WO2022199646A1 - 一种连续流动反应装置及基于该装置的流动合成双(氟磺酰)亚胺的方法 - Google Patents

一种连续流动反应装置及基于该装置的流动合成双(氟磺酰)亚胺的方法 Download PDF

Info

Publication number
WO2022199646A1
WO2022199646A1 PCT/CN2022/082641 CN2022082641W WO2022199646A1 WO 2022199646 A1 WO2022199646 A1 WO 2022199646A1 CN 2022082641 W CN2022082641 W CN 2022082641W WO 2022199646 A1 WO2022199646 A1 WO 2022199646A1
Authority
WO
WIPO (PCT)
Prior art keywords
reaction
gas
liquid separation
liquid
microchannel reactor
Prior art date
Application number
PCT/CN2022/082641
Other languages
English (en)
French (fr)
Inventor
岳公星
翁业芹
谢文健
王宇
陈新滋
Original Assignee
广州理文科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广州理文科技有限公司 filed Critical 广州理文科技有限公司
Publication of WO2022199646A1 publication Critical patent/WO2022199646A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0093Microreactors, e.g. miniaturised or microfabricated reactors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D3/00Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
    • B01D3/14Fractional distillation or use of a fractionation or rectification column
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D3/00Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
    • B01D3/14Fractional distillation or use of a fractionation or rectification column
    • B01D3/143Fractional distillation or use of a fractionation or rectification column by two or more of a fractionation, separation or rectification step
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0053Details of the reactor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J4/00Feed or outlet devices; Feed or outlet control devices
    • B01J4/02Feed or outlet devices; Feed or outlet control devices for feeding measured, i.e. prescribed quantities of reagents
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/082Compounds containing nitrogen and non-metals and optionally metals
    • C01B21/087Compounds containing nitrogen and non-metals and optionally metals containing one or more hydrogen atoms
    • C01B21/093Compounds containing nitrogen and non-metals and optionally metals containing one or more hydrogen atoms containing also one or more sulfur atoms

Definitions

  • the invention relates to the technical field of fluorine chemical lithium battery electrolytes, in particular to a continuous flow reaction device and a flow synthesis method of bis(fluorosulfonyl)imide based on the device.
  • HFSI Bis(fluorosulfonyl)imide
  • LiFSI LiFSI synthesis methods that have been published. For example, as recorded in patent US2004097757, LiFSI is prepared by directly reacting HClSI with lithium fluoride LiF. This method directly produces a large amount of corrosive gas hydrogen fluoride, while excess LiF and LiFSI are difficult to completely separate, and the product F ion High content will affect product quality.
  • Patents US2013331609, US2012041233, EP2415757, US2011034716, CN101747242A disclose the synthesis method of LiFSI is to first synthesize HClSI, and then react it with fluorometallic salt MFX to prepare the corresponding bisfluorosulfonimide salt intermediate, which is then combined with LiFSI is prepared by cation exchange of lithium hydroxide LiOH or lithium carbonate Li 2 CO 3 .
  • the disadvantage is that it is difficult to continue to complete the cation exchange after reaching equilibrium, and it is difficult to completely separate the unreacted intermediates from LiFSI, so that high-quality products cannot be obtained. .
  • Patent US2012/0020867 A1 discloses a method for preparing bis(fluorosulfonyl)imide by using sulfonyl fluoride and ammonia gas (or ammonium fluoride), the reaction is an exothermic reaction, and there is a phenomenon of rapid pressure increase , There are many side reactions, the product is a complex of bis(fluorosulfonyl)imide and triethylamine, the product is difficult to purify, the raw material is highly corrosive, the equipment requirements are high, and the three wastes are high, which does not conform to the concept of green chemical industry.
  • Patent US 8337797, US 9156692, US 5916475 have reported the method for synthesizing bis(fluorosulfonyl)imide from fluorosulfonic acid and urea. This method needs to use a PTFE reactor and is completed under the condition of 120 ⁇ 130 °C, which is dangerous and is very dangerous. Equipment requirements are high, and HF is generated in the reaction, and the product yield is about 40%, which is not suitable for industrial production.
