JP2017156559A - 光送信モジュール - Google Patents

光送信モジュール Download PDF

Info

Publication number
JP2017156559A
JP2017156559A JP2016039862A JP2016039862A JP2017156559A JP 2017156559 A JP2017156559 A JP 2017156559A JP 2016039862 A JP2016039862 A JP 2016039862A JP 2016039862 A JP2016039862 A JP 2016039862A JP 2017156559 A JP2017156559 A JP 2017156559A
Authority
JP
Japan
Prior art keywords
modulator
optical
waveguide
transmission module
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016039862A
Other languages
English (en)
Other versions
JP2017156559A5 (ja
JP6755676B2 (ja
Inventor
中原 宏治
Koji Nakahara
宏治 中原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lumentum Japan Inc
Original Assignee
Oclaro Japan Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oclaro Japan Inc filed Critical Oclaro Japan Inc
Priority to JP2016039862A priority Critical patent/JP6755676B2/ja
Priority to US15/443,016 priority patent/US10187157B2/en
Publication of JP2017156559A publication Critical patent/JP2017156559A/ja
Publication of JP2017156559A5 publication Critical patent/JP2017156559A5/ja
Application granted granted Critical
Publication of JP6755676B2 publication Critical patent/JP6755676B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/501Structural aspects
    • H04B10/503Laser transmitters
    • H04B10/505Laser transmitters using external modulation
    • H04B10/5053Laser transmitters using external modulation using a parallel, i.e. shunt, combination of modulators
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • G02B6/125Bends, branchings or intersections
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29344Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by modal interference or beating, i.e. of transverse modes, e.g. zero-gap directional coupler, MMI
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29379Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means characterised by the function or use of the complete device
    • G02B6/2938Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means characterised by the function or use of the complete device for multiplexing or demultiplexing, i.e. combining or separating wavelengths, e.g. 1xN, NxM
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/011Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  in optical waveguides, not otherwise provided for in this subclass
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/516Details of coding or modulation
    • H04B10/524Pulse modulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/516Details of coding or modulation
    • H04B10/54Intensity modulation
    • H04B10/541Digital intensity or amplitude modulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/04Mode multiplex systems
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B2006/12133Functions
    • G02B2006/12142Modulator
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/2804Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals forming multipart couplers without wavelength selective elements, e.g. "T" couplers, star couplers
    • G02B6/2808Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals forming multipart couplers without wavelength selective elements, e.g. "T" couplers, star couplers using a mixing element which evenly distributes an input signal over a number of outputs
    • G02B6/2813Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals forming multipart couplers without wavelength selective elements, e.g. "T" couplers, star couplers using a mixing element which evenly distributes an input signal over a number of outputs based on multimode interference effect, i.e. self-imaging

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Electromagnetism (AREA)
  • Nonlinear Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Optical Integrated Circuits (AREA)
  • Semiconductor Lasers (AREA)
  • Optical Communication System (AREA)

Abstract

【課題】光変調器への印加電圧の制御を簡素化した光送信モジュールを提供する。
【解決手段】光送信モジュールは、レーザ光を出射する半導体レーザと、前記レーザ光を分波して複数の分波光を出力する分波器と、2段階の入力レベルに応じて、前記複数の分波光の光強度を、第1の光強度又は前記第1の光強度よりも大きい第2の光強度にそれぞれ変調する複数の光変調器と、前記複数の光変調器の出力光を合波する合波器と、を有する。また、光送信モジュールは、前記複数の光変調器と前記合波器を接続する複数の光導波路を有し、前記複数の光導波路は、入力端から出力端で第1の位相差を生じる第1光導波路と、入力端から出力端で、前記第1の位相差と異なる第2の位相差を生じる第2光導波路と、を含んでよい。
【選択図】図1

