WO2022202426A1 - 過給機異常予兆判定装置及び過給機異常予兆判定方法 - Google Patents

過給機異常予兆判定装置及び過給機異常予兆判定方法 Download PDF

Info

Publication number
WO2022202426A1
WO2022202426A1 PCT/JP2022/011178 JP2022011178W WO2022202426A1 WO 2022202426 A1 WO2022202426 A1 WO 2022202426A1 JP 2022011178 W JP2022011178 W JP 2022011178W WO 2022202426 A1 WO2022202426 A1 WO 2022202426A1
Authority
WO
WIPO (PCT)
Prior art keywords
supercharger
rotation speed
time
engine
turbocharger
Prior art date
Application number
PCT/JP2022/011178
Other languages
English (en)
French (fr)
Inventor
勝彦 辰巳
哲也 松尾
真吾 金澤
勲 冨田
Original Assignee
三菱重工マリンマシナリ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工マリンマシナリ株式会社 filed Critical 三菱重工マリンマシナリ株式会社
Publication of WO2022202426A1 publication Critical patent/WO2022202426A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/12Control of the pumps
    • F02B37/16Control of the pumps by bypassing charging air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/12Control of the pumps
    • F02B37/18Control of the pumps by bypassing exhaust from the inlet to the outlet of turbine or to the atmosphere
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B39/00Component parts, details, or accessories relating to, driven charging or scavenging pumps, not provided for in groups F02B33/00 - F02B37/00
    • F02B39/16Other safety measures for, or other control of, pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D23/00Controlling engines characterised by their being supercharged
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D45/00Electrical control not provided for in groups F02D41/00 - F02D43/00