  • Patent CN 200980111233.6 reported the method for preparing bis (fluorosulfonyl) imide with fluorosulfonic acid, chlorosulfonic acid, methanesulfonic acid, trifluoromethanesulfonic acid, etc. and bis (fluorosulfonyl) imide salt, found through experiments When chlorosulfonic acid participates in the reaction, side reactions are likely to occur, and it is difficult to obtain high-purity HFSI. Fluorosulfonic acid is highly corrosive, expensive, and has few suppliers, and the boiling point difference between fluorosulfonic acid and HFSI is small. It is difficult to separate HFSI and excess or unreacted fluorosulfonic acid by vacuum distillation. The boiling point is not much different, so it is difficult to obtain high-purity HFSI. Methanesulfonic acid and trifluoromethanesulfonic acid are too expensive and require high equipment, which is not conducive to industrial production.
  • HFSI One of the simplest reactions to prepare HFSI is to react HClSI with hydrogen fluoride.
  • Patents CN 200910063820.4, CN 201410112056.6 and CN 201480035708.9 disclose that HF is used to carry out fluorination reaction of bis(chlorosulfonyl)imide to prepare bis(fluorosulfonyl)imide The method of the method, the phenomenon of rapid pressure increase will occur under airtight conditions, the product yield is about 70%, the equipment requirements are high, and the risk is high.
  • Example 10 of US Patent No. 7,919,629 discloses the reaction of HClSI with anhydrous HF at various temperatures. The best yield was 55% at 130°C for 2 hours.
  • HFSI fluorination methods reported in these patents generally have difficult to separate by-products, high temperature and high pressure reaction environment, low yield, high three wastes, high energy consumption, high safety risk, and it is urgent to develop relatively safe/or simple high-yield products.
  • a method for the preparation of high-purity HFSI is urgent to develop relatively safe/or simple high-yield products.
  • the present invention provides a fast, high-yield, high-selectivity, safe, continuous A continuous flow reaction device for flow preparation of high-purity HFSI and a method for flow synthesis of bis(fluorosulfonyl)imide based on the device.
  • the first object of the present invention is to provide a continuous flow reaction device, comprising a jacketed heat exchanger, a metering pump, a first microchannel reactor, a first gas-liquid separation system, a second microchannel reactor, a The second gas-liquid separation system, the third micro-channel reactor, the third gas-liquid separation system, the delight tower and the rectification tower, also include a liquid pressurization system, a mass flow meter and a tail gas absorption system, the liquid pressurization system The first microchannel reactor, the second microchannel reactor and the third microchannel reactor are respectively communicated through a mass flow meter, and a first shut-off valve is arranged between the liquid pressurization system and the mass flow meter.
  • a second shut-off valve, a third shut-off valve and a fourth shut-off valve are respectively provided between the flow meter and the first microchannel reactor, the second microchannel reactor and the third microchannel reactor, and the first gas-liquid separation
  • the system, the second gas-liquid separation system and the third gas-liquid separation system are respectively communicated with the tail gas absorption system.
  • the tail gas absorption system is preferably a container filled with lye.
  • the container can be any container that can hold lye, such as a flask, a plastic basin, etc.
  • the alkali solution is preferably a KOH solution with a mass fraction of 5%.
  • the second object of the present invention is to provide a method for the flow synthesis of bis(fluorosulfonyl)imide based on the continuous flow reaction device, comprising the following steps:
  • the bis(chlorosulfonyl)imide is mixed with the reaction accelerator to form material 1, which is loaded into the jacketed heat exchanger, and pumped into the first microchannel reactor through a metering pump, and the flow rate is 18-36ml/min.
  • the shut-off valve and the second shut-off valve, the hydrogen fluoride pressurized and vaporized by the liquid pressurization system enters the first microchannel reactor through the mass flow meter, the hydrogen fluoride flow rate is 3-6g/min, the reaction temperature is 80°C-120°C, and the reaction residence time
  • the first gas-liquid separation system conducts gas-liquid separation
  • the separated gas is passed into the tail gas absorption system for absorption
  • the separated reaction liquid A enters the second microchannel reactor
  • the third shut-off valve is opened.
