WO2022201990A1 - 耐風装置 - Google Patents

耐風装置 Download PDF

Info

Publication number
WO2022201990A1
WO2022201990A1 PCT/JP2022/006252 JP2022006252W WO2022201990A1 WO 2022201990 A1 WO2022201990 A1 WO 2022201990A1 JP 2022006252 W JP2022006252 W JP 2022006252W WO 2022201990 A1 WO2022201990 A1 WO 2022201990A1
Authority
WO
WIPO (PCT)
Prior art keywords
plate
friction material
wide surface
wind
resistant device
Prior art date
Application number
PCT/JP2022/006252
Other languages
English (en)
French (fr)
Inventor
晃治 西本
厚 渡辺
健太郎 蓑和
克尚 小西
Original Assignee
日鉄エンジニアリング株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日鉄エンジニアリング株式会社 filed Critical 日鉄エンジニアリング株式会社
Publication of WO2022201990A1 publication Critical patent/WO2022201990A1/ja

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04HBUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
    • E04H9/00Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate
    • E04H9/02Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate withstanding earthquake or sinking of ground
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04HBUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
    • E04H9/00Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate
    • E04H9/14Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate against other dangerous influences, e.g. tornadoes, floods
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/02Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/02Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems
    • F16F15/04Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems using elastic means