Definitions

  • the present disclosure relates to a supercharger abnormality sign determination device and a supercharger abnormality sign determination method.
  • This application claims priority based on Japanese Patent Application No. 2021-051129 filed with the Japan Patent Office on March 25, 2021, the content of which is incorporated herein.
  • Patent Document 1 discloses a method for determining an abnormal state of a supercharger caused by a reduction in the area of an intake passage upstream of a compressor of a supercharger based on a pressure change on the upstream side of the compressor of the supercharger. Determining an overspeed condition of the feeder is described.
  • Patent Document 2 a map that defines the relationship between the load of the engine and the target rotation speed of the supercharger is compared with the actual rotation speed of the supercharger to determine the overspeed state of the supercharger. Have been described.
  • the overspeed state of the supercharger is determined based on the rotation speed of the supercharger, and supercharging is performed in a transient state where the load of the engine changes. It is difficult to quickly determine signs of an abnormal state of the aircraft.
  • the present disclosure quickly detects a sign of an abnormal state of a turbocharger not only in a steady state of operation of an engine with a constant load or a constant number of revolutions, but also in a transient state in which the load of the engine changes. It is an object of the present invention to provide a supercharger abnormality sign determination device and a supercharger abnormality sign determination method capable of judging.
  • a turbocharger abnormality sign determination device includes: A supercharger abnormality sign determination device for determining a sign of an abnormal state of a supercharger, a load parameter acquisition unit configured to acquire time-series data of a load parameter indicating the load or rotation speed of an engine; a supercharger rotation speed acquisition unit configured to acquire time-series data of the rotation speed of the supercharger; Based on the time-series data of the load parameter acquired by the load parameter acquisition unit and the engine turbocharger correlation information indicating the correlation between the load parameter and the rotation speed of the turbocharger, a reference value generation unit that generates a reference value for the rate of change of the rotation speed over time; a rotation speed time change rate calculation unit that calculates time-series data of the time-series data of the rotation speed of the supercharger from the time-series data of the rotation speed of the supercharger acquired by the supercharger rotation speed acquisition unit; Based on the time-series data of the time rate
  • a turbocharger abnormality sign determination method includes: A supercharger abnormality sign determination method for determining a sign of an abnormal state of a supercharger, comprising: an engine load parameter acquisition step of acquiring time-series data of a load parameter indicating the load or rotation speed of the engine; a supercharger rotation speed acquisition step configured to acquire time-series data of the rotation speed of the supercharger; Based on the time-series data of the load parameter acquired in the engine load parameter acquisition step and engine turbocharger correlation information indicating the correlation between the load parameter and the rotation speed of the turbocharger, the turbocharger a reference value generating step for generating a reference value of the time rate of change of the number of rotations of a rotation speed time rate of change calculation step of calculating time series data of the time series data of the rotation speed of the supercharger from the time series data of the rotation speed of the supercharger acquired in the step of obtaining the rotation speed of the supercharger; Abnormality
  • a machine abnormality sign determination device and a supercharger abnormality sign determination method are provided.
  • FIG. 1 is a schematic configuration diagram of an engine system 2 including a supercharger abnormality portent determination device 24 according to one embodiment
  • FIG. FIG. 2 is a diagram showing an example of a hardware configuration of a turbocharger abnormality portent determination device 24 shown in FIG. 1
  • FIG. FIG. 3 is a block diagram showing an example of a functional configuration of a turbocharger abnormality portent determination device 24 shown in FIGS. 1 and 2
  • FIG. FIG. 4 is a diagram showing a flow of abnormality sign determination of the supercharger 8 using the supercharger abnormality sign determination device 24 shown in FIG. 3 ; It is a figure which shows an example of engine supercharger correlation information. It is a figure which shows an example of the calculation method of engine supercharger correlation information.
  • 4 is a diagram showing the relationship between time and the load parameter of the engine 6, and the relationship between time and the rotation speed of the supercharger 8, regarding the process of increasing the load parameter of the engine 6 and the process of maintaining it constant.
  • An example in the case of a marine main engine is shown.
  • 4 is a diagram showing the relationship between time and the load parameter of the engine 6, and the relationship between time and the rotation speed of the supercharger 8, regarding the process of increasing the load parameter of the engine 6 and the process of maintaining it constant.
  • An example in the case of an engine for power generation is shown.
  • 4 is a diagram showing the relationship between time and the rotation speed of the supercharger 8 in the process of decreasing the load parameter of the engine 6 in proportion to time;
  • FIG. 4 is a diagram showing the relationship between time and the load parameter of the engine 6, and the relationship between time and the rotation speed of the supercharger 8, with respect to the process of increasing the load parameter of the engine 6 and the process of maintaining it constant;
  • FIG. 1 is a schematic configuration diagram of an engine system 2 including a turbocharger abnormality portent determination device 24 according to one embodiment.
  • the engine system 2 includes an engine 6, a supercharger 8, an intake passage 10, an exhaust passage 12, a safety valve 14, a bypass passage 16, a bypass valve 18, a load sensor 20, a rotation speed sensor 22, and a supercharger. and a machine abnormality portent determination device 24 .
  • the configuration of the engine 6 is not particularly limited, and the engine 6 may be, for example, a marine main engine or a generator engine.
  • the turbocharger 8 includes a compressor 8a provided in an intake passage 10 connected to the engine 6, a turbine 8b provided in an exhaust passage 12 connected to the engine 6, and a shaft 8c connecting the compressor 8a and the turbine 8b.
  • Compressor 8a, turbine 8b and shaft 8c are coaxially connected and configured to rotate together.
  • the turbine 8b rotates, and the compressor 8a connected to the turbine 8b through the shaft 8c is driven to compress the air.
  • Air compressed by the compressor 8 a is supplied to the engine 6 through an intake passage 10 .
  • the safety valve 14 is provided to open the intake passage 10 to the atmosphere and reduce the pressure in the intake passage 10 when an abnormal sign such as over-rotation of the supercharger 8 occurs.
  • the bypass passage 16 branches from the upstream side of the turbine 8b in the exhaust passage 12, bypasses the turbine 8b, and connects to the downstream side of the turbine 8b.
  • a bypass valve 18 is provided in the bypass passage 16 and is also called a wastegate valve.
  • Load sensor 20 is configured to detect a load parameter of engine 6 .
  • the load parameter of the engine 6 detected by the load sensor 20 may be the load L of the engine 6 or the rotation speed Ne of the engine 6 .
  • the load parameter of the engine 6 may be a governor signal or a load indicator value.
  • the load parameter of the engine 6 may be a scale value of a fuel adjustment rack of a fuel injection pump (not shown) provided in the engine 6 .
  • the load parameter of the engine 6 may be the throttle opening of a throttle valve (not shown) provided in the engine 6 .
  • the rotation speed sensor 22 is configured to detect the rotation speed Nt of the supercharger 8 .
  • the turbocharger abnormality portent determination device 24 is configured to determine a portent of an abnormal state of the turbocharger.
  • the turbocharger abnormality portent determination device 24 will be described below.
  • FIG. 2 is a diagram showing an example of the hardware configuration of the turbocharger abnormality portent determination device 24 shown in FIG.
  • FIG. 3 is a block diagram showing an example of a functional configuration of the supercharger abnormality portent determination device 24 shown in FIGS. 1 and 2.
  • FIG. 4 is a diagram showing an example of a flow of abnormality sign determination of the supercharger 8 using the supercharger abnormality sign determination device 24 shown in FIG.
  • the supercharger abnormality sign determination device 24 includes a processor 72 such as a CPU (Central Processing Unit), a RAM (Random Access Memory) 74, a ROM (Read Only Memory) 76, a HDD (Hard Disk Drive) ) 78 , an input I/F 80 and an output I/F 82 , which are connected to each other via a bus 84 .
  • the hardware configuration of the supercharger abnormality portent determination device 24 is not limited to the above, and may be configured by a combination of a control circuit and a storage device.
  • the turbocharger abnormality portent determination device 24 is configured by a computer executing a program for realizing each function of the turbocharger abnormality portent determination device 24 .
  • each part of the turbocharger abnormality sign determination device 24 described below is to load a program stored in the ROM 76 into the RAM 74 and execute it by the processor 72, and to read and write data in the RAM 74 and ROM 76. is realized by
  • the supercharger abnormality sign determination device 24 includes a load parameter acquisition unit 26, a supercharger rotation speed acquisition unit 28, a reference value generation unit 30, a rotation speed time change rate calculation unit 32, and an abnormality sign determination unit. It includes a unit 34, a correlation information storage unit 35, and the like. The function of each unit of the supercharger abnormality sign determination device 24 shown in FIG. 3 will be described below using the abnormality sign determination flow shown in FIG.
  • the load parameter acquisition unit 26 acquires time-series data of the load parameter of the engine 6 (the load L or the rotation speed Ne of the engine 6) from the load sensor 20.
  • the supercharger rotation speed acquisition unit 28 acquires time-series data of the rotation speed Nt of the supercharger 8 from the rotation speed sensor 22 .
  • the reference value generation unit 30 performs supercharging based on the time-series data of the load parameters of the engine 6 acquired by the load parameter acquisition unit 26 and the engine supercharger correlation information read from the correlation information storage unit 35.
  • a reference value A of the time rate of change dNt/dt of the rotation speed Nt of the machine 8 is generated.
  • This engine supercharger correlation information is correlation information indicating the correlation between the load parameter (load L or rotation speed Ne) of the engine 6 and the rotation speed Nt of the supercharger 8, as shown in FIG. 5A. It is stored in the information storage unit 35 .
  • the reference value generation unit 30 refers to the time-series data of the load parameter of the engine 6 acquired by the load parameter acquisition unit 26, the engine supercharger correlation information, and calculates the time change rate dNt/dt of the rotation speed of the supercharger 8. to the reference value A of
  • the reference value A of the time rate of change dNt/dt of the rotational speed of the supercharger 8 generated by the reference value generation unit 30 corresponds to the time-series data of the load parameter of the engine 6 acquired by the load parameter acquisition unit 26. , and when the time-series data of the load parameter of the engine 6 acquired by the load parameter acquisition unit 26 changes in proportion to time as shown in FIG. It may be a constant value.
  • the “reference value A” means the reference value of the time rate of change dNt/dt of the rotational speed of the turbocharger 8 generated by the reference value generator 30 .
  • the engine supercharger correlation information is, for example, an average of load parameters in a plurality of recent cycles (for example, about several tens of cycles) and an excess load parameter in the plurality of recent cycles. It may be the ratio (Nt/L or Nt/Ne) to the average of the rotation speed Nt of the feeder 8 (see FIG. 5B), or it is determined based on the test results performed before the start of operation of the turbocharger 8. Alternatively, it may be the correlation between the load parameter immediately after the start of operation of the supercharger 8 and the rotational speed Nt of the supercharger 8 .
  • the rotation speed time change rate calculation unit 32 calculates the rotation speed time change rate dNt/ Calculate the time series data of dt.
  • the rotation speed time change rate calculation unit 32 time-differentiates the rotation speed Nt of the supercharger 8 acquired by the supercharger rotation speed acquisition unit 28 at each time, thereby calculating the time change rate of the rotation speed of the supercharger 8. Calculate the time series data of
  • the abnormality sign determination unit 34 determines the time-series data of the time-based change rate dNt/dt of the rotation speed of the supercharger 8 calculated by the rotation speed time-change rate calculation unit 32 and the time-series data generated by the reference value generation unit 30 .
  • a sign of an abnormal state of the supercharger 8 is determined based on the reference value A obtained.
  • FIG. 6 and 7 show the relationship between time and the load parameter of the engine 6, and the time 3 is a diagram showing the relationship between , and the rotation speed Nt of the supercharger 8.
  • FIG. 6 shows an example in which the engine 6 is a marine main engine
  • FIG. 7 shows an example in which the engine 6 is a generator engine.
  • a straight line LA1 is a straight line whose slope is the reference value A for the period a1
  • a straight line LA2 is a straight line whose slope is the reference value A for the period a2.
  • the abnormality portent determination unit 34 determines that there is a portent of overspeed or overrun of the supercharger 8 .
  • straight line LB in FIG. When dt is large and the time rate of change dNt/dt of the rotation speed of the turbocharger 8 calculated by the rotation speed time change rate calculation unit 32 is a constant positive value, the abnormality sign determination unit 34 , that a sign of overspeed of the supercharger 8 is indicated.
  • the “over-rotation” of the supercharger 8 means that the rotation speed of the supercharger 8 exceeds the allowable rotation speed of the supercharger 8 .
  • the “permissible rotation speed” of the supercharger 8 means the upper limit of the rotation speed set for the design of the supercharger 8 in order to avoid damage to the supercharger 8 .
  • This allowable rotation speed may be a value with a safe margin with respect to the upper limit of the rotation speed set in design.
  • the abnormality sign determination unit 34 It is determined that a sign of overrun of the supercharger 8 is indicated.
  • the "overrun" of the supercharger 8 means that the rotational speed Nt of the supercharger 8 exceeds the permissible rotational speed of the supercharger 8 and further increases to the rotational speed at which the supercharger 8 is destroyed. means.
  • the main cause of overrun is abnormal combustion of the engine 6 .
  • Abnormal engine combustion includes, for example, a phenomenon in which unburned fuel in the exhaust pipe or lubricating oil leaked into the combustion chamber burns.
  • the internal damage of the supercharger 8 is, for example, damage to a bearing (journal bearing or thrust bearing) (not shown) of the supercharger 8, which causes the rotation resistance of the rotor including the shaft 8c of the supercharger 8 to increase from the normal state. is also large, and the rotor (at least one of the impeller of the compressor 8a, the impeller of the turbine 8b, and the shaft 8c) is an internal component of the supercharger 8 (a part other than the bearing of the supercharger 8) means a state corresponding to at least one of a state in which the rotational resistance of the rotor is greater than that in a normal state due to contact with the .
  • the abnormality portent determination unit 34 determines that a portent of overspeed or overrun of the supercharger 8 is indicated.
  • the state in which the load of the engine 6 is constant means that the load of the engine 6 is in a stable state, that is, the state in which the load command value of the engine 6 is constant (neither a command to increase or decrease the load of the engine 6 is issued). state).
  • the abnormality portent determination unit 34 determines that a portent of internal damage to the supercharger 8 is indicated.
  • the rotation speed Ne of is maintained constant (for example, the rated rotation speed).
