and comparative example was applied to a first film (PET film; manufactured by Toyobo Co., Ltd.) so that the thickness after curing of the resin layer was 100 ⁇ m. TN200, thickness 38 ⁇ m, size 30 cm ⁇ 30 cm). Then, using a hot air circulation drying oven, 5 at 70 to 120 ° C. (average 100 ° C.) so that the residual solvent in the resin layer composed of the thermosetting resin composition is 0.5 to 2.5% by mass. Dried for ⁇ 10 minutes to form a resin layer on the first film. Subsequently, an OPP film (Alphan FG-201, Fish Eyeless, manufactured by Oji F-Tech Co., Ltd., thickness 16 ⁇ m, size 30 cm x 30 cm) to prepare a dry film.
  • PET film manufactured by Toyobo Co., Ltd.
  • the second film is peeled off from the dry film, and a vacuum laminator (manufactured by Japan Steel Works, Ltd., MVLP-500) is used on a 18 ⁇ m thick copper foil (GTS-MP foil, manufactured by Furukawa Electric Co., Ltd.). Then, they were laminated under the conditions of a lamination temperature of 80 to 110° C. and a pressure of 0.3 MPa. Subsequently, the first film was peeled off, heated at 100° C. for 30 minutes in a hot air circulation drying oven, taken out from the drying oven, immediately heated at 200° C. for 60 minutes in another hot air circulation drying oven, The resin layer was cured. After that, the cured product was peeled off from the copper foil. The film thickness of the cured product after curing was 100 ⁇ m.
  • ⁇ Singulation test> Change the 18 ⁇ m thick copper foil to a 9.5 cm ⁇ 11 cm, 0.8 ⁇ m thick etched-out substrate (a substrate obtained by etching a copper-clad laminate manufactured by Showa Denko Materials Co., Ltd.) ⁇ Dry film and its cured product Production>, the resin layer was cured. After that, the test was performed without removing the cured product from the etched-out substrate. Specifically, the cured product on the etched-out substrate is cut together with the etched-out substrate into a size of 5 cm ⁇ 5 cm using a cutting device (manufactured by Ritoku Co., Ltd., cutting blade: diamond cutter) to obtain each test piece. rice field.
  • a cutting device manufactured by Ritoku Co., Ltd., cutting blade: diamond cutter
  • thermosetting resin compositions of the examples of the present application are easily singulated into chips by optimizing each of the strength at break, the coefficient of thermal expansion, and the storage modulus. We were able to.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Abstract

[課題]SAWフィルターの製造において、熱硬化性樹脂組成物を用いて複数のチップを一括封止した後にチップ1つ1つに個片化する工程で、チップを容易に個片化することができる熱硬化性樹脂組成物の提供。 [手段]本発明による熱硬化性樹脂組成物は、熱硬化性樹脂を含むものであって、 前記熱硬化性樹脂組成物を100℃で30分間加熱した後に180℃で60分間加熱し硬化させた硬化物が、下記の条件: (i)破断点強度が100MPa以下であること、 (ii)線膨張係数が35ppm/℃以下であること、 (iii)30℃における貯蔵弾性率が2GPa以上であること、 を満たすことを特徴とする。

