WO2022201329A1 - 半導体光集積素子 - Google Patents
半導体光集積素子 Download PDFInfo
- Publication number
- WO2022201329A1 WO2022201329A1 PCT/JP2021/012077 JP2021012077W WO2022201329A1 WO 2022201329 A1 WO2022201329 A1 WO 2022201329A1 JP 2021012077 W JP2021012077 W JP 2021012077W WO 2022201329 A1 WO2022201329 A1 WO 2022201329A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- output
- light
- semiconductor optical
- modulated light
- outputs
- Prior art date
Links
- 230000003287 optical effect Effects 0.000 title claims abstract description 99
- 239000004065 semiconductor Substances 0.000 title claims abstract description 69
- 238000012544 monitoring process Methods 0.000 claims abstract description 14
- 239000011248 coating agent Substances 0.000 claims 1
- 238000000576 coating method Methods 0.000 claims 1
- 230000006866 deterioration Effects 0.000 abstract description 4
- 238000012986 modification Methods 0.000 description 8
- 230000004048 modification Effects 0.000 description 8
- 239000000758 substrate Substances 0.000 description 6
- 230000003321 amplification Effects 0.000 description 4
- 230000003667 anti-reflective effect Effects 0.000 description 4
- 238000003199 nucleic acid amplification method Methods 0.000 description 4
- 230000007423 decrease Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000013307 optical fiber Substances 0.000 description 2
- 238000010079 rubber tapping Methods 0.000 description 2
- 230000002269 spontaneous effect Effects 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000008033 biological extinction Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/06—Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
- H01S5/068—Stabilisation of laser output parameters
- H01S5/0683—Stabilisation of laser output parameters by monitoring the optical output parameters
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/02—Structural details or components not essential to laser action
- H01S5/022—Mountings; Housings
- H01S5/023—Mount members, e.g. sub-mount members
- H01S5/0231—Stems
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/02—Structural details or components not essential to laser action
- H01S5/026—Monolithically integrated components, e.g. waveguides, monitoring photo-detectors, drivers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/02—Structural details or components not essential to laser action
- H01S5/026—Monolithically integrated components, e.g. waveguides, monitoring photo-detectors, drivers
- H01S5/0265—Intensity modulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/06—Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
- H01S5/068—Stabilisation of laser output parameters
- H01S5/06821—Stabilising other output parameters than intensity or frequency, e.g. phase, polarisation or far-fields
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/10—Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
- H01S5/12—Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers
- H01S5/125—Distributed Bragg reflector [DBR] lasers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/50—Amplifier structures not provided for in groups H01S5/02 - H01S5/30
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/02—Structural details or components not essential to laser action
- H01S5/022—Mountings; Housings
- H01S5/02208—Mountings; Housings characterised by the shape of the housings
- H01S5/02212—Can-type, e.g. TO-CAN housings with emission along or parallel to symmetry axis
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/02—Structural details or components not essential to laser action
- H01S5/022—Mountings; Housings
- H01S5/0225—Out-coupling of light
- H01S5/02251—Out-coupling of light using optical fibres
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/02—Structural details or components not essential to laser action
- H01S5/022—Mountings; Housings
- H01S5/0225—Out-coupling of light
- H01S5/02253—Out-coupling of light using lenses
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/10—Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
- H01S5/12—Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers
Definitions
- the present invention relates to a distributed feedback semiconductor optical integrated device, and more particularly to a semiconductor optical integrated device for monitoring light intensity.
- DFB lasers have excellent single-wavelength properties.
- EA-DFB laser semiconductor optical integrated device
- EA electro-absorption
- EA-DFB lasers are widely used in high-speed optical communication systems due to the high extinction characteristics and broadband characteristics of EA modulators.
- a semiconductor optical amplifier (SOA: Semiconductor Optical Amplifier) is monolithically integrated on the same substrate to achieve long-distance transmission.
- An optical integrated device (AXEL: soa assisted eXtended reach Ea-dfb Laser) is known (see Patent Document 2, for example).