  • the load L of the engine 6 is 0 during periods b1 and b2, increases in proportion to time during period b3, and is maintained constant (for example, rated load) during period b4.
  • the reference value A for the period b1 is a value
  • the reference value A for the period b2 is 0
  • the reference value A for the period b3 is a positive value
  • the reference value A for the period b4 is 0.
  • a straight line LA3 is a straight line whose slope is the reference value A of the period b1
  • a straight line LA4 is a straight line whose slope is the reference value A of the period b2
  • a straight line LA5 is a straight line whose slope is the reference value A of the period b3.
  • the straight line LA6 is a straight line whose slope is the reference value A in the period b4.
  • the abnormality sign determination unit 34 determines that a sign of overspeed of the supercharger 8 is indicated.
  • the abnormality sign determination unit 34 determines that a sign of overrun of the supercharger 8 is indicated.
  • the abnormality portent determination unit 34 determines that a portent of overspeed or overrun of the supercharger 8 is indicated.
  • the abnormality portent determination unit 34 determines that a portent of internal damage to the supercharger 8 is indicated.
  • FIG. 8 is a diagram showing the relationship between time and the rotation speed Nt of the supercharger 8 during the period c during which the load parameter of the engine 6 is decreased in proportion to time.
  • FIG. 8 shows a common example when the engine 6 is a marine main engine and when the engine 6 is a generator engine.
  • the reference value A for the period c generated by the reference value generator 30 is a negative value
  • the straight line LA7 is a straight line with the slope of the reference value A for the period c.
  • the abnormality sign determination unit 34 It is determined that a sign of overrun of the supercharger 8 is indicated.
  • the turbocharger abnormality portent determination device 24 based on the time-series data of the load parameter of the engine 6 and the engine turbocharger correlation information, the reference of the time rate of change dNt/dt of the rotation speed of the turbocharger 8 A value A is generated, and a sign of an abnormal state of the supercharger 8 can be determined based on the time-series data of the rate of change dNt/dt of the rotational speed of the supercharger 8 over time and the generated reference value A. can.
  • the engine/supercharger correlation information indicating the ratio of the average of the load parameter and the average of the rotation speed of the supercharger 8 in the most recent multiple cycles, the ambient environment conditions (for example, temperature, Correlation between the load parameter and the turbocharger rotation speed due to at least one of atmospheric pressure, fuel used in the engine 6, specification change of the engine 6 such as change in fuel injection timing and ignition timing in the engine 6) and aging deterioration changes, it is possible to accurately determine a sign of an abnormal state of the supercharger 8. ⁇
  • the supercharger abnormality portent determination device 24 may include an alarm signal transmission unit 36 as shown in FIG.
  • the alarm signal transmission unit 36 is determined by the abnormality sign determination unit 34 that a sign of excessive rotation of the supercharger 8, a sign of overrun of the supercharger 8, or a sign of internal damage of the supercharger 8 is indicated.
  • an alarm signal is sent based on the determination result of the abnormality portent determination unit. Thereby, the determination result of the abnormality portent determination unit 34 can be notified.
  • the turbocharger abnormality portent determination device 24 may include a valve control signal transmitter 38, as shown in FIG.
  • the valve control signal transmission unit 38 performs (1) as shown in FIG. (2) a bypass valve provided in a bypass passage 16 that bypasses the supercharger 8 in the exhaust passage 12 A valve control signal for increasing the opening of 18 is transmitted.
  • the valve control signal for increasing the opening of the safety valve 14 (1) it is possible to suppress sending excessive compressed air to the engine, and (2) the bypass valve 18.
  • the turbocharger abnormality portent determination device 24 may include a correlation information update unit 40 as shown in FIG.
  • the correlation information update unit 40 updates the reference value A generated by the reference value generation unit 30 (for example, the slope of the straight line LA1 in the example shown in FIG. 9) and the rotation speed of the supercharger 8 when the load of the engine 6 increases. Supercharging based on the difference from the time-varying rate of change dNt/dt (slope of straight line LP in the example shown in FIG. The degree of performance deterioration of the machine 8 is determined.
  • the correlation information updating unit 40 determines that the greater the difference is (the smaller the time rate of change dNt/dt of the rotation speed of the supercharger 8 calculated by the rotation speed time change rate calculation unit 32 is relative to the reference value A), the greater the supercharging. It is determined that the degree of performance deterioration of the machine 8 is serious.
  • the reference value A to be compared may be the value at the time of the operation test or at the beginning of the operation, or may be the value at the time of the previous maintenance.
  • the correlation information updating unit 40 updates the load parameter indicated by the engine turbocharger correlation information stored in the correlation information storage unit 35 and the rotation of the turbocharger 8 according to the determined degree of performance deterioration of the turbocharger 8 .
  • Update correlation with numbers For example, the correlation information updating unit 40 increases the inclination of the rotational speed Nt of the turbocharger 8 with respect to the load parameter indicated by the turbocharger correlation information (for example, FIG. 5A , that is, dNt/dL or dNt/dNe), the load parameter indicated by the engine supercharger correlation information stored in the correlation information storage unit 35 and the rotation speed Nt of the supercharger 8 are combined. update the correlation of Further, when the correlation information update unit 40 determines that the degree of performance deterioration of the turbocharger 8 is more serious than a predetermined specified level, the alarm signal transmission unit 36 (see FIG. 3) transmits an alarm signal. You may
  • the degree of performance deterioration of the turbocharger 8 is determined based on the difference between the time rate of change of the rotation speed of the turbocharger 8 when the load of the engine 6 increases and the reference value A, and the determined performance deterioration
  • the engine-supercharger correlation information By updating the engine-supercharger correlation information according to the degree of , it is possible to accurately determine a sign of an abnormal state of the supercharger 8 in consideration of the degree of performance deterioration of the supercharger 8 .
  • the correlation information updating unit 40 updates the load parameter indicated by the engine turbocharger correlation information stored in the correlation information storage unit 35 and the turbocharger in accordance with the determined degree of performance deterioration of the turbocharger 8 . 8 and the number of revolutions Nt may be updated.
  • the alarm signal transmission section 36 may transmit an alarm signal.
  • the valve control signal transmitting unit 38 is configured to perform (1) the opening of the safety valve 14 for reducing the pressure downstream of the supercharger 8 in the intake passage 10 shown in FIG. 1, or (2) the bypass passage 16 bypassing the supercharger 8 in the exhaust passage 12 A valve control signal for increasing the opening degree of the bypass valve 18 provided in .
  • the valve control signal transmission unit 38 performs (1) FIG. 1, a valve control signal for increasing the opening of the safety valve 14 for reducing the pressure downstream of the turbocharger 8 in the intake passage 10; and (2) bypassing the turbocharger 8 in the exhaust passage 12.
  • a valve control signal for increasing the opening degree of the bypass valve 18 provided in the bypass passage 16 may be transmitted.
  • the valve control signal transmission unit 38 outputs (1 ) a valve control signal for increasing the opening of the safety valve 14 for reducing the pressure downstream of the turbocharger 8 in the intake passage 10 shown in FIG. 1; and (2) the turbocharger 8 in the exhaust passage 12 At least one of the valve control signals for increasing the opening degree of the bypass valve 18 provided in the bypass passage 16 bypassing the .
  • a supercharger abnormality portent determination device includes: A turbocharger abnormality portent determination device for determining a portent of an abnormal state of a turbocharger (for example, the turbocharger 8 described above), a load parameter acquiring unit (for example, the above-described load parameter acquiring unit 26) configured to acquire time-series data of a load parameter indicating the load or rotation speed of an engine (for example, the above-described engine 6); a supercharger rotation speed acquisition unit (for example, the supercharger rotation speed acquisition unit 28 described above) configured to acquire time-series data of the rotation speed of the supercharger; Based on the time-series data of the load parameter acquired by the engine load parameter acquisition unit, and the engine supercharger correlation information indicating the correlation between the load parameter and the rotation speed of the supercharger, the supercharger A reference value generation unit (for example, the reference value generation unit 30 described above) that generates
  • the supercharger abnormality sign determination device described in (1) above based on the time-series data of the engine load parameter and the engine supercharger correlation information, the reference of the time rate of change of the rotation speed of the supercharger A value is generated, and a sign of an abnormal state of the supercharger can be determined based on the time-series data of the rate of change in the rotational speed of the supercharger over time and the generated reference value.
  • a sign of an abnormal condition of the supercharger can be quickly determined not only when the engine is in a steady operating state with a constant load or a constant number of revolutions, but also in a transient state where the engine load changes. It is also possible to determine the type of abnormality sign.
  • the abnormality sign determination unit determines that the time rate of change in the rotation speed of the turbocharger calculated by the rotation speed time change rate calculation unit is larger than the reference value generated by the reference value generation unit, and When the time rate of change of the rotation speed of the supercharger calculated by the rotation speed time change rate calculation unit is constant and positive, it is determined that the sign of overspeed of the supercharger is indicated. configured as
  • the supercharger is not only in a steady operating state with a constant load or a constant rotation speed of the engine, but also in a transient state where the load of the engine changes. A sign of over-rotation can be quickly determined.
  • the abnormality sign determination unit determines that the time rate of change in the rotation speed of the turbocharger calculated by the rotation speed time change rate calculation unit is larger than the reference value generated by the reference value generation unit, and When the time rate of change of the rotation speed of the supercharger calculated by the rotation speed time change rate calculation unit increases with the lapse of time, it is determined that a sign of overrun of the supercharger is indicated. configured as
  • the supercharger is not only in a steady operating state with a constant load or a constant rotation speed of the engine, but also in a transient state where the load of the engine changes. A sign of overrun can be quickly determined.
  • the abnormality sign determination unit determines that the time rate of change in the rotation speed of the turbocharger calculated by the rotation speed time change rate calculation unit is smaller than the reference value generated by the reference value generation unit, and If the time rate of change of the rotation speed of the supercharger calculated by the rotation speed time change rate calculation unit decreases with the lapse of time, it is determined that a sign of internal damage of the supercharger is indicated. configured as
  • the supercharger is not only in a steady operating state with a constant load or a constant rotation speed of the engine, but also in a transient state where the load of the engine changes. A sign of internal damage can be quickly determined.
  • the abnormality sign determination unit It is configured to determine that a sign of overrun of the supercharger is indicated.
  • the abnormality sign determination unit is configured to determine that an indication of internal damage to the supercharger is indicated.
  • turbocharger abnormality portent determination device it is possible to accurately determine a portent of an abnormal state of the turbocharger in consideration of the degree of performance deterioration of the turbocharger.
  • the engine turbocharger correlation information is the ratio of the average of the load parameters in a plurality of cycles to the average rotation speed of the turbocharger in the plurality of cycles. show.
  • the supercharger abnormality sign determination device described in (8) above by using the engine supercharger correlation information indicating the ratio in the most recent multiple cycles, the ambient environment conditions (for example, temperature, air pressure, engine use (at least one of fuel, fuel, etc.) or deterioration over time changes the correlation between the load parameter and the rotation speed of the supercharger, it is possible to accurately determine a sign of an abnormal state of the supercharger.
  • the ambient environment conditions for example, temperature, air pressure, engine use (at least one of fuel, fuel, etc.) or deterioration over time changes the correlation between the load parameter and the rotation speed of the supercharger.
  • the abnormality sign determination when the abnormality sign determination unit determines that a sign of over-rotation of the supercharger, a sign of overrun of the supercharger, or a sign of internal damage of the supercharger is indicated; It further comprises an alarm signal transmitter (eg, the alarm signal transmitter 36 described above) configured to generate an alarm signal based on the determination result of the unit.
  • an alarm signal transmitter eg, the alarm signal transmitter 36 described above
  • a sign of over-rotation of the supercharger, a sign of overrun of the supercharger, or a sign of internal damage of the supercharger is notified by an alarm signal. can be done.
  • valve control signal for increasing the opening of a safety valve for reducing side pressure, and a bypass valve provided in a bypass passage that bypasses the supercharger in an exhaust passage connected to the engine. It further comprises a valve control signal transmitter (for example, the valve control signal transmitter 38 described above) configured to transmit at least one valve control signal among the valve control signals for
  • a turbocharger abnormality sign determination method includes: A supercharger abnormality sign determination method for determining a sign of an abnormal state of a supercharger, comprising: an engine load parameter acquisition step of acquiring time-series data of a load parameter indicating the load or rotation speed of the engine; a supercharger rotation speed acquisition step configured to acquire time-series data of the rotation speed of the supercharger; Based on the time-series data of the load parameter acquired in the engine load parameter acquisition step and engine turbocharger correlation information indicating the correlation between the load parameter and the rotation speed of the turbocharger, the turbocharger a reference value generating step for generating a reference value of the time rate of change of the number of rotations of a rotation speed time rate of change calculation step of calculating time series data of the time series data of the rotation speed of the supercharger from the time series data of the rotation speed of the supercharger acquired in the step of obtaining the rotation speed of the supercharger; Abnormality of the supercharger
  • the supercharger abnormality sign determination method described in (11) above based on the time-series data of the engine load parameter and the engine supercharger correlation information, the reference of the time rate of change of the rotation speed of the supercharger A value is generated, and a sign of an abnormal state of the supercharger can be determined based on the time-series data of the rate of change in the rotational speed of the supercharger over time and the generated reference value.
  • a sign of an abnormal condition of the supercharger can be quickly determined not only when the engine is in a steady operating state with a constant load or a constant number of revolutions, but also in a transient state where the engine load changes. It is also possible to determine the type of abnormality sign.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Supercharger (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