Definitions

  • the present disclosure relates to wind resistant devices.
  • seismic isolation technology is a technology that reduces the seismic force itself that enters the structure, so the vibration of the structure during an earthquake is effectively reduced.
  • a seismic isolation device is interposed between the foundation, which is the lower structure, and the upper structure to reduce the transmission of earthquake vibrations from the foundation to the upper structure. to ensure structural stability. This seismic isolation device is effective not only in the event of an earthquake, but also in reducing the impact of traffic vibration, which constantly acts on structures, on superstructures.
  • seismic isolation devices such as laminated rubber bearings with lead plugs, high-damping laminated rubber bearings, devices combining laminated rubber bearings and dampers, and sliding seismic isolation devices.
  • the friction coefficient of the spherical sliding bearings is relatively small, so the displacement of the upper structure supported by the spherical sliding bearings increases when subjected to wind load. It has a problem of large residual displacement.
  • the spherical sliding bearing exerts a high damping effect against seismic loads, it has the disadvantage that it is difficult to suppress the displacement of the supporting upper structure against wind loads due to its low coefficient of friction.
  • the seismic isolation layer equipped with a seismic isolation device it is necessary to develop a technology that simultaneously satisfies the wind resistance performance.
  • the damper ratio (yield layer shear force coefficient of the damping damper to the building weight) is designed to be 2% to 4%.
  • the damper ratio yield layer shear force coefficient of the damping damper to the building weight
  • the damper rate is set to about 5% to 7%, the input to the building during an earthquake will increase, and the original significance of adopting the seismic isolation device will be lost.
  • Patent Document 1 comfortable habitability is ensured against wind load with a recurrence period of about 1 year, and the horizontal rigidity of the seismic isolation layer is increased against wind load with a recurrence period of about 50 years.
  • a seismic isolation structure has been proposed that exerts a seismic isolation effect in the event of an earthquake. Specifically, in a seismic isolation structure in which a seismic isolation device is provided between an upper structure and a lower structure that move relative to each other due to disturbance, the amount of relative movement between the upper structure and the lower structure is a first predetermined value.
  • the relative movement between the upper structure and the lower structure When it becomes, the relative movement between the upper structure and the lower structure is restrained, and when the amount of relative movement between the upper structure and the lower structure reaches a second predetermined value larger than the first predetermined value, breaking or buckling occurs. It has a rigid member that releases the restraint of relative movement between the upper structure and the lower structure to allow the seismic isolation device to function.
  • Patent Document 2 proposes a wind-resistant structure that works in strong winds and cancels its action in the event of an earthquake. Specifically, it is a wind-resistant structure provided between a foundation and a structure body supported on the foundation, with a lower structure provided on the foundation and a structure placed on the lower structure. An upper structure that supports the body and engages in place between the lower and upper works in high winds to rigidly restrain the lower and upper works.
  • the first pin retreats from the fixed position and cuts off the gap between the lower structure and the upper structure, and the seismic force is constant in the state where the lower structure and the upper structure are rigidly restrained.
  • a second pin is provided that breaks when the value is exceeded to separate the lower structure and the structure body.
  • one of the measures for ensuring the seismic isolation performance while also satisfying the wind resistance performance is to apply a lock-type oil damper, and the other is the above-mentioned Patent Document 1. , 2 to apply wind pins to the isolation layer.
  • the lock-type oil damper has an electronic lock device attached to the damper, and when a typhoon approaches, the building manager sets the electronic lock, but the problem is that the equipment cost is extremely high. In addition, there is a problem that the building's wind resistance performance is not exhibited when the building manager forgets to set the lock, and furthermore, it is necessary to constantly perform maintenance regarding the presence or absence of electronic control operation.
  • wind-resistant pins generally have a mechanism in which slits are provided in a cylindrical pin member and break when a predetermined shearing force is reached. Since it is equipped with a mechanism that resists with a seismic device, etc., there is a problem of maintenance work such as checking the wind resistance pin after a major earthquake and replacing it if the wind resistance pin is broken. In addition, since a very loud sound is generated when the wind-resistant pin is broken, there is also a problem that this loud sound makes building users uneasy. Furthermore, since the strength of the wind-resistant pin rapidly decreases after breaking, there is also a problem that a large acceleration occurs in the seismic isolation layer after breaking.
  • the present disclosure relates to a wind resistant device installed together with a seismic isolation device in the seismic isolation layer of a building, and provides a wind resistant device with excellent wind resistance performance without applying a wind resistant pin or an electronic lock device that shears and breaks during an earthquake. do.
  • One aspect of the wind resistant device includes: A wind resistant device installed together with a base isolation device in a base isolation layer of a base isolated building, a steel first plate; a steel second plate; a first friction material disposed on one first wide surface of the first plate; a second friction material disposed on one second wide surface of the second plate; At least a tightening bolt that presses the first friction material and the second friction material in contact with each other, The first friction material and the second friction material are pressed together with a design friction force by introducing a design tension to the tightening bolt, The wind resistant device is formed when the first friction material and the second friction material are pulled by an external force greater than or equal to the design friction force, and the contact between the first friction material and the second friction material is released. The design tension is released by disengaging a part of the component from the initial position.
  • the first friction material and the second friction material are sandwiched between the first plate and the second plate made of steel, and are pressure-welded with design friction force by the tightening bolt to which the design tension is introduced.
  • the design tension is released and the tightening by the tightening bolt is loosened, and the first friction material and the second friction material are released.
  • a large frictional resistance is no longer generated when the friction material is displaced (for example, reciprocating displacement).
  • the resistance (frictional resistance) of the wind resistance device in the seismic isolation layer disappears, and when an earthquake acts on the seismic isolation layer after that, the resistance of the wind resistance device is reduced.
  • the seismic isolation device can function in the seismic isolation layer without suffering. Therefore, a wind resistant device having excellent wind resistance performance can be obtained without applying a wind resistant pin or an electronic lock device that would be sheared and broken during an earthquake (for example, during a large earthquake such as a level 2 earthquake).
  • sliding seismic isolation devices such as spherical sliding devices and flat sliding devices, laminated rubber devices (laminated rubber support type seismic isolation devices), etc. are applied to the seismic isolation devices arranged together with the wind resistant device in the seismic isolation layer. .
  • the design tension can be released, and the design tension can be reliably released with a relatively simple mechanism.
  • the first friction material and the second friction material are returned to the contact position at an appropriate timing, and the disengaged structural members are returned to the initial position.
  • the design tension introduced into the tightening bolt is the load that releases the pressure contact state between the first friction material and the second friction material, so it can also be called the design release load.
  • the first plate, the second plate, and the first friction material and the second friction material between them are made into one unit, and a plurality of units are stacked and tightened with a common tightening bolt. There may be.
  • the first plate (upper plate) of the lower unit may also serve as the second plate (lower plate) of the upper unit.
  • Yet another aspect of the wind resistant device includes: The second wide surface faces upward, the first wide surface faces downward and faces the second wide surface, The first wide surface has a groove, and the groove accommodates a portion of the first friction material, When the contact between the first friction material and the second friction material is released, the first friction material falls from the groove onto the second wide surface, releasing the design tension. do.
  • the first friction material is accommodated in the groove on the first wide surface of the first plate, and when the contact between the first friction material and the second friction material is released, the first friction material is removed from the groove.
  • the material drops to the second wide surface and the design tension is released, the contact between the first friction material and the second friction material is released, and at the same time the first friction material is naturally and instantly engaged from the initial position. can be removed.
  • the first friction material accommodated in the groove provided on the first wide surface of the first plate drops onto the second wide surface of the second plate below. One friction material can be retained on the second wide surface without being lost.
  • a spacer protruding downward is disposed on the side of the groove on the first wide surface, or a spacer protruding upward is disposed on the second wide surface at a position corresponding to the side of the groove. is arranged, when the first friction material and the second friction material are in contact, the spacer is not in contact with the second wide surface or the first wide surface; When the contact between the first friction material and the second friction material is released, the spacer contacts the second wide surface or the first wide surface to contact the second wide surface or the first wide surface. characterized by sliding on the