- an optical transmitter equipped with AXEL when monitoring the light intensity at the position of the light receiving device, which is the premise of the conventional configuration, that is, at the stage after the DFB laser, only the light intensity of the DFB laser can be monitored. Therefore, when the gain of the SOA decreases due to deterioration of the SOA, the phenomenon cannot be detected by the monitor, so the optical intensity of the output light from the optical transmitter cannot be made constant by feedback control.
- the present invention provides an embodiment of a semiconductor optical integrated device comprising: a DFB laser that outputs continuous light; an EA modulator that modulates the continuous light and outputs modulated light; a first multimode interference coupler that inputs the modulated light from a first input port, splits the modulated light and outputs the modulated light from two or more output ports; and the first multimode interference coupler. and an input port connected to each output of the semiconductor optical amplifiers for amplifying the divided modulated light beams. It is characterized by comprising a second multimode interference coupler that outputs from an output port, and a monitor waveguide connected to the second input port of the first multimode interference coupler.
- FIG. 1 is a top view showing a configuration example of a semiconductor optical integrated device according to a first embodiment of the present invention
- FIG. 2 is a diagram showing a configuration example of an optical transmitter mounted with an optical semiconductor integrated device
- FIG. 3 is a top view showing a modification of the semiconductor optical integrated device of the first embodiment
- FIG. 4 is a top view showing a configuration example of a semiconductor optical integrated device according to a second embodiment of the present invention
- FIG. 5 is a top view showing a modification of the semiconductor optical integrated device of the second embodiment
- FIG. 6 is a top view showing a configuration example of a semiconductor optical integrated device according to a third embodiment of the present invention
- FIG. 7 is a diagram showing another configuration example of an optical transmitter mounted with an optical semiconductor integrated device
- FIG. 8 is a top view showing a first modification of the semiconductor optical integrated device of the third embodiment
- FIG. 9 is a top view showing a second modification of the semiconductor optical integrated device of the third embodiment.
- FIG. 1 shows a configuration example of a semiconductor optical integrated device 100 according to the first embodiment of the present invention.
- the semiconductor optical integrated device 100 includes a DFB laser 101, an EA modulator 102 connected to the DFB laser, and an input 2-port output N-port 2xN multimode interference coupler (MMI ) 104, N SOAs 103-1 to 103-N connected to each output port of the 2 ⁇ N-MMI 104, waveguides 112-1 to 112-N connected to the output ports of each SOA 103, and waveguide 112 and a monitor waveguide 106 connected to the input port of a 2xN-MMI 104, integrated on a single substrate.
- MMI multimode interference coupler
- the continuous light 107 output by the DFB laser 101 is input to the EA modulator 102, modulated by the EA modulator 102, and output as modulated light 108.
- Modulated light 108 is input to one input port of 2 ⁇ N-MMI 104 , N-divided, and input to SOA 103 connected to each output port of 2 ⁇ N-MMI 104 .
- the N-divided modulated light 108 is amplified and input to each input port of the Nx1-MMI 105 via the waveguide 112 .
- each amplified modulated light 109 is combined and output from the output port of the Nx1-MMI to become the output light 110.
- ASE light Amplified Spontaneous Emission
- ASE light is output not only in the direction of Nx1-MMI 105 on the output side of SOA 103 but also in the direction of 2xN-MMI 104 on the input side.
- the ASE light is output to the monitor waveguide 106 connected to the other input port of the 2xN-MMI 104 and output as rear output light 111 . It is known that the change in the optical intensity of the output ASE light is proportional to the gain change of the SOA 103 .
- FIG. 2 shows a configuration example of an optical transmitter 1100 in which the optical semiconductor integrated device 100 is mounted.
- (a) is a top view
- (b) is a side view.
- FIG. 2(a) shows a configuration example of the optical transmitter 1100 when the optical semiconductor integrated device 100 mounted on the carrier 1101 is viewed from the same viewpoint as in FIG.
- a carrier 1101 , a high frequency wiring board 1102 and a monitor PD carrier 1104 are mounted on a stem 1103 .
- the optical semiconductor integrated device 100 is mounted on the carrier 1101 and the monitor PD 1105 is mounted on the monitor PD carrier 1104 .
- the stem 1103 is provided with DC pins 1106-1 to 1106-3 and a coaxial pin 1107 in a shape penetrating the stem 1103. As shown in FIG.