過給機の異常状態の予兆を判定するための過給機異常予兆判定装置であって、エンジンの負荷パラメータの時系列データを取得する負荷パラメータ取得部と、過給機の回転数の時系列データを取得する過給機回転数取得部と、負荷パラメータの時系列データと、負荷パラメータと過給機の回転数との相関関係を示すエンジン過給機相関情報とに基づいて、過給機の回転数の時間変化率の基準値を生成する基準値生成部と、過給機の回転数の時間変化率の時系列データを算出する回転数時間変化率算出部と、過給機の回転数の時間変化率の時系列データと基準値とに基づいて、過給機の異常状態の予兆を判定する異常予兆判定部と、を備える。

Description

過給機異常予兆判定装置及び過給機異常予兆判定方法
 本開示は、過給機異常予兆判定装置及び過給機異常予兆判定方法に関する。
 本願は、2021年3月25日に日本国特許庁に出願された特願2021-051129号に基づき優先権を主張し、その内容をここに援用する。
 特許文献1には、過給機のコンプレッサの上流側の吸気通路の面積縮小に起因する過給機の異常状態を判定する方法として、過給機のコンプレッサの上流側の圧力変化に基づいて過給機の過回転状態を判定することが記載されている。
 特許文献2には、エンジンの負荷と過給機の目標回転数との関係を定めたマップと、過給機の実回転数とを比較して過給機の過回転状態を判定することが記載されている。
特許第4770759号公報 特開第2007-023816号公報
 特許文献1に記載の過給機の異常状態の判定方法では、ターボ過給機の回転数が急上昇してからコンプレッサの上流側の圧力上昇が検出されるまでに時間遅れがあり、過給機の異常状態の予兆を速やかに判定することができない。
 特許文献2に記載の過給機の異常状態の判定方法では、過給機の回転数に基づいて過給機の過回転状態を判定しており、エンジンの負荷が変化する過渡状態に過給機の異常状態の予兆を速やかに判定することは困難である。
 上述の事情に鑑みて、本開示は、エンジンが一定負荷または一定回転数の定常運転状態のみならず、エンジンの負荷が変化する過渡状態であっても過給機の異常状態の予兆を速やかに判定可能な過給機異常予兆判定装置及び過給機異常予兆判定方法を提供することを目的とする。
 上記目的を達成するため、本開示の少なくとも一実施形態に係る過給機異常予兆判定装置は、
 過給機の異常状態の予兆を判定するための過給機異常予兆判定装置であって、
 エンジンの負荷又は回転数を示す負荷パラメータの時系列データを取得するように構成された負荷パラメータ取得部と、
 前記過給機の回転数の時系列データを取得するように構成された過給機回転数取得部と、
 前記負荷パラメータ取得部によって取得した前記負荷パラメータの時系列データと、前記負荷パラメータと前記過給機の回転数との相関関係を示すエンジン過給機相関情報とに基づいて、前記過給機の回転数の時間変化率の基準値を生成する基準値生成部と、
 前記過給機回転数取得部によって取得した前記過給機の回転数の時系列データから前記過給機の回転数の時間変化率の時系列データを算出する回転数時間変化率算出部と、
 前記回転数時間変化率算出部によって算出した前記過給機の回転数の時間変化率の時系列データと、前記基準値生成部によって生成された前記基準値とに基づいて、前記過給機の異常状態の予兆を判定するように構成された異常予兆判定部と、
 を備える。
 上記目的を達成するため、本開示の少なくとも一実施形態に係る過給機異常予兆判定方法は、
 過給機の異常状態の予兆を判定するための過給機異常予兆判定方法であって、
 エンジンの負荷又は回転数を示す負荷パラメータの時系列データを取得するエンジン負荷パラメータ取得ステップと、
 前記過給機の回転数の時系列データを取得するように構成された過給機回転数取得ステップと、
 前記エンジン負荷パラメータ取得ステップで取得した前記負荷パラメータの時系列データと、前記負荷パラメータと前記過給機の回転数との相関関係を示すエンジン過給機相関情報とに基づいて、前記過給機の回転数の時間変化率の基準値を生成する基準値生成ステップと、
 前記過給機回転数取得ステップで取得した前記過給機の回転数の時系列データから前記過給機の回転数の時間変化率の時系列データを算出する回転数時間変化率算出ステップと、
 前記回転数時間変化率算出ステップで算出した前記過給機の回転数の時間変化率の時系列データと、前記基準値生成ステップで生成した前記基準値とに基づいて、前記過給機の異常状態の予兆を判定する異常予兆判定ステップと、
 を備える。
 本開示によれば、エンジンが一定負荷または一定回転数の定常運転状態のみならず、エンジンの負荷が変化する過渡状態であっても過給機の異常状態の予兆を速やかに判定可能な過給機異常予兆判定装置及び過給機異常予兆判定方法が提供される。
一実施形態に係る過給機異常予兆判定装置24を備えるエンジンシステム2の概略構成図である。 図1に示した過給機異常予兆判定装置24のハードウェア構成の一例を示す図である。 図1及び図2に示した過給機異常予兆判定装置24の機能的な構成の一例を示すブロック図である。 図3に示した過給機異常予兆判定装置24を用いた過給機8の異常予兆判定のフローを示す図である。 エンジン過給機相関情報の一例を示す図である。 エンジン過給機相関情報の算出方法の一例を示す図である。 エンジン6の負荷パラメータを上昇させる過程及び一定に維持する過程について、時間とエンジン6の負荷パラメータとの関係、及び時間と過給機8の回転数との関係を示す図であり、エンジン6が舶用主機エンジンである場合の一例を示している。 エンジン6の負荷パラメータを上昇させる過程及び一定に維持する過程について、時間とエンジン6の負荷パラメータとの関係、及び時間と過給機8の回転数との関係を示す図であり、エンジン6が発電用エンジンである場合の一例を示している。 エンジン6の負荷パラメータを時間に比例して低下させる過程について、時間と過給機8の回転数との関係を示す図である。 エンジン6の負荷パラメータを上昇させる過程及び一定に維持する過程について、時間とエンジン6の負荷パラメータとの関係、及び時間と過給機8の回転数との関係を示す図である。
 以下、添付図面を参照して本開示の幾つかの実施形態について説明する。ただし、実施形態として記載されている又は図面に示されている構成部品の寸法、材質、形状、その相対的配置等は、発明の範囲をこれに限定する趣旨ではなく、単なる説明例にすぎない。
 例えば、「ある方向に」、「ある方向に沿って」、「平行」、「直交」、「中心」、「同心」或いは「同軸」等の相対的或いは絶対的な配置を表す表現は、厳密にそのような配置を表すのみならず、公差、若しくは、同じ機能が得られる程度の角度や距離をもって相対的に変位している状態も表すものとする。
 例えば、「同一」、「等しい」及び「均質」等の物事が等しい状態であることを表す表現は、厳密に等しい状態を表すのみならず、公差、若しくは、同じ機能が得られる程度の差が存在している状態も表すものとする。
 例えば、四角形状や円筒形状等の形状を表す表現は、幾何学的に厳密な意味での四角形状や円筒形状等の形状を表すのみならず、同じ効果が得られる範囲で、凹凸部や面取り部等を含む形状も表すものとする。
 一方、一の構成要素を「備える」、「具える」、「具備する」、「含む」、又は、「有する」という表現は、他の構成要素の存在を除外する排他的な表現ではない。
 図1は、一実施形態に係る過給機異常予兆判定装置24を備えるエンジンシステム2の概略構成図である。
 図1に示すように、エンジンシステム2は、エンジン6、過給機8、吸気通路10、排気通路12、安全弁14、バイパス通路16、バイパス弁18、負荷センサ20、回転数センサ22及び過給機異常予兆判定装置24及びを備える。エンジン6の構成は特に限定されず、エンジン6は、例えば舶用主機エンジンであってもよいし、発電用エンジンであってもよい。
 過給機8は、エンジン6に接続する吸気通路10に設けられたコンプレッサ8a、エンジン6に接続する排気通路12に設けられたタービン8b、及び、コンプレッサ8aとタービン8bとを連結するシャフト8cを含む。コンプレッサ8a、タービン8b及びシャフト8cは同軸上に連結されており、一体的に回転するように構成されている。エンジン6の排気が排気通路12を介してタービン8bに供給されることによりタービン8bが回転し、タービン8bにシャフト8cを介して連結されたコンプレッサ8aが駆動して空気を圧縮する。コンプレッサ8aによって圧縮された空気は吸気通路10を介してエンジン6に供給される。
 安全弁14は、過給機8の過回転等の異常予兆が発生した場合に吸気通路10を大気開放して吸気通路10の圧力を低下させるために設けられている。
 バイパス通路16は、排気通路12において、タービン8bの上流側から分岐してタービン8bをバイパスし、タービン8bの下流側に接続している。バイパス弁18は、バイパス通路16に設けられており、ウェイストゲートバルブとも呼ばれる。バイパス弁18の開度の調節により、タービン8bへのエンジン6の排ガスの流入量が調節され、過給機8の回転数が調節される。バイパス弁18の開度を大きくすると、タービン8bへのエンジン6の排ガスの流入量が減少し、過給機8の回転数が低下する。
 負荷センサ20は、エンジン6の負荷パラメータを検出するように構成されている。負荷センサ20によって検出するエンジン6の負荷パラメータは、エンジン6の負荷Lであってもよいし、エンジン6の回転数Neであってもよい。エンジン6の負荷パラメータは、ガバナ信号であってもよいし、ロードインジケータの値であってもよい。また、エンジン6がディーゼルエンジンである場合には、エンジン6の負荷パラメータは、エンジン6が備える不図示の燃料噴射ポンプにおける燃料調整ラックの目盛の値であってもよい。また、エンジン6がガスエンジン又はガソリンエンジンである場合には、エンジン6の負荷パラメータはエンジン6が備える不図示のスロットル弁のスロットル開度であってもよい。
 回転数センサ22は、過給機8の回転数Ntを検出するように構成されている。
 過給機異常予兆判定装置24は、過給機の異常状態の予兆を判定するように構成されている。以下、過給機異常予兆判定装置24について説明する。
 図2は、図1に示した過給機異常予兆判定装置24のハードウェア構成の一例を示す図である。図3は、図1及び図2に示した過給機異常予兆判定装置24の機能的な構成の一例を示すブロック図である。図4は、図3に示した過給機異常予兆判定装置24を用いた過給機8の異常予兆判定のフローの一例を示す図である。
 図2に示すように、過給機異常予兆判定装置24は、例えばCPU(Central Processing Unit)等のプロセッサ72、RAM(Random Access Memory)74、ROM(Read Only Memory)76、HDD (Hard Disk Drive)78、入力I/F80、及び出力I/F82を含み、これらがバス84を介して互いに接続されたコンピュータを用いて構成される。なお、過給機異常予兆判定装置24のハードウェア構成は上記に限定されず、制御回路と記憶装置との組み合わせにより構成されてもよい。また過給機異常予兆判定装置24は、過給機異常予兆判定装置24の各機能を実現するプログラムをコンピュータが実行することにより構成される。以下で説明する過給機異常予兆判定装置24における各部の機能は、例えばROM76に保持されるプログラムをRAM74にロードしてプロセッサ72で実行するとともに、RAM74やROM76におけるデータの読み出し及び書き込みを行うことで実現される。
 図3に示すように、過給機異常予兆判定装置24は、負荷パラメータ取得部26、過給機回転数取得部28、基準値生成部30、回転数時間変化率算出部32及び異常予兆判定部34及び相関情報記憶部35等を備える。以下、図3に示す過給機異常予兆判定装置24の各部の機能について、図4に示す異常予兆判定のフローを用いて説明する。
 図4に示すように、S11において、負荷パラメータ取得部26は、エンジン6の負荷パラメータ(エンジン6の負荷L又は回転数Ne)の時系列データを負荷センサ20から取得する。
 S12において、過給機回転数取得部28は、過給機8の回転数Ntの時系列データを回転数センサ22から取得する。
 S13において、基準値生成部30は、負荷パラメータ取得部26によって取得したエンジン6の負荷パラメータの時系列データと、相関情報記憶部35から読み出したエンジン過給機相関情報とに基づいて、過給機8の回転数Ntの時間変化率dNt/dtの基準値Aを生成する。このエンジン過給機相関情報は、図5Aに示すように、エンジン6の負荷パラメータ(負荷L又は回転数Ne)と過給機8の回転数Ntとの相関関係を示す相関情報であり、相関情報記憶部35に記憶されている。基準値生成部30は、負荷パラメータ取得部26によって取得したエンジン6の負荷パラメータの時系列データを、エンジン過給機相関情報を参照して過給機8の回転数の時間変化率dNt/dtの基準値Aに変換する。
 ここで、基準値生成部30が生成する過給機8の回転数の時間変化率dNt/dtの基準値Aは、負荷パラメータ取得部26によって取得したエンジン6の負荷パラメータの時系列データに対応する時系列データであり、負荷パラメータ取得部26によって取得したエンジン6の負荷パラメータの時系列データが図5Aに示すように時間に比例して変化する場合には、この基準値Aは時間に依らない一定値であってもよい。以下、「基準値A」とは、基準値生成部30によって生成された過給機8の回転数の時間変化率dNt/dtの基準値を意味する。
 なお、エンジン6の始動から停止までを1サイクルとすると、エンジン過給機相関情報は、例えば直近の複数のサイクル(例えば数十サイクル程度)における負荷パラメータの平均と該直近の複数のサイクルにおける過給機8の回転数Ntの平均との比率(Nt/L又はNt/Ne)であってもよいし(図5B参照)、過給機8の運用開始前に行った試験結果に基づいて定められてもよいし、過給機8の運用開始直後の負荷パラメータと過給機8の回転数Ntとの相関関係であってもよい。