  • the hydrogen fluoride pressurized and vaporized by the liquid pressurization system enters the second micro-channel reactor through a mass flow meter.
  • the second gas-liquid separation system conducts gas-liquid separation, the separated gas is passed into the tail gas absorption system for absorption, the separated reaction liquid B enters the third microchannel reactor, the fourth shut-off valve is opened, and the pressure is vaporized by the liquid pressurization system.
  • the hydrogen fluoride enters the third microchannel reactor through a mass flow meter, the flow rate of hydrogen fluoride is 3-6g/min, the reaction temperature is 80°C-120°C, and the reaction residence time is 40-80s.
  • Liquid separation the separated gas is passed into the tail gas absorption system for absorption, and the separated reaction liquid C is purified by the delight tower and the rectification tower to obtain bis(fluorosulfonyl)imide.
  • the reaction accelerator is selected from one or more of acetonitrile, N,N-dimethylformamide, dibutyl butylphosphonate, n-valeronitrile, adiponitrile, and phenylacetonitrile.
  • the added amount of the reaction accelerator is 2.7%-6.6% of the mass of bis(chlorosulfonyl)imide.
  • the reaction solution C obtained by the separation is purified by a delight tower and a rectifying column to obtain bis(fluorosulfonyl)imide, specifically: the reaction solution C obtained by separation is removed by a delight tower with a boiling point lower than that of bis(fluorosulfonyl)imide.
  • the components of sulfonyl)imide are then entered into a rectifying tower, rectified under the condition of 2mmHg, and fractions at 39-42°C are collected to obtain bis(fluorosulfonyl)imide.
  • the sandwich structure design of the microchannel reactor improves the heat exchange efficiency by about 1000 times, and the channel design of the internal heart-shaped plus baffle structure improves the mass transfer efficiency by about 100 times compared with the tank type mechanical stirring.
  • the efficient mass transfer and heat transfer completed in the 1mm microchannel can realize the process of preparing HFSI with high selectivity and high yield.
  • the generated HCl gas is removed from the reaction system in time through the gas-liquid separation system, so that the pressure drop of the series modules is maintained at 0.5-1.0MPa. Under the condition of the reaction temperature of 80°C-120°C, the total residence time of the reaction is about 10-20min, and the conversion rate per pass is about 10-20 minutes. It can reach 77.2% to 96.2%, and the obtained HFSI mixed solution directly enters the light-removing tower and the rectifying tower for purification, and high-purity HFSI is obtained in a rapid and continuous high yield.
  • the invention adopts three groups of microchannel reactors and gas-liquid separation systems in series, and the vaporized hydrogen fluoride is divided into three strands and injected into the first, second and third microchannel reactors respectively, and the HCl gas produced by the reaction is discharged from the system in time, thereby reducing the reaction time.
  • the pressure drop improves the selectivity of the reaction, and the continuous supplement of AHF makes the reaction more sufficient, improves the single-pass conversion rate, shortens the reaction time, and reduces the occurrence of side reactions.
  • the method of the invention overcomes the problems of complicated technical process for preparing HFSI from HClSI, many by-products, low yield, high three wastes, difficult product purification, simple process design, high product yield and high purity, suitable for industrial transformation, and has the advantages of relatively With high AHF utilization rate, low three wastes and low energy consumption, it is a safe and environmentally friendly synthetic method for preparing HFSI, which produces good economic benefits.
  • the microchannel flow process is used to synthesize HFSI, and the liquid holding capacity of a single reaction module is only 8ml, which greatly improves the safety performance compared to the kettle type synthesis process; 2.
  • the microchannel flow process is used for efficient mass transfer and heat transfer.
  • the purpose of preparing high-purity HFSI with high selectivity and high yield is achieved within 10-30 minutes; 3.
  • the synthesis conversion rate and product yield are significantly improved by adding nitriles, amines or phosphine reaction accelerators; 4.
  • the microchannel is connected in series with the gas-liquid separation system, and the HCl produced by the reaction is discharged from the system in time, which reduces the pressure drop of the reaction and improves the selectivity of the reaction. 5.