- a current or voltage to the DFB laser 101, SOA 103, and monitor PD 1105 of the optical semiconductor integrated device 100 is supplied via a DC pin 1106.
- a high frequency signal to the EA modulator 102 of the optical semiconductor integrated device 100 is supplied via the coaxial pin 1107 and the high frequency wiring board 1102 .
- a cap 1111 with a lens 1112 is welded to the stem 1103 on which the optical semiconductor integrated device 100 and the like are mounted, thereby hermetically sealing the optical semiconductor integrated device 100 and the like.
- Output light 110 from optical semiconductor integrated device 100 is optically coupled via lens 1112 to an optical fiber connected to receptacle 1113 .
- the output light 110 of the optical transmitter 1100 is emitted from the end surface of the optical semiconductor integrated device 100 in the Z-axis direction.
- a rear output light 111 from the optical semiconductor integrated device 100 is input to the monitor PD 1105 .
- a current corresponding to the light intensity of the rear output light 111 input to the monitor PD 1105 is output to the DC pin 1106-1.
- the light intensity of the ASE light which is the rearward output light 111, changes according to changes in the gain of the SOA 103. Therefore, the current value detected by the monitor PD 1105 is used for feedback control according to the light intensity. conduct. That is, by changing the current applied to the SOA 103, it is possible to keep the light intensity of the output light 110 of the optical transmitter 1100 constant.
- N is the number of output ports of 2xN-MMI 104 and the number of input ports of Nx1-MMI 105, that is, the number of divisions of modulated light 108
- N may be a number of 2 or more. If the number of SOAs 103 is large, the gain of each SOA can be small in order to obtain the optical intensity required as the output light 110 of the optical transmitter 1100, which contributes to improving the reliability of the SOAs.
- FIG. 3 shows a modification of the semiconductor optical integrated device of the first embodiment.
- an AR (Anti-Reflective) coat 502 is mounted on the output end surface of the monitor waveguide 106 of the optical semiconductor integrated device 500 in order to output the backward output light 111 efficiently.
- a DBR (Distributed Bragg Reflector) 501 may be formed on the opposite side (minus Z direction) of the continuous light output side of the DFB laser.
- FIG. 4 shows a configuration example of a semiconductor optical integrated device 200 according to the second embodiment of the present invention.
- the semiconductor optical integrated device 200 includes a DFB laser 101, an EA modulator 102 connected to the DFB laser, and an input 2-port output N-port 2xN multimode interference coupler (MMI ) 104, N SOAs 103-1 to 103-N connected to each output port of the 2xN-MMI 104, and waveguides 112-1 to 112- including phase adjusters 213 connected to the output ports of each SOA 103.
- N an input N-port output 1-port Nx1-MMI 105 connected to the waveguide 112, and a monitor waveguide 106 connected to the input port of the 2xN-MMI 104, integrated on a single substrate.
- the continuous light 107 output by the DFB laser 101 is input to the EA modulator 102, modulated by the EA modulator 102, and output as modulated light 108.
- Modulated light 108 is input to one input port of 2 ⁇ N-MMI 104 , N-divided, and input to SOA 103 connected to each output port of 2 ⁇ N-MMI 104 .
- the N-divided modulated light 108 is amplified and input to each input port of the Nx1-MMI 105 via the waveguide 112 including the phase adjuster 213 .
- the modulated light 108 is given a propagation delay according to the waveguide length of the phase adjustment section 213.
- each amplified modulated light 109 is combined and output from the output port of the Nx1-MMI, and the component that becomes the output light 110 and the +Z direction boundary of the Nx1-MMI 105 are reflected and guided. and the reflected light 214 returning to the wave path 112 .
- Part of the reflected light 214 is output to the monitor waveguide 106 via the SOA 103 and 2xN-MMI 104 .
- ASE light associated with optical amplification is emitted, and is output not only in the direction of the Nx1-MMI 105 on the output side of the SOA 103, but also in the direction of the 2xN-MMI 104 on the input side.
- ASE light is input to waveguide 106 connected to the other input port of 2xN-MMI 104 .
- the ASE light and some components of the reflected light 214 are transmitted through the monitoring waveguide 106 and output as the backward output light 111 .