 S14において、回転数時間変化率算出部32は、過給機回転数取得部28によって取得した過給機8の回転数Ntの時系列データから過給機8の回転数の時間変化率dNt/dtの時系列データを算出する。回転数時間変化率算出部32は、過給機回転数取得部28によって取得した過給機8の回転数Ntを各時間において時間微分することにより、過給機8の回転数の時間変化率の時系列データを算出する。
 S15において、異常予兆判定部34は、回転数時間変化率算出部32によって算出された過給機8の回転数の時間変化率dNt/dtの時系列データと、基準値生成部30によって生成された基準値Aとに基づいて、過給機8の異常状態の予兆を判定する。
 ここで、図6~図8を用いて、異常予兆判定部34による過給機8の異常状態の予兆の判定方法について説明する。
 図6及び図7の各々は、エンジン6の負荷パラメータ(エンジン6の負荷L又は回転数Ne)を上昇させる期間及び一定に維持する期間について、時間とエンジン6の負荷パラメータとの関係、及び時間と過給機8の回転数Ntとの関係を示す図である。図6は、エンジン6が舶用主機エンジンである場合の一例を示しており、図7は、エンジン6が発電用エンジンである場合の一例を示している。
 図6に示す舶用主機エンジンの例では、図6の上段部に示すように、期間a1においてエンジン6の負荷パラメータは時間経過に応じて増加し、期間a1に続く期間a2においてエンジン6の負荷パラメータは一定(例えば定格負荷)に維持される。期間a2は負荷パラメータの整定状態である。この場合、基準値生成部30によって生成された期間a1の基準値Aは正の値であり、基準値生成部30によって生成された期間a2の基準値Aは0である。また、図6において、直線LA1は、期間a1の基準値Aを傾きとする直線であり、直線LA2は、期間a2の基準値Aを傾きとする直線である。
 例えば図6の直線LB及びLCに示すように、基準値生成部30によって生成された基準値Aよりも回転数時間変化率算出部32によって算出された過給機8の回転数の時間変化率dNt/dtが大きい場合には、異常予兆判定部34は、過給機8の過回転又はオーバーランの予兆が示されていると判定する。例えば図6の直線LBに示すように、基準値生成部30によって生成された基準値Aよりも回転数時間変化率算出部32によって算出された過給機8の回転数の時間変化率dNt/dtが大きく、且つ、回転数時間変化率算出部32によって算出された過給機8の回転数の時間変化率dNt/dtが一定で正の値である場合には、異常予兆判定部34は、過給機8の過回転の予兆が示されていると判定する。なお、過給機8の「過回転」とは、過給機8の回転数が過給機8の許容回転数を超えることを意味する。過給機8の「許容回転数」とは、過給機8の損傷を回避するために過給機8の設計上設定される回転数の上限を意味する。この許容回転数は、設計上設定される回転数の上限に対して安全側にマージンを設けた値であってもよい。
 例えば図6の曲線LCに示すように、基準値生成部30によって生成された基準値Aよりも回転数時間変化率算出部32によって算出された過給機8の回転数の時間変化率dNt/dtが大きく、且つ、回転数時間変化率算出部32によって算出された過給機8の回転数の時間変化率dNt/dtが時間の経過とともに大きくなる場合には、異常予兆判定部34は、過給機8のオーバーランの予兆が示されていると判定する。過給機8の「オーバーラン」とは、過給機8の回転数Ntが過給機8の許容回転数を超えて更に上昇し過給機8の破壊に至る回転数まで上昇することを意味する。オーバーランの主な原因は、エンジン6の燃焼異常である。エンジンの燃焼異常は、例えば、排気管内の未燃燃料や燃焼室に漏れ出た潤滑油などが燃焼する現象を含む。
 例えば図6の曲線LD及びLαに示すように、基準値生成部30によって生成された基準値Aよりも回転数時間変化率算出部32によって算出された過給機8の回転数の時間変化率dNt/dtが小さい場合には、過給機8の内部損傷の予兆が示されていると判定する。基準値Aよりも過給機8の回転数の時間変化率dNt/dtが小さい場合は、曲線LDに示すように時間変化率dNt/dtが時間の経過とともに小さくなる場合と、曲線Lαに示すように時間変化率dNt/dtが一定である場合(回転数Ntが直線LA1に対して時間の経過とともに一定の割合で小さくなる場合)の両方を含む。なお、過給機8の内部損傷とは、例えば、過給機8の不図示の軸受(ジャーナル軸受又はスラスト軸受)の損傷により過給機8のシャフト8cを含むロータの回転抵抗が正常状態よりも大きくなっている状態、及び、上記ロータ(コンプレッサ8aのインペラ、タービン8bのインペラ及びシャフト8cのうち少なくとも1つ)が過給機8の内部構成部品(過給機8の軸受以外の部品)に接触することにより当該回転体の回転抵抗が正常状態よりも大きくなっている状態、のうち少なくとも一方に該当する状態を意味する。
 例えば図6の曲線LE1及び直線LE2に示すように、エンジン6の負荷が一定の状態において、回転数時間変化率算出部32によって算出された過給機8の回転数の時間変化率が0よりも大きい場合には、異常予兆判定部34は、過給機8の過回転又はオーバーランの予兆が示されていると判定する。なお、エンジン6の負荷が一定の状態とは、エンジン6の負荷の整定状態、すなわちエンジン6の負荷指令値が一定の状態(エンジン6の負荷上げ及び負荷下げの何れの指令も出されていない状態)を意味する。
 例えば図6の曲線LF1及び直線LF2に示すように、エンジン6の負荷が一定の状態において、回転数時間変化率算出部32によって算出された過給機8の回転数の時間変化率dNt/dtが0よりも小さい場合には、異常予兆判定部34は、過給機8の内部損傷の予兆が示されていると判定する。
 図7に示す発電用エンジンの例では、図7の上段部に示すように、期間b1においてエンジン6の回転数Neは時間に比例して増加し、期間b1に続く期間b2~b4ではエンジン6の回転数Neは一定(例えば定格回転数)に維持される。また、エンジン6の負荷Lは、期間b1及びb2において0であり、期間b3において時間に比例して増加し、期間b4において一定(例えば定格負荷)に維持される。この場合、期間b1の基準値Aは値であり、期間b2の基準値Aは0であり、期間b3の基準値Aは正の値であり、期間b4の基準値Aは0である。図7において、直線LA3は期間b1の基準値Aを傾きとする直線であり、直線LA4は期間b2の基準値Aを傾きとする直線であり、直線LA5は期間b3の基準値Aを傾きとする直線であり、直線LA6は期間b4の基準値Aを傾きとする直線である。
 例えば図7の直線LGに示すように、基準値生成部30によって生成された基準値Aよりも回転数時間変化率算出部32によって算出された過給機8の回転数の時間変化率dNt/dtが大きく、且つ、回転数時間変化率算出部32によって算出された過給機8の回転数の時間変化率dNt/dtが一定で正の値である場合には、異常予兆判定部34は、過給機8の過回転の予兆が示されていると判定する。
 例えば図7の曲線LH及び曲線LIに示すように、基準値生成部30によって生成された基準値Aよりも回転数時間変化率算出部32によって算出された過給機8の回転数の時間変化率dNt/dtが大きく、且つ、回転数時間変化率算出部32によって算出された過給機8の回転数の時間変化率dNt/dtが時間の経過とともに大きくなる場合には、異常予兆判定部34は、過給機8のオーバーランの予兆が示されていると判定する。
 例えば図7の曲線LJ及び曲線LKに示すように、エンジン6の負荷が一定の状態において、回転数時間変化率算出部32によって算出された過給機8の回転数の時間変化率dNt/dtが0よりも大きい場合には、異常予兆判定部34は、過給機8の過回転又はオーバーランの予兆が示されていると判定する。
 例えば図7の曲線LL及び曲線LMに示すように、エンジン6の負荷が一定の状態において、回転数時間変化率算出部32によって算出された過給機8の回転数の時間変化率dNt/dtが0よりも小さい場合には、異常予兆判定部34は、過給機8の内部損傷の予兆が示されていると判定する。
 例えば図7の曲線Lβ及び曲線Lγに示すように、基準値生成部30によって生成された基準値Aよりも回転数時間変化率算出部32によって算出された過給機8の回転数の時間変化率dNt/dtが小さい場合には、過給機8の内部損傷の予兆が示されていると判定する。基準値Aよりも過給機8の回転数の時間変化率dNt/dtが小さい場合は、曲線Lγに示すように時間変化率dNt/dtが時間の経過とともに小さくなる場合と、曲線Lβに示すように時間変化率dNt/dtが一定である場合(回転数Ntが直線LA5に対して時間の経過とともに一定の割合で小さくなる場合)の両方を含む。
 図8は、エンジン6の負荷パラメータを時間に比例して低下させる期間cについて、時間と過給機8の回転数Ntとの関係を示す図である。図8は、エンジン6が舶用主機エンジンである場合及びエンジン6が発電用エンジンである場合に共通の一例を示している。
 図8に示す例では、基準値生成部30によって生成された期間cの基準値Aは負の値であり、直線LA7は、期間cの基準値Aを傾きとする直線である。
 例えば図8の曲線LNに示すように、基準値生成部30によって生成された基準値Aよりも回転数時間変化率算出部32によって算出された過給機8の回転数の時間変化率dNt/dtが大きく、且つ、回転数時間変化率算出部32によって算出された過給機8の回転数の時間変化率dNt/dtが時間の経過とともに大きくなる場合には、異常予兆判定部34は、過給機8のオーバーランの予兆が示されていると判定する。
 例えば図8の曲線LOに示すように、基準値生成部30によって生成された基準値Aよりも回転数時間変化率算出部32によって算出された過給機8の回転数の時間変化率dNt/dtが小さく、且つ、回転数時間変化率算出部32によって算出された過給機8の回転数の時間変化率dNt/dtが時間の経過とともに小さくなる場合には、過給機8の内部損傷の予兆が示されていると判定する。
 上記過給機異常予兆判定装置24によれば、エンジン6の負荷パラメータの時系列データとエンジン過給機相関情報とに基づいて、過給機8の回転数の時間変化率dNt/dtの基準値Aを生成し、過給機8の回転数の時間変化率dNt/dtの時系列データと、生成した基準値Aとに基づいて、過給機8の異常状態の予兆を判定することができる。これにより、エンジン6の負荷が変化する過渡状態であっても、過給機8の複数種類の異常状態の予兆(過給機8の過回転の予兆、過給機8のオーバーランの予兆及び過給機8の内部異常の予兆)を速やかに判定することができる。
 また、直近の複数サイクルにおける負荷パラメータの平均と過給機8の回転数の平均との比率を示すエンジン過給機相関情報を用いることにより、図5Bに示すように周囲環境条件(例えば温度、気圧、エンジン6の使用燃料、エンジン6における燃料の噴射タイミングや着火タイミングの変更などのエンジン6の仕様変更、の少なくとも1つ)や経年劣化によって負荷パラメータと過給機の回転数との相関関係が変化しても、過給機8の異常状態の予兆を精度良く判定することができる。
 幾つかの実施形態では、図3に示すように、過給機異常予兆判定装置24は、アラーム信号発信部36を備えていてもよい。アラーム信号発信部36は、過給機8の過回転の予兆、過給機8のオーバーランの予兆又は過給機8の内部損傷の予兆が示されていると異常予兆判定部34が判定した場合に、異常予兆判定部の判定結果に基づくアラーム信号を発信する。これにより、異常予兆判定部34の判定結果を報知することができる。
 幾つかの実施形態では、図3に示すように、過給機異常予兆判定装置24は、バルブ制御信号発信部38を備えていてもよい。バルブ制御信号発信部38は、過給機8の過回転の予兆又は過給機8のオーバーランの予兆が示されていると異常予兆判定部34が判定した場合に、(1)図1に示す吸気通路10における過給機8の下流側の圧力を低下させるための安全弁14の開度、又は、(2)排気通路12における過給機8を迂回するバイパス通路16に設けられたバイパス弁18の開度、を大きくするためのバルブ制御信号を発信する。これにより、(1)の安全弁14の開度を大きくするためのバルブ制御信号を発信する場合にはエンジンに過剰な圧縮空気を送ることを抑制することができ、(2)のバイパス弁18の開度を大きくするためのバルブ制御信号を発信する場合には過給機8の過回転又はオーバーランの発生を抑制することができる。なお、仮にバイパス通路16によって排ガスの全量をバイパスさせた場合、過給機8は運転できず、エンジン6に圧縮空気を送れなくなるため、エンジン6は停止することとなる。その為、エンジン6の停止を回避したい場合には、排ガスの全量をバイパスさせずに過給機8の運転を維持し、エンジン6側で所望する空気量及び圧力となるように安全弁14の開度を調整してもよい。
 幾つかの実施形態では、図3に示すように、過給機異常予兆判定装置24は、相関情報更新部40を備えていてもよい。相関情報更新部40は、基準値生成部30によって生成された基準値A(例えば図9に示す例における直線LA1の傾き)と、エンジン6の負荷の上昇時の過給機8の回転数の時系列データから回転数時間変化率算出部32によって算出した過給機8の回転数の時間変化率dNt/dt(図9に示す例における直線LPの傾き)との差分に基づいて、過給機8の性能劣化の度合を判定する。相関情報更新部40は、該差分が大きいほど(回転数時間変化率算出部32によって算出した過給機8の回転数の時間変化率dNt/dtが基準値Aに対して小さくなるほど)過給機8の性能劣化の度合が深刻であると判定する。ここで、比較対象となる基準値Aは、運転試験時や運航開始初期の時点の値であってもよいし、前回のメンテナンスの時点の値であってもよい。
 そして、相関情報更新部40は、判定した過給機8の性能劣化の度合に応じて、相関情報記憶部35に記憶されたエンジン過給機相関情報が示す負荷パラメータと過給機8の回転数との相関関係を更新する。例えば、相関情報更新部40は、判定した過給機8の性能劣化の度合が深刻であるほど、過給機相関情報が示す負荷パラメータに対する過給機8の回転数Ntの傾き(例えば図5Aに示す直線の傾き、すなわちdNt/dL又はdNt/dNe)が小さくなるように、相関情報記憶部35に記憶されたエンジン過給機相関情報が示す負荷パラメータと過給機8の回転数Ntとの相関関係を更新する。また、過給機8の性能劣化の度合が予め定めた規定レベルよりも深刻であると相関情報更新部40が判定した場合には、アラーム信号発信部36(図3参照)がアラーム信号を発信してもよい。