Description

本発明は、光送信モジュールに関する。
光通信に用いられる光信号の変調方式として、光強度の違いによって信号の符号化を行うパルス振幅変調(Pulse Amplitude Modulation、PAM)が知られている。PAMは、半導体レーザの光強度を直接変調する直接変調方式と、半導体レーザからのレーザ光を光変調器で変調する外部変調方式とに大別される。外部変調方式の光変調器としては、電界吸収型光変調器(Electro-Absorption Optical Modulator、EA変調器)が用いられる場合がある。
下記特許文献1には、2ビット以上のデジタル入力を4値以上のアナログ出力に変換するデジタル/アナログ変換回路が記載されている。
また、下記特許文献2には、光変調器が縦続接続または並列接続されている半導体光機能装置が記載されている。
特開2015−207803号公報 特開2001−159748号公報
近年、より大きなデータ通信量を得るために、2値より大きな多値度のPAMについて検討が進められている。例えば、半導体レーザから出力されたレーザ光をEA変調器により外部変調し、4値のPAM信号を得る場合、EA変調器には4段階の電圧を入力することとなる。
しかし、EA変調器等の光変調器は、印加電圧と出力光強度との関係が必ずしも線形でない場合がある。そのため、所望の出力光強度を得るためには、光変調器への印加電圧を精密に制御できる回路が必要となり、光送信モジュールのコストが増加してしまう場合がある。
そこで、本発明は、光変調器への印加電圧の制御を簡素化した光送信モジュールを提供することを目的とする。
(1)上記課題を解決するために、本発明に係る光受信モジュールは、レーザ光を出射する半導体レーザと、前記レーザ光を分波して複数の分波光を出力する分波器と、2段階の入力レベルに応じて、前記複数の分波光の光強度を、第1の光強度又は前記第1の光強度よりも大きい第2の光強度にそれぞれ変調する複数の光変調器と、前記複数の光変調器の出力光を合波する合波器と、を有する。
(2)上記(1)に記載の光受信モジュールであって、前記複数の光変調器と前記合波器を接続する複数の光導波路を有し、前記複数の光導波路は、入力端から出力端で第1の位相差を生じる第1光導波路と、入力端から出力端で、前記第1の位相差と異なる第2の位相差を生じる第2光導波路と、を含む、光送信モジュール。
(3)上記(1)に記載の光受信モジュールであって、前記分波器は、多モード干渉素子である、光送信モジュール。
(4)上記(1)に記載の光受信モジュールであって、前記合波器は、多モード干渉素子である、光送信モジュール。
(5)上記(3)に記載の光受信モジュールであって、前記分波器は、前記レーザ光を分波してN本(Nは3以上の整数)の分波光を出力する第1多モード干渉素子と、前記N本の分波光のうちM本(Mは2以上の整数かつM<N)を1本に合波する第2多モード干渉素子と、から構成される、光送信モジュール。
(6)上記(5)に記載の光受信モジュールであって、前記合波器は、N−M+1本の出力光を1本に合波する第3多モード干渉素子により構成される、光送信モジュール。
(7)上記(3)に記載の光受信モジュールであって、前記分波器は、前記レーザ光を分波してK本(Kは3以上の整数)の分波光を出力する第4多モード干渉素子から構成される、光送信モジュール。
(8)上記(7)に記載の光受信モジュールであって、前記合波器は、K本の出力光を1本に合波する第5多モード干渉素子により構成される、光送信モジュール。
本発明により、光変調器への印加電圧の制御を簡素化した光送信モジュールが提供される。
本発明の第1の実施形態に係る光送信モジュールの構成図である。 第1変調器、第2変調器及び第3変調器への制御信号を生成する回路の回路図である。 入力信号、光変調器への制御信号及び光導波路の位相関係を示す表である。 制御信号の第1の組み合わせの場合について、光送信モジュールの内部を伝播する光の光強度を示す図である。 制御信号の第2の組み合わせの場合について、光送信モジュールの内部を伝播する光の光強度を示す図である。 制御信号の第3の組み合わせの場合について、光送信モジュールの内部を伝播する光の光強度を示す図である。 制御信号の第4の組み合わせの場合について、光送信モジュールの内部を伝播する光の光強度を示す図である。 本発明の第1の実施形態に係る光送信モジュールについて、光変調器への制御信号と、光送信モジュールの光出力の関係を示す図である。 本発明の第2の実施形態に係る光送信モジュールの構成図である。 本発明の第3の実施形態に係る光送信モジュールの構成図である。 本発明の第3の実施形態に係る光送信モジュールについて、光変調器への制御信号と、光送信モジュールの光出力の関係を示す図である。 EA変調器について、印加電圧と光出力の関係を示す図である。
図12は、EA変調器について、印加電圧と光出力の関係を示す図である。EA変調器は、一般に、印加される電圧に対し、吸収される光の量が非線形に変化し、消光比(入力光の光強度と、出力光の光強度との比)が非線形に変化する。同図では、EA変調器により光強度を変調して、PAM4信号(4値のPAM信号)を得る場合の印加電圧と光出力の関係を示している。同図に示すように、レベル0、レベル1、レベル2及びレベル3の4値の光出力を等間隔で得るためには、印加電圧をそれぞれV4、V3、V2及びV1と調整しなければならない。ここで、(V1−V2)、(V2−V3)及び(V3−V4)という3つの電圧間隔は、不等間隔となる。
仮に、EA変調器の印加電圧‐光出力関係が線形ならば、4値の光出力を等間隔で得るために電圧間隔を等間隔とすればよく、PAM4信号を得るためにEA変調器へ入力する制御信号は2ビット信号で十分となる。しかし、EA変調器の印加電圧‐光出力関係は非線形であるから、等間隔の光出力を得るためには、印加電圧を不等間隔で調整する必要があり、EA変調器へ入力する制御信号として8ビットや16ビット以上の信号が必要とされる場合がある。また、EA変調器を25Gb/s程度の高速で動作させる場合、EA変調器へ入力する制御信号を生成するために、高速動作可能で高価なデジタル信号プロセッサやデジタル‐アナログ変換器が必要とされ、光送信モジュールの高コスト化を招いてしまう。4値よりも大きな多値度のPAM信号を得ようとする場合、光出力を等間隔とするためにより精密な印加電圧の制御が求められることはいうまでもない。
そこで、本発明の発明者は、EA変調器を有する光送信モジュールについて鋭意研究を行い、光変調器への印加電圧の制御を簡素化することに成功した。以下、本発明の実施形態について詳細に説明する。
[第1の実施形態]
以下に、図面に基づき、本発明の実施形態を具体的かつ詳細に説明する。なお、実施形態を説明するための全図において、同一の機能を有する部材には同一の符号を付し、その繰り返しの説明は省略する。なお、以下に示す図は、あくまで、実施形態の実施例を説明するものであって、図の大きさと本実施例記載の縮尺は必ずしも一致するものではない。
図1は、本発明の第1の実施形態に係る光送信モジュール100の構成図である。本実施形態に係る光送信モジュール100は、レーザ光を出射する半導体レーザ1を有する。半導体レーザ1は、1.3μm帯の単一波長を発振するDFB(Distributed FeedBack)レーザであってよい。
本実施形態に係る光送信モジュール100は、レーザ光を分波して複数の分波光を出力する1:3分波器2を有する。1:3分波器2は、多モード干渉素子であり、半導体レーザ1から出力された1本のレーザ光を3本の光導波路7に分波する。1:3分波器2は、それぞれ多モード干渉素子である1:5分波器部分2aと3:1合波器部分2bが一体となって構成されている。後に詳細に説明するが、1:5分波器部分2aは、半導体レーザ1から出力されたレーザ光を同程度の光強度を持つ5つの分波光に分解する。5つの分波光のうち2つは、上段の光導波路7と下段の光導波路7に入力され、3つは3:1合波器部分2bに入力される。3:1合波器部分2bは、3つの分波光を1つに合波して中央の光導波路7に入力する。このため、上段の光導波路7、中央の光導波路7、下段の光導波路7に入力される光の光強度の比は、おおよそ1:3:1となる。