Description

熱硬化性樹脂組成物、ドライフィルム、硬化物、プリント配線板および電気電子部品
 本発明は、熱硬化性樹脂組成物に関する。また、本発明は、該熱硬化性樹脂組成物の乾燥塗膜からなる樹脂層を備えるドライフィルム、該熱硬化性樹脂組成物の硬化物、プリント配線板および電気電子部品に関する。
 半導体素子、電子部品等のチップ型デバイス(チップ部品)の封止は、従来から、粉末状エポキシ樹脂組成物を用いたトランスファー成形法、液状エポキシ樹脂組成物やシリコーン樹脂等を用いてポッティング法、ディスペンス法、印刷法等により行なわれてきた。しかしながら、現在では、高集積度のデバイスの搭載に好適であり、また、表面弾性波(SAW)デバイスや水晶デバイスなどの封止後に内部を中空とする必要があるデバイスを効率的に製造するため、複数のチップ型デバイスを有する基板上で一括封止してパッケ-ジ化することが求められている。
 例えば、特許文献1においては、一括封止できる組成物として、(A)架橋性エラストマー、(B)エポキシ樹脂、(C)エポキシ樹脂硬化剤および(D)無機充填材を含むことを特徴とする熱硬化型樹脂組成物が提案されている。
特開2015-166403号公報
 ところで、SAWデバイスの中のSAWフィルターの製造工程においては、熱硬化性樹脂組成物を用いて前述したような複数のチップを一括封止した後に、チップ1つ1つに個片化する工程がある。本発明者等は、チップを1つ1つに個片化する際に、熱硬化性樹脂組成物からなる硬化物が硬すぎて割れづらくなったり、熱膨張したり、反ったりしてしまうと、チップを個片化することが困難であるという課題を知見した。
 したがって、本発明の目的は、SAWフィルターの製造において、熱硬化性樹脂組成物を用いて複数のチップを一括封止した後にチップを1つ1つに個片化する工程で、チップを容易に個片化することができる熱硬化性樹脂組成物を提供することである。
 また、本発明の別の目的は、当該熱硬化性樹脂組成物を用いたドライフィルム、熱硬化性樹脂組成物またはドライフィルムの硬化物、それら硬化物を備えたプリント配線板、およびプリント配線板を備えた電気電子部品を提供することである。
 本発明の態様による熱硬化性樹脂組成物は、熱硬化性樹脂を含むものであって、
 前記熱硬化性樹脂組成物を100℃で30分間加熱した後に180℃で60分間加熱して硬化させた硬化物が、下記の条件:
 (i)破断点強度が100MPa以下であること、
 (ii)線膨張係数が35ppm/℃以下であること、
 (iii)30℃における貯蔵弾性率が2GPa以上であること、
を満たすことを特徴とするものである。
 本発明の態様においては、前記熱硬化性樹脂組成物が、硬化剤および無機充填剤をさらに含むことが好ましい。
 本発明の態様においては、前記無機充填剤の含有量が、固形分換算で、前記熱硬化性樹脂組成物全量の50質量%以上であることが好ましい。
 本発明の態様においては、前記熱硬化性樹脂が、エポキシ化合物であることが好ましい。
 本発明の態様においては、前記硬化剤が、フェノール樹脂およびイミダゾール類から選択される少なくとも1種であることが好ましい。
 本発明の別の態様によるドライフィルムは、第一のフィルムと、前記第一のフィルム上に形成された上記の熱硬化性樹脂組成物の乾燥塗膜からなる樹脂層とを備えることを特徴とする。
 本発明の別の態様による硬化物は、前記熱硬化性樹脂組成物または上記のドライフィルムの樹脂層を硬化させて得られることを特徴とする。
 本発明の別の態様によるプリント配線板は、前記硬化物を備えることを特徴とする。
 本発明の別の態様による電気電子部品は、前記プリント配線板を備えることを特徴とする。
 本発明によれば、SAWフィルターの製造において、熱硬化性樹脂組成物を用いて複数のチップを一括封止した後にチップを1つ1つに個片化する工程で、チップを容易に個片化することができる熱硬化性樹脂組成物を提供することができる。
 また、本発明の別の態様においては、当該熱硬化性樹脂組成物を用いたドライフィルム、熱硬化性樹脂組成物またはドライフィルムの硬化物、それら硬化物を備えたプリント配線板、およびプリント配線板を備えた電気電子部品を提供することができる。
(熱硬化性樹脂組成物)
 本発明による熱硬化性樹脂組成物は、100℃で30分間加熱した後に180℃で60分間加熱して硬化させた硬化物が、下記の条件(i)~(iii)を満たすものである。本発明において、下記の条件(i)~(iii)の測定に用いる硬化物とは、熱硬化性樹脂組成物を、硬化後の膜厚が100μmになるように基材上に塗布し、熱風循環式乾燥炉で、100℃に調整したBOX炉に投入し、30分後に取り出し、ただちに、180℃に調整したBOX炉に投入して60分後に取り出して硬化させたものを言う。本発明者は鋭意研究した結果、上記の硬化物が条件(i)~(iii)を満たすことで、SAWフィルターの製造において、熱硬化性樹脂組成物を用いて複数のチップを一括封止した後にチップを1つ1つに個片化する工程で、チップを容易に個片化することができる熱硬化性樹脂組成物を提供することができることを見出した。このことは必ずしも明らかではないが以下のように推測できる。すなわち、熱硬化性樹脂組成物を硬化させた硬化物の破断のし易さや、熱膨張かつ反りの度合いを調整することでチップの個片化を行う上で適当な状態になる。従って、硬化物破断のし易さを示す破断強度、熱膨張の程度(熱膨張のしづらさ)を示す熱膨張係数、反りの程度(反りにくさ)を示す貯蔵弾性率の各最適化を行うことで、チップを容易に個片化することができるようになったものと推測される。しかしながら、あくまでも推測の域であり、必ずしもこの限りではない。
 条件(i)は、破断点強度が100MPa以下である。破断点強度は、好ましくは30MPa以上100MPa以下であり、より好ましくは35MPa以上95MPa以下である。破断点強度が上記数値範囲内であれば、チップを容易に個片化することができることを見出した。
 なお、本発明において、破断点強度は、70mm×5mm×100±5μm(厚み)のサイズの硬化物を、引張り試験機(株式会社島津製作所製、EZ-SX)を用いて、下記の測定条件で測定を行って得られた値である。
(測定条件)
 引張り速度:1mm/分
 測定温度:23℃
 治具間距離:50mm
 条件(ii)は、線膨張係数が35ppm/℃以下である。線膨張係数は、好ましくは3ppm/℃以上35ppm/℃以下であり、より好ましくは4ppm/℃以上33ppm/℃以下である。線膨張係数が上記数値範囲内であれば、チップを容易に個片化することができることを見出した。
 なお、本発明において、線膨張係数は、15mm×3mm×100±5μm(厚み)のサイズの硬化物を、TMA測定装置(TA instruments社製、Q400EM)を用いて下記の測定条件で測定を行って、3rdstepの測定結果の30~100℃平均線膨張率の値である。
(測定条件)
 1st:30℃→300℃ 10℃/分昇温
 2nd:300℃→30℃ 10℃/分降温
 3rd:30℃→300℃ 10℃/分昇温
 条件(iii)は、30℃における貯蔵弾性率が2GPa以上である。30℃における貯蔵弾性率は、好ましくは3GPa以上10GPa以下であり、より好ましくは5GPa以上10GPa以下である。30℃における貯蔵弾性率が上記数値範囲内であれば、チップを容易に個片化することができることを見出した。
 なお、本発明において、30℃における貯蔵弾性率は、30mm×5mm×100±5μm(厚み)のサイズの硬化物を、DMA測定装置(株式会社日立ハイテクサイエンス製、DMA7100)を用いて、下記の測定条件で測定を行って、算出した値である。
(測定条件)
 測定温度:30~300℃
 昇温速度:5℃/分
 Loading gap:10分
 周波数:1Hz
 Axial force:0.05N
 上記の条件(i)~(iii)を満たす熱硬化性樹脂組成物は、熱硬化性樹脂を含み、硬化剤および無機充填剤をさらに含むことが好ましく、他の成分をさらに含んでもよい。熱硬化性樹脂組成物は、例えば、熱硬化性樹脂の種類、熱硬化性樹脂の配合量、無機充填剤の種類、および無機充填剤の配合量等を適宜調整することで、上記の条件(i)~(iii)を満たすことができる。以下、各成分について説明する。
(熱硬化性樹脂)
 熱硬化性樹脂としては、公知のものをいずれも用いることができる。熱硬化性樹脂組成物が熱硬化性樹脂を含むことにより、硬化塗膜の破断点強度、熱膨張係数、および貯蔵弾性率の各最適化を行うことができる。熱硬化性樹脂としては、例えば、メラミン樹脂、ベンゾグアナミン樹脂、メラミン誘導体、ベンゾグアナミン誘導体等のアミノ樹脂、イソシアネート化合物、ブロックイソシアネート化合物、シクロカーボネート化合物、エポキシ化合物、オキセタン化合物、エピスルフィド樹脂、ビスマレイミド、カルボジイミド樹脂等を用いることができる。これらの中でも、分子中に複数の環状エーテル基または環状チオエーテル基(以下、環状(チオ)エーテル基と略す)を有するものが好ましい。熱硬化性樹脂は、1種を単独で用いてもよく、または2種以上を併用してもよい。
 このような分子中に複数の環状(チオ)エーテル基を有する熱硬化性樹脂は、分子中に3、4または5員環の環状エーテル基若しくは環状チオエーテル基のいずれか一方または双方を有する化合物であり、例えば、分子内に複数のエポキシ基を有する化合物、すなわち多官能エポキシ化合物、分子内に複数のオキセタニル基を有する化合物、すなわち多官能オキセタン化合物、分子内に複数のチオエーテル基を有する化合物、すなわちエピスルフィド樹脂等が挙げられる。これらの中でも、エポキシ化合物が好ましい。