 このように、エンジン6の負荷の上昇時の過給機8の回転数の時間変化率と基準値Aとの差分に基づいて過給機8の性能劣化の度合を判定し、判定した性能劣化の度合に応じてエンジン過給機相関情報を更新することにより、過給機8の性能劣化の度合を考慮して過給機8の異常状態の予兆を精度良く判定することができる。
 幾つかの実施形態では、例えば図9の上段部に示すようにエンジン6の負荷パラメータが一定の状態において、過給機8の回転数の基準値(図9に示す例における直線LA2に対応する値)と、過給機回転数取得部28によって取得した過給機8の回転数Nt(図9に示す例における直線LQに対応する回転数Nt)との差に基づいて過給機8の性能劣化の度合を判定してもよい。この場合においても、相関情報更新部40は、判定した過給機8の性能劣化の度合に応じて、相関情報記憶部35に記憶されたエンジン過給機相関情報が示す負荷パラメータと過給機8の回転数Ntとの相関関係を更新してもよい。これにより、過給機8の性能劣化の度合を考慮して過給機8の異常状態の予兆を精度良く判定することができる。また、過給機8の性能劣化の度合が予め定めた規定レベルよりも深刻であると判定した場合には、アラーム信号発信部36(図3参照)がアラーム信号を発信してもよい。
 本開示は上述した実施形態に限定されることはなく、上述した実施形態に変形を加えた形態や、これらの形態を適宜組み合わせた形態も含む。
 例えば、図3に例示した構成では、相関情報記憶部35を過給機異常予兆判定装置24が備えていたが、相関情報記憶部35は過給機異常予兆判定装置24の外部に設けられていてもよい。
 上述した実施形態では、バルブ制御信号発信部38は、過給機8の過回転の予兆又は過給機8のオーバーランの予兆が示されていると異常予兆判定部34が判定した場合に、(1)図1に示す吸気通路10における過給機8の下流側の圧力を低下させるための安全弁14の開度、又は、(2)排気通路12における過給機8を迂回するバイパス通路16に設けられたバイパス弁18の開度、を大きくするためのバルブ制御信号を発信した。
 ただし、バルブ制御信号発信部38は、過給機8の過回転の予兆又は過給機8のオーバーランの予兆が示されていると異常予兆判定部34が判定した場合に、(1)図1に示す吸気通路10における過給機8の下流側の圧力を低下させるための安全弁14の開度を大きくするためのバルブ制御信号、及び、(2)排気通路12における過給機8を迂回するバイパス通路16に設けられたバイパス弁18の開度を大きくするためのバルブ制御信号、の両方を発信してもよい。
 このように、バルブ制御信号発信部38は、過給機8の過回転の予兆又は過給機8のオーバーランの予兆が示されていると異常予兆判定部34が判定した場合に、(1)図1に示す吸気通路10における過給機8の下流側の圧力を低下させるための安全弁14の開度を大きくするためのバルブ制御信号、及び、(2)排気通路12における過給機8を迂回するバイパス通路16に設けられたバイパス弁18の開度を大きくするためのバルブ制御信号、のうち少なくとも一方のバルブ制御信号を発信してもよい。
 上記各実施形態に記載の内容は、例えば以下のように把握される。
 (1)本開示の少なくとも一実施形態に係る過給機異常予兆判定装置(例えば上述の過給機異常予兆判定装置24)は、
 過給機(例えば上述の過給機8)の異常状態の予兆を判定するための過給機異常予兆判定装置であって、
 エンジン(例えば上述のエンジン6)の負荷又は回転数を示す負荷パラメータの時系列データを取得するように構成された負荷パラメータ取得部(例えば上述の負荷パラメータ取得部26)と、
 前記過給機の回転数の時系列データを取得するように構成された過給機回転数取得部(例えば上述の過給機回転数取得部28)と、
 前記エンジン負荷パラメータ取得部によって取得した前記負荷パラメータの時系列データと、前記負荷パラメータと前記過給機の回転数との相関関係を示すエンジン過給機相関情報とに基づいて、前記過給機の回転数の時間変化率の基準値を生成する基準値生成部(例えば上述の基準値生成部30)と、
 前記過給機回転数取得部によって取得した前記過給機の回転数の時系列データから前記過給機の回転数の時間変化率の時系列データを算出する回転数時間変化率算出部(例えば上述の回転数時間変化率算出部32)と、
 前記回転数時間変化率算出部によって算出した前記過給機の回転数の時間変化率の時系列データと、前記基準値生成部によって生成された前記基準値とに基づいて、前記過給機の異常状態の予兆を判定するように構成された異常予兆判定部(例えば上述の異常予兆判定部34)と、
 を備える。
 上記(1)に記載の過給機異常予兆判定装置によれば、エンジンの負荷パラメータの時系列データとエンジン過給機相関情報とに基づいて、過給機の回転数の時間変化率の基準値を生成し、過給機の回転数の時間変化率の時系列データと、生成した基準値とに基づいて、過給機の異常状態の予兆を判定することができる。これにより、エンジンが一定負荷または一定回転数の定常運転状態のみならず、エンジンの負荷が変化する過渡状態であっても過給機の異常状態の予兆を速やかに判定することができる。また、異常予兆の種類についても判定することができる。
 (2)幾つかの実施形態では、上記(1)に記載の過給機異常予兆判定装置において、
 前記異常予兆判定部は、前記基準値生成部によって生成された前記基準値よりも前記回転数時間変化率算出部によって算出された前記過給機の回転数の時間変化率が大きく、且つ、前記回転数時間変化率算出部によって算出された前記過給機の回転数の時間変化率が一定で正の値である場合に、前記過給機の過回転の予兆が示されていると判定するように構成される。
 上記(2)に記載の過給機異常予兆判定装置によれば、エンジンが一定負荷または一定回転数の定常運転状態のみならず、エンジンの負荷が変化する過渡状態であっても過給機の過回転の予兆を速やかに判定することができる。
 (3)幾つかの実施形態では、上記(1)又は(2)に記載の過給機異常予兆判定装置において、
 前記異常予兆判定部は、前記基準値生成部によって生成された前記基準値よりも前記回転数時間変化率算出部によって算出された前記過給機の回転数の時間変化率が大きく、且つ、前記回転数時間変化率算出部によって算出された前記過給機の回転数の時間変化率が時間の経過とともに大きくなる場合には、前記過給機のオーバーランの予兆が示されていると判定するように構成される。
 上記(3)に記載の過給機異常予兆判定装置によれば、エンジンが一定負荷または一定回転数の定常運転状態のみならず、エンジンの負荷が変化する過渡状態であっても過給機のオーバーランの予兆を速やかに判定することができる。
 (4)幾つかの実施形態では、上記(1)乃至(3)の何れかに記載の過給機異常予兆判定装置において、
 前記異常予兆判定部は、前記基準値生成部によって生成された前記基準値よりも前記回転数時間変化率算出部によって算出された前記過給機の回転数の時間変化率が小さく、且つ、前記回転数時間変化率算出部によって算出された前記過給機の回転数の時間変化率が時間の経過とともに小さくなる場合には、前記過給機の内部損傷の予兆が示されていると判定するように構成される。
 上記(4)に記載の過給機異常予兆判定装置によれば、エンジンが一定負荷または一定回転数の定常運転状態のみならず、エンジンの負荷が変化する過渡状態であっても過給機の内部損傷の予兆を速やかに判定することができる。
 (5)幾つかの実施形態では、上記(1)乃至(4)の何れかに記載の過給機異常予兆判定装置において、
 前記異常予兆判定部は、前記エンジンの前記負荷パラメータが一定の状態において、前記回転数時間変化率算出部によって算出された前記過給機の回転数の時間変化率が0より大きい場合には、前記過給機のオーバーランの予兆が示されていると判定するように構成される。
 上記(5)に記載の過給機異常予兆判定装置によれば、エンジンの負荷が一定の状態において過給機のオーバーランの予兆を速やかに判定することができる。
 (6)幾つかの実施形態では、上記(1)乃至(5)の何れかに記載の過給機異常予兆判定装置において、
 前記異常予兆判定部は、前記エンジンの前記負荷パラメータが一定の状態において、前記回転数時間変化率算出部によって算出された前記過給機の回転数の時間変化率が0よりも小さい場合には、前記過給機の内部損傷の予兆が示されていると判定するように構成される。
 上記(6)に記載の過給機異常予兆判定装置によれば、エンジンの負荷が一定の状態において過給機の内部損傷の予兆を速やかに判定することができる。
 (7)幾つかの実施形態では、上記(1)乃至(6)の何れかに記載の過給機異常予兆判定装置において、
 前記エンジンの負荷の上昇時の前記過給機の回転数の時系列データから前記回転数時間変化率算出部によって算出した前記過給機の回転数の時間変化率と、前記基準値生成部によって生成された前記基準値との差分に基づいて、前記過給機の性能劣化の度合を判定し、前記エンジン過給機相関情報が示す前記負荷パラメータと前記過給機の回転数との相関関係を前記性能劣化の前記度合に応じて更新するように構成された相関情報更新部(例えば上述の相関情報更新部40)を更に備える。
 上記(7)に記載の過給機異常予兆判定装置によれば、過給機の性能劣化の度合を考慮して過給機の異常状態の予兆を精度良く判定することができる。
 (8)幾つかの実施形態では、上記(1)乃至(7)の何れかに記載の過給機異常予兆判定装置において、
 前記エンジンの始動から停止までを1サイクルとすると、前記エンジン過給機相関情報は、複数のサイクルにおける前記負荷パラメータの平均と前記複数のサイクルにおける前記過給機の回転数の平均との比率を示す。
 上記(8)に記載の過給機異常予兆判定装置によれば、直近の複数サイクルにおける上記比率を示すエンジン過給機相関情報を用いることにより、周囲環境条件(例えば温度、気圧、エンジンの使用燃料、の少なくとも1つ)や経年劣化によって負荷パラメータと過給機の回転数との相関関係が変化しても、過給機の異常状態の予兆を精度良く判定することができる。
 (9)幾つかの実施形態では、上記(1)乃至(8)の何れかに記載の過給機異常予兆判定装置において、
 前記過給機の過回転の予兆、前記過給機のオーバーランの予兆又は前記過給機の内部損傷の予兆が示されていると前記異常予兆判定部が判定した場合に、前記異常予兆判定部の判定結果に基づくアラーム信号を発信するように構成されたアラーム信号発信部(例えば上述のアラーム信号発信部36)を更に備える。
 上記(9)に記載の過給機異常予兆判定装置によれば、給機の過回転の予兆、過給機のオーバーランの予兆又は過給機の内部損傷の予兆をアラーム信号により報知することができる。
 (10)幾つかの実施形態では、上記(1)乃至(9)の何れかに記載の過給機異常予兆判定装置において、
 前記過給機の過回転の予兆又は前記過給機のオーバーランの予兆が示されていると前記異常予兆判定部が判定した場合に、前記エンジンに接続する吸気通路における前記過給機の下流側の圧力を低下させるための安全弁の開度を大きくするためのバルブ制御信号、及び、エンジンに接続する排気通路における前記過給機を迂回するバイパス通路に設けられたバイパス弁の開度を大きくするためのバルブ制御信号、のうち少なくとも一方のバルブ制御信号を発信するように構成されたバルブ制御信号発信部(例えば上述のバルブ制御信号発信部38)を更に備える。
 上記(10)に記載の過給機異常予兆判定装置によれば、過給機の過回転又は過給機のオーバーランの発生を抑制することができる。
 (11)本開示の少なくとも一実施形態に過給機異常予兆判定方法は、
 過給機の異常状態の予兆を判定するための過給機異常予兆判定方法であって、
 エンジンの負荷又は回転数を示す負荷パラメータの時系列データを取得するエンジン負荷パラメータ取得ステップと、
 前記過給機の回転数の時系列データを取得するように構成された過給機回転数取得ステップと、
 前記エンジン負荷パラメータ取得ステップで取得した前記負荷パラメータの時系列データと、前記負荷パラメータと前記過給機の回転数との相関関係を示すエンジン過給機相関情報とに基づいて、前記過給機の回転数の時間変化率の基準値を生成する基準値生成ステップと、
 前記過給機回転数取得ステップで取得した前記過給機の回転数の時系列データから前記過給機の回転数の時間変化率の時系列データを算出する回転数時間変化率算出ステップと、
 前記回転数時間変化率算出ステップで算出した前記過給機の回転数の時間変化率の時系列データと、前記基準値生成ステップで生成した前記基準値とに基づいて、前記過給機の異常状態の予兆を判定する異常予兆判定ステップと、
 を備える。
 上記(11)に記載の過給機異常予兆判定方法によれば、エンジンの負荷パラメータの時系列データとエンジン過給機相関情報とに基づいて、過給機の回転数の時間変化率の基準値を生成し、過給機の回転数の時間変化率の時系列データと、生成した基準値とに基づいて、過給機の異常状態の予兆を判定することができる。これにより、エンジンが一定負荷または一定回転数の定常運転状態のみならず、エンジンの負荷が変化する過渡状態であっても過給機の異常状態の予兆を速やかに判定することができる。また、異常予兆の種類についても判定することができる。
2 エンジンシステム
6 エンジン
8 過給機
8a コンプレッサ
8b タービン
8c シャフト
10 吸気通路
12 排気通路
14 安全弁
16 バイパス通路
18 バイパス弁
20 負荷センサ
22 回転数センサ
24 過給機異常予兆判定装置
26 負荷パラメータ取得部
28 過給機回転数取得部
30 基準値生成部
32 回転数時間変化率算出部
34 異常予兆判定部
35 相関情報記憶部
36 アラーム信号発信部
38 バルブ制御信号発信部
40 相関情報更新部
72 プロセッサ
74 RAM
76 ROM
78 HDD
80 入力I/F
82 出力I/F
84 バス