本実施形態に係る光送信モジュール100は、2段階の入力レベルに応じて、複数の分波光の光強度を、第1の光強度又は第1の光強度よりも大きい第2の光強度にそれぞれ変調する複数の光変調器を有する。具体的には、本実施形態に係る光送信モジュール100は、上段の光導波路7に接続される第1変調器3と、中央の光導波路7に接続される第2変調器4と、下段の光導波路7に接続される第3変調器5と、を有する。第1変調器3、第2変調器4及び第3変調器5は、それぞれ同様の構成を有するEA変調器であってよく、入力された分波光を制御信号に従って変調する。第1変調器3、第2変調器4及び第3変調器5は、入力される制御信号が0の場合(制御信号がOFFレベルの場合)、−3V程度の印加電圧により、入力された分波光の大部分を消光して第1の光強度とする。また、第1変調器3、第2変調器4及び第3変調器5は、入力される制御信号が1の場合(制御信号がONレベルの場合)、0V程度の印加電圧により、入力された分波光の大部分を透過させて第2の光強度とする。
本実施形態に係る光送信モジュール100は、複数の光変調器である第1変調器3、第2変調器4及び第3変調器5の出力光を合波する3:1合波器6を有する。3:1合波器6は、矩形状の多モード干渉素子であり、第1変調器3、第2変調器4及び第3変調器5からの出力光を、それぞれ第1導波路8、第2導波路9及び第3導波路10を介して受け付け、1本に合波して光導波路7に出力する。
本実施形態に係る光送信モジュール100は、複数の光変調器である第1変調器3、第2変調器4及び第3変調器5と、3:1合波器6を接続する複数の光導波路(第1導波路8、第2導波路9及び第3導波路10)を有する。複数の光導波路は、入力端から出力端で第1の位相差を生じる第1光導波路と、入力端から出力端で、前記第1の位相差と異なる第2の位相差を生じる第2光導波路と、を含む。本実施形態に係る光送信モジュール100では、第1導波路8の入力端から出力端で生じる位相差と、第2導波路9の入力端から出力端で生じる位相差は異なる。また、第1導波路8の入力端から出力端で生じる位相差と、第3導波路10の入力端から出力端で生じる位相差は異なる。また、第2導波路9の入力端から出力端で生じる位相差と、第3導波路10の入力端から出力端で生じる位相差は異なる。それぞれの位相差は、光導波路の長さや形状といった幾何学的条件によって調整してもよいし、光導波路を構成する半導体層への電流注入や空乏化等の屈折率変化によって調整してもよい。それぞれの光導波路において生じる位相差については、図3を用いて詳細に説明する。
なお、本実施形態に係る光送信モジュール100の構成品は、同一の半導体基板上に集積するモノリシック形式で構成される。具体的には、InP基板上に、InGaAsPやInGaAlAsで形成された活性層及び導波路層と、InPクラッド層を形成し、半導体レーザ1、1:3分波器2、光導波路7、第1変調器3、第2変調器4、第3変調器5、第1導波路8、第2導波路9、第3導波路10及び3:1合波器6を集積化している。光送信モジュール100の構成品は、モノリシック形式で構成されなくてもよく、個別に形成して組み合わせるディスクリート形式で構成してもよいし、モノリシック形式とディスクリート形式を適宜組み合わせたハイブリッド形式で構成してもよい。
図2は、第1変調器3、第2変調器4及び第3変調器5への制御信号を生成する回路の回路図である。制御信号を生成する回路は、AND回路15とOR回路16を含み、2値の入力信号A及びBを変換する。入力信号A及びBと、第1変調器3、第2変調器4及び第3変調器5へ出力される制御信号との関係について、次図を用いて詳細に説明する。
図3は、入力信号、光変調器への制御信号及び光導波路の位相関係を示す表である。入力信号Aが0、入力信号Bが0の場合、第1変調器3、第2変調器4及び第3変調器5に入力される制御信号は、全て0(OFFレベル)となる。このとき、第1導波路8の入力端から出力端で生じる位相差と、第2導波路9の入力端から出力端で生じる位相差との差は、72°となる。また、第1導波路8の入力端から出力端で生じる位相差と、第3導波路10の入力端から出力端で生じる位相差との差は、92°となる。
図4は、制御信号の第1の組み合わせ(0,0,0)の場合について、光送信モジュール100の内部を伝播する光の光強度を示す図である。同図では、半導体レーザ1から出射されるレーザ光の光強度を1として白色で表し、光強度が0に近付くほど濃い黒色として光強度分布を表している。同図によると、1:5分波器部分2aで5つに分波された光のうち上段の光導波路7に入力された光は、OFFレベルの制御信号が入力された第1変調器3により大部分が消光される。また、1:5分波器部分2aで5つに分波された光のうち3:1合波器部分2bに入力された光は、中央の光導波路7に入力され、OFFレベルの制御信号が入力された第2変調器4により大部分が消光される。また、1:5分波器部分2aで5つに分波された光のうち下段の光導波路7に入力された光は、OFFレベルの制御信号が入力された第3変調器5により大部分が消光される。
第1変調器3、第2変調器4及び第3変調器5は、それぞれ入力された分波光の大部分を吸収するが、僅かに透過して第1導波路8、第2導波路9及び第3導波路10にそれぞれ出力する。第1導波路8、第2導波路9及び第3導波路10内を伝播する光には、第1導波路8、第2導波路9及び第3導波路10それぞれの長さや形状に応じた位相差が生じる。3つの出力光は、異なる位相を持って3:1合波器6に入力され、1本に合波され、末端の光導波路7に出力される。末端の光導波路7に出力される光の光強度は、半導体レーザ1から出射されるレーザ光の光強度の8%程度である。
図3に戻り、入力信号Aが0、入力信号Bが1の場合、第1変調器3に入力される制御信号は0(OFFレベル)、第2変調器4に入力される制御信号は1(ONレベル)、第3変調器5に入力される制御信号は0(OFFレベル)となる。このとき、第1導波路8の入力端から出力端で生じる位相差と、第2導波路9の入力端から出力端で生じる位相差との差は、25°となる。また、第1導波路8の入力端から出力端で生じる位相差と、第3導波路10の入力端から出力端で生じる位相差との差は、44°となる。
図5は、制御信号の第2の組み合わせ(0,1,0)の場合について、光送信モジュール100の内部を伝播する光の光強度を示す図である。同図では、半導体レーザ1から出射されるレーザ光の光強度を1として白色で表し、光強度が0に近付くほど濃い黒色として光強度分布を表している。同図によると、1:5分波器部分2aで5つに分波された光のうち上段の光導波路7に入力された光は、OFFレベルの制御信号が入力された第1変調器3により大部分が消光される。また、1:5分波器部分2aで5つに分波された光のうち3:1合波器部分2bに入力された光は、中央の光導波路7に入力され、ONレベルの制御信号が入力された第2変調器4により大部分が透過される。また、1:5分波器部分2aで5つに分波された光のうち下段の光導波路7に入力された光は、OFFレベルの制御信号が入力された第3変調器5により大部分が消光される。
第1変調器3及び第3変調器5は、それぞれ入力された分波光の大部分を吸収するが、僅かに透過して第1導波路8及び第3導波路10にそれぞれ出力する。また、第2変調器4は、入力された分波光の大部分を透過して、第2導波路9に出力する。第1導波路8、第2導波路9及び第3導波路10内を伝播する光には、第1導波路8、第2導波路9及び第3導波路10それぞれの長さや形状に応じた位相差が生じる。3つの出力光は、異なる位相を持って3:1合波器6に入力され、1本に合波され、末端の光導波路7に出力される。末端の光導波路7に出力される光の光強度は、半導体レーザ1から出射されるレーザ光の光強度の34%程度である。
図3に戻り、入力信号Aが1、入力信号Bが0の場合、第1変調器3に入力される制御信号は1(ONレベル)、第2変調器4に入力される制御信号は1(ONレベル)、第3変調器5に入力される制御信号は0(OFFレベル)となる。このとき、第1導波路8の入力端から出力端で生じる位相差と、第2導波路9の入力端から出力端で生じる位相差との差は、71°となる。また、第1導波路8の入力端から出力端で生じる位相差と、第3導波路10の入力端から出力端で生じる位相差との差は、44°となる。