 エポキシ化合物としては、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、ビスフェノールE型エポキシ樹脂、ビスフェノールM型エポキシ樹脂、ビスフェノールP型エポキシ樹脂、ビスフェノールZ型エポキシ樹脂等のビスフェノール型エポキシ樹脂、ビスフェノールAノボラック型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラックエポキシ樹脂等のノボラック型エポキシ樹脂、ビフェニル型エポキシ樹脂、ビフェニルアラルキル型エポキシ樹脂、アリールアルキレン型エポキシ樹脂、テトラフェニロールエタン型エポキシ樹脂、ナフタレン型エポキシ樹脂、アントラセン型エポキシ樹脂、フェノキシ型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、ノルボルネン型エポキシ樹脂、アダマンタン型エポキシ樹脂、フルオレン型エポキシ樹脂、グリシジルメタアクリレート共重合系エポキシ樹脂、シクロヘキシルマレイミドとグリシジルメタアクリレートとの共重合エポキシ樹脂、エポキシ変性のポリブタジエンゴム誘導体、CTBN変性エポキシ樹脂、トリメチロールプロパンポリグリシジルエーテル、フェニル-1,3-ジグリシジルエーテル、ビフェニル-4,4’-ジグリシジルエーテル、1,6-ヘキサンジオールジグリシジルエーテル、エチレングリコールまたはプロピレングリコールのジグリシジルエーテル、ソルビトールポリグリシジルエーテル、トリス(2,3-エポキシプロピル)イソシアヌレート、トリグリシジルトリス(2-ヒドロキシエチル)イソシアヌレート等が挙げられる。これらの中でも、硬化塗膜の破断点強度、熱膨張係数、および貯蔵弾性率の各最適化の観点から、ビスフェノールA型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、およびフェノールノボラック型エポキシ樹脂を用いることが好ましく、これらの2種以上を併用することがより好ましく、これらの3種を併用することがさらに好ましい。
 市販されるエポキシ樹脂としては、例えば、三菱ケミカル株式会社製のjER 828、806、807、YX8000、YX8034、834、日鉄ケミカル&マテリアル株式会社製のYD-128、YDF-170、ZX-1059、ST-3000、DIC株式会社製のEPICLON 830、835、840、850、N-730A、N-695、および日本化薬株式会社製のRE-306等が挙げられる。
 多官能オキセタン化合物としては、例えば、ビス[(3-メチル-3-オキセタニルメトキシ)メチル]エーテル、ビス[(3-エチル-3-オキセタニルメトキシ)メチル]エーテル、1,4-ビス[(3-メチル-3-オキセタニルメトキシ)メチル]ベンゼン、1,4-ビス[(3-エチル-3-オキセタニルメトキシ)メチル]ベンゼン、(3-メチル-3-オキセタニル)メチルアクリレート、(3-エチル-3-オキセタニル)メチルアクリレート、(3-メチル-3-オキセタニル)メチルメタクリレート、(3-エチル-3-オキセタニル)メチルメタクリレートやそれらのオリゴマーまたは共重合体等の多官能オキセタン類の他、オキセタンアルコールとノボラック樹脂、ポリ(p-ヒドロキシスチレン)、カルド型ビスフェノール類、カリックスアレーン類、カリックスレゾルシンアレーン類、またはシルセスキオキサン等の水酸基を有する樹脂とのエーテル化物等が挙げられる。その他、オキセタン環を有する不飽和モノマーとアルキル(メタ)アクリレートとの共重合体等も挙げられる。
 分子中に複数の環状チオエーテル基を有する化合物としては、ビスフェノールA型エピスルフィド樹脂等が挙げられる。また、同様の合成方法を用いて、ノボラック型エポキシ樹脂のエポキシ基の酸素原子を硫黄原子に置き換えたエピスルフィド樹脂等も用いることができる。
 メラミン誘導体、ベンゾグアナミン誘導体等のアミノ樹脂としては、メチロールメラミン化合物、メチロールベンゾグアナミン化合物、メチロールグリコールウリル化合物およびメチロール尿素化合物等が挙げられる。
 イソシアネート化合物としては、ポリイソシアネート化合物を配合することができる。ポリイソシアネート化合物としては、4,4’-ジフェニルメタンジイソシアネート、2,4-トリレンジイソシアネート、2,6-トリレンジイソシアネート、ナフタレン-1,5-ジイソシアネート、o-キシリレンジイソシアネート、m-キシリレンジイソシアネートおよび2,4-トリレンダイマー等の芳香族ポリイソシアネート;テトラメチレンジイソシアネート、ヘキサメチレンジイソシアネート、メチレンジイソシアネート、トリメチルヘキサメチレンジイソシアネート、4,4-メチレンビス(シクロヘキシルイソシアネート)およびイソホロンジイソシアネート等の脂肪族ポリイソシアネート;ビシクロヘプタントリイソシアネート等の脂環式ポリイソシアネート;並びに先に挙げたイソシアネート化合物のアダクト体、ビューレット体およびイソシアヌレート体等が挙げられる。
 ブロックイソシアネート化合物としては、イソシアネート化合物とイソシアネートブロック剤との付加反応生成物を用いることができる。イソシアネートブロック剤と反応し得るイソシアネート化合物としては、例えば、上述のポリイソシアネート化合物等が挙げられる。イソシアネートブロック剤としては、例えば、フェノール系ブロック剤;ラクタム系ブロック剤;活性メチレン系ブロック剤;アルコール系ブロック剤;オキシム系ブロック剤;メルカプタン系ブロック剤;酸アミド系ブロック剤;イミド系ブロック剤;アミン系ブロック剤;イミダゾール系ブロック剤;イミン系ブロック剤等が挙げられる。
 熱硬化性樹脂の配合量は、固形分換算で、熱硬化性樹脂組成物全量に対して、好ましくは3~40質量%であり、より好ましくは4~35質量%であり、さらに好ましくは5~30質量%である。
(熱可塑性樹脂)
 熱硬化性樹脂組成物は、得られる硬化塗膜の機械的強度を向上させるために、さらに熱可塑性樹脂を含んでもよい。熱可塑性樹脂は、溶剤に可溶であることが好ましい。溶剤に可溶である場合、ドライフィルムの柔軟性が向上し、クラックの発生や粉落ちを抑制できる。熱可塑性樹脂としては、熱可塑性ポリヒドロキシポリエーテル樹脂や、エピクロルヒドリンと各種2官能フェノール化合物の縮合物であるフェノキシ樹脂或いはその骨格に存在するヒドロキシエーテル部の水酸基を各種酸無水物や酸クロリドを使用してエステル化したフェノキシ樹脂、ポリビニルアセタール樹脂、ポリアミド樹脂、ポリアミドイミド樹脂、ブロック共重合体、ガラス転移点が20℃以下かつ重量平均分子量が1万以上の高分子樹脂等が挙げられる。なかでも、ガラス転移点が20℃以下かつ重量平均分子量が1万以上の高分子樹脂が好ましい。前記高分子樹脂としては、アクリル酸エステル共重合体であることが好ましい。熱可塑性樹脂は1種を単独で用いてもよく、または2種以上を併用してもよい。
 熱可塑性樹脂の配合量は、固形分換算で、熱硬化性樹脂組成物全量に対して、好ましくは0.5~15質量%であり、より好ましくは0.5~10質量%である。
(硬化剤)
 硬化剤としては、熱硬化性樹脂を硬化させるために一般的に使用されている公知の硬化剤を使用することができる。硬化剤としては、フェノール樹脂、ポリカルボン酸およびその酸無水物、シアネートエステル樹脂、活性エステル樹脂、マレイミド化合物、脂環式オレフィン重合体、アミン類、イミダゾール類等が挙げられる。これらの中でも、硬化塗膜の破断点強度、熱膨張係数、および貯蔵弾性率の各最適化の観点から、フェノール樹脂、イミダゾール類が好ましく、フェノール樹脂がより好ましい。硬化剤は1種を単独で用いてもよく、または2種以上を併用してもよい。
 フェノール樹脂としては、フェノールノボラック樹脂、アルキルフェノールボラック樹脂、ビスフェノールAノボラック樹脂、ジシクロペンタジエン型フェノール樹脂、Xylok型フェノール樹脂、テルペン変性フェノール樹脂、クレゾール/ナフトール樹脂、ポリビニルフェノール類、フェノール/ナフトール樹脂、α-ナフトール骨格含有フェノール樹脂、トリアジン骨格含有クレゾールノボラック樹脂、ビフェニルアラルキル型フェノール樹脂、ザイロック型フェノールノボラック樹脂等の従来公知のものを、1種を単独または2種以上を組み合わせて用いることができる。
 フェノール樹脂の中でも、水酸基当量が130g/eq.以上のものが好ましく、150g/eq.以上のものがより好ましい。水酸基当量が130g/eq.以上のフェノール樹脂としては、例えば、ジシクロペンタジエン骨格フェノールノボラック樹脂(GDPシリーズ、群栄化学工業株式会社製)、ザイロック型フェノールノボラック樹脂(MEH-7800、明和化成株式会社製)、ビフェニルアラルキル型ノボラック樹脂(MEH-7851、明和化成株式会社製)、ナフトールアラルキル型硬化剤(SNシリーズ、日鉄ケミカル&マテリアル株式会社製)、トリアジン骨格含有クレゾールノボラック樹脂(LA-3018-50P、DIC株式会社製)などが挙げられる。
 イミダゾール類としては、例えば、エポキシ樹脂とイミダゾールの反応物等を言う。例えば、2-メチルイミダゾール、4-メチル-2-エチルイミダゾール、2-フェニルイミダゾール、4-メチル-2-フェニルイミダゾール、1-ベンジル-2-メチルイミダゾール、2-エチルイミダゾール、2-イソプロピルイミダゾール、1-シアノエチル-2-メチルイミダゾール、1-シアノエチル-2-エチル-4-メチルイミダゾール、1-シアノエチル-2-ウンデシルイミダゾール等を挙げることができる。イミダゾール類の市販品としては、例えば、2E4MZ、C11Z、C17Z、2PZ(以上は、エポキシ樹脂とイミダゾールの反応物)のイミダゾール類や、2MZ-A、2E4MZ-A、2MZA-PW(以上は、イミダゾールのAZINE(アジン)化合物)、2MZ-OK、2PZ-OK(以上は、イミダゾールのイソシアヌル酸塩)、2PHZ、2P4MHZ(以上は、イミダゾールヒドロキシメチル体)(これらはいずれも四国化成工業株式会社製)等を挙げることができる。
 硬化剤の配合量は、固形分換算で、熱硬化性樹脂組成物全量に対して、好ましくは0.5~15質量%であり、より好ましくは0.5~10質量%である。
(無機充填剤)
 熱硬化性樹脂組成物は無機充填剤を含んでもよい。無機充填剤は、硬化物の密着性、機械的強度、線膨張係数等の特性を向上させるものであることが好ましい。無機充填剤としては、例えば、シリカ、硫酸バリウム、チタン酸バリウム、酸化ケイ素、炭酸カルシウム、窒化ケイ素、窒化アルミニウム、窒化ホウ素、アルミナ、酸化マグネシウム、水酸化アルミニウム、水酸化マグネシウム、酸化チタン、マイカ、タルク、クレー、有機ベントナイト、銅、金、銀、パラジウム等が挙げられる。無機充填剤は1種を単独で用いてもよく、または2種以上を併用してもよい。