  • the spacer projecting downward is disposed on the side of the groove on the first wide surface (the side in the longitudinal direction of the first plate), or corresponds to the side of the groove on the second wide surface.
  • a spacer projecting upward is disposed at a position where the first friction material and the second friction material are in contact with each other. and the second friction material are released, the spacer abuts against the second wide surface or the first wide surface and slides on the second wide surface or the first wide surface, resulting in the first friction The spacer does not interfere with the friction resistance between the material and the second friction material. Moreover, after the abutment is released, the spacer maintains the gap between the first wide surface and the second wide surface, thereby ensuring smooth relative displacement between the two.
  • the groove is characterized by extending to a pair of opposite side surfaces in a width direction perpendicular to the longitudinal direction of the first plate.
  • the groove extends to a pair of opposite side surfaces in the width direction orthogonal to the longitudinal direction of the first plate, after the first friction material drops onto the second wide surface, the tightening bolt It is possible to easily return (accommodate) the first friction material to the groove from the side by removing the groove.
  • the second plate below the first plate and the third plate below the second plate;
  • the width of the second plate is narrower than the width in the width direction orthogonal to the longitudinal direction of the first plate and the third plate,
  • a pair of movement restricting members extending in the longitudinal direction are arranged between the first plate and the third plate and outside the second plate in the width direction, The first plate, the movement restricting member, and the third plate are tightened by the tightening bolt.
  • the relatively narrow second plate is arranged between the first plate and the third plate, and the width direction of the second plate is between the first plate and the third plate and in the width direction of the second plate
  • the first plate, the movement restricting member, and the third plate are tightened with tightening bolts in a state in which a pair of longitudinally extending movement restricting members such as the first plate are arranged on the outside of the , the pair of movement restricting members can prevent the dropped first friction member from moving and fluctuating.
  • the pair of movement restraints can restrain the deflection of each plate to ensure the initial design frictional force due to the design tension introduced in the tightening bolts.
  • the second plate below the first plate and the third plate above the first plate;
  • the width of the first plate is narrower than the width in the width direction orthogonal to the longitudinal direction of the second plate and the third plate,
  • a pair of movement restricting members extending in the longitudinal direction are arranged between the second plate and the third plate and outside the first plate in the width direction, The second plate, the movement restricting member, and the third plate are tightened by the tightening bolt.
  • the relatively narrow first plate is disposed between the second plate and the third plate, and the width direction of the first plate is between the second plate and the third plate.
  • the second plate, the movement restricting member, and the third plate are tightened with tightening bolts in a state where a pair of movement restricting members extending in the longitudinal direction such as the second plate are arranged on the outside of the , the pair of movement restricting members can prevent the dropped first friction member from moving and fluctuating.
  • the pair of movement restraints can restrain the deflection of each plate to ensure the initial design frictional force due to the design tension introduced in the tightening bolts.
  • the tightening bolt is a headed bolt having a head and a shaft
  • a U-shaped washer is interposed between the head of the tightening bolt and the first plate or the second plate and engaged with the shaft, The design tension is released by dropping the U-shaped washer from the shaft when the contact between the first friction material and the second friction material is released.
  • the U-shaped washer is interposed between the head of the headed bolt and the first plate or the second plate and engages with the shaft of the headed bolt to provide the first friction material and the second friction material.
  • the U-shaped washer disengages (drops) from the shaft and the design tension is released, so that the design tension can be reliably released with a relatively simple mechanism.
  • the "U-shaped washer” literally includes a C-shaped washer in addition to the U-shaped washer, and is a washer that can be engaged with the shaft and has a gap larger than that of the shaft. is included.
  • wind resistant device of the present disclosure regarding the wind resistant device arranged together with the base isolation device in the seismic isolation layer of the building, excellent wind resistance performance can be achieved without applying wind resistant pins or electronic lock devices that are sheared and broken during an earthquake. It is possible to provide a wind resistant device with
  • FIG. 1 is an exploded perspective view of an example of a wind resistant device according to an embodiment
  • FIG. FIG. 2 is a view in the direction of arrow III in FIG. 1, and is a view of the first wide surface of the first plate as seen obliquely from below.
  • 1 is a perspective view of an example of a wind resistant device according to an embodiment
  • FIG. FIG. 10 is a vertical cross-sectional view illustrating the operation of the wind resistant device according to the embodiment when a wind load smaller than the design frictional force acts.
  • FIG. 5 is a vertical cross-sectional view illustrating the operation of the wind resistant device according to the embodiment when a wind load greater than or equal to the design frictional force is acting.
  • FIG. 4 is a diagram showing load-deformation characteristics of the wind resistant device according to the embodiment;
  • FIG. 1 is a diagram showing a base isolation layer of a base isolation building provided with an example of the wind resistance device according to the embodiment.
  • 2 is an exploded perspective view of an example of the wind resistant device according to the embodiment, and
  • FIG. 3 is a view in the direction of arrow III in FIG.
  • FIG. 4 is a perspective view of an example of a wind resistant device according to an embodiment.
  • FIGS. 5 and 6 are longitudinal sectional views for explaining the operation of the wind resistant device according to the embodiment when a wind load smaller than the design frictional force acts, and
  • FIG. FIG. 5 is a vertical cross-sectional view explaining the action of the wind resistant device when a wind load is acting;
  • a base-isolated building 500 has an upper structure 300 and a lower structure 200 as a foundation.
  • the upper structure 300 includes at least underground beams 310 and columns 320 that are assembled to each other in a grid pattern. layer) is provided.
  • the base-isolated building 500 is a high-rise building such as a high-rise building or an apartment building made of reinforced concrete (RC), steel (S), or SRC.
  • a pillar 320 is erected above the intersection of the underground beams 310, and a bearing projection 330 is provided below the intersection.
  • a footing 210 is provided on the foundation 200 at a position corresponding to the bearing projection 330 , and a seismic isolation device 400 is arranged between the footing 210 and the bearing projection 330 .
  • the seismic isolation device 400 in the illustrated example is a laminated rubber bearing type device, but a sliding seismic isolation device such as a spherical sliding device or a flat sliding device may be applied. Also, the seismic isolation layer 510 may be further provided with a damper device (not shown).
  • a wind resistance device projection 340 protrudes downward from the lower surface of the underground beam 310, and a separate wind resistance device projection 220 protrudes upward from the upper surface of the foundation 200.
  • the wind resistant device 100 is attached to the opposing side surfaces of the wind resistant device protrusions 340 and 220 via mounting jigs 95A and 95B and mounting bolts 90A and 90B.
  • the wind resistant device 100 includes a steel first plate 10, a second plate 20, and a third plate 30, a first friction member 40, a second friction member 50, and a pair of movement restrictors. It has a material 80 and a tightening bolt 70 .
  • the first friction material 40 is arranged on one (lower) first wide surface 11 of the first plate 10 .
  • the second friction material 50 is arranged on one (upper) second wide surface 21 of the second plate 20 .
  • a pair of movement restricting members 80 are arranged between the first plate 10 and the third plate 30 to sandwich the second plate 20 .
  • the tightening bolt 70 presses the first friction material 40 and the second friction material 50 that are in contact with each other.
  • each plate in the illustrated example is an example, and various forms are possible on the premise that the vertical relationship between the first wide surface 11 of the first plate 10 and the second wide surface 21 of the second plate 20 is maintained. wind resistance device.
  • the second plate 20, the first plate 10, and the third plate 30 are arranged in order from the bottom, and the third plate 30 is reversed with respect to the illustrated example (the fourth wide surface 31 is the bottom).
  • the third friction material 61 is attached to the upper surface of the first plate 10 that is, a form in which the first plate 10 is arranged in the center.
  • the form which provided only the 1st plate 10 and the 2nd plate 20 without comprising the 3rd plate may be sufficient.
  • the first friction material 40 and the second friction material 50 that are in contact with each other are both formed of aluminum alloy plates, or one is a steel pressure plate and the other is an aluminum alloy plate.
  • the first plate 10, the second plate 20, and the third plate 30 are all made of steel and have a horizontally elongated substantially rectangular shape when viewed from above, and the first plate 10 and the third plate 30 have the same shape when viewed from above. is doing.
  • a plurality of (eight in the illustrated example) bolt holes 12, 32 and jig holes 13, 33 are provided at corresponding positions of both the first plate 10 and the third plate 30. is established.
  • the width s1 in the width direction perpendicular to the longitudinal direction of the first plate 10 and the third plate 30 is wider than the width s2 in the width direction of the second plate 20 sandwiched between them.
  • the opening positions of the bolt holes 12 and 32 of both the first plate 10 and the third plate 30 are located outside the width direction of the second plate 20 sandwiched therebetween.
  • four (a total of eight) bolt holes 12 and 32 are provided at positions near corresponding both ends in the width direction of the first plate 10 and the third plate 30 .