  • the present invention adopts the direct fluorination of HClSI and AHF to prepare high-purity HFSI, the process route is simple, the operability is strong, the price of raw materials is cheap, and the cost of industrialized production is low.
  • Fig. 1 is the structural representation of the continuous flow reaction device of embodiment 1;
  • the first microchannel reactor, the second microchannel reactor, and the third microchannel reactor were purchased from Corning Microchannel Reactor Technologies, Inc. (G1-SiC).
  • the first microchannel reactor, the second microchannel reactor and the third microchannel reactor all include a preheating module and a reaction module group consisting of three series-connected reaction modules (heart-shaped).
  • the continuous flow reaction device of the present invention includes a jacketed heat exchanger 1, a metering pump 2, a first microchannel reactor 3, a first gas-liquid separation system 4, and a second microchannel reaction that are connected in sequence.
  • the second gas-liquid separation system 6, the third microchannel reactor 7, the third gas-liquid separation system 8, the delight tower 9 and the rectification tower 10 and also include a liquid booster system 11, a mass flow meter 12 and The tail gas absorption system 13, the liquid pressurization system 11 is respectively communicated with the first microchannel reactor 3, the second microchannel reactor 5 and the third microchannel reactor 7 through the mass flow meter 12, the liquid pressurization system
  • a first shut-off valve 14 is provided between 11 and the mass flow meter 12, and between the mass flow meter 12 and the first microchannel reactor 3, the second microchannel reactor 5 and the third microchannel reactor 7 are respectively provided.
  • the tail gas absorption system 13 is a flask containing lye, and the lye is a KOH solution with a mass fraction of 5%.
  • the reaction temperature of the first microchannel reactor 3, the second microchannel reactor 5 and the third microchannel reactor 7 was set to 80°C.
  • the bis(chlorosulfonyl)imide (molecular formula HN(SO 2 Cl) 2 , HClSI for short) is mixed with acetonitrile to form material 1, which is loaded into the jacketed heat exchanger 1 and preheated to 60° C.
  • the amount of acetonitrile added is the mass of HClSI 2.7%.
  • Anhydrous hydrogen fluoride (AHF for short) is pressurized to 1.2 MPa by the liquid pressurizing system 11 for use.
  • the preheated material 1 in the jacket heat exchanger 1 is pumped into the first microchannel reactor 3 through the metering pump 2, and the flow rate is 30ml/min, and is heated to 80 through the preheating module of the first microchannel reactor 3. After °C, it enters the reaction module group.
  • the first shut-off valve 14 and the second shut-off valve 15 are opened.
  • the AHF flow rate was 5g/min
  • the reaction temperature was 80°C
  • the reaction residence time was 1.1min
  • the pressure drop was maintained at 0.25MPa.
  • the first gas-liquid separation system 4 was used for gas-liquid separation, separation
  • the HCl gas is passed into the tail gas absorption system 13 for absorption, and the separated reaction solution A enters the second microchannel reactor 5, and is heated to 80 ° C by the preheating module of the second microchannel reactor 5 and then enters the reaction module group.
  • the third shut-off valve 16 is opened, and the AHF vaporized by the liquid pressurization system 11 enters the reaction module group of the second microchannel reactor 5 through the mass flow meter 12, and the AHF flow rate is 5 g/g/g. min, the reaction temperature is 80°C, the reaction residence time is 1min, and the pressure drop is maintained at 0.22MPa.
  • reaction solution B enters the third microchannel reactor 7, and is heated to 80° C. by the preheating module of the third microchannel reactor 7, and then enters the reaction module group.
  • the fourth stop valve is opened. 17.
  • the AHF pressurized and vaporized by the liquid pressurization system 11 enters the reaction module group of the third microchannel reactor 7 through the mass flow meter 12, the AHF flow rate is 5g/min, the reaction temperature is 80°C, the reaction residence time is 1min, and the pressure The drop is maintained at 0.15MPa.
  • the gas-liquid separation is carried out through the third gas-liquid separation system 8, and sampling is performed at the bottom of the third gas-liquid separation system 8 (that is, the reaction liquid C).