 これらの無機充填剤のなかでも、低体積膨張性に優れる炭酸カルシウムやシリカ、硫酸バリウム、酸化アルミニウム(以下、アルミナともいう)が好適に用いられ、中でもシリカ、酸化アルミニウムおよび炭酸カルシウムがより好適に用いられ、シリカおよび酸化アルミニウムがさらに好適に用いられ、シリカが特に好適に用いられる。シリカとしては、非晶質、結晶のいずれであってもよく、これらの混合物でもよい。特に非晶質(溶融)シリカが好ましい。酸化アルミニウムとしては、スピネル型(γ―アルミナ(低温))、コランダム型(α―アルミナ(高温))のいずれであってもよい。また、炭酸カルシウムとしては、天然の重質炭酸カルシウム、合成の沈降炭酸カルシウムのいずれであってもよい。
 無機充填剤の形状は、特に制限されるものではなく、球状、針状、板状、鱗片状、中空状、不定形状、六角状、キュービック状、薄片状など挙げられるが、無機充填剤の高配合の観点から球状が好ましい。
 また、これら無機充填剤の平均粒径は、特に限定されないが、好ましくは0.1μm~25μmであり、より好ましくは0.1μm~15μmであり、さらに好ましくは0.3μm~10μmである。なお、平均粒径とは平均一次粒径を意味し、レーザー回折/散乱法により測定することができる。
 無機充填剤の配合量は、固形分換算で、熱硬化性樹脂組成物全量に対して、好ましくは50質量%以上であり、より好ましくは55質量%以上90質量%以下であり、さらに好ましくは55質量%以上85質量%以下である。無機充填剤の配合量が上記範囲内であれば、硬化物が熱膨張しづらく、チップを容易に個片化することができる。
(シランカップリング剤)
 熱硬化性樹脂組成物は、シランカップリング剤をさらに含んでもよい。シラン系カップリング剤を配合することにより、無機充填剤とエポキシ樹脂との密着性を向上させ、その硬化物におけるクラックの発生を抑えることが可能となる。
 シラン系カップリング剤としては、例えば、エポキシシラン、ビニルシラン、イミダゾールシラン、メルカプトシラン、メタクリロキシシラン、アミノシラン、スチリルシラン、イソシアネートシラン、スルフィドシラン、ウレイドシランなどが挙げられる。また、シラン系カップリング剤は、予めシラン系カップリング剤で表面処理をした無機充填剤を用いることにより配合されてもよい。
 シラン系カップリング剤の配合割合は、無機充填剤とエポキシ樹脂との密着性と消泡性とを両立させる観点から、固形分換算で、無機充填剤100質量部に対して、好ましくは0.05~2.5質量部である。
(着色剤)
 熱硬化性樹脂組成物は、着色剤を含んでもよい。着色剤としては、特に限定されず、赤、青、緑、黄等の公知の着色剤を使用することができ、顔料、染料、色素のいずれでもよいが、環境負荷の低減や人体への影響が少ない観点からハロゲンを含有しない着色剤であることが好ましい。
 赤色着色剤としてはモノアゾ系、ジスアゾ系、アゾレーキ系、ベンズイミダゾロン系、ペリレン系、ジケトピロロピロール系、縮合アゾ系、アントラキノン系、キナクリドン系等があり、具体的には以下のようなカラ-インデックス(C.I.;ザ ソサイエティ オブ ダイヤーズ アンド カラリスツ(The Society of Dyersand Colourists)発行)番号が付されているものが挙げられる。
 モノアゾ系赤色着色剤としては、Pigment Red 1,2,3,4,5,6,8,9,12,14,15,16,17,21,22,23,31,32,112,114,146,147,151,170,184,187,188,193,210,245,253,258,266,267,268,269等が挙げられる。また、ジスアゾ系赤色着色剤としては、Pigment Red 37,38,41等が挙げられる。また、モノアゾレーキ系赤色着色剤としては、Pigment Red 48:1,48:2,48:3,48:4,49:1,49:2,50:1,52:1,52:2,53:1,53:2,57:1,58:4,63:1,63:2,64:1,68等が挙げられる。また、ベンズイミダゾロン系赤色着色剤としては、Pigment Red 171,175,176、185、208等が挙げられる。また、ぺリレン系赤色着色剤としては、Solvent Red 135,179,Pigment Red 123,149,166,178,179,190,194,224等が挙げられる。また、ジケトピロロピロール系赤色着色剤としては、Pigment Red 254,255,264,270,272等が挙げられる。また、縮合アゾ系赤色着色剤としては、Pigment Red 220,144,166,214,220,221,242等が挙げられる。また、アントラキノン系赤色着色剤としては、Pigment Red 168,177,216、Solvent Red 149,150,52,207等が挙げられる。また、キナクリドン系赤色着色剤としては、Pigment Red 122,202,206,207,209等が挙げられる。
 青色着色剤としてはフタロシアニン系、アントラキノン系があり、顔料系はピグメント(Pigment)に分類されている化合物が挙げられ、例えば、Pigment Blue 15,15:1,15:2,15:3,15:4,15:6,16,60。染料系としては、Solvent Blue 35,63,68,70,83,87,94,97,122,136,67,70等を使用することができる。上記以外にも、金属置換もしくは無置換のフタロシアニン化合物も使用することができる。
 黄色着色剤としてはモノアゾ系、ジスアゾ系、縮合アゾ系、ベンズイミダゾロン系、イソインドリノン系、アントラキノン系等が挙げられ、例えば、アントラキノン系黄色着色剤としては、Solvent Yellow 163,Pigment Yellow 24,108,193,147,199,202等が挙げられる。イソインドリノン系黄色着色剤としては、Pigment Yellow 110,109,139,179,185等が挙げられる。縮合アゾ系黄色着色剤としては、Pigment Yellow
 93,94,95,128,155,166,180等が挙げられる。ベンズイミダゾロン系黄色着色剤としては、Pigment Yellow 120,151,154,156,175,181等が挙げられる。また、モノアゾ系黄色着色剤としては、Pigment Yellow 1,2,3,4,5,6,9,10,12,61,62,62:1,65,73,74,75,97,100,104,105,111,116,167,168,169,182,183等が挙げられる。また、ジスアゾ系黄色着色剤としては、Pigment Yellow 12,13,14,16,17,55,63,81,83,87,126,127,152,170,172,174,176,188,198等が挙げられる。
 その他、紫、オレンジ、茶色、黒、白等の着色剤を加えてもよい。具体的には、Pigment Black 1,6,7,8,9,10,11,12,13,18,20,25,26,28,29,30,31,32、Pigment Violet 19、23、29、32、36、38、42、Solvent Violet13,36、C.I.Pigment Orange 1,5,13,14,16,17,24,34,36,38,40,43,46,49,51,61,63,64,71,73、PigmentBrown 23,25,カーボンブラック、酸化チタン等が挙げられる。
 着色剤の配合量は、特に限定されないが、固形分換算で、熱硬化性樹脂組成物全量に対して、好ましくは0.01~20質量%、より好ましくは0.05~10質量%であり、さらに好ましくは0.1~5質量%である。
(有機溶剤)
 熱硬化性樹脂組成物は、組成物の調製や粘度調整のために用いられる有機溶剤を含んでもよい。有機溶剤としては、例えば、メチルエチルケトン、シクロヘキサノン等のケトン類;トルエン、キシレン、テトラメチルベンゼン等の芳香族炭化水素類;セロソルブ、メチルセロソルブ、ブチルセロソルブ、カルビトール、メチルカルビトール、ブチルカルビトール、プロピレングリコールモノメチルエーテル、ジプロピレングリコールモノメチルエーテル(DPM)、ジプロピレングリコールジエチルエーテル、トリプロピレングリコールモノメチルエーテル等のグリコールエーテル類;酢酸エチル、酢酸ブチル、乳酸ブチル、セロソルブアセテート、ブチルセロソルブアセテート、カルビトールアセテート、ブチルカルビトールアセテート、プロピレングリコールモノメチルエーテルアセテート、ジプロピレングリコールモノメチルエーテルアセテート、炭酸プロピレン等のエステル類;オクタン、デカン等の脂肪族炭化水素類;石油エーテル、石油ナフサ、ソルベントナフサ等の石油系溶剤等を使用することができる。これらの有機溶剤は、1種を単独で用いてもよく、または2種以上を併用してもよい。
(その他の成分)
 本発明による熱硬化性樹脂組成物は、熱硬化性樹脂と併用して光硬化性樹脂が含まれていてもよい。光硬化性樹脂としては、活性エネルギー線によってラジカル性の付加重合反応により硬化し得る硬化性樹脂が挙げられる。分子中に1個以上のエチレン性不飽和基を有するラジカル性の付加重合反応性成分の具体例としては、例えば、慣用公知のポリエステル(メタ)アクリレート、ポリエーテル(メタ)アクリレート、ウレタン(メタ)アクリレート、カーボネート(メタ)アクリレート、エポキシ(メタ)アクリレート等が挙げることができる。具体的には、エチレングリコール、メトキシテトラエチレングリコール、ポリエチレングリコール、プロピレングリコール等のグリコールのジアクリレート類;N,N-ジメチルアクリルアミド、N-メチロールアクリルアミド、N,N-ジメチルアミノプロピルアクリルアミド等のアクリルアミド類;N,N-ジメチルアミノエチルアクリレート、N,N-ジメチルアミノプロピルアクリレート等のアミノアルキルアクリレート類;ヘキサンジオール、トリメチロールプロパン、ペンタエリスリトール、ジペンタエリスリトール、トリス-ヒドロキシエチルイソシアヌレート等の多価アルコールまたはこれらのエチレオキサイド付加物、プロピレンオキサイド付加物、もしくはε-カプロラクトン付加物等の多価アクリレート類;フェノキシアクリレート、ビスフェノールAジアクリレート、およびこれらのフェノール類のエチレンオキサイド付加物もしくはプロピレンオキサイド付加物等の多価アクリレート類;グリセリンジグリシジルエーテル、グリセリントリグリシジルエーテル、トリメチロールプロパントリグリシジルエーテル、トリグリシジルイソシアヌレート等のグリシジルエーテルの多価アクリレート類;前記に限らず、ポリエーテルポリオール、ポリカーボネートジオール、水酸基末端ポリブタジエン、ポリエステルポリオール等のポリオールを直接アクリレート化、もしくは、ジイソシアネートを介してウレタンアクリレート化したアクリレート類およびメラミンアクリレート、および前記アクリレートに対応する各メタクリレート類の少なくとも何れか一種等が挙げられる。なお、本明細書において、(メタ)アクリレートとは、アクリレート、メタクリレート及びそれらの混合物を総称する用語で、他の類似の表現についても同様である。上記した光硬化性樹脂は、液状であることが好ましい。