  • a second plate 20 is arranged between the first plate 10 and the third plate 30, and a pair of movement restricting members 80 are arranged between the first plate 10 and the third plate 30 so as to sandwich the second plate 20. are placed.
  • the movement restricting member 80 is made of channel steel with upper and lower flanges 81 and webs 82 .
  • Four bolt holes 83 are formed in the upper and lower flanges 81 at positions corresponding to the bolt holes 12 and 32 when the movement restricting member 80 is arranged between the first plate 10 and the third plate 30.
  • the movement restricting member may be formed of a steel material other than channel steel.
  • a first plate 10 and a third plate 30 are arranged above and below the second plate 20, and a pair of movement restricting members 80 are arranged so as to sandwich the second plate 20 between the first plate 10 and the third plate 30. be.
  • a tightening bolt 70 is inserted into the corresponding bolt hole 12, 32, 83 in the X1 direction and tightened with a nut 75. As shown in FIG. Here, in FIG. 2, only one set of tightening bolt 70 and nut 75 is illustrated.
  • a plurality of grooves 15 (three in the illustrated example) extending in the width direction and having a rectangular shape in a plan view are formed at intervals. It is Each groove 15 extends to a pair of opposing side surfaces 14 of the first plate 10 and faces the side surfaces 14 .
  • the central area is a first friction material accommodating area 15a for accommodating the first friction material 40, and both sides thereof are the accommodating outer sides. This is the area 15b.
  • spacers 17, one set (two) in the width direction and a total of three sets (six in total), are provided at lateral positions in the longitudinal direction of the accommodation outer region 15b of each groove 15. It is Here, the spacers may be provided on the second wide surface 21 of the second plate 20 instead of being provided on the first wide surface 11 in the illustrated example, and the number of spacers is not limited to the illustrated example.
  • the first friction material 40 accommodated in the first friction material accommodation area 15a moves to the second position of the lower second plate 20 when the contact with the second friction material 50 is released. It will drop onto the two wide surfaces 21 .
  • the spacer 17 is provided on the side of the outer accommodation area 15b of the groove 15, after the first friction material 40 drops below the first friction material accommodation area 15a, the first friction material 40 and the spacer 17 does not interfere. Therefore, smooth sliding on the second wide surface 21 of the tip of the spacer 17 thereafter is ensured.
  • a first friction material 40 which is the same size as the first friction material accommodation area 15a or slightly smaller than the first friction material accommodation area 15a in plan view, is accommodated in the X2 direction. be done.
  • the first friction material 40 is housed in the first friction material housing area 15a of each groove 15 of the first wide surface 11 of the first plate 10.
  • a second friction member 50 having the same planar shape and dimensions as the first friction member 40 is fixed at a position corresponding to . Therefore, in the posture in which the first plate 10 and the second plate 20 are stacked, the corresponding first friction material 40 and second friction material 50 are brought into contact with each other over their entire surfaces.
  • both the third friction material 61 and the fourth friction material 62 are aluminum alloy plates, or one is a steel pressure plate and the other is an aluminum alloy plate. Formed by
  • the first friction material 40 and the second friction material 50 are in contact with each other, and the third friction material 61 and the fourth friction material are in contact with each other. 62 abut.
  • a predetermined design tension N is introduced to all the tightening bolts 70 by tightening the eight tightening bolts 70 with a predetermined tightening force.
  • the design frictional force F resisting this wind load Q is applied to the three sets of first frictional forces that are pressed against each other at the designed tension N.
  • Material 40 and second friction material 50 are provided by a set of third friction material 61 and fourth friction material 62 .
  • the wind resistant device 100 of the illustrated example is arranged so that the wide surfaces of the first plate 10, the second plate 20, and the third plate 30 are arranged in order from the top. is placed in That is, the wind resistant device 100 is attached to the seismic isolation layer 510 in the posture shown in FIG.
  • the first plate 10 When all the first friction materials 40 drop onto the second wide surface 21, the first plate 10 also drops downward toward the second plate 20 in the Y3 direction.
  • the tip (lower end) of the spacer 17 having a height t1 abuts the second wide surface 21, and the plurality of spacers 17 form a state in which the first plate 10 and the second plate 20 maintain the distance t1. Due to this drop of the first plate 10, the design tension N introduced in the tightening bolts 70 is completely released.
  • the first plate 10 After the design tension N introduced in the tightening bolt 70 is released, the first plate 10 is moved so that the tip of the spacer 17 touches the surface of the second wide surface 21 of the second plate 20 without resistance (or with slight resistance). ) will slip. Therefore, the first plate 10 (and the third plate 30) and the second plate 20 can be smoothly displaced relative to the acting wind load. At this time, as described above, since the spacer 17 is provided on the side of the housing outer region 15b of the groove 15, the first friction material 40 and the spacer after falling below the first friction material housing region 15a 17 does not interfere. Therefore, smooth sliding on the second wide surface 21 of the tip of the spacer 17 thereafter is ensured.
  • FIG. 7 is a diagram showing load-deformation characteristics of the wind resistant device 100.
  • FIG. 7 When the wind load Q2 corresponding to the design frictional force acts, the first plate 10 and the second plate 20 begin to move relative to each other, and the contact between the first friction material 40 and the second friction material 50 begins at the relative displacement amount ⁇ 1. be released.
  • the design tension introduced into the tightening bolt 70 is completely released, and the frictional resistance of the wind resistant device 100 quickly disappears. Therefore, the first plate 10 and the second plate 20 are displaced up to the allowable displacement amount ⁇ 2 (for example, about 300 mm) without resistance.
  • the first friction material 40 is accommodated in the first friction material accommodation area 15a of the groove 15 in the first wide surface 11 of the first plate 10, and the first friction material 40 and the second friction material 40 are accommodated in the first friction material accommodation area 15a.
  • the contact of the friction material 50 is released, the first friction material 40 falls from the groove 15 to the second wide surface 21 and the design tension N is released.
  • the contact between the first friction material 40 and the second friction material 50 is released, and at the same time, the first friction material 40 can be naturally and instantaneously engaged and disengaged from the initial position.
  • a pair of movement restricting members 80 extending in the longitudinal direction of the first plate 10 and the like are provided between the first plate 10 and the third plate 30 and outside the second plate 20 in the width direction. In this state, the first plate 10, the movement restricting member 80, and the third plate 30 are tightened by the tightening bolts 70, so that the pair of movement restricting members 80 move the dropped first friction member 40. variation can be prevented.
  • the pair of movement restricting members 80 are positioned on both sides of the second plate 20 in the width direction, uniaxial sliding of the second plate 20 in the longitudinal direction with respect to the first plate 10 can be guaranteed. Therefore, the problem that the initial designed frictional force is not exerted due to mutual movement of the first plate 10 and the second plate 20 in a plurality of directions does not occur.
  • the pair of movement restricting members 80 can suppress the deflection of the first plate 10 and the third plate 30, and the initial design frictional force due to the design tension introduced into the tightening bolts 70 can be guaranteed.
  • the pair of movement restricting members 80 literally has the function of restricting the movement of various members as desired.
  • the groove 15 in which the first friction material 40 is accommodated extends to a pair of opposing side surfaces 14 of the first plate 10, facing the side surfaces 14.
  • the tightening bolt 70 was pulled out and the movement restricting member 80 was removed to expose the side surface of the second plate 20.
  • the ends of the grooves 15 can also be exposed. This makes it possible to easily return the falling first friction material 40 to the groove 15 .
  • the spacer 17 is provided on the side of the groove 15 (the side in the longitudinal direction of the first plate 10), the spacer 17 becomes an obstacle when returning the first friction material 40 to the groove 15. Not at all.
  • a wind resistant device that does not include the spacer 17 may be used in addition to the wind resistant device 100 in the illustrated example.
  • the space t1 between the first plate 10 and the second plate 20 after the design tension N is released can be maintained by the spacers 17, and the tips of the plurality of spacers 17 smoothly move on the second wide surface 21.
  • the illustrated example of the wind resistant device 100 is preferable because it slides smoothly (when the spacers are provided on the second wide surface, the tips of the plurality of spacers slide smoothly on the first wide surface).
  • the wind resistance device 100 acts on the acting wind load
  • the seismic isolation device 400 acts on seismic load caused by a level 1 or level 2 earthquake. Therefore, even if the base-isolated building 500 is a high-rise building with an aspect ratio of 4 or more, the damper rate can be designed to be generally 2% to 4%, so that the wind load can be sufficiently suppressed and the base-isolated building can be The seismic isolation performance of the device 400 can be guaranteed.
  • the wind resistant device 100 of the illustrated example it is possible to rotate the arrangement posture of the wind resistant device 100 of the illustrated example by 90 degrees from the posture of the illustrated example, and arrange the wide surfaces of the respective plates along the vertical direction. good.
  • the head of the tightening bolt 70 is pulled while the first friction material 40 and the second friction material 50 are brought into contact with each other.
  • a U-shaped washer (not shown) is interposed between and the first plate 10 and engaged with the shaft portion of the tightening bolt 70 . At this time, the U-shaped washer is engaged with the shaft with the opening facing downward.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • General Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Acoustics & Sound (AREA)
  • Physics & Mathematics (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Vibration Prevention Devices (AREA)
  • Connection Of Plates (AREA)