  • the conversion rate per pass is 95.0%, and the Cl content in the reaction liquid C 0.89%
  • the separated HCl gas is passed into the tail gas absorption system 13 for absorption, and the separated reaction solution C is removed by the light-removing tower 9 to remove the components whose boiling point is lower than bis(fluorosulfonyl)imide (referred to as HFSI), and then enters the purification process.
  • Distillation tower 10 performs rectification under the condition of 2 mmHg, collects fractions at 40° C. to obtain HFSI with a purity of 99.9%, an output of 48.0 g/min and a yield of 94.6%.
  • the reaction temperature of the first microchannel reactor 3, the second microchannel reactor 5 and the third microchannel reactor 7 was set to 90°C.
  • HClSI and N,N-dimethylformamide (DMF) were mixed to form a material 1, which was charged into a jacketed heat exchanger 1 and preheated to 60°C.
  • the amount of DMF added was 3.3% of the mass of HClSI.
  • Anhydrous AHF is pressurized to 1.2MPa by the liquid pressurizing system 11 for standby.
  • the preheated material 1 in the jacket heat exchanger 1 was pumped into the first microchannel reactor 3 through the metering pump 2, and the flow rate was 24ml/min, and was heated to 90 through the preheating module of the first microchannel reactor 3. After °C, it enters the reaction module group. When the material 1 is filled with the reaction module group, the first shut-off valve 14 and the second shut-off valve 15 are opened. In the reaction module group of the reactor 3, the AHF flow rate was 4g/min, the reaction temperature was 90°C, the reaction residence time was 54s, and the pressure drop was maintained at 0.24MPa. After the reaction, the first gas-liquid separation system 4 was used for gas-liquid separation.
  • the HCl gas is passed into the tail gas absorption system 13 for absorption, and the separated reaction solution A enters the second microchannel reactor 5, and is heated to 90° C. by the preheating module of the second microchannel reactor 5 and then enters the reaction module group.
  • the third shut-off valve 16 is opened, and the AHF pressurized and vaporized by the liquid pressurization system 11 enters the reaction module group of the second microchannel reactor 5 through the mass flow meter 12, and the AHF flow rate is 4 g/min.
  • the reaction temperature is 90°C
  • the reaction residence time is 55s
  • the pressure drop is maintained at 0.21MPa.
  • the gas-liquid separation is carried out by the second gas-liquid separation system 6, and the separated HCl gas is passed into the tail gas absorption system 13 for absorption, and the reaction obtained by separation Liquid B enters the third microchannel reactor 7, is heated to 90°C by the preheating module of the third microchannel reactor 7, and then enters the reaction module group.
  • the fourth stop valve 17 is opened.
  • the AHF pressurized and vaporized by the liquid pressurization system 11 enters the reaction module group of the third microchannel reactor 7 through the mass flow meter 12, the AHF flow rate is 4g/min, the reaction temperature is 90°C, the reaction residence time is 55s, and the pressure drop Maintain at 0.132MPa, carry out gas-liquid separation through the third gas-liquid separation system 8 after the reaction, and sample at the bottom of the third gas-liquid separation system 8 (that is, the reaction liquid C), the single-pass conversion rate is 96.2%, and the Cl content in the reaction liquid C is 0.69 %, the separated HCl gas is passed into the tail gas absorption system 13 to absorb, and the reaction solution C obtained by separation is removed through the light-removing tower 9 to remove the component whose boiling point is lower than HFSI, then enters the rectifying tower 10, and rectifies under the condition of 2mmHg, The fractions at 40°C were collected to obtain HFSI with a purity of 99.8%, a yield of 39.1 g/min, and
  • the reaction temperature of the first microchannel reactor 3, the second microchannel reactor 5 and the third microchannel reactor 7 was set to 120°C.
  • HClSI and dibutyl butyl phosphonate (DBBP) were mixed to form a material 1, which was charged into a jacketed heat exchanger 1 and preheated to 60° C., and the amount of DBBP added was 5.7% of the mass of HClSI.
  • Anhydrous AHF is pressurized to 1.2MPa by the liquid pressurizing system 11 for standby.