- a rear output light 111 from the optical semiconductor integrated device 200 is input to the monitor PD 1105 .
- a current corresponding to the light intensity of the rear output light 111 input to the monitor PD 1105 is output to the DC pin 1106-1.
- the light intensity of the ASE light which is a component of the backward output light 111, changes according to changes in the gain of the SOA 103, and the light intensity of the reflected light changes according to changes in the output of the DFB laser 101.
- the current value detected by the monitor PD 1105 is subjected to feedback control according to its light intensity. That is, by changing the current applied to the SOA 103 or the current applied to the DFB laser 101, the light intensity of the output light 110 of the optical transmitter 1100 can be kept constant.
- N is the number of output ports of 2xN-MMI 104 and the number of input ports of Nx1-MMI 105, that is, the number of divisions of modulated light 108, N may be a number of 2 or more.
- FIG. 5 shows a modification of the semiconductor optical integrated device of the second embodiment.
- the difference from the semiconductor optical integrated device 200 is that an AR coat 502 is mounted on the output end surface of the monitor waveguide 106 of the optical semiconductor integrated device 600 in order to efficiently output the backward output light 111.
- the DBR 501 may be formed on the opposite side (minus Z direction) of the continuous light output side of the DFB laser.
- FIG. 6 shows a configuration example of a semiconductor optical integrated device 300 according to the third embodiment of the present invention.
- the semiconductor optical integrated device 300 includes a DFB laser 101, an EA modulator 102 connected to the DFB laser, and an input 2-port output N-port 2xN multimode interference coupler (MMI ) 104, N SOAs 103-1 to 103-N connected to each output port of the 2xN-MMI 104, and waveguides 112-1 to 112- including phase adjusters 213 connected to the output ports of each SOA 103.
- the continuous light 107 output by the DFB laser 101 is input to the EA modulator 102, modulated by the EA modulator 102, and output as modulated light 108.
- Modulated light 108 is input to one input port of 2 ⁇ N-MMI 104 , N-divided, and input to SOA 103 connected to each output port of 2 ⁇ N-MMI 104 .
- the N-divided modulated light 108 is amplified and input to each input port of the N ⁇ 2-MMI 305 via the waveguide 112 including the phase adjuster 213 .
- the modulated light 108 is given a delay according to the waveguide length of the phase adjustment section 213.
- each amplified modulated light 109 is combined, output from one output port of the Nx2-MMI 305 to become output light 110, and output from the other output port, output light 301 is divided into the components
- ASE light accompanying optical amplification is radiated and output not only in the direction of the Nx2-MMI 305 on the output side of the SOA 103, but also in the direction of the 2xN-MMI 104 on the input side.
- the ASE light is input to the monitoring waveguide 106 connected to the other input port of the 2xN-MMI 104 and output as backward output light 111 .
- FIG. 7 shows another configuration example of the optical transmitter 1200 in which the optical semiconductor integrated device 300 is mounted.
- (a) is a top view
- (b) is a side view.
- FIG. 7A shows a configuration example of the optical transmitter 1200 when the optical semiconductor integrated device 300 mounted on the wiring board 1201 is viewed from the same viewpoint as in FIG.
- a monitor PD carrier 1204 mounted with a monitor PD 1205 for receiving the rear output light 111 is fixed on the wiring board 1201 .
- a current or voltage to the DFB laser 101 , SOA 103 and monitor PD 1205 of the optical semiconductor integrated device 300 is supplied via the wiring substrate 1201 .
- a high-frequency signal to the EA modulator 102 of the optical semiconductor integrated device 300 is also supplied via the wiring board 1201 .
- a wiring board 1201 on which the optical semiconductor integrated device 300 and the like are mounted is housed in a package 1211 .
- Output light 110 from optical semiconductor integrated device 300 is optically coupled via lens 1212 to an optical fiber connected to receptacle 1213 .
- a monitor PD carrier 12066 on which a monitor PD 1207 for receiving the output light 301 is mounted is fixed to the package 1211 .
- the light intensity of the ASE light which is the backward output light 111
- the current value detected by the monitor PD 1205 is used for feedback control according to the light intensity. conduct. That is, by changing the current applied to the SOA 103, it is possible to keep the light intensity of the output light 110 of the optical transmitter 1200 constant.