Abstract

地震時にせん断破壊される耐風ピンや電子ロック装置を適用することなく、優れた耐風性能を有する耐風装置を提供する。免震建物500の免震層510において、免震装置400とともに配設される耐風装置100であり、鋼製の第一プレート10及び第二プレート20と、第一プレート10の一方の第一広幅面11に配設されている第一摩擦材40と、第二プレート20の一方の第二広幅面21に配設されている第二摩擦材50と、相互に当接する第一摩擦材40と第二摩擦材50を圧接する締め付けボルト70とを少なくとも有し、締め付けボルト70に対して設計張力Nが導入されることにより、第一摩擦材40と第二摩擦材50が設計摩擦力Fを有して圧接されており、設計摩擦力F以上の外力Qで第一摩擦材40と第二摩擦材50が引っ張られて双方の当接が解除された際に、設計張力Nが解放される。

Description

耐風装置
 本開示は、耐風装置に関する。
 地震国においては、ビルや橋梁、高架道路、戸建の住宅といった様々な構造物に対して、地震力に抗する技術、構造物に入る地震力を低減する技術など、様々な耐震技術、免震技術、制震技術が開発され、各種構造物に適用されている。中でも免震技術は、構造物に入る地震力そのものを低減する技術であることから、地震時の構造物の振動は効果的に低減される。この免震技術を概説すると、下部構造物である基礎と上部構造物との間に免震装置を介在させ、地震による基礎の振動の上部構造物への伝達を低減し、上部構造物の振動を低減して構造安定性を保証するものである。尚、この免震装置は、地震時のみならず、構造物に対して常時作用する交通振動の上部構造物への影響低減にも効果を発揮する。
 免震装置には、鉛プラグ入り積層ゴム支承装置や高減衰積層ゴム支承装置、積層ゴム支承と減衰ダンパーを組み合わせた装置、滑り免震装置など、様々な形態の装置が存在している。例えば従来の球面滑り支承を有する免震建物では、球面滑り支承の摩擦係数が比較的小さいことから、風荷重を受けた際に球面滑り支承で支持される上部構造体の変位が大きくなり、これが大きな残留変位になるといった課題を有している。すなわち、球面滑り支承は地震荷重に対して高い減衰効果を発揮する一方で、風荷重に対してはその低い摩擦係数ゆえに支持する上部構造体の変位を抑制し難いといったデメリットを有していた。このように、免震装置を備える免震層において、耐風性能も同時に満足させる技術の開発が必要になってきている。
 ところで、地震入力を低減させ、免震層の変形を300mm乃至500mm程度に留めるために、ダンパー率(建物重量に対する減衰ダンパーの降伏層せん断力係数)が2%乃至4%で設計されるのが一般的であるが、近年、アスペクト比(幅に対する高さの比率)が4以上の高層ビルにも免震装置が採用されている。このようなプロポーションの高層ビルにおいては風荷重が支配的となり易く、風荷重載荷時における最大変形や残留変形、あるいは減衰ダンパーの疲労を抑えるべく、ダンパー率5%乃至7%程度が必要になってくる。しかしながら、ダンパー率を5%乃至7%程度に設定すると今度は地震時の建物への入力が増加してしまい、免震装置を採用する本来の意義を失ってしまう。
 ここで、特許文献1には、再現期間1年程度の風荷重に対して快適な居住性を確保し、再現期間50年程度の風荷重に対しては免震層の水平剛性を高め、大地震時には免震効果を発揮する免震構造が提案されている。具体的には、外乱により相対移動する上部構造体と下部構造体との間に免震装置が設けられた免震構造において、上部構造体と下部構造体との相対移動量が第1所定値になると上部構造体と下部構造体との相対移動を拘束し、上部構造体と下部構造体との相対移動量が第1所定値よりも大きな第2所定値になると破断又は座屈することにより、上部構造体と下部構造体との相対移動の拘束を解除して免震装置を機能させる、剛性部材を有する。
 一方、特許文献2には、強風時に作用し、地震時には作用が解除される耐風構造が提案されている。具体的には、基礎と基礎上に支持される構造物本体との間に設けられる耐風構造であり、基礎上に設けられる下部構造体と、下部構造体上に配置され、その上方に構造物本体を支持する上部構造体と、強風時に下部構造体と上部構造体の間の定位置に係合してこれら下部構造体と上部構造体とを剛に拘束する。地震力が入力された際に定位置から退避して下部構造体と上部構造体の間を縁切りする第1ピンと、下部構造体と上部構造体が剛に拘束された状態において、地震力が一定値を超えた際に破断して下部構造体と構造物本体とを縁切りする第2ピンとを備えている。
特開2008-156945号公報 特開2004-176525号公報
 免震装置を備えた建物において、免震性能を確保しながら耐風性能も満足するための方策として、一つはロック式のオイルダンパーを適用する方法があり、他の一つは上記特許文献1,2に開示されるように耐風ピンを免震層に適用する方法がある。
 ロック式のオイルダンパーはダンパーに電子ロックの装置が着いたものであり、台風が近づいた際に建物管理者が電子ロックのロック設定をおこなうものであるが、非常に設備コストが高いといった課題があるとともに、建物管理者がロック設定を忘れた際に建物の耐風性能が発揮されないといった課題があり、さらには、電子制御の動作の有無に関して常時メンテナンスする必要がある。
 一方、耐風ピンは一般に、円筒状のピン部材にスリットを設けて所定のせん断力になったら破断する機構を備え、風荷重に対しては耐風ピンで抵抗し、大地震時には耐風ピン以外の免震装置等で抵抗する機構を備えているため、大地震時のあとには耐風ピンを点検し、耐風ピンが破断している場合には交換を余儀なくされるといったメンテナンス手間の課題がある。また、耐風ピンの破断時には非常に大きな音が発生することから、この大きな音が建物利用者を不安にさせるといった課題もある。さらに、耐風ピンは破断後に急激に耐力低下することから、破断後に免震層に大きな加速度が生じるといった課題もある。
 本開示は、建物の免震層において免震装置とともに配設される耐風装置に関し、地震時にせん断破壊される耐風ピンや電子ロック装置を適用することなく、優れた耐風性能を有する耐風装置を提供する。
 本開示による耐風装置の一態様は、
 免震建物の免震層において、免震装置とともに配設される耐風装置であって、
 鋼製の第一プレートと、
 鋼製の第二プレートと、
 前記第一プレートの一方の第一広幅面に配設されている第一摩擦材と、
 前記第二プレートの一方の第二広幅面に配設されている第二摩擦材と、
 相互に当接する前記第一摩擦材と前記第二摩擦材を圧接する締め付けボルトと、を少なくとも有し、
 前記締め付けボルトに対して設計張力が導入されることにより、前記第一摩擦材と前記第二摩擦材が設計摩擦力を有して圧接されており、
 前記設計摩擦力以上の外力で前記第一摩擦材と前記第二摩擦材が引っ張られ、該第一摩擦材と該第二摩擦材の当接が解除された際に、前記耐風装置を形成する構成部材の一部が当初位置から係脱することにより、前記設計張力が解放されることを特徴とする。
 本態様によれば、第一摩擦材と第二摩擦材が鋼製の第一プレートと第二プレートに挟まれ、設計張力が導入されている締め付けボルトによって設計摩擦力を有した状態で圧接されており、外力の作用によって第一摩擦材と第二摩擦材の当接が解除された際に設計張力が解放されることにより、締め付けボルトによる締め付けが緩み、その後の第一摩擦材と第二摩擦材の変位(例えば往復変位)の際に大きな摩擦抵抗力が生じることは無くなる。
 このことにより、大きな風荷重によって耐風装置が機能した後は、免震層における耐風装置による抵抗(摩擦抵抗)は無くなり、その後に免震層に地震が作用した際には、耐風装置による抵抗を受けることなく免震層において免震装置が機能することができる。そのため、地震時(例えばレベル2地震等の大地震時)にせん断破壊される耐風ピンや電子ロック装置を適用することなく、優れた耐風性能を有する耐風装置となる。ここで、免震層において耐風装置とともに配設される免震装置には、球面滑り装置や平面滑り装置といった滑り免震装置、積層ゴム装置(積層ゴム支承型免震装置)等が適用される。
 さらに、本態様によれば、例えば大きな風荷重にて第一摩擦材と第二摩擦材の当接が解除された際に、耐風装置を形成する構成部材の一部が当初位置から係脱することによって設計張力が解放されることにより、比較的シンプルな機構で確実な設計張力の解放を実現することができる。大きな風荷重を受けて構成部材の一部が当初位置から係脱した後は、適宜のタイミングで、第一摩擦材と第二摩擦材を当接した姿勢に戻し、係脱した構成部材を当初位置に戻すことにより、耐風装置を復元することができる。
 締め付けボルトに導入される設計張力は、第一摩擦材と第二摩擦材の圧接状態を解除する荷重であることから、設計解放荷重と称することもできる。ここで、第一プレートと第二プレートとこれらの間にある第一摩擦材と第二摩擦材を一つのユニットとし、複数のユニットが積層され、共通の締め付けボルトにて締め付けられている構成であってもよい。例えば二つのユニットが積層している形態では、下層のユニットの第一プレート(上方にあるプレート)が、上層のユニットの第二プレート(下方のプレート)を兼用してもよい。
 また、本開示による耐風装置の他の態様は、
 前記第二広幅面が上方を向き、前記第一広幅面が下方を向いて該第二広幅面と対向し、
 前記第一広幅面には溝があり、該溝に前記第一摩擦材の一部が収容されており、
 前記第一摩擦材と前記第二摩擦材の当接が解除された際に、前記溝から前記第一摩擦材が前記第二広幅面に落下して前記設計張力が解放されることを特徴とする。
 本態様によれば、第一プレートの第一広幅面にある溝に第一摩擦材が収容され、第一摩擦材と第二摩擦材の当接が解除された際に、溝から第一摩擦材が第二広幅面に落下して設計張力が解放されることにより、第一摩擦材と第二摩擦材の当接が解除されると同時に第一摩擦材を自然かつ瞬時に当初位置から係脱させることができる。また、第一プレートの第一広幅面に設けられている溝に収容されていた第一摩擦材は、その下方にある第二プレートの第二広幅面の上に落下することから、落下した第一摩擦材は紛失することなく、第二広幅面の上に保持しておくことができる。
 また、本開示による耐風装置の他の態様において、
 前記第一広幅面における前記溝の側方には、下方へ張り出すスペーサが配設され、もしくは、前記第二広幅面における前記溝の側方に対応する位置には、上方へ張り出すスペーサが配設されており、
 前記第一摩擦材と前記第二摩擦材が当接している際に、前記スペーサは前記第二広幅面もしくは前記第一広幅面に当接しておらず、
 前記第一摩擦材と前記第二摩擦材の当接が解除された際に、前記スペーサが前記第二広幅面もしくは前記第一広幅面に当接して該第二広幅面もしくは該第一広幅面の上を摺動することを特徴とする。
 本態様によれば、第一広幅面の溝の側方(第一プレートの長手方向の側方)において下方へ張り出すスペーサが配設され、もしくは、第二広幅面の溝の側方に対応する位置に上方へ張り出すスペーサが配設され、第一摩擦材と第二摩擦材が当接している際にスペーサは第二広幅面もしくは第一広幅面に当接せず、第一摩擦材と第二摩擦材の当接が解除された際にスペーサが第二広幅面もしくは第一広幅面に当接して第二広幅面もしくは第一広幅面の上を摺動することにより、第一摩擦材と第二摩擦材による摩擦抵抗をスペーサが邪魔することはない。また、当接解除後は、スペーサが第一広幅面と第二広幅面の間の隙間を保持することにより、双方のスムーズな相対変位を保証することができる。
 また、本開示による耐風装置の他の態様において、
 前記溝が、前記第一プレートの長手方向に直交する幅方向における対向する一対の側面まで延設していることを特徴とする。