図6は、制御信号の第3の組み合わせ(1,1,0)の場合について、光送信モジュール100の内部を伝播する光の光強度を示す図である。同図では、半導体レーザ1から出射されるレーザ光の光強度を1として白色で表し、光強度が0に近付くほど濃い黒色として光強度分布を表している。同図によると、1:5分波器部分2aで5つに分波された光のうち上段の光導波路7に入力された光は、ONレベルの制御信号が入力された第1変調器3により大部分が透過される。また、1:5分波器部分2aで5つに分波された光のうち3:1合波器部分2bに入力された光は、中央の光導波路7に入力され、ONレベルの制御信号が入力された第2変調器4により大部分が透過される。また、1:5分波器部分2aで5つに分波された光のうち下段の光導波路7に入力された光は、OFFレベルの制御信号が入力された第3変調器5により大部分が消光される。
第3変調器5は、入力された分波光の大部分を吸収するが、僅かに透過して第3導波路10に出力する。また、第1変調器3及び第2変調器4は、入力された分波光の大部分を透過して、第1導波路8及び第2導波路9にそれぞれ出力する。第1導波路8、第2導波路9及び第3導波路10内を伝播する光には、第1導波路8、第2導波路9及び第3導波路10それぞれの長さや形状に応じた位相差が生じる。3つの出力光は、異なる位相を持って3:1合波器6に入力され、1本に合波され、末端の光導波路7に出力される。末端の光導波路7に出力される光の光強度は、半導体レーザ1から出射されるレーザ光の光強度の57%程度である。
図3に戻り、入力信号Aが1、入力信号Bが1の場合、第1変調器3、第2変調器4及び第3変調器5に入力される制御信号は、全て1(ONレベル)となる。このとき、第1導波路8の入力端から出力端で生じる位相差と、第2導波路9の入力端から出力端で生じる位相差との差は、71°となる。また、第1導波路8の入力端から出力端で生じる位相差と、第3導波路10の入力端から出力端で生じる位相差との差は、91°となる。
図7は、制御信号の第4の組み合わせ(1,1,1)の場合について、光送信モジュール100の内部を伝播する光の光強度を示す図である。同図では、半導体レーザ1から出射されるレーザ光の光強度を1として白色で表し、光強度が0に近付くほど濃い黒色として光強度分布を表している。同図によると、1:5分波器部分2aで5つに分波された光のうち上段の光導波路7に入力された光は、ONレベルの制御信号が入力された第1変調器3により大部分が透過される。また、1:5分波器部分2aで5つに分波された光のうち3:1合波器部分2bに入力された光は、中央の光導波路7に入力され、ONレベルの制御信号が入力された第2変調器4により大部分が透過される。また、1:5分波器部分2aで5つに分波された光のうち下段の光導波路7に入力された光は、ONレベルの制御信号が入力された第3変調器5により大部分が透過される。
第1変調器3、第2変調器4及び第3変調器5は、それぞれ入力された分波光の大部分を透過するが、僅かに吸収して第1導波路8、第2導波路9及び第3導波路10にそれぞれ出力する。第1導波路8、第2導波路9及び第3導波路10内を伝播する光には、第1導波路8、第2導波路9及び第3導波路10それぞれの長さや形状に応じた位相差が生じる。3つの出力光は、異なる位相を持って3:1合波器6に入力され、1本に合波され、末端の光導波路7に出力される。末端の光導波路7に出力される光の光強度は、半導体レーザ1から出射されるレーザ光の光強度の82%程度である。
図8は、本発明の第1の実施形態に係る光送信モジュール100について、第1変調器3、第2変調器4及び第3変調器5への制御信号と、光送信モジュール100の光出力の関係を示す図である。同図のグラフは、縦軸に光送信モジュール100の光出力を半導体レーザ1の光出力との比で表し、横軸に制御信号の4つの組み合わせを表している。本実施形態に係る光送信モジュール100によれば、制御信号の第1の組み合わせ(0,0,0)の場合、約8%の光出力となり、制御信号の第2の組み合わせ(0,1,0)の場合、約34%の光出力となり、制御信号の第3の組み合わせ(1,1,0)の場合、約57%の光出力となり、制御信号の第4の組み合わせ(1,1,1)の場合、約82%の光出力となる。光出力が低い順に、レベル0、レベル1、レベル2及びレベル3と称すると、レベル3とレベル2の光出力の差は25%であり、レベル2とレベル1の光出力の差は23%であり、レベル1とレベル0の光出力の差は26%である。4つの光出力レベルは、±3%以内のほぼ等間隔で得られている。
同図のグラフには、4つの光出力レベルをプロットし、最小二乗法により算出された近似直線を示している。近似直線の相関係数は、R=0.9998であり、優れた直線性を示した。また、25Gb/sの入力信号A及びBに基づき、第1変調器3、第2変調器4及び第3変調器5に制御信号を入力したところ、レベル0からレベル3までの光強度の偏差は動作状態で±4%以内であった。このPAM4信号をシングルモード光ファイバーで10km伝送してエラー率を測定したところ、10−5未満という良好な低エラー率を得ることができた。
このように、本実施形態に係る光送信モジュール100によれば、複数の光変調器に2段階の入力レベルの制御信号を入力することで、ほぼ等間隔の光出力によるPAM4信号を得ることができる。これにより、光変調器の印加電圧‐光出力関係が非線形の場合であっても、OFFレベル及びONレベルのいずれかの印加電圧を加えればよく、光変調器への印加電圧の制御が簡素化される。また、光変調器への印加電圧の制御が簡素化される結果、高速動作可能で高価なデジタル信号プロセッサやデジタル‐アナログ変換器を搭載する必要がなくなり、低コストで製造できる光送信モジュールが得られる。
本実施形態に係る光送信モジュール100を異なる8つの波長について作成し、合波することで、400GbE用光送信モジュールが得られる。なお、本実施形態に係る光送信モジュール100は、InP基板上に形成されるが、Siフォトニクス技術を利用してSOI基板上に形成してもよい。また、石英基板に作成された導波路型光回路で形成してもよい。この場合、半導体レーザ1はハイブリット形式で接続することになる。
[第2の実施形態]
図9は、本発明の第2の実施形態に係る光送信モジュール200の構成図である。本実施形態に係る光送信モジュール200は、第1の実施形態に係る光送信モジュール100と同様に、3つの制御信号により4段階の光強度の光を出力する。本実施形態に係る光送信モジュール200は、1:5分波器21と、5:1合波器22と、5つの光変調器を含む点で、第1の実施形態に係る光送信モジュール100と相違する。
本実施形態に係る光送信モジュール200は、レーザ光を出射する半導体レーザ1と、レーザ光を分波して5本の分波光を出力する1:5分波器21と、を有する。1:5分波器21は、矩形状の多モード干渉素子であり、レーザ光の光出力をほぼ5等分する。光送信モジュール200は、2段階の入力レベルに応じて、5本の分波光の光強度を、第1の光強度又は第1の光強度よりも大きい第2の光強度にそれぞれ変調する第1変調器23、第2変調器24a、第3変調器24b、第4変調器24c及び第5変調器25を有する。ここで、第2変調器24a、第3変調器24b及び第4変調器24cは、第1変調器群24を構成し、それぞれ同一の制御信号が入力される。光送信モジュール200は、第1変調器23、第2変調器24a、第3変調器24b、第4変調器24c及び第5変調器25の出力光を合波する5:1合波器22を有する。5:1合波器22は、矩形状の多モード干渉素子である。
光送信モジュール200は、第1変調器23と5:1合波器22を接続する第1導波路30と、第2変調器24a、第3変調器24b及び第4変調器24cと5:1合波器22を接続する3本の第2導波路31と、第5変調器25と5:1合波器22を接続する第3導波路32と、を有する。ここで、第1導波路30、第2導波路31及び第3導波路32は、入力端から出力端で第1の位相差を生じる第1光導波路と、入力端から出力端で、第1の位相差と異なる第2の位相差を生じる第2光導波路と、を含む。具体的には、第1導波路30及び第3導波路32は、長さが第2導波路31よりも長いことで、第2導波路31とは異なる位相差を生む。