Claims (11)

  1.  過給機の異常状態の予兆を判定するための過給機異常予兆判定装置であって、
     エンジンの負荷又は回転数を示す負荷パラメータの時系列データを取得するように構成された負荷パラメータ取得部と、
     前記過給機の回転数の時系列データを取得するように構成された過給機回転数取得部と、
     前記負荷パラメータ取得部によって取得した前記負荷パラメータの時系列データと、前記負荷パラメータと前記過給機の回転数との相関関係を示すエンジン過給機相関情報とに基づいて、前記過給機の回転数の時間変化率の基準値を生成する基準値生成部と、
     前記過給機回転数取得部によって取得した前記過給機の回転数の時系列データから前記過給機の回転数の時間変化率の時系列データを算出する回転数時間変化率算出部と、
     前記回転数時間変化率算出部によって算出した前記過給機の回転数の時間変化率の時系列データと、前記基準値生成部によって生成された前記基準値とに基づいて、前記過給機の異常状態の予兆を判定するように構成された異常予兆判定部と、
     を備える、過給機異常予兆判定装置。
  2.  前記異常予兆判定部は、前記基準値生成部によって生成された前記基準値よりも前記回転数時間変化率算出部によって算出された前記過給機の回転数の時間変化率が大きく、且つ、前記回転数時間変化率算出部によって算出された前記過給機の回転数の時間変化率が一定で正の値である場合に、前記過給機の過回転の予兆が示されていると判定するように構成された、請求項1に記載の過給機異常予兆判定装置。
  3.  前記異常予兆判定部は、前記基準値生成部によって生成された前記基準値よりも前記回転数時間変化率算出部によって算出された前記過給機の回転数の時間変化率が大きく、且つ、前記回転数時間変化率算出部によって算出された前記過給機の回転数の時間変化率が時間の経過とともに大きくなる場合には、前記過給機のオーバーランの予兆が示されていると判定するように構成された、請求項1に記載の過給機異常予兆判定装置。
  4.  前記異常予兆判定部は、前記基準値生成部によって生成された前記基準値よりも前記回転数時間変化率算出部によって算出された前記過給機の回転数の時間変化率が小さい場合には、前記過給機の内部損傷の予兆が示されていると判定するように構成された、請求項1に記載の過給機異常予兆判定装置。
  5.  前記異常予兆判定部は、前記エンジンの前記負荷パラメータが一定の状態において、前記回転数時間変化率算出部によって算出された前記過給機の回転数の時間変化率が0より大きい場合には、前記過給機のオーバーランの予兆が示されていると判定するように構成された、請求項1に記載の過給機異常予兆判定装置。
  6.  前記異常予兆判定部は、前記エンジンの前記負荷パラメータが一定の状態において、前記回転数時間変化率算出部によって算出された前記過給機の回転数の時間変化率が0よりも小さい場合には、前記過給機の内部損傷の予兆が示されていると判定するように構成された、請求項1に記載の過給機異常予兆判定装置。
  7.  前記エンジンの負荷の上昇時の前記過給機の回転数の時系列データから前記回転数時間変化率算出部によって算出した前記過給機の回転数の時間変化率と、前記基準値生成部によって生成された前記基準値との差分に基づいて、前記過給機の性能劣化の度合を判定し、前記エンジン過給機相関情報が示す前記負荷パラメータと前記過給機の回転数との相関関係を前記性能劣化の前記度合に応じて更新するように構成された相関情報更新部を更に備える、請求項1に記載の過給機異常予兆判定装置。
  8.  前記エンジンの始動から停止までを1サイクルとすると、前記エンジン過給機相関情報は、複数のサイクルにおける前記負荷パラメータの平均と前記複数のサイクルにおける前記過給機の回転数の平均との比率を示す、請求項1に記載の過給機異常予兆判定装置。
  9.  前記過給機の過回転の予兆、前記過給機のオーバーランの予兆又は前記過給機の内部損傷の予兆が示されていると前記異常予兆判定部が判定した場合に、前記異常予兆判定部の判定結果に基づくアラーム信号を発信するように構成されたアラーム信号発信部を更に備える、請求項1乃至8の何れか1項に記載の過給機異常予兆判定装置。
  10.  前記過給機の過回転の予兆又は前記過給機のオーバーランの予兆が示されていると前記異常予兆判定部が判定した場合に、(1)前記エンジンに接続する吸気通路における前記過給機の下流側の圧力を低下させるための安全弁の開度を大きくするためのバルブ制御信号、及び、(2)エンジンに接続する排気通路における前記過給機を迂回するバイパス通路に設けられたバイパス弁の開度を大きくするためのバルブ制御信号、のうち少なくとも一方のバルブ制御信号を発信するように構成されたバルブ制御信号発信部を更に備える、請求項1乃至8の何れか1項に記載の過給機異常予兆判定装置。
  11.  過給機の異常状態の予兆を判定するための過給機異常予兆判定方法であって、
     エンジンの負荷又は回転数を示す負荷パラメータの時系列データを取得するエンジン負荷パラメータ取得ステップと、
     前記過給機の回転数の時系列データを取得するように構成された過給機回転数取得ステップと、
     前記エンジン負荷パラメータ取得ステップで取得した前記負荷パラメータの時系列データと、前記負荷パラメータと前記過給機の回転数との相関関係を示すエンジン過給機相関情報とに基づいて、前記過給機の回転数の時間変化率の基準値を生成する基準値生成ステップと、
     前記過給機回転数取得ステップで取得した前記過給機の回転数の時系列データから前記過給機の回転数の時間変化率の時系列データを算出する回転数時間変化率算出ステップと、
     前記回転数時間変化率算出ステップで算出した前記過給機の回転数の時間変化率の時系列データと、前記基準値生成ステップで生成した前記基準値とに基づいて、前記過給機の異常状態の予兆を判定する異常予兆判定ステップと、
     を備える、過給機異常予兆判定方法。
PCT/JP2022/011178 2021-03-25 2022-03-14 過給機異常予兆判定装置及び過給機異常予兆判定方法 WO2022202426A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-051129 2021-03-25
JP2021051129A JP7449889B2 (ja) 2021-03-25 2021-03-25 過給機異常予兆判定装置及び過給機異常予兆判定方法