 本態様によれば、溝が第一プレートの長手方向に直交する幅方向における対向する一対の側面まで延設していることにより、第一摩擦材が第二広幅面に落下した後、締め付けボルトを抜いて側方から第一摩擦材を溝へ容易に戻す(収容する)ことが可能になる。
 また、本開示による耐風装置の他の態様において、
 前記第一プレートの下方に前記第二プレートがあり、該第二プレートの下方に第三プレートがあり、
 前記第一プレートと前記第三プレートの長手方向に直交する幅方向の幅に比べて、前記第二プレートの幅は狭く、
 前記第一プレートと前記第三プレートの間であって、かつ前記第二プレートの前記幅方向の外側において、前記長手方向に延設する一対の移動規制材が配設されており、
 前記第一プレートと前記移動規制材と前記第三プレートが、前記締め付けボルトにて締め付けられていることを特徴とする。
 本態様によれば、第一プレートと第三プレートの間に相対的に幅の狭い第二プレートが配設され、第一プレートと第三プレートの間であって、かつ第二プレートの幅方向の外側において、第一プレート等の長手方向に延設する一対の移動規制材が配設された状態で、第一プレートと移動規制材と第三プレートが締め付けボルトにて締め付けられていることにより、一対の移動規制材にて、落下した第一摩擦材が移動してばらつくことを防止できる。また、第一プレートに対する第二プレートの長手方向への摺動(一軸摺動)を保証でき、双方のプレートが相互に複数方向に移動する(摺動する)ことを防止できる。さらには、一対の移動規制材により、各プレートの撓みを抑制して、締め付けボルトに導入された設計張力による初期の設計摩擦力を保証することができる。
 また、本開示による耐風装置の他の態様において、
 前記第一プレートの下方に前記第二プレートがあり、該第一プレートの上方に第三プレートがあり、
 前記第二プレートと前記第三プレートの長手方向に直交する幅方向の幅に比べて、前記第一プレートの幅は狭く、
 前記第二プレートと前記第三プレートの間であって、かつ前記第一プレートの前記幅方向の外側において、前記長手方向に延設する一対の移動規制材が配設されており、
 前記第二プレートと前記移動規制材と前記第三プレートが、前記締め付けボルトにて締め付けられていることを特徴とする。
 本態様によれば、第二プレートと第三プレートの間に相対的に幅の狭い第一プレートが配設され、第二プレートと第三プレートの間であって、かつ第一プレートの幅方向の外側において、第二プレート等の長手方向に延設する一対の移動規制材が配設された状態で、第二プレートと移動規制材と第三プレートが締め付けボルトにて締め付けられていることにより、一対の移動規制材にて、落下した第一摩擦材が移動してばらつくことを防止できる。また、第一プレートに対する第二プレートの長手方向への摺動(一軸摺動)を保証でき、双方のプレートが相互に複数方向に移動する(摺動する)ことを防止できる。さらには、一対の移動規制材により、各プレートの撓みを抑制して、締め付けボルトに導入された設計張力による初期の設計摩擦力を保証することができる。
 また、本開示による耐風装置の他の態様において、
 前記締め付けボルトが頭部と軸部を備えた頭付きボルトであり、
 前記締め付けボルトの頭部と前記第一プレートもしくは前記第二プレートとの間に、U型座金が介在して前記軸部に係合しており、
 前記第一摩擦材と前記第二摩擦材の当接が解除された際に、前記軸部から前記U型座金が落下して前記設計張力が解放されることを特徴とする。
 本態様によれば、頭付きボルトの頭部と第一プレートもしくは第二プレートとの間にU型座金が介在して頭付きボルトの軸部に係合し、第一摩擦材と第二摩擦材の当接が解除された際に軸部からU型座金が係脱(落下)して設計張力が解放されることにより、比較的シンプルな機構で確実な設計張力の解放を実現することができる。ここで、「U型座金」には、文字通りU型の座金の他、C型の座金等が含まれ、軸部に係合可能であって軸部よりも大きな隙間を備えている形状の座金が含まれる。
 本開示の耐風装置によれば、建物の免震層において免震装置とともに配設される耐風装置に関し、地震時にせん断破壊される耐風ピンや電子ロック装置を適用することなく、優れた耐風性能を有する耐風装置を提供することができる。
実施形態に係る耐風装置の一例を備える免震建物の免震層を示す図である。 実施形態に係る耐風装置の一例の分解斜視図である。 図1のIII方向の矢視図であって、第一プレートの第一広幅面を斜め下方から見た図である。 実施形態に係る耐風装置の一例の斜視図である。 実施形態に係る耐風装置において、設計摩擦力よりも小さな風荷重が作用している際の耐風装置の作用を説明する縦断面図である。 実施形態に係る耐風装置において、設計摩擦力以上の風荷重が作用している際の耐風装置の作用を説明する縦断面図である。 実施形態に係る耐風装置の荷重-変形特性を示す図である。
 以下、実施形態に係る耐風装置について、添付の図面を参照しながら説明する。尚、本明細書及び図面において、実質的に同一の構成要素については、同一の符号を付することにより重複した説明を省く場合がある。
 [実施形態に係る耐風装置]
 図1乃至図7を参照して、実施形態に係る耐風装置の一例を説明する。ここで、図1は、実施形態に係る耐風装置の一例を備える免震建物の免震層を示す図である。また、図2は、実施形態に係る耐風装置の一例の分解斜視図であり、図3は、図1のIII方向の矢視図であって、第一プレートの第一広幅面を斜め下方から見た図であり、図4は、実施形態に係る耐風装置の一例の斜視図である。さらに、図5と図6はそれぞれ、実施形態に係る耐風装置において、設計摩擦力よりも小さな風荷重が作用している際の耐風装置の作用を説明する縦断面図と、設計摩擦力以上の風荷重が作用している際の耐風装置の作用を説明する縦断面図である。
 図1に示すように、免震建物500は、上部構造体300と基礎である下部構造体200とを有する。上部構造体300は、相互に格子状に組み付けられている地中梁310と柱320を少なくとも備えており、上部構造体300と下部構造体200の間には、免震層510(基礎免震層)が設けられている。免震建物500は、高層ビルやマンション等の鉄筋コンクリート造(RC(Reinforced Concrete)造)や鉄骨造(S(Steel)造)、SRC造の高層建物である。
 地中梁310同士の交点の上方に柱320が立設し、交点の下方に支承用凸部330が設けられている。基礎200のうち、支承用凸部330に対応する位置にフーチング210が設けられ、フーチング210と支承用凸部330の間に免震装置400が配設されている。図示例の免震装置400は積層ゴム支承型装置であるが、球面滑り装置や平面滑り装置等の滑り免震装置が適用されてもよい。また、免震層510には、不図示のダンパー装置がさらに設けられてもよい。
 免震層510において、地中梁310の下面から下方へ耐風装置用凸部340が突設し、基礎200の上面から上方へ別途の耐風装置用凸部220が突設している。双方の耐風装置用凸部340,220の対向する側面に対して、取り付け治具95A,95Bと取り付けボルト90A,90Bを介して耐風装置100が取り付けられている。
 次に、図2乃至図7を参照して、免震層510に配設される耐風装置100の構成と、耐風装置100による作用とその特性について説明する。
 図2に示すように、耐風装置100は、鋼製の第一プレート10、第二プレート20、及び第三プレート30と、第一摩擦材40と、第二摩擦材50と、一対の移動規制材80と、締め付けボルト70とを有する。第一摩擦材40は、第一プレート10の一方(下方)の第一広幅面11に配設されている。第二摩擦材50は、第二プレート20の一方(上方)の第二広幅面21に配設されている。一対の移動規制材80は、第一プレート10と第三プレート30の間に配設されて第二プレート20を挟む。締め付けボルト70は、相互に当接する第一摩擦材40及び第二摩擦材50を圧接する。
 ここで、図示例の各プレートの上下の並びは一例であり、第一プレート10の第一広幅面11と第二プレート20の第二広幅面21の上下関係の維持を前提として、様々な形態の耐風装置がある。図示を省略するが、例えば、下から順に、第二プレート20,第一プレート10,第三プレート30の並びとし、第三プレート30は図示例に対して反転させ(第四広幅面31が下を向いた姿勢)、第一プレート10の上面に第三摩擦材61が取り付けられている形態、すなわち、第一プレート10が中央に配設される形態等であってもよい。また、第三プレートを具備せず、第一プレート10と第二プレート20のみを備えた形態であってもよい。
 図2に戻り、相互に当接する第一摩擦材40と第二摩擦材50は、双方がアルミ合金板、もしくは、一方が鋼製の支圧板で他方がアルミ合金板等により形成される。
 第一プレート10、第二プレート20,及び第三プレート30はいずれも鋼製のプレートで平面視が横長の略矩形状を呈し、第一プレート10と第三プレート30は同じ平面視形状を有している。各プレートが積層された状態において、第一プレート10と第三プレート30の双方の対応する位置には、複数(図示例は八つ)のボルト孔12,32と、治具孔13,33とが開設されている。
 また、第一プレート10と第三プレート30の長手方向に直交する幅方向の幅s1は、それらの間に挟まれる第二プレート20の幅方向の幅s2よりも広い。また、第一プレート10と第三プレート30の双方のボルト孔12,32の開設位置は、これらに挟持される第二プレート20の幅方向の外側に位置している。図示例では、第一プレート10と第三プレート30の対応する幅方向の両端近傍位置に、それぞれ四つ(計八つ)のボルト孔12,32が設けられている。
 第一プレート10と第三プレート30の間に第二プレート20が配設され、第一プレート10と第三プレート30の間で、かつ第二プレート20を挟むように一対の移動規制材80が配設される。
 移動規制材80は、上下のフランジ81とウェブ82を備える溝形鋼により形成されている。上下のフランジ81のうち、移動規制材80が第一プレート10と第三プレート30の間に配設された際にボルト孔12,32に対応する位置には、四つのボルト孔83が開設されている。ここで、移動規制材は、溝形鋼以外の鋼材により形成されてもよい。
 第二プレート20の上下に第一プレート10と第三プレート30が配設され、第一プレート10と第三プレート30の間に第二プレート20を挟むようにして一対の移動規制材80が配設される。そして、対応するボルト孔12,32,83に締め付けボルト70がX1方向に挿入され、ナット75にて締め付けられるようになっている。ここで、図2においては、一組の締め付けボルト70とナット75のみを図示している。
 治具孔13,33に対して、図1に示す耐風装置用凸部340に接続されている取り付け治具95Aが位置合わせされ、取り付けボルト90Aが治具孔13,33に挿通さることにより、耐風装置100の一端が耐風装置用凸部340に対してボルト接合される。
 一方、治具孔23に対して、図1に示す耐風装置用凸部220に接続されている取り付け治具95Bが位置合わせされ、取り付けボルト90Bが治具孔23に挿通されることにより、耐風装置100の他端が耐風装置用凸部220にボルト接合される。
 図3に明りょうに示すように、第一プレート10の第一広幅面11には、平面視矩形で幅方向に延設する複数(図示例は三つ)の溝15が間隔を置いて開設されている。各溝15は、第一プレート10の対向する一対の側面14まで延設して、当該側面14に臨んでいる。