本実施形態に係る光送信モジュール200は、制御信号を、第1変調器23、第1変調器群24(第2変調器24a、第3変調器24b及び第4変調器24c)及び第5変調器25にそれぞれ入力して、4段階の光出力を得る。具体的には、制御信号の第1の組み合わせ(0,0,0)の場合(全ての変調器にOFFレベルの制御信号を入力する場合)、末端の光導波路7に出力される光の光強度は、半導体レーザ1から出射されるレーザ光の光強度の9%程度である。また、制御信号の第2の組み合わせ(0,1,0)の場合(第1変調器23及び第5変調器25にOFFレベルの制御信号を入力し、第2変調器24a、第3変調器24b及び第4変調器24cにONレベルの制御信号を入力する場合)、末端の光導波路7に出力される光の光強度は、半導体レーザ1から出射されるレーザ光の光強度の34%程度である。また、制御信号の第3の組み合わせ(1,1,0)の場合(第1変調器23、第2変調器24a、第3変調器24b及び第4変調器24cにONレベルの制御信号を入力し、第5変調器25にOFFレベルの制御信号を入力する場合)、末端の光導波路7に出力される光の光強度は、半導体レーザ1から出射されるレーザ光の光強度の57%程度である。また、制御信号の第4の組み合わせ(1,1,1)の場合(全ての光変調器にONレベルの制御信号を入力する場合)、末端の光導波路7に出力される光の光強度は、半導体レーザ1から出射されるレーザ光の光強度の83%程度である。光出力が低い順に、レベル0、レベル1、レベル2及びレベル3と称すると、レベル3とレベル2の光出力の差は26%であり、レベル2とレベル1の光出力の差は24%であり、レベル1とレベル0の光出力の差は25%である。4つの光出力レベルは、±3%以内のほぼ等間隔で得られている。
本実施形態に係る光送信モジュール200の4つの光出力レベルをプロットし、最小二乗法により近似直線を算出すると、近似直線の相関係数はR=0.9996であり、優れた直線性を示した。また、25Gb/sの入力信号A及びBに基づき、第1変調器23、第1変調器群24及び第5変調器25に制御信号を入力したところ、レベル0からレベル3までの光強度の偏差は動作状態で±6%以内であった。このPAM4信号をシングルモード光ファイバーで2km伝送してエラー率を測定したところ、10−5未満という良好な低エラー率を得ることができた。
このように、本実施形態に係る光送信モジュール200によれば、複数の光変調器に2段階の入力レベルの制御信号を入力することで、ほぼ等間隔の光出力によるPAM4信号を得ることができる。これにより、光変調器の印加電圧‐光出力関係が非線形の場合であっても、OFFレベル及びONレベルのいずれかの印加電圧を加えればよく、光変調器への印加電圧の制御が簡素化される。また、光変調器への印加電圧の制御が簡素化される結果、高速動作可能で高価なデジタル信号プロセッサやデジタル‐アナログ変換器を搭載する必要がなくなり、低コストで製造できる光送信モジュールが得られる。また、第1の実施形態に係る光送信モジュール100と比較して、分波器の形状を単純化することができる。
本実施形態に係る光送信モジュール200を異なる8つの波長について作成し、合波することで、400GbE用光送信モジュールが得られる。なお、本実施形態に係る光送信モジュール200は、第1の実施形態に係る光送信モジュール100と同様にInP基板上に形成されるが、Siフォトニクス技術を利用してSOI基板上に形成してもよい。また、石英基板に作成された導波路型光回路で形成してもよい。
[第3の実施形態]
図10は、本発明の第3の実施形態に係る光送信モジュール300の構成図である。本実施形態に係る光送信モジュール300は、第1の実施形態に係る光送信モジュール100と異なり、7つの制御信号により8段階の光強度の光を出力する。本実施形態に係る光送信モジュール300は、1:10分波器41と、10:1合波器42と、10個の光変調器を含む点で、第1の実施形態に係る光送信モジュール100と相違する。
本実施形態に係る光送信モジュール300は、レーザ光を出射する半導体レーザ1と、レーザ光を分波して10本の分波光を出力する1:10分波器41と、を有する。1:10分波器41は、矩形状の多モード干渉素子であり、レーザ光の光出力をほぼ10等分する。光送信モジュール300は、2段階の入力レベルに応じて、10本の分波光の光強度を、第1の光強度又は第1の光強度よりも大きい第2の光強度にそれぞれ変調する第1変調器43、第2変調器44a、第3変調器44b、第4変調器45a、第5変調器45b、第6変調器45c、第7変調器46、第8変調器47、第9変調器48及び第10変調器49を有する。ここで、第2変調器44a及び第3変調器44bは、第1変調器群44を構成し、それぞれ同一の制御信号が入力される。また、第4変調器45a、第5変調器45b及び第6変調器45cは、第2変調器群45を構成し、それぞれ同一の制御信号が入力される。光送信モジュール300は、第1変調器43、第2変調器44a、第3変調器44b、第4変調器45a、第5変調器45b、第6変調器45c、第7変調器46、第8変調器47、第9変調器48及び第10変調器49の出力光を合波する10:1合波器42を有する。10:1合波器42は、矩形状の多モード干渉素子である。
光送信モジュール300は、第1変調器43と10:1合波器42を接続する第1導波路50と、第2変調器44a、第3変調器44b、第4変調器45a、第5変調器45b、第6変調器45c、第7変調器46、第8変調器47及び第9変調器48と10:1合波器42を接続する8本の第2導波路51と、第10変調器49と5:1合波器22を接続する第3導波路52と、を有する。ここで、第1導波路50、第2導波路51及び第3導波路52は、入力端から出力端で第1の位相差を生じる第1光導波路と、入力端から出力端で、第1の位相差と異なる第2の位相差を生じる第2光導波路と、を含む。具体的には、第1導波路50及び第3導波路52は、長さが第2導波路51よりも長いことで、第2導波路51とは異なる位相差を生む。
図11は、本発明の第3の実施形態に係る光送信モジュール300について、光変調器への制御信号と、光送信モジュールの光出力の関係を示す図である。同図のグラフは、縦軸に光送信モジュール300の光出力を半導体レーザ1の光出力との比で表し、横軸に制御信号の8つの組み合わせを表している。本実施形態に係る光送信モジュール300は、制御信号を、第1変調器43、第1変調器群44(第2変調器44a及び第3変調器44b)、第2変調器群45(第4変調器45a、第5変調器45b及び第6変調器45c)、第7変調器46、第8変調器47、第9変調器48及び第10変調器49にそれぞれ入力して、8段階の光出力を得る。具体的には、制御信号の第1の組み合わせ(0,0,0,0,0,0,0)の場合(全ての変調器にOFFレベルの制御信号を入力する場合)、末端の光導波路7に出力される光の光強度は、半導体レーザ1から出射されるレーザ光の光強度の9%程度である。また、制御信号の第2の組み合わせ(0,0,1,0,0,0,0)の場合(第2変調器群45のみにONレベルの制御信号を入力して、他の変調器にOFFレベルの制御信号を入力する場合)、末端の光導波路7に出力される光の光強度は、半導体レーザ1から出射されるレーザ光の光強度の22%程度である。また、制御信号の第3の組み合わせ(0,1,1,0,0,0,0)の場合(第1変調器群44及び第2変調器群45にONレベルの制御信号を入力して、他の変調器にOFFレベルの制御信号を入力する場合)、末端の光導波路7に出力される光の光強度は、半導体レーザ1から出射されるレーザ光の光強度の37%程度である。また、制御信号の第4の組み合わせ(1,1,1,0,0,0,0)の場合(第1変調器43、第1変調器群44及び第2変調器群45にONレベルの制御信号を入力して、他の変調器にOFFレベルの制御信号を入力する場合)、末端の光導波路7に出力される光の光強度は、半導体レーザ1から出射されるレーザ光の光強度の45%程度である。