 また、本発明の熱硬化性樹脂組成物においてエポキシ化合物との熱硬化反応を促進させる場合や、本発明の組成物をアルカリ現像型の熱硬化性樹脂組成物とする場合には、カルボキシル基含有樹脂を含有することができる。カルボキシル基含有樹脂は、エチレン性不飽和基を有するカルボキシル基含有感光性樹脂であってもよく、また、芳香環を有しても有さなくてもよい。
 本発明の熱硬化性樹脂組成物には、光硬化性樹脂を用いる場合は、光重合開始剤を添加することが好ましい。この光重合開始剤としては、例えばベンゾイン、ベンゾインメチルエ-テル、ベンゾインエチルエ-テル、ベンゾインイソプロピルエ-テル、ベンゾインイソブチルエ-テル、ベンジルメチルケタ-ルなどのベンゾイン化合物とそのアルキルエ-テル類;アセトフェノン、2,2-ジメトキシ-2-フェニルアセトフェノン、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン、ジエトキシアセトフェノン、2,2-ジエトキシ-2-フェニルアセトフェノン、1,1-ジクロロアセトフェノン、1-ヒドロキシシクロヘキシルフェニルケトン、2-メチル-1-[4-(メチルチオ)フェニル]-2-モルフォリノ-プロパン-1-オンなどのアセトフェノン類;メチルアントラキノン、2-エチルアントラキノン、2-ターシャリ-ブチルアントラキノン、1-クロロアントラキノン、2-アミルアントラキノンなどのアントラキノン類;チオキサントン、2、4-ジエチルチオキサントン、2-クロロチオキサントン、2,4-ジクロロチオキサントン、2-メチルチオキサントン、2,4-ジイソプロピルチオキサントンなどのチオキサントン類;アセトフェノンジメチルケタ-ル、ベンジルジメチルケタ-ルなどのケタ-ル類;ベンゾフェノン、4,4-ビスメチルアミノベンゾフェノンなどのベンゾフェノン類;1-[4-(フェニルチオ)フェニル-1,2-オクタンジオン2-(O-ベンゾイルオキシム)]、1-[9-エチル-6-(2-メチルベンゾイル)-9H-カルバゾール-3-イル]エタノンO-アセチルオキシム等のオキシムエステル類などが挙げられる。これらは単独または2種類以上を混合して使用することが可能であり、さらにトリエタノ-ルアミン、メチルジエタノ-ルアミン等の第3級アミン;2-ジメチルアミノエチル安息香酸、4-ジメチルアミノ安息香酸エチルなどの安息香酸誘導体などの光重合開始助剤等と組み合わせて使用することができる。
 光重合開始剤は、後述する光照射後の加熱硬化に用いる場合には、光塩基発生剤としての機能も有するものが好適である。このような光塩基発生剤としての機能も有する光重合開始剤としては、例えば、α-アミノアセトフェノン類、オキシムエステル類や、アシルオキシイミノ基,N-ホルミル化芳香族アミノ基、N-アシル化芳香族アミノ基、ニトロベンジルカーバメイト基、アルコオキシベンジルカーバメート基等の置換基を有する化合物等が挙げられる。
[用途]
 本発明による熱硬化性樹脂組成物は、SAWフィルター用の封止や保護用途として好ましく用いることができる。また上記用途以外においては、プリント配線板の硬化膜の形成用であることが好ましく、永久保護膜の形成用であることがより好ましく、層間絶縁材、カバーレイ、ソルダーレジスト組成物、または穴埋め充填材用であることが特に好ましい。また、本発明の熱硬化性樹脂組成物は、薄膜でも膜強度に優れた硬化物を形成できることから、薄膜化が要求されるプリント配線板、例えばパッケージ基板(半導体パッケージに用いられるプリント配線板)におけるパターン被膜の形成にも好適に用いることができる。さらに、本発明の熱硬化性樹脂組成物は、フレキシブルプリント配線板にも好適に使用できる。
[ドライフィルム]
 本発明によるドライフィルムは、第一のフィルムと、この第一のフィルム上に形成された上記の熱硬化性樹脂組成物の乾燥塗膜からなる樹脂層とを備えるものである。ドライフィルム化に際しては、熱硬化性樹脂組成物を上記有機溶剤で希釈して適切な粘度に調整し、コンマコーター、ブレードコーター、リップコーター、ロッドコーター、スクイズコーター、リバースコーター、トランスファロールコーター、グラビアコーター、スプレーコーター等で第一のフィルム上に均一な厚さに塗布し、通常、50~130℃の温度で1~30分間乾燥して膜を得ることができる。塗布膜厚については特に制限はないが、より個片化しやすい点において、乾燥後の膜厚で、10~250μm、好ましくは30~200μmの範囲で適宜選択される。
 第一のフィルムとしては、公知のものであれば特に制限なく使用することができ、例えば、ポリエチレンテレフタレートやポリエチレンナフタレート等のポリエステルフィルム、ポリイミドフィルム、ポリアミドイミドフィルム、ポリプロピレンフィルム、ポリスチレンフィルム等の熱可塑性樹脂からなるフィルムを好適に使用することができる。これらの中でも、耐熱性、機械的強度、取扱性等の観点から、ポリエステルフィルムが好ましい。また、これらフィルムの積層体を第一のフィルムとして使用することもできる。
 また、上記したような熱可塑性樹脂フィルムは、機械的強度向上の観点から、一軸方向または二軸方向に延伸されたフィルムであることが好ましい。
 第一のフィルムの厚さは、特に制限されるものではないが、例えば、10μm~150μmとすることができる。
 前記ドライフィルムは、構造体の樹脂層を支持するなどの目的で第一のフィルムを有するものである。本発明における第一のフィルムとは、基板等の基材上にドライフィルム上に形成された上記硬化性樹脂層からなる樹脂層側が接するように加熱等によりラミネートして一体成形する際には少なくとも樹脂層に接着しているものをいう。第一のフィルムはラミネート後の工程において、樹脂層から剥離しても良い。特に本発明においては硬化後の工程において、樹脂層から剥離することが好ましい。第一のフィルム上に硬化性樹脂組成物の乾燥塗膜からなる樹脂層を形成した後、さらに、樹脂層の表面に塵が付着するのを防ぐなどの目的で、樹脂層の表面に剥離可能な第二のフィルム(カバーフィルム)を積層することが好ましい。本発明における第二のフィルムとは、基板等の基材上にドライフィルムの樹脂層側が接するように加熱等によりラミネートして一体成形する際、ラミネート前に構造体から剥離するものをいう。剥離可能な第二のフィルムとしては、例えば、ポリエチレンフィルム、ポリテトラフルオロエチレンフィルム、ポリプロピレンフィルム、表面処理した紙等を用いることができ、第二のフィルムを剥離するときに樹脂層と第一のフィルムとの接着力よりも樹脂層と第二のフィルムとの接着力がより小さいものであればよい。
 第二のフィルムの厚さは、特に限定されるものではないが、例えば、10μm~150μmとすることができる。
 ドライフィルムを用いてプリント配線板上に硬化物を作製するには、ドライフィルムから第二のフィルムを剥離し、ドライフィルムの露出した樹脂層を回路形成された基材に重ね、ラミネーター等を用いて貼り合わせ、回路形成された基材上に樹脂層を形成する。次いで、形成された樹脂層に対し、加熱硬化すれば、硬化物を形成することができる。また、必要に応じて、加熱硬化の前に、露光、現像をおこなってもよい。第一のフィルムは、硬化前または硬化後のいずれかで剥離すればよく、露光をおこなう場合には、露光前または露光後のいずれかで剥離すればよい。
[硬化物]
 本発明による硬化物は、上記の熱硬化性樹脂組成物を硬化して得られるものである。本発明による硬化物は、プリント配線板や電気電子部品等に好適に用いることができる。本発明による硬化物は、破断し易く、熱膨張しづらく、かつ反りにくいため、複数のチップを一括封止した後にチップを1つ1つに個片化する工程においてチップを容易に個片化することができる。
[プリント配線板]
 本発明によるプリント配線板は、上記の硬化物を備えるものである。本発明のプリント配線板の製造方法としては、例えば、本発明の熱硬化性樹脂組成物を、上記有機溶剤を用いて塗布方法に適した粘度に調整して、基材上に、ディップコート法、フローコート法、ロールコート法、バーコーター法、スクリーン印刷法、カーテンコート法等の方法により塗布した後、60~100℃の温度で熱硬化性樹脂組成物中に含まれる有機溶剤を揮発乾燥(仮乾燥)させることで、タックフリーの樹脂層を形成する。さらに、高温で加熱することで、樹脂層を硬化させることができる。また、ドライフィルムの場合、ラミネーター等により樹脂層が基材と接触するように基材上に貼り合わせた後、第一のフィルムを剥がすことにより、基材上に樹脂層を形成する。
 上記基材としては、あらかじめ銅等により回路形成されたプリント配線板やフレキシブルプリント配線板の他、紙フェノール、紙エポキシ、ガラス布エポキシ、ガラスポリイミド、ガラス布/不繊布エポキシ、ガラス布/紙エポキシ、合成繊維エポキシ、フッ素樹脂・ポリエチレン・ポリフェニレンエーテル、ポリフェニレンオキサイド・シアネート等を用いた高周波回路用銅張積層板等の材質を用いたもので、全てのグレード(FR-4等)の銅張積層板、その他、金属基板、ポリイミドフィルム、ポリエチレンテレフタレートフィルム、ポリエチレンナフタレート(PEN)フィルム、ガラス基板、セラミック基板、ウエハ板等を挙げることができる。