 第一広幅面11において、第一プレート10の幅方向に延設する溝15のうち、中央の領域は第一摩擦材40を収容する第一摩擦材収容領域15aであり、その両側は収容外側領域15bである。
 そして、第一広幅面11において、各溝15の収容外側領域15bの長手方向の側方位置には、幅方向に一組(二つ)で計三組(計六つ)のスペーサ17が設けられている。ここで、スペーサは、第一広幅面11に設けられる図示例の形態に代えて、第二プレート20の第二広幅面21に設けられてもよいし、その数は図示例に限定されない。
 以下で説明するように、第一摩擦材収容領域15aに収容されている第一摩擦材40は、第二摩擦材50との当接が解除された際に、下方の第二プレート20の第二広幅面21の上へ落下することになる。しかしながら、スペーサ17が溝15の収容外側領域15bの側方に設けられていることから、第一摩擦材40が第一摩擦材収容領域15aの下方へ落下した後に、第一摩擦材40とスペーサ17が干渉することはない。従って、その後のスペーサ17の先端の第二広幅面21上における、スムーズな摺動が保証される。
 各溝15における第一摩擦材収容領域15aには、第一摩擦材収容領域15aと同一もしくは第一摩擦材収容領域15aよりもわずかに平面視寸法の小さな第一摩擦材40がX2方向に収容される。
 図2に戻り、第二プレート20の第二広幅面21のうち、第一プレート10の第一広幅面11の各溝15の第一摩擦材収容領域15aに収容されている第一摩擦材40に対応する位置には、第一摩擦材40と平面視形状及び寸法が同一の第二摩擦材50が固定されている。そのため、第一プレート10と第二プレート20が積層された姿勢において、対応する第一摩擦材40と第二摩擦材50が双方の全面で当接するようになっている。
 第二プレート20の他方(下方)の第三広幅面22には、平面視が横長矩形の第三摩擦材61が固定されている。また、第三プレート30の一方(上方)の第四広幅面31のうち、第三摩擦材61と対応する位置には、第四摩擦材62が固定されている。第三摩擦材61と第四摩擦材62も、第一摩擦材40及び第二摩擦材50と同様に、双方がアルミ合金板、もしくは、一方が鋼製の支圧板で他方がアルミ合金板等により形成される。
 図4及び図5に示すように、各部材が組み付けられた耐風装置100において、相互に対応する第一摩擦材40と第二摩擦材50が当接し、第三摩擦材61と第四摩擦材62が当接する。図示例では、八つの締め付けボルト70が所定の締め付け力にて締め付けられることにより、全ての締め付けボルト70に対して所定の設計張力Nが導入されることになる。耐風装置100に対して風荷重Q(引張力)が作用した際には、この風荷重Qに抗する設計摩擦力Fが、設計張力Nにて相互に圧接されている三組の第一摩擦材40及び第二摩擦材50と、一組の第三摩擦材61及び第四摩擦材62によってもたらされる。
 図1に示すように、免震層510において、図示例の耐風装置100は、上から順に、第一プレート10,第二プレート20,及び第三プレート30の順に各広幅面が水平となるように配設される。すなわち、耐風装置100は、図4に示す姿勢で免震層510に取り付けられる。
 図5に示すように、免震層510に対して設計摩擦力Fより小さな風荷重Q1(外力)が作用している状態では、対応する第一摩擦材40と第二摩擦材50が相互に当接し、第一プレート10の第一広幅面11と第二プレート20の第二広幅面21の間に隙間t2が形成されている。そして、この姿勢において、第一広幅面11から下方へ突設するスペーサ17の高さt1は隙間t2よりも小さく設定されており、従って、スペーサ17の先端(下端)は第二広幅面21に当接していない。
 一方、図6に示すように、免震層510に対して設計摩擦力F以上の風荷重Q2(外力)が作用すると、第一摩擦材40と第二摩擦材50が相互に反対方向であるY1方向へ引っ張られ、同様に、第三摩擦材61と第四摩擦材62が相互に反対方向であるY1方向へ引っ張られる。このことにより、対応する第一摩擦材40と第二摩擦材50の当接が解除され、溝15に収容されていた第一摩擦材40は、下方の第二広幅面21の上へY2方向に落下する。
 全ての第一摩擦材40が第二広幅面21の上へ落下することにより、第一プレート10も下方の第二プレート20側へY3方向に落下する。そして、高さt1のスペーサ17の先端(下端)が第二広幅面21に当接し、複数のスペーサ17により第一プレート10と第二プレート20が間隔t1を保持した状態を形成する。この第一プレート10の落下により、締め付けボルト70に導入されていた設計張力Nは完全に解放されることになる。
 締め付けボルト70に導入されていた設計張力Nが解放された後、第一プレート10は、スペーサ17の先端が第二プレート20の第二広幅面21の表面を抵抗なく(もしくは僅かな抵抗にて)滑ることになる。そのため、作用する風荷重に対して、第一プレート10(及び第三プレート30)と第二プレート20はスムーズに相対変位することができる。この際、上記するように、スペーサ17は溝15の収容外側領域15bの側方に設けられていることから、第一摩擦材収容領域15aの下方へ落下した後の第一摩擦材40とスペーサ17が干渉することはない。従って、その後のスペーサ17の先端の第二広幅面21上における、スムーズな摺動が保証される。
 図7は、耐風装置100の荷重-変形特性を示す図である。設計摩擦力に相当する風荷重Q2が作用した段階で、第一プレート10と第二プレート20の相対変位がはじまり、相対変位量δ1で第一摩擦材40と第二摩擦材50の当接が解除される。
 第一摩擦材40と第二摩擦材50の当接が解除された際に、締め付けボルト70に導入されていた設計張力は完全に解放され、耐風装置100の摩擦抵抗は速やかに無くなる。そのため、第一プレート10と第二プレート20は抵抗なく、許容変位量δ2(例えば300mm程度)まで変位することになる。
 図示例の耐風装置100によれば、第一プレート10の第一広幅面11にある溝15の第一摩擦材収容領域15aに第一摩擦材40が収容され、第一摩擦材40と第二摩擦材50の当接が解除された際に、溝15から第一摩擦材40が第二広幅面21に落下して設計張力Nが解放される。このことにより、第一摩擦材40と第二摩擦材50の当接が解除されると同時に、第一摩擦材40を自然かつ瞬時に当初位置から係脱させることができる。
 また、第一プレート10の第一広幅面11の溝15の第一摩擦材収容領域15aから落下した第一摩擦材40が、下方にある第二プレート20の第二広幅面21の上に落下することから、落下した第一摩擦材40を紛失することなく、第二広幅面21の上に保持しておくことができる。
 また、第一プレート10と第三プレート30の間であって、かつ第二プレート20の幅方向の外側において、第一プレート10等の長手方向に延設する一対の移動規制材80が配設された状態で、第一プレート10と移動規制材80と第三プレート30が締め付けボルト70にて締め付けられていることにより、一対の移動規制材80にて、落下した第一摩擦材40が移動してばらつくことを防止できる。
 また、一対の移動規制材80が第二プレート20の幅方向の両側に位置していることから、第一プレート10に対する第二プレート20の長手方向への一軸摺動を保証できる。そのため、第一プレート10と第二プレート20が相互に複数方向に移動することにより、初期の設計摩擦力が発揮されないといった問題は生じない。
 さらに、一対の移動規制材80により、第一プレート10と第三プレート30の撓みを抑制することができ、締め付けボルト70に導入された設計張力による初期の設計摩擦力を保証することができる。
 このように、一対の移動規制材80は、文字通り、様々な部材の移動を所望に規制する機能を有している。
 さらに、第一プレート10の第一広幅面11において、第一摩擦材40が収容される溝15が、第一プレート10の対向する一対の側面14まで延設して、当該側面14に臨んでいることにより、第一摩擦材40が第二プレート20の第二広幅面21の上に落下した後、締め付けボルト70を抜いて移動規制材80を取り外し、第二プレート20の側面を露出させた際に、溝15の端部も露出させることができる。このことにより、落下している第一摩擦材40を、溝15に容易に戻すことが可能になる。この際、スペーサ17は溝15の側方(第一プレート10の長手方向の側方)に設けられていることから、第一摩擦材40を溝15へ戻す際に、スペーサ17が邪魔になることもない。
 尚、図示を省略するが、図示例の耐風装置100の他に、スペーサ17を備えていない耐風装置であってもよい。しかしながら、上記するように、設計張力Nを解放した後の第一プレート10と第二プレート20の間隔t1をスペーサ17により保持でき、複数のスペーサ17の先端が第二広幅面21の上をスムーズに滑る(スペーサが第二広幅面に設けられている場合は、複数のスペーサの先端が第一広幅面の上をスムーズに滑る)ことから、図示例の耐風装置100が好ましい。
 免震層510においては、作用する風荷重に対して耐風装置100が作用し、レベル1地震やレベル2地震等による地震荷重に対して免震装置400が作用する。従って、免震建物500がアスペクト比4以上の高層ビル等であっても、ダンパー率を一般的な2%乃至4%に設計することができるため、風荷重を十分に抑制しながら、免震装置400による免震性能を保証することができる。
 上記実施形態に挙げた構成等に対し、その他の構成要素が組み合わされるなどした他の実施形態であってもよく、ここで示した構成に本開示が何等限定されるものではない。この点に関しては、本開示の趣旨を逸脱しない範囲で変更することが可能であり、その応用形態に応じて適切に定めることができる。
 例えば、図示を省略するが、図示例の耐風装置100の配設姿勢を図示例の姿勢から90度回動させ、各プレートの広幅面を鉛直方向に沿うように配設する形態であってもよい。この形態の耐風装置では、第一プレートの溝に第一摩擦材の一部を収容させる構成に代わり、第一摩擦材40と第二摩擦材50を当接させつつ、締め付けボルト70の頭部と第一プレート10の間にU型座金(図示せず)を介在させて締め付けボルト70の軸部に係合させておく。この際、U型座金の開口が下方を向くようにして軸部に係合させる。免震層510に風荷重が作用して第一摩擦材40と第二摩擦材50の当接が解除されると、締め付けボルト70の軸部に係合されていたU型座金が下方へ落下することにより、締め付けボルト70に導入されていた設計張力が完全に解放されることになる。
 本国際出願は、2021年3月26日に出願した日本国特許出願第2021-053473号に基づく優先権を主張するものであり、当該出願の全内容を本国際出願に援用する。
 10:第一プレート
 11:第一広幅面
 12:ボルト孔
 13:治具孔
 14:側面
 15:溝
 15a:第一摩擦材収容領域
 15b:収容外側領域
 17:スペーサ
 20:第二プレート
 21:第二広幅面
 22:第三広幅面
 23:治具孔
 30:第三プレート
 31:第四広幅面
 32:ボルト孔
 33:治具孔
 40:第一摩擦材
 50:第二摩擦材
 61:第三摩擦材
 62:第四摩擦材
 70:締め付けボルト
 75:ナット
 80:移動規制材
 81:フランジ
 82:ウェブ
 83:ボルト孔
 90A,90B:取り付けボルト
 95A,95B:取り付け治具
 100:耐風装置
 200:下部構造体(基礎)
 210:フーチング
 220:耐風装置用凸部
 300:上部構造体
 310:地中梁
 320:柱
 330:支承用凸部
 340:耐風装置用凸部
 400:免震装置
 500:免震建物
 510:免震層
 N:設計張力
 F:設計摩擦力
 Q,Q1,Q2:風荷重(外力)