また、制御信号の第5の組み合わせ(1,1,1,1,0,0,0)の場合(第1変調器43、第1変調器群44、第2変調器群45及び第7変調器46にONレベルの制御信号を入力して、他の変調器にOFFレベルの制御信号を入力する場合)、末端の光導波路7に出力される光の光強度は、半導体レーザ1から出射されるレーザ光の光強度の57%程度である。また、制御信号の第6の組み合わせ(1,1,1,1,1,0,0)の場合(第1変調器43、第1変調器群44、第2変調器群45、第7変調器46及び第8変調器47にONレベルの制御信号を入力して、他の変調器にOFFレベルの制御信号を入力する場合)、末端の光導波路7に出力される光の光強度は、半導体レーザ1から出射されるレーザ光の光強度の69%程度である。また、制御信号の第7の組み合わせ(1,1,1,1,1,1,0)の場合(第1変調器43、第1変調器群44、第2変調器群45、第7変調器46、第8変調器47及び第9変調器48にONレベルの制御信号を入力して、第10変調器49にOFFレベルの制御信号を入力する場合)、末端の光導波路7に出力される光の光強度は、半導体レーザ1から出射されるレーザ光の光強度の82%程度である。また、制御信号の第8の組み合わせ(1,1,1,1,1,1,1)の場合(全ての光変調器にONレベルの制御信号を入力する場合)、末端の光導波路7に出力される光の光強度は、半導体レーザ1から出射されるレーザ光の光強度の93%程度である。光出力が低い順に、レベル0、レベル1、レベル2、レベル3、レベル4、レベル5、レベル6及びレベル7と称すると、レベル7とレベル6の光出力の差は11%であり、レベル6とレベル5の光出力の差は13%であり、レベル5とレベル4の光出力の差は12%であり、レベル4とレベル3の光出力の差は12%であり、レベル3とレベル2の光出力の差は8%であり、レベル2とレベル1の光出力の差は15%であり、レベル1とレベル0の光出力の差は13%である。8つの光出力レベルは、±5%以内のほぼ等間隔で得られている。
同図のグラフには、本実施形態に係る光送信モジュール300の8つの光出力レベルをプロットし、最小二乗法により算出した近似直線を示している。近似直線の相関係数は、R=0.9988であり、優れた直線性を示した。また、25Gb/sの4つの入力信号に基づき、第1変調器43、第1変調器群44、第2変調器群45、第7変調器46、第8変調器47、第9変調器48及び第10変調器49に制御信号を入力したところ、レベル0からレベル7までの光強度の偏差は動作状態で±12%以内であった。このPAM8信号をシングルモード光ファイバーで2km伝送してエラー率を測定したところ、10−4未満という良好な低エラー率を得ることができた。
このように、本実施形態に係る光送信モジュール300によれば、複数の光変調器に2段階の入力レベルの制御信号を入力することで、ほぼ等間隔の光出力によるPAM8信号を得ることができる。これにより、光変調器の印加電圧‐光出力関係が非線形の場合であっても、OFFレベル及びONレベルのいずれかの印加電圧を加えればよく、光変調器への印加電圧の制御が簡素化される。また、光変調器への印加電圧の制御が簡素化される結果、高速動作可能で高価なデジタル信号プロセッサやデジタル‐アナログ変換器を搭載する必要がなくなり、低コストで製造できる光送信モジュールが得られる。また、第1の実施形態に係る光送信モジュール100と比較して、分波器の形状を単純化することができ、さらに大きな多値度のPAM信号を生成することができる。
なお、本実施形態に係る光送信モジュール300は、第1の実施形態に係る光送信モジュール100と同様にInP基板上に形成されるが、Siフォトニクス技術を利用してSOI基板上に形成してもよい。また、石英基板に作成された導波路型光回路で形成してもよい。
本発明の実施形態は、以上に説明したものに限られない。光送信モジュールが有する分波器は、半導体レーザのレーザ光を分波してN本(Nは3以上の整数)の分波光を出力する第1多モード干渉素子と、N本の分波光のうちM本(Mは2以上の整数かつM<N)を1本に合波する第2多モード干渉素子と、から構成されてよい。例えば、第1の実施形態に係る光送信モジュール100の1:3分波器2は、N=5、M=3の場合に相当する。このとき、光送信モジュールは、N−M+1個の光変調器を有し、それぞれの光変調器には、2段階の入力レベルを有する制御信号が入力される。このような構成により、光変調器への印加電圧の制御が簡素化され、高速動作可能で高価なデジタル信号プロセッサやデジタル‐アナログ変換器を搭載せずに任意の多値度のPAM信号を生成することができ、低コストで製造できる光送信モジュールが得られる。
また、光送信モジュールが有する合波器は、N−M+1本の出力光を1本に合波する第3多モード干渉素子により構成されてよい。例えば、第1の実施形態に係る光送信モジュール100の3:1合波器6は、N=5、M=3の場合に相当する。また、N−M+1個の光変調器からの出力光は、N−M+1本の光導波路により第3多モード干渉素子に接続されてよい。N−M+1本の光導波路は、入力端から出力端で第1の位相差を生じる第1光導波路と、入力端から出力端で、第1の位相差と異なる第2の位相差を生じる第2光導波路と、を含んでよい。このような構成により、光変調器への印加電圧の制御が簡素化され、高速動作可能で高価なデジタル信号プロセッサやデジタル‐アナログ変換器を搭載せずに任意の多値度のPAM信号を生成することができ、低コストで製造できる光送信モジュールが得られる。
また、光送信モジュールが有する分波器は、半導体レーザのレーザ光を分波してK本(Kは3以上の整数)の分波光を出力する第4多モード干渉素子から構成されてよい。例えば、第2の実施形態に係る光送信モジュール200の1:5分波器21は、K=5の場合に相当し、第3の実施形態に係る光送信モジュール300の1:10分波器41は、K=10の場合に相当する。このとき、光送信モジュールは、K個の光変調器を有し、それぞれの光変調器には、2段階の入力レベルを有する制御信号が入力される。このような構成により、光変調器への印加電圧の制御が簡素化され、高速動作可能で高価なデジタル信号プロセッサやデジタル‐アナログ変換器を搭載せずに任意の多値度のPAM信号を生成することができ、低コストで製造できる光送信モジュールが得られる。
また、光送信モジュールが有する合波器は、K本の出力光を1本に合波する第5多モード干渉素子により構成されてよい。例えば、第2の実施形態に係る光送信モジュール200の5:1合波器22は、K=5の場合に相当し、第3の実施形態に係る光送信モジュール300の10:1合波器42は、K=10の場合に相当する。また、K個の光変調器からの出力光は、K本の光導波路により第5多モード干渉素子に接続されてよい。K本の光導波路は、入力端から出力端で第1の位相差を生じる第1光導波路と、入力端から出力端で、第1の位相差と異なる第2の位相差を生じる第2光導波路と、を含んでよい。このような構成により、光変調器への印加電圧の制御が簡素化され、高速動作可能で高価なデジタル信号プロセッサやデジタル‐アナログ変換器を搭載せずに任意の多値度のPAM信号を生成することができ、低コストで製造できる光送信モジュールが得られる。
1 半導体レーザ、2 1:3分波器、2a 1:5分波器部分、2b 3:1合波器部分、3 第1変調器、4 第2変調器、5 第3変調器、6 3:1合波器、7 光導波路、8 第1導波路、9 第2導波路、10 第3導波路、15 AND回路、16 OR回路、21 1:5分波器、22 5:1合波器、23 第1変調器、24 第1変調器群、24a 第2変調器、24b 第3変調器、24c 第4変調器、25 第5変調器、30 第1導波路、31 第2導波路、32 第3導波路、41 1:10分波器、42 10:1合波器、43 第1変調器、44 第1変調器群、44a 第2変調器、44b 第3変調器、45 第2変調器群、45a 第4変調器、45b 第5変調器、45c 第6変調器、46 第7変調器、47 第8変調器、48 第9変調器、49 第10変調器、50 第1導波路、51 第2導波路、52 第3導波路、100 光送信モジュール。