Publications (1)

Publication Number Publication Date
WO2022202426A1 true WO2022202426A1 (ja) 2022-09-29

Family

ID=83397171

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/011178 WO2022202426A1 (ja) 2021-03-25 2022-03-14 過給機異常予兆判定装置及び過給機異常予兆判定方法

Country Status (2)

Country Link
JP (1) JP7449889B2 (ja)
WO (1) WO2022202426A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20240318590A1 (en) * 2023-03-20 2024-09-26 GM Global Technology Operations LLC System and method for controlling internal combustion engine turbocharger shaft speed

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6415749U (ja) * 1987-07-16 1989-01-26
JP2005351129A (ja) * 2004-06-09 2005-12-22 Isuzu Motors Ltd ターボチャージャの疲労故障診断方法及び装置
WO2007145021A1 (ja) * 2006-06-12 2007-12-21 Yanmar Co., Ltd. 過給器を備えるエンジン
JP2016056762A (ja) * 2014-09-11 2016-04-21 いすゞ自動車株式会社 ターボチャージャの疲労故障診断方法及びターボチャージャの疲労故障診断装置
CN108801641A (zh) * 2018-04-20 2018-11-13 上海船舶运输科学研究所 废气涡轮增压器的故障诊断与可靠性预测方法及其系统

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112015007172B4 (de) 2015-12-07 2022-10-27 Mitsubishi Electric Corporation Siliciumcarbid-halbleitereinheit

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6415749U (ja) * 1987-07-16 1989-01-26
JP2005351129A (ja) * 2004-06-09 2005-12-22 Isuzu Motors Ltd ターボチャージャの疲労故障診断方法及び装置
WO2007145021A1 (ja) * 2006-06-12 2007-12-21 Yanmar Co., Ltd. 過給器を備えるエンジン
JP2016056762A (ja) * 2014-09-11 2016-04-21 いすゞ自動車株式会社 ターボチャージャの疲労故障診断方法及びターボチャージャの疲労故障診断装置
CN108801641A (zh) * 2018-04-20 2018-11-13 上海船舶运输科学研究所 废气涡轮增压器的故障诊断与可靠性预测方法及其系统

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20240318590A1 (en) * 2023-03-20 2024-09-26 GM Global Technology Operations LLC System and method for controlling internal combustion engine turbocharger shaft speed
US12116924B1 (en) * 2023-03-20 2024-10-15 GM Global Technology Operations LLC System and method for controlling internal combustion engine turbocharger shaft speed

Also Published As

Publication number Publication date
JP2022149129A (ja) 2022-10-06
JP7449889B2 (ja) 2024-03-14

Similar Documents

Publication Publication Date Title
RU2401388C2 (ru) Двигатель с нагнетателем (варианты)
US6945047B2 (en) Apparatus and method for automatic detection and avoidance of turbocharger surge on locomotive diesel engines
US8307645B2 (en) Apparatus and method for avoidance of turbocharger surge on locomotive diesel engines
US6318083B1 (en) Intake air control device of an engine with a charger and method thereof
US6990814B2 (en) Engine turbocharger control management system
JP6434285B2 (ja) 過給システムの制御装置
US6155050A (en) System and method for protecting a turbocharger in the event of a wastegate failure
EP2156036B1 (fr) Systeme de regulation de la pression de suralimentation pour moteur a combustion interne a deux turbocompresseurs etages
WO2022202426A1 (ja) 過給機異常予兆判定装置及び過給機異常予兆判定方法
JP2009221881A (ja) エンジン
JP4438368B2 (ja) 可変圧縮比エンジンの制御装置
US6314733B1 (en) Control method
EP1876333A1 (en) Variable vane type turbo charger control device
US10895207B2 (en) Method of operating an engine assembly
JP6458480B2 (ja) 排気還流制御装置
EP1903203B1 (fr) Disposititf et procédé de détection d'une avarie dans un système de suralimentation en air d'un moteur
JP7449890B2 (ja) 過給機異常判定装置及び過給機異常判定方法
EP3808960B1 (fr) Procédé de gestion du couple d'un véhicule automobile comportant un moteur à combustion interne et estimation de l usure d'un tel moteur
JP2016113959A (ja) 排気還流制御装置
JP2007040178A (ja) 可変容量型ターボチャージャの制御装置
JP2015183652A (ja) 内燃機関の制御装置
EP1365132B1 (fr) Dispositif de commande d'un moteur suralimenté comprenant l'utilisation d'un élément de logique floue
FR2888884A1 (fr) Procede et systeme de controle de la suralimentation en air d'un moteur a combustion interne de vehicule automobile
JP2022102129A (ja) 回転速度推定装置
JP2015183651A (ja) 内燃機関の制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22775218

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22775218

Country of ref document: EP

Kind code of ref document: A1