Claims (7)

  1.  免震建物の免震層において、免震装置とともに配設される耐風装置であって、
     鋼製の第一プレートと、
     鋼製の第二プレートと、
     前記第一プレートの一方の第一広幅面に配設されている第一摩擦材と、
     前記第二プレートの一方の第二広幅面に配設されている第二摩擦材と、
     相互に当接する前記第一摩擦材と前記第二摩擦材を圧接する締め付けボルトと、を少なくとも有し、
     前記締め付けボルトに対して設計張力が導入されることにより、前記第一摩擦材と前記第二摩擦材が設計摩擦力を有して圧接されており、
     前記設計摩擦力以上の外力で前記第一摩擦材と前記第二摩擦材が引っ張られ、該第一摩擦材と該第二摩擦材の当接が解除された際に、前記耐風装置を形成する構成部材の一部が当初位置から係脱することにより、前記設計張力が解放されることを特徴とする、耐風装置。
  2.  前記第二広幅面が上方を向き、前記第一広幅面が下方を向いて該第二広幅面と対向し、
     前記第一広幅面には溝があり、該溝に前記第一摩擦材の一部が収容されており、
     前記第一摩擦材と前記第二摩擦材の当接が解除された際に、前記溝から前記第一摩擦材が前記第二広幅面に落下して前記設計張力が解放されることを特徴とする、請求項1に記載の耐風装置。
  3.  前記第一広幅面における前記溝の側方には、下方へ張り出すスペーサが配設され、もしくは、前記第二広幅面における前記溝の側方に対応する位置には、上方へ張り出すスペーサが配設されており、
     前記第一摩擦材と前記第二摩擦材が当接している際に、前記スペーサは前記第二広幅面もしくは前記第一広幅面に当接しておらず、
     前記第一摩擦材と前記第二摩擦材の当接が解除された際に、前記スペーサが前記第二広幅面もしくは前記第一広幅面に当接して該第二広幅面もしくは該第一広幅面の上を摺動することを特徴とする、請求項2に記載の耐風装置。
  4.  前記溝が、前記第一プレートの長手方向に直交する幅方向における対向する一対の側面まで延設していることを特徴とする、請求項2又は3に記載の耐風装置。
  5.  前記第一プレートの下方に前記第二プレートがあり、該第二プレートの下方に第三プレートがあり、
     前記第一プレートと前記第三プレートの長手方向に直交する幅方向の幅に比べて、前記第二プレートの幅は狭く、
     前記第一プレートと前記第三プレートの間であって、かつ前記第二プレートの前記幅方向の外側において、前記長手方向に延設する一対の移動規制材が配設されており、
     前記第一プレートと前記移動規制材と前記第三プレートが、前記締め付けボルトにて締め付けられていることを特徴とする、請求項1乃至4のいずれか一項に記載の耐風装置。
  6.  前記第一プレートの下方に前記第二プレートがあり、該第一プレートの上方に第三プレートがあり、
     前記第二プレートと前記第三プレートの長手方向に直交する幅方向の幅に比べて、前記第一プレートの幅は狭く、
     前記第二プレートと前記第三プレートの間であって、かつ前記第一プレートの前記幅方向の外側において、前記長手方向に延設する一対の移動規制材が配設されており、
     前記第二プレートと前記移動規制材と前記第三プレートが、前記締め付けボルトにて締め付けられていることを特徴とする、請求項1乃至4のいずれか一項に記載の耐風装置。
  7.  前記締め付けボルトが頭部と軸部を備えた頭付きボルトであり、
     前記締め付けボルトの頭部と前記第一プレートもしくは前記第二プレートとの間に、U型座金が介在して前記軸部に係合しており、
     前記第一摩擦材と前記第二摩擦材の当接が解除された際に、前記軸部から前記U型座金が落下して前記設計張力が解放されることを特徴とする、請求項1に記載の耐風装置。
PCT/JP2022/006252 2021-03-26 2022-02-16 耐風装置 WO2022201990A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-053473 2021-03-26
JP2021053473A JP6932280B1 (ja) 2021-03-26 2021-03-26 耐風装置

Publications (1)

Publication Number Publication Date
WO2022201990A1 true WO2022201990A1 (ja) 2022-09-29

Family

ID=77549925

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/006252 WO2022201990A1 (ja) 2021-03-26 2022-02-16 耐風装置

Country Status (3)

Country Link
JP (1) JP6932280B1 (ja)
TW (1) TWI794023B (ja)
WO (1) WO2022201990A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004263430A (ja) * 2003-02-28 2004-09-24 Oiles Ind Co Ltd 免震構造物の半固定装置
JP2007262833A (ja) * 2006-03-29 2007-10-11 Okumura Corp 粘性系の振動減衰装置及びこれを具備した免震建物
JP2018184791A (ja) * 2017-04-27 2018-11-22 新日鉄住金エンジニアリング株式会社 耐風装置
JP2019116912A (ja) * 2017-12-26 2019-07-18 日鉄エンジニアリング株式会社 摩擦ストッパー用の相手材前駆体とその製造方法、摩擦ストッパー用の相手材とその製造方法、及び摩擦ストッパー
JP2020045615A (ja) * 2018-09-14 2020-03-26 日鉄エンジニアリング株式会社 耐風装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101216087A (zh) * 2008-01-18 2008-07-09 北京工业大学 板式变摩擦阻尼器
CN205639451U (zh) * 2016-04-05 2016-10-12 同济大学 一种变摩擦耗能减震装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004263430A (ja) * 2003-02-28 2004-09-24 Oiles Ind Co Ltd 免震構造物の半固定装置
JP2007262833A (ja) * 2006-03-29 2007-10-11 Okumura Corp 粘性系の振動減衰装置及びこれを具備した免震建物
JP2018184791A (ja) * 2017-04-27 2018-11-22 新日鉄住金エンジニアリング株式会社 耐風装置
JP2019116912A (ja) * 2017-12-26 2019-07-18 日鉄エンジニアリング株式会社 摩擦ストッパー用の相手材前駆体とその製造方法、摩擦ストッパー用の相手材とその製造方法、及び摩擦ストッパー
JP2020045615A (ja) * 2018-09-14 2020-03-26 日鉄エンジニアリング株式会社 耐風装置

Also Published As

Publication number Publication date
JP6932280B1 (ja) 2021-09-08
TW202237957A (zh) 2022-10-01
TWI794023B (zh) 2023-02-21
JP2022150739A (ja) 2022-10-07

Similar Documents

Publication Publication Date Title
JP4355673B2 (ja) 建物の制震構造
US7367075B2 (en) Girder bridge protection device using sacrifice member
JP4330171B2 (ja) アイソレータ保護装置、免震装置
JP4803455B2 (ja) 免震装置
WO2022201990A1 (ja) 耐風装置
KR101051058B1 (ko) 건축물용 댐핑 시스템
JP4893061B2 (ja) 粘性系の振動減衰装置及びこれを具備した免震建物
JP2000027292A (ja) 制振部材
JP2007191988A (ja) 対震ブレース
JP5305756B2 (ja) 波形鋼板を用いた制振壁
JP2004169348A (ja) トリガー機能を有する橋梁用移動制限装置及び移動制限装置を有する橋梁系の免震システム
JP4968880B2 (ja) 免震装置
KR101921864B1 (ko) 건축물의 내진 보강 조립체
JPH10280727A (ja) 複合型ダンパーによる制振架構及び制振方法
JP3671317B2 (ja) 免震機構
JP4188347B2 (ja) 免震構造物
JP3718114B2 (ja) 免震構造物
JP2007308297A (ja) つなぎ装置、仮設構造物の支持方法、仮設構造物の支持構造
JP2001173092A (ja) 柱の構造
JP2006152788A (ja) 制振壁パネル
JPH10292845A (ja) 弾塑性ダンパー
JP7222825B2 (ja) 木造建築構造躯体及び接合部材
KR102500114B1 (ko) 강재 멀티 슬릿 댐퍼
KR101944216B1 (ko) 수평방향의 거동을 통한 건축물의 내진 보강 조립체
JP5765187B2 (ja) 制震装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22774790

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22774790

Country of ref document: EP

Kind code of ref document: A1