Claims (8)

  1. レーザ光を出射する半導体レーザと、
    前記レーザ光を分波して複数の分波光を出力する分波器と、
    2段階の入力レベルに応じて、前記複数の分波光の光強度を、第1の光強度又は前記第1の光強度よりも大きい第2の光強度にそれぞれ変調する複数の光変調器と、
    前記複数の光変調器の出力光を合波する合波器と、
    を有する光送信モジュール。
  2. 請求項1に記載の光送信モジュールであって、
    前記複数の光変調器と前記合波器を接続する複数の光導波路を有し、
    前記複数の光導波路は、
    入力端から出力端で第1の位相差を生じる第1光導波路と、
    入力端から出力端で、前記第1の位相差と異なる第2の位相差を生じる第2光導波路と、を含む、
    光送信モジュール。
  3. 請求項1に記載の光送信モジュールであって、
    前記分波器は、多モード干渉素子である、
    光送信モジュール。
  4. 請求項1に記載の光送信モジュールであって、
    前記合波器は、多モード干渉素子である、
    光送信モジュール。
  5. 請求項3に記載の光送信モジュールであって、
    前記分波器は、前記レーザ光を分波してN本(Nは3以上の整数)の分波光を出力する第1多モード干渉素子と、前記N本の分波光のうちM本(Mは2以上の整数かつM<N)を1本に合波する第2多モード干渉素子と、から構成される、
    光送信モジュール。
  6. 請求項5に記載の光送信モジュールであって、
    前記合波器は、N−M+1本の出力光を1本に合波する第3多モード干渉素子により構成される、
    光送信モジュール。
  7. 請求項3に記載の光送信モジュールであって、
    前記分波器は、前記レーザ光を分波してK本(Kは3以上の整数)の分波光を出力する第4多モード干渉素子から構成される、
    光送信モジュール。
  8. 請求項7に記載の光送信モジュールであって、
    前記合波器は、K本の出力光を1本に合波する第5多モード干渉素子により構成される、
    光送信モジュール。
JP2016039862A 2016-03-02 2016-03-02 光送信モジュール Active JP6755676B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016039862A JP6755676B2 (ja) 2016-03-02 2016-03-02 光送信モジュール
US15/443,016 US10187157B2 (en) 2016-03-02 2017-02-27 Optical transmitter module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016039862A JP6755676B2 (ja) 2016-03-02 2016-03-02 光送信モジュール