- the output light 301 can be used for monitoring.
- feedback control is performed by dividing the output light 110 and the output light 301 at a division ratio of 9:1 and monitoring the output light 301 with the monitor PD 1207 . That is, by changing the applied current to the DFB laser 101, it is possible to keep the light intensity of the output light 110 of the optical transmitter 1200 constant.
- the DFB laser 101 and the SOA 103 can be individually feedback-controlled.
- a circuit for tapping the output light 110 is not required for feedback control of the DFB laser 101, a low-cost optical module can be realized.
- N is the number of output ports of 2xN-MMI 104 and the number of input ports of Nx2-MMI 305, that is, the number of divisions of modulated light 108, N may be a number of 2 or more.
- FIG. 8 shows a first modification of the semiconductor optical integrated device of the third embodiment.
- the difference from the semiconductor optical integrated device 300 is that an AR coat 502 is mounted on the output end face of the monitor waveguide 106 of the optical semiconductor integrated device 700 in order to efficiently output the backward output light 111.
- the DBR 501 may be formed on the opposite side (minus Z direction) of the continuous light output side of the DFB laser.
- FIG. 9 shows a second modification of the semiconductor optical integrated device of the third embodiment.
- a difference from the semiconductor optical integrated device 300 is that a 1 ⁇ N-MMI 404 is used instead of the 2 ⁇ N-MMI 104 .
- the optical semiconductor integrated device 800 omits monitoring by the backward output light 111 and does not have the monitoring waveguide 106 in order to perform monitoring using the output light 110 or the output light 301 .
- the number of output ports of 1xN-MMI 404 and the number of input ports of Nx2-MMI 305, that is, the number of divisions of modulated light 108 is N, but N may be any number of 2 or more.
Landscapes
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Optics & Photonics (AREA)
- Semiconductor Lasers (AREA)
Abstract
Description
図1に、本発明の第1の実施形態にかかる半導体光集積素子100の構成例を示す。半導体光集積素子100は、DFBレーザ101と、DFBレーザに接続されたEA変調器102と、EA変調器102の出力端に接続された入力2ポート出力Nポートの2xNマルチモード干渉型カプラ(MMI)104と、2xN-MMI104の各出力ポートに接続されたN個のSOA103-1~103-Nと、各SOA103の出力ポートに接続された導波路112-1~112-Nと、導波路112に接続された入力Nポート出力1ポートのNx1-MMI105と、2xN-MMI104の入力ポートに接続されたモニタ用導波路106とを備え、単一の基板上に集積されている。
図4に、本発明の第2の実施形態にかかる半導体光集積素子200の構成例を示す。半導体光集積素子200は、DFBレーザ101と、DFBレーザに接続されたEA変調器102と、EA変調器102の出力端に接続された入力2ポート出力Nポートの2xNマルチモード干渉型カプラ(MMI)104と、2xN-MMI104の各出力ポートに接続されたN個のSOA103-1~103-Nと、各SOA103の出力ポートに接続された位相調整部213を含む導波路112-1~112-Nと、導波路112に接続された入力Nポート出力1ポートのNx1-MMI105と、2xN-MMI104の入力ポートに接続されたモニタ用導波路106とを備え、単一の基板上に集積されている。
図6に、本発明の第3の実施形態にかかる半導体光集積素子300の構成例を示す。半導体光集積素子300は、DFBレーザ101と、DFBレーザに接続されたEA変調器102と、EA変調器102の出力端に接続された入力2ポート出力Nポートの2xNマルチモード干渉型カプラ(MMI)104と、2xN-MMI104の各出力ポートに接続されたN個のSOA103-1~103-Nと、各SOA103の出力ポートに接続された位相調整部213を含む導波路112-1~112-Nと、導波路112に接続された入力Nポート出力2ポートのNx2-MMI305と、2xN-MMI104の入力ポートに接続されたモニタ用導波路106とを備え、単一の基板上に集積されている。