 熱硬化性樹脂組成物をドライフィルム化した場合、基材上への貼合は、真空ラミネーター等を用いて、加圧および加熱下で行うことが好ましい。このような真空ラミネーターを使用することにより、回路形成された基板を用いた場合に、回路基板表面に凹凸があっても、回路基板に密着するため、気泡の混入がなく、また、基板表面の凹部の穴埋め性も向上する。加圧条件は、0.1~2.0MPa程度であることが好ましく、また、加熱条件は、40~120℃であることが好ましい。
 熱硬化性樹脂組成物を塗布した後に行う硬化は、熱風循環式乾燥炉、IR炉、ホットプレート、コンベクションオーブン等(蒸気による空気加熱方式の熱源を備えたものを用いて乾燥機内の熱風を向流接触せしめる方法およびノズルより支持体に吹き付ける方式)を用いて行うことができる。この中でも、硬化性の観点から、熱風循環乾燥炉を用いることが好ましい。例えば、80~120℃、好ましくは90~110℃で、10~60分、好ましくは20~40分、1段階目の加熱を行った後、さらに180℃~220℃、好ましくは190~210℃で、30~120分、好ましくは50~70分、2段階目の加熱硬化を行い、硬化物を形成することができる。2段階硬化をすることにより、硬化時の気泡の発生を抑制することができる点で好ましい。具体的には1段階目において残有溶剤分を揮発させることにより、本硬化時の気泡の発生を抑制させることができる。次に2段階目においてさらに高温で硬化させることで、硬化を完了させることができる。
[電気電子部品]
 本発明による電気電子部品は、上記のプリント配線板を備えるものである。本発明による電気電子部品は、従来公知の様々な電気機器に用いることができる。なかでも、SAWフィルターが好ましい。
 上記基材としては、例えば、プリント配線基板、LTCC(Low Temperature Co-fired Ceramics)基板(以下、低温同時焼成セラミック基板ともいう)、セラミック基板、シリコン基板、金属基板などが挙げられる。電気電子部品としては、センサー、MEMS、SAWチップなどが挙げられる。なかでも、圧力センサー、振動センサー、SAWチップを好適に使用でき、SAWチップが特に好ましい
 熱硬化性樹脂組成物をドライフィルム化した場合、基材上への貼合は、真空ラミネーター等を用いて、加圧および加熱下で行うことが好ましい。このような真空ラミネーターを使用することにより、部品実装された基板を用いた場合に、凹凸があっても、基板に密着するため、気泡の混入がなく、また、電気電子部品の封止性が向上する。加圧条件は、0.1~2.0MPa程度であることが好ましく、また、加熱条件は、40~120℃であることが好ましい。
 熱硬化性樹脂組成物を塗布した後に行う硬化は、熱風循環式乾燥炉、IR炉、ホットプレート、コンベクションオーブン等(蒸気による空気加熱方式の熱源を備えたものを用いて乾燥機内の熱風を向流接触せしめる方法およびノズルより支持体に吹き付ける方式)を用いて行うことができる。この中でも、硬化性の観点から、熱風循環乾燥炉を用いることが好ましい。例えば、80~120℃、好ましくは90~110℃で、10~60分、好ましくは20~40分、1段階目の加熱を行った後、さらに180℃~220℃、好ましくは190~210℃で、30~120分、好ましくは50~70分、2段階目の加熱硬化を行い、硬化物を形成することができる。2段階硬化をすることにより、硬化時の気泡の発生を抑制することができる点で好ましい。具体的には1段階目において残有溶剤分を揮発させることにより、本硬化時の気泡の発生を抑制させることができる。次に2段階目においてさらに高温で硬化させることで、硬化を完了させることができる。
 また、熱硬化性樹脂組成物が、例えば光塩基発生剤としての機能も有する光重合開始剤や光塩基発生剤を含有する場合、加熱工程の前に光照射を行うことにより、発生した塩基が液状の熱硬化性樹脂(ビスフェノール骨格を有するエポキシ樹脂等)に対して付加反応することより、熱硬化性樹脂組成物の塗膜のより深部まで硬化することができる。
 以下、本発明を、実施例を用いてより詳細に説明するが、本発明は下記実施例に限定されるものではない。なお、以下において「部」および「%」とあるのは、特に断りのない限り全て質量基準である。
<熱硬化性樹脂組成物の調製>
(実施例1~3、5、比較例1~4)
 下記表1の各実施例および比較例に示す組成の溶剤を容器に入れ、溶剤が揮発しないように50℃に加温し、それぞれのエポキシ樹脂を加えて、十分に撹拌し、溶解させた。その後、添加剤およびフィラーを加えて、3本ロールミルにて混練し、さらに硬化剤、硬化促進剤、およびその他の樹脂を加えて、撹拌機により十分に撹拌して、硬化性樹脂組成物を得た。
(実施例4)
 下記表1に示す処方にて各成分を配合し、3本ロールミルで分散して、硬化性樹脂組成物を得た。
Figure JPOXMLDOC01-appb-T000001
 表1中、各成分の配合量は質量部基準である。
*1:三菱ケミカル株式会社製、jER828
*2:日本化薬株式会社製、XD-1000
*3:DIC株式会社製、HP-7200L
*4:DIC株式会社製、EPICLON N-740
*5:DIC株式会社製、HP-4032D
*6:三菱ケミカル株式会社製、YX6954BH30(固形分:30質量%)
*7:ナガセケムテックス株式会社製、テイサンレジン SG-P3(固形分:15質量%)
*8:ナガセケムテックス株式会社製、SG-80H(固形分:15質量%)
*9:明和化成株式会社製、HF-1
*10:四国化成工業株式会社製、2E4MZ
*11:アドマテックス株式会社製、SO-C2(シリカ、非晶質、球状、平均粒径(D50)0.5μm)
*12:デンカ株式会社製、FB-7SDX(シリカ、非晶質、球状、平均粒径(D50)5.5μm)
*13:デンカ株式会社製、DAW-07(アルミナ、球状、平均粒径(D50)8.2μm)
*14:信越化学工業株式会社製、KBM-403
*15:カーボンブラック
*16:シクロヘキサノン
*17:ジエチレングリコールモノエチルエーテルアセテート
<ドライフィルムおよびその硬化物の作製>
 各実施例および比較例で得られた熱硬化性樹脂組成物を、バーコーターを用いて、樹脂層の硬化後の膜厚が100μmになるように第一のフィルム(PETフィルム;東洋紡株式会社製TN200、厚さ38μm、大きさ30cm×30cm)上に塗布した。次いで、熱風循環式乾燥炉を用いて、熱硬化性樹脂組成物からなる樹脂層の残留溶剤が0.5~2.5質量%となるように70~120℃(平均100℃)にて5~10分間乾燥し、第一のフィルム上に樹脂層を形成した。続いて、樹脂層の表面に、80℃の温度に設定したロールラミネーターを用いて第二のフィルムとしてOPPフィルム(アルファンFG-201、フィッシュアイレス、王子エフテック株式会社製、厚さ16μm、大きさ30cm×30cm)の張り合わせを行って、ドライフィルムを作製した。
 次に、ドライフィルムから第二のフィルムを剥がし、18μm厚の銅箔(GTS-MP箔、古河電気工業株式会社製)上に、真空ラミネーター(株式会社日本製鋼所製、MVLP-500)を用いて、ラミネート温度80~110℃、圧力0.3MPaの条件で張り合わせた。続いて、第一のフィルムを剥離し、熱風循環式乾燥炉にて100℃で30分間加熱した後に乾燥炉から取り出し、ただちに、別の熱風循環乾燥炉にて200℃で60分間加熱して、樹脂層を硬化させた。その後、硬化物を銅箔から剥離した。尚、硬化後の硬化物の膜厚は100μmであった。
<(i)破断点強度の測定>
 上記で得られた硬化物を、70mm×5mmの短冊状に切り取って、測定サンプルを得た。得られた測定サンプルを、引張り試験機(株式会社島津製作所製、EZ-SX)を用いて、下記の測定条件で測定を行った。結果を表2に示した。
(測定条件)
 引張り速度:1mm/分
 測定温度:23℃
 治具間距離:50mm
 サンプル数n=5
<(ii)線膨張係数の測定>
 上記で得られた硬化物を、15mm×3mmの短冊状に切り取って、測定サンプルを得た。得られた測定サンプルを、TMA測定装置(TA instruments社製、Q400EM)を用いて下記の測定条件で測定を行った。3rdstepの測定結果の30~100℃の平均線膨張率を線膨張係数として記した。結果を表2に示した。
(測定条件)
 1st:30℃→300℃ 10℃/分昇温
 2nd:300℃→30℃ 10℃/分降温
 3rd:30℃→300℃ 10℃/分昇温
<(iii)貯蔵弾性率の測定>
 上記で得られた硬化物を、30mm×5mmの短冊状に切り取って、測定サンプルを得た。得られた測定サンプルを、DMA測定装置(株式会社日立ハイテクサイエンス製、DMA7100)を用いて、下記の測定条件で測定を行った。測定結果から30℃における貯蔵弾性率を算出した。結果を表2に示した。
(測定条件)
 測定温度:30~300℃
 昇温速度:5℃/分
 Loading gap:10分
 周波数:1Hz
 Axial force:0.05N
<個片化試験>
 18μm厚の銅箔を9.5cm×11cm、0.8μm厚のエッチアウト基板(昭和電工マテリアルズ株式会社製の銅張積層板をエッチングした基板)に変更して<ドライフィルムおよびその硬化物の作製>に従い、樹脂層を硬化させた。その後、硬化物をエッチアウト基板から剥離せずに試験を行った。具体的にはエッチアウト基板上の硬化物を、カッティング装置(株式会社リトク製、切断刃:ダイヤモンドカッター))を用いて、5cm×5cmのサイズにエッチアウト基板ごと切断し、各試験片を得た。得られた試験片の切断した端面を顕微鏡にて観察し、個片化の容易性を以下の基準により評価した。評価結果を表2に示す。
(評価基準)
 ○:硬化物端面にバリが無かった。
 ×:硬化物端面にバリが有った。 
Figure JPOXMLDOC01-appb-T000002
 表2からも明らかなように、本願の実施例の熱硬化性樹脂組成物は、破断点強度、熱膨張係数、および貯蔵弾性率の各最適化を行うことで、チップを容易に個片化することができた。