Publications (3)

Publication Number Publication Date
JP2017156559A true JP2017156559A (ja) 2017-09-07
JP2017156559A5 JP2017156559A5 (ja) 2019-01-17
JP6755676B2 JP6755676B2 (ja) 2020-09-16

Family

ID=59724432

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016039862A Active JP6755676B2 (ja) 2016-03-02 2016-03-02 光送信モジュール

Country Status (2)

Country Link
US (1) US10187157B2 (ja)
JP (1) JP6755676B2 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2022024344A1 (ja) * 2020-07-31 2022-02-03
WO2022201329A1 (ja) * 2021-03-23 2022-09-29 日本電信電話株式会社 半導体光集積素子

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6755676B2 (ja) * 2016-03-02 2020-09-16 日本ルメンタム株式会社 光送信モジュール
US10998980B2 (en) * 2018-03-27 2021-05-04 Florida Institute of Technology, Inc. System for achieving multiple bits per symbol in optical communications systems by combining spatial domain multiplexing and pulse amplitude modulation
US11838055B2 (en) * 2021-01-22 2023-12-05 Nokia Solutions And Networks Oy Apparatus comprising serially connected electro-absorption modulators

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5109441A (en) * 1991-01-18 1992-04-28 General Instrument Corporation Fiber optic external modulator
US5864414A (en) * 1994-01-26 1999-01-26 British Telecommunications Public Limited Company WDM network with control wavelength
JP4656459B2 (ja) 1999-12-02 2011-03-23 Okiセミコンダクタ株式会社 半導体光機能装置および半導体光機能素子
US6744546B2 (en) * 2001-12-27 2004-06-01 Nippon Telegraph And Telephone Corporation Multilevel light-intensity modulating circuit
IL187836A0 (en) * 2007-12-03 2008-03-20 Eci Telecom Ltd Technique for generating multilevel coded optical signals
US8855448B2 (en) * 2007-12-31 2014-10-07 Alcatel Lucent Advanced modulation format using two-state modulators
US7636501B2 (en) * 2007-12-31 2009-12-22 Alcatel-Lucent Usa Inc. QAM optical modulators
DE102008017644A1 (de) * 2008-04-04 2009-10-15 Adva Ag Optical Networking Vorrichtung und Verfahren zur Übertragung eines optischen Datensignals
US8238014B2 (en) * 2008-09-08 2012-08-07 Luxtera Inc. Method and circuit for encoding multi-level pulse amplitude modulated signals using integrated optoelectronic devices
US8180227B2 (en) * 2009-09-23 2012-05-15 Alcatel Lucent Digital coherent detection of multi-carrier optical signal
US8498542B2 (en) * 2010-01-21 2013-07-30 Ciena Corporation Multi-channel optical transceiver with offset quadrature amplitude modulation
JP5573386B2 (ja) * 2010-06-10 2014-08-20 三菱電機株式会社 半導体光集積素子及びその製造方法
EP2745434A1 (en) * 2011-10-19 2014-06-25 Telefonaktiebolaget LM Ericsson (PUBL) Optical modulator and method of encoding communications traffic in a multilevel modulation format
US8693895B2 (en) * 2011-11-11 2014-04-08 Wuhan Research Institute Of Posts And Telecommunications Signal transmission and reception device and method
US9716552B2 (en) * 2012-07-31 2017-07-25 Acacia Communications, Inc. OTDM coherent transceiver
KR20140061129A (ko) * 2012-11-13 2014-05-21 한국전자통신연구원 멀티레벨 광신호 생성을 위한 광 송신기 및 그 방법
US9312962B2 (en) * 2012-11-13 2016-04-12 Infinera Corporation Intensity-based modulator
US9369211B2 (en) * 2013-10-14 2016-06-14 Nec Corporation Optical square QAM signal emulation using all-optical PAM to QAM signal conversion
US9977310B2 (en) * 2014-03-10 2018-05-22 Alcatel Lucent Multi-electrode photonic digital to analog converting vector modulator
JP6243286B2 (ja) 2014-04-17 2017-12-06 日本電信電話株式会社 ディジタル/アナログ変換回路および光送信器
US9912408B2 (en) * 2014-10-28 2018-03-06 Luxtera, Inc. Method and system for silicon photonics wavelength division multiplexing transceivers
JP6755676B2 (ja) * 2016-03-02 2020-09-16 日本ルメンタム株式会社 光送信モジュール

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2022024344A1 (ja) * 2020-07-31 2022-02-03
WO2022024344A1 (ja) * 2020-07-31 2022-02-03 日本電信電話株式会社 光送受信システムおよび送信器
JP7509206B2 (ja) 2020-07-31 2024-07-02 日本電信電話株式会社 光送受信システムおよび送信器
WO2022201329A1 (ja) * 2021-03-23 2022-09-29 日本電信電話株式会社 半導体光集積素子
JP7502706B2 (ja) 2021-03-23 2024-06-19 日本電信電話株式会社 半導体光集積素子

Also Published As

Publication number Publication date
US10187157B2 (en) 2019-01-22
US20170257170A1 (en) 2017-09-07
JP6755676B2 (ja) 2020-09-16

Similar Documents

Publication Publication Date Title
US9628186B2 (en) Advanced optical modulation generation by combining orthogonal polarized optical signals
JP6755676B2 (ja) 光送信モジュール
US8929689B2 (en) Optical modulator utilizing unary encoding and auxiliary modulator section for load balancing
KR102091690B1 (ko) 고차 디지털 광학적 변조기에서의 전기 누화 감소
CA2299296C (en) Optical transmitter system and method
US6643046B2 (en) Apparatus and method for optical modulation
JP6032276B2 (ja) 光送信器、光送受信システム及び駆動回路
US20100021182A1 (en) Optical transmitter
US6384954B1 (en) Optical modulator
Roshan-Zamir et al. A 40 Gb/s PAM4 silicon microring resonator modulator transmitter in 65nm CMOS
US20060204162A1 (en) Device for mach-zehnder modulator bias control for duobinary optical transmission and associated system and method
EP1404036B1 (en) Duobinary optical transmission apparatus
JP3984220B2 (ja) デュオバイナリ光伝送装置
US10305599B2 (en) Optical transmitter module
JP6032274B2 (ja) 光送信器、光送受信システム及び駆動回路
KR101542757B1 (ko) 디지털 신호를 광 펄스들로 변환하기 위한 방법
JP2021071616A (ja) 光送信機、光トランシーバモジュール、及び光変調方法
EP1749357B1 (en) Method and apparatus for producing high extinction ratio data modulation formats
JP3447664B2 (ja) 光送信器および光送信器制御方法
Wang et al. A CMOS photonic optical PAM4 transmitter linearized using three-segment ring modulator
JP3964856B2 (ja) 光送信装置
JP2007094398A (ja) 光位相変調装置
WO2012093267A1 (en) An optical duobinary modulated signal generator
US20170214471A1 (en) Multi-Bit Digital to Analog-Optical Converter
WO2013140476A1 (ja) 光送信器、光送受信システム及び駆動回路

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181126

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190918

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191001

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191114

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200407

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200529

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20200609

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200804

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200826

R150 Certificate of patent or registration of utility model

Ref document number: 6755676

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250