Claims (6)
- 連続光を出力するDFBレーザと、
前記連続光を変調し、変調光を出力するEA変調器と、
前記変調光を第1の入力ポートから入力し、前記変調光を分割して2つ以上の出力ポートから出力する第1のマルチモード干渉型カプラと、
前記第1のマルチモード干渉型カプラの各々の出力ポートに接続され、分割された変調光をそれぞれ増幅する半導体光増幅器と、
前記半導体光増幅器の各々の出力と接続された入力ポートと、増幅された変調光を合波して第1の出力ポートから出力する第2のマルチモード干渉型カプラと、
前記第1のマルチモード干渉型カプラの第2の入力ポートに接続されたモニタ用導波路と
を備えたことを特徴とする半導体光集積素子。 - 前記半導体光増幅器の各々の出力と前記第2のマルチモード干渉型カプラの入力ポートとの間を接続する導波路に、伝搬遅延を付与する位相調整部を含むことを特徴とする請求項1に記載の半導体光集積素子。
- 前記第2のマルチモード干渉型カプラは、さらに第2の出力ポートを有し、前記増幅された変調光を合波し、前記第1および前記第2の出力ポートに分割して出力することを特徴とする請求項1または2に記載の半導体光集積素子。
- 前記モニタ用導波路の出力端面にARコートが実装されていることを特徴とする請求項1、2または3に記載の半導体光集積素子。
- 連続光を出力するDFBレーザと、
前記連続光を変調し、変調光を出力するEA変調器と、
前記変調光を入力ポートから入力し、前記変調光を分割して2つ以上の出力ポートから出力する第1のマルチモード干渉型カプラと、
前記第1のマルチモード干渉型カプラの各々の出力ポートに接続され、分割された変調光をそれぞれ増幅する半導体光増幅器と、
前記半導体光増幅器の各々の出力と接続された入力ポートと、増幅された変調光を合波して、2つの出力ポートに分割して出力する第2のマルチモード干渉型カプラと
を備えたことを特徴とする半導体光集積素子。 - 前記DFBレーザの前記連続光を出力する側とは反対側に、DBRが接続されていることを特徴とする請求項1乃至5のいずれか1項に記載の半導体光集積素子。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US18/264,913 US20240128716A1 (en) | 2021-03-23 | 2021-03-23 | Semiconductor Optical Integrated Device |
JP2023508232A JP7502706B2 (ja) | 2021-03-23 | 2021-03-23 | 半導体光集積素子 |
PCT/JP2021/012077 WO2022201329A1 (ja) | 2021-03-23 | 2021-03-23 | 半導体光集積素子 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2021/012077 WO2022201329A1 (ja) | 2021-03-23 | 2021-03-23 | 半導体光集積素子 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022201329A1 true WO2022201329A1 (ja) | 2022-09-29 |
Family
ID=83396502
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2021/012077 WO2022201329A1 (ja) | 2021-03-23 | 2021-03-23 | 半導体光集積素子 |
Country Status (3)
Country | Link |
---|---|
US (1) | US20240128716A1 (ja) |
JP (1) | JP7502706B2 (ja) |
WO (1) | WO2022201329A1 (ja) |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08278523A (ja) * | 1995-04-05 | 1996-10-22 | Hitachi Ltd | 光増幅装置 |
JP2000012952A (ja) * | 1998-04-23 | 2000-01-14 | Nec Corp | 半導体光導波路アレイの製造方法及びアレイ構造半導体光素子 |
JP2002116419A (ja) * | 2000-10-06 | 2002-04-19 | Nippon Telegr & Teleph Corp <Ntt> | 光変調装置及びその製造方法 |
US20050025419A1 (en) * | 2003-07-31 | 2005-02-03 | Fish Gregory A. | Tunable laser source with monolithically integrated interferometric optical modulator |
JP2011109001A (ja) * | 2009-11-20 | 2011-06-02 | Kyushu Univ | 導波路型光フィルター及び半導体レーザー |
JP2017156559A (ja) * | 2016-03-02 | 2017-09-07 | 日本オクラロ株式会社 | 光送信モジュール |
JP2017219668A (ja) * | 2016-06-07 | 2017-12-14 | 富士通オプティカルコンポーネンツ株式会社 | 波長可変光源 |
JP2018093443A (ja) * | 2016-12-07 | 2018-06-14 | 日本電信電話株式会社 | 光半導体送信器 |
JP2019004093A (ja) * | 2017-06-19 | 2019-01-10 | 日本電信電話株式会社 | 半導体光集積装置 |
-
2021
- 2021-03-23 JP JP2023508232A patent/JP7502706B2/ja active Active
- 2021-03-23 US US18/264,913 patent/US20240128716A1/en active Pending
- 2021-03-23 WO PCT/JP2021/012077 patent/WO2022201329A1/ja active Application Filing