Claims (9)

  1.  熱硬化性樹脂を含む熱硬化性樹脂組成物であって、
     前記熱硬化性樹脂組成物を100℃で30分間加熱した後に180℃で60分間加熱して硬化させた硬化物が、下記の条件:
     (i)破断点強度が100MPa以下であること、
     (ii)線膨張係数が35ppm/℃以下であること、
     (iii)30℃における貯蔵弾性率が2GPa以上であること、
    を満たすことを特徴とする、熱硬化性樹脂組成物。
  2.  前記熱硬化性樹脂組成物が、硬化剤および無機充填剤をさらに含む、請求項1に記載の熱硬化性樹脂組成物。
  3.  前記無機充填剤の含有量が、固形分換算で、前記熱硬化性樹脂組成物全量の50質量%以上である、請求項2に記載の熱硬化性樹脂組成物。
  4.  前記熱硬化性樹脂が、エポキシ化合物である、請求項1または2に記載の熱硬化性樹脂組成物。
  5.  前記硬化剤が、フェノール樹脂およびイミダゾール類から選択される少なくとも1種である、請求項2または3に記載の熱硬化性樹脂組成物。
  6.  第一のフィルムと、前記第一のフィルム上に形成された請求項1または2に記載の熱硬化性樹脂組成物の乾燥塗膜からなる樹脂層とを備えることを特徴とする、ドライフィルム。
  7.  請求項1または2に記載の熱硬化性樹脂組成物を硬化させて得られることを特徴とする、硬化物。
  8.  請求項7に記載の硬化物を備えることを特徴とする、プリント配線板。
  9.  請求項8に記載のプリント配線板を備えることを特徴とする、電気電子部品。
PCT/JP2022/011180 2021-03-24 2022-03-14 熱硬化性樹脂組成物、ドライフィルム、硬化物、プリント配線板および電気電子部品 WO2022202427A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202280023756.0A CN117120551A (zh) 2021-03-24 2022-03-14 热固化性树脂组合物、干膜、固化物、印刷布线板以及电气电子部件
JP2023509026A JP7417008B2 (ja) 2021-03-24 2022-03-14 熱硬化性樹脂組成物、ドライフィルム、硬化物、プリント配線板および電気電子部品

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021049808 2021-03-24
JP2021-049808 2021-03-24

Publications (1)

Publication Number Publication Date
WO2022202427A1 true WO2022202427A1 (ja) 2022-09-29

Family

ID=83395130

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/011180 WO2022202427A1 (ja) 2021-03-24 2022-03-14 熱硬化性樹脂組成物、ドライフィルム、硬化物、プリント配線板および電気電子部品

Country Status (4)

Country Link
JP (1) JP7417008B2 (ja)
CN (1) CN117120551A (ja)
TW (1) TW202248360A (ja)
WO (1) WO2022202427A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10178054A (ja) * 1996-10-15 1998-06-30 Toray Ind Inc 半導体集積回路接続用基板およびそれを構成する部品ならびに半導体装置
JPH10178053A (ja) * 1996-10-15 1998-06-30 Toray Ind Inc 半導体装置用接着剤組成物およびそれを用いた半導体装置用接着剤シート
JP2002146310A (ja) * 2000-08-07 2002-05-22 Toray Ind Inc 半導体装置用接着剤組成物およびそれを用いたカバーレイフィルム及び接着剤シート並びにフレキシブル印刷回路基板
JP2003221509A (ja) * 2002-01-30 2003-08-08 Hitachi Chem Co Ltd 熱硬化性樹脂組成物、接着フィルム、銅張り積層板及びプリント配線板
JP2014189790A (ja) * 2013-03-28 2014-10-06 Nitto Denko Corp 電子デバイス封止用樹脂シート及び電子デバイスパッケージの製造方法
WO2017110342A1 (ja) * 2015-12-24 2017-06-29 コニカミノルタ株式会社 偏光板保護フィルム、その製造方法及び偏光板
WO2018199306A1 (ja) * 2017-04-28 2018-11-01 日立化成株式会社 封止用フィルム、封止構造体及び封止構造体の製造方法
WO2019163292A1 (ja) * 2018-02-22 2019-08-29 太陽インキ製造株式会社 積層型電子部品用樹脂組成物、ドライフィルム、硬化物、積層型電子部品、および、プリント配線板

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6852332B2 (ja) 2015-10-28 2021-03-31 味の素株式会社 接着フィルム

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10178054A (ja) * 1996-10-15 1998-06-30 Toray Ind Inc 半導体集積回路接続用基板およびそれを構成する部品ならびに半導体装置
JPH10178053A (ja) * 1996-10-15 1998-06-30 Toray Ind Inc 半導体装置用接着剤組成物およびそれを用いた半導体装置用接着剤シート
JP2002146310A (ja) * 2000-08-07 2002-05-22 Toray Ind Inc 半導体装置用接着剤組成物およびそれを用いたカバーレイフィルム及び接着剤シート並びにフレキシブル印刷回路基板
JP2003221509A (ja) * 2002-01-30 2003-08-08 Hitachi Chem Co Ltd 熱硬化性樹脂組成物、接着フィルム、銅張り積層板及びプリント配線板
JP2014189790A (ja) * 2013-03-28 2014-10-06 Nitto Denko Corp 電子デバイス封止用樹脂シート及び電子デバイスパッケージの製造方法
WO2017110342A1 (ja) * 2015-12-24 2017-06-29 コニカミノルタ株式会社 偏光板保護フィルム、その製造方法及び偏光板
WO2018199306A1 (ja) * 2017-04-28 2018-11-01 日立化成株式会社 封止用フィルム、封止構造体及び封止構造体の製造方法
WO2019163292A1 (ja) * 2018-02-22 2019-08-29 太陽インキ製造株式会社 積層型電子部品用樹脂組成物、ドライフィルム、硬化物、積層型電子部品、および、プリント配線板

Also Published As

Publication number Publication date
CN117120551A (zh) 2023-11-24
JPWO2022202427A1 (ja) 2022-09-29
TW202248360A (zh) 2022-12-16
JP7417008B2 (ja) 2024-01-17

Similar Documents

Publication Publication Date Title
KR101361753B1 (ko) 광경화성 및 열경화성을 갖는 수지 조성물과, 드라이 필름 솔더 레지스트
KR102023165B1 (ko) 광경화성 및 열경화성을 갖는 수지 조성물 및 드라이 필름 솔더 레지스트
JP6162775B2 (ja) 光硬化性および熱硬化性を有する樹脂組成物と、ドライフィルムソルダレジスト
JP5977361B2 (ja) 光硬化性および熱硬化性を有する樹脂組成物と、ドライフィルムソルダレジスト
KR101799094B1 (ko) 광경화성 및 열경화성을 갖는 수지 조성물 및 드라이 필름 솔더 레지스트
EP1333077A1 (en) Varnish containing polyamide resin and use thereof
KR20140018117A (ko) 광경화성 및 열경화성을 갖는 수지 조성물과, 드라이 필름 솔더 레지스트
CN110662794A (zh) 无芯基板用预浸渍体、无芯基板、无芯基板的制造方法和半导体封装体
WO2018123695A1 (ja) 硬化性組成物、主剤および硬化剤、ドライフィルム、硬化物、および、プリント配線板
KR101648555B1 (ko) 광경화성 및 열경화성을 갖는 수지 조성물 및 드라이 필름 솔더 레지스트
JP7417008B2 (ja) 熱硬化性樹脂組成物、ドライフィルム、硬化物、プリント配線板および電気電子部品
KR101360968B1 (ko) 광경화성 및 열경화성을 갖는 수지 조성물과, 드라이 필름 솔더 레지스트
KR20140023717A (ko) 광경화성 및 열경화성을 갖는 수지 조성물과 및 이를 사용하여 제조된 드라이 필름 솔더 레지스트
KR101331573B1 (ko) 광경화성 및 열경화성을 갖는 수지 조성물과, 드라이 필름 솔더 레지스트
KR101755018B1 (ko) 광경화성 및 열경화성을 갖는 수지 조성물 및 드라이 필름 솔더 레지스트
KR101296851B1 (ko) 광경화성 및 열경화성을 갖는 수지 조성물 및 드라이 필름 솔더 레지스트
KR102571046B1 (ko) 경화성 수지 조성물, 드라이 필름, 경화물 및 프린트 배선판
JP2020056848A (ja) 硬化性樹脂組成物、ドライフィルム、硬化物、プリント配線板および電子部品
WO2013125854A1 (ko) 광경화성 및 열경화성을 갖는 수지 조성물과, 드라이 필름 솔더 레지스트
JP7186920B2 (ja) 構造体
KR102517621B1 (ko) 경화성 조성물, 드라이 필름, 경화물 및 프린트 배선판
KR101799092B1 (ko) 광경화성 및 열경화성을 갖는 수지 조성물 및 드라이 필름 솔더 레지스트
KR20240023049A (ko) 수지 조성물, 경화물, 수지 시트, 회로 기판 및 반도체 칩 패키지
CN117850164A (zh) 固化性树脂组合物、干膜、固化物和印刷布线板
JP2020166212A (ja) 硬化性樹脂組成物、ドライフィルム、硬化物、およびプリント配線板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22775219

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023509026

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22775219

Country of ref document: EP

Kind code of ref document: A1