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08278523A (ja) * | 1995-04-05 | 1996-10-22 | Hitachi Ltd | 光増幅装置 |
JP2000012952A (ja) * | 1998-04-23 | 2000-01-14 | Nec Corp | 半導体光導波路アレイの製造方法及びアレイ構造半導体光素子 |
JP2002116419A (ja) * | 2000-10-06 | 2002-04-19 | Nippon Telegr & Teleph Corp <Ntt> | 光変調装置及びその製造方法 |
US20050025419A1 (en) * | 2003-07-31 | 2005-02-03 | Fish Gregory A. | Tunable laser source with monolithically integrated interferometric optical modulator |
JP2011109001A (ja) * | 2009-11-20 | 2011-06-02 | Kyushu Univ | 導波路型光フィルター及び半導体レーザー |
JP2017156559A (ja) * | 2016-03-02 | 2017-09-07 | 日本オクラロ株式会社 | 光送信モジュール |
JP2017219668A (ja) * | 2016-06-07 | 2017-12-14 | 富士通オプティカルコンポーネンツ株式会社 | 波長可変光源 |
JP2018093443A (ja) * | 2016-12-07 | 2018-06-14 | 日本電信電話株式会社 | 光半導体送信器 |
JP2019004093A (ja) * | 2017-06-19 | 2019-01-10 | 日本電信電話株式会社 | 半導体光集積装置 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2022201329A1 (ja) | 2022-09-29 |
JP7502706B2 (ja) | 2024-06-19 |
US20240128716A1 (en) | 2024-04-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9319142B2 (en) | Full-duplex optical transceiver applicable to digital coherent system | |
US5191625A (en) | Terminal for a frequency divided, optical communication system | |
JP6244672B2 (ja) | 光源モジュール、および光送受信装置 | |
US6616353B1 (en) | Laser intensity noise suppression using unbalanced interferometer modulation | |
EP2756565B1 (en) | Wavelength tunable comb source | |
US12092909B2 (en) | Integrated semiconductor laser with interferometric amplifier array | |
US6775426B2 (en) | Polarization mode dispersion compensating device using optical XOR circuit | |
KR20080021721A (ko) | 외부 캐비티 튜너블 레이저용의 집적형 모니터링 및 피드백설계 | |
US6728019B2 (en) | Optical gate and optical phase modulator | |
US4755016A (en) | Coherent lightwave transmitters | |
US10312663B2 (en) | Tunable laser device | |
TW200308129A (en) | An integrated optical circuit for effecting stable injection locking of laser diode pairs used for microwave signal synthesis | |
KR20020017221A (ko) | 전광 nor 논리소자 구현장치 및 그 방법 | |
US9601906B2 (en) | Wavelength-tunable light source and wavelength-tunable light source module | |
US9184568B2 (en) | Wavelength variable light source and wavelength variable light source module | |
JP6173206B2 (ja) | 光集積素子 | |
WO2022201329A1 (ja) | 半導体光集積素子 | |
JP2016149529A (ja) | 波長可変光源および波長可変光源モジュール | |
WO2022165901A1 (zh) | 一种单片集成波导装置及其集成半导体芯片 | |
US6377388B1 (en) | Optical signal processor | |
JP2019047053A (ja) | 多波長光源 | |
JP6761391B2 (ja) | 半導体光集積素子 | |
WO2020221434A1 (en) | Interferometric enhancement of an electroabsorptive modulated laser | |
JP6761390B2 (ja) | 半導体光集積素子 | |
US7206471B2 (en) | Integrated circuit having an optical core |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21932939 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2023508232 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 18264913 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21932939 Country of ref document: EP Kind code of ref document: A1 |