  • the preheated material 1 in the jacket heat exchanger 1 was pumped into the first microchannel reactor 3 through the metering pump 2, and the flow rate was 24ml/min, and was heated to 120 through the preheating module of the first microchannel reactor 3. After °C, it enters the reaction module group.
  • the first stop valve 14 and the second stop valve 15 are opened, and the AHF vaporized by the liquid pressurization system 11 enters the first microchannel through the mass flow meter 12.
  • the AHF flow rate is 4g/min
  • the reaction temperature is 120°C
  • the reaction residence time is 53s
  • the pressure drop is maintained at 0.25MPa.
  • the first gas-liquid separation system 4 conducts gas-liquid separation, and the separated The HCl gas is passed into the tail gas absorption system 13 for absorption, and the separated reaction solution A enters the second microchannel reactor 5, and is heated to 120 ° C by the preheating module of the second microchannel reactor 5, and then enters the reaction module group.
  • the third shut-off valve 16 is opened, and the AHF vaporized by the liquid pressurization system 11 enters the reaction module group of the second microchannel reactor 5 through the mass flow meter 12, and the AHF flow rate is 4 g/min.
  • the reaction temperature is 120°C
  • the reaction residence time is 53s
  • the pressure drop is maintained at 0.22MPa.
  • the gas-liquid separation is carried out by the second gas-liquid separation system 6, and the separated HCl gas is passed into the tail gas absorption system 13 for absorption, and the reaction obtained by separation Liquid B enters the third microchannel reactor 7, is heated to 120°C by the preheating module of the third microchannel reactor 7, and then enters the reaction module group.
  • the fourth stop valve 17 is opened.
  • the AHF vaporized by the liquid pressurization system 11 enters the reaction module group of the third microchannel reactor 7 through the mass flow meter 12, the AHF flow rate is 4g/min, the reaction temperature is 120°C, the reaction residence time is 53s, and the pressure drop Maintain at 0.18MPa, conduct gas-liquid separation through the third gas-liquid separation system 8 after the reaction, and sample at the bottom of the third gas-liquid separation system 8 (that is, the reaction liquid C), the single-pass conversion rate is 85.8%, and the Cl content in the reaction liquid C is 2.56 %, the separated HCl gas is passed into the tail gas absorption system 13 to absorb, and the reaction solution C obtained by separation is removed through the light-removing tower 9 to remove the component whose boiling point is lower than HFSI, then enters the rectifying tower 10, and rectifies under the condition of 2mmHg, The fractions at 39°C were collected to obtain 99.7% HFSI with a yield of 34.8 g/min and a yield of 85.9%.
  • the reaction temperature of the first microchannel reactor 3, the second microchannel reactor 5 and the third microchannel reactor 7 was set to 100°C.
  • HClSI and n-valeronitrile are mixed to form material 1, which is charged into jacketed heat exchanger 1 and preheated to 60°C, and the addition amount of n-valeronitrile is 4.5% of the mass of HClSI.
  • Anhydrous AHF is pressurized to 1.2MPa by the liquid pressurizing system 11 for standby.
  • the preheated material 1 in the jacket heat exchanger 1 is pumped into the first microchannel reactor 3 through the metering pump 2, and the flow rate is 36ml/min, and is heated to 100 through the preheating module of the first microchannel reactor 3. After °C, it enters the reaction module group.
  • the first shut-off valve 14 and the second shut-off valve 15 are opened.
  • the AHF flow rate is 6g/min
  • the reaction temperature is 100°C
  • the reaction residence time is 80s
  • the pressure drop is maintained at 0.26MPa.
  • the HCl gas is passed into the tail gas absorption system 13 for absorption, and the separated reaction solution A enters the second microchannel reactor 5, and is heated to 100° C.
  • the reaction module group by the preheating module of the second microchannel reactor 5 and then enters the reaction module group.
  • the third stop valve 16 is opened, and the AHF vaporized by the liquid pressurization system 11 enters the reaction module group of the second microchannel reactor 5 through the mass flow meter 12, and the AHF flow rate is 6g/min , the reaction temperature is 100°C, the reaction residence time is 80s, and the pressure drop is maintained at 0.23MPa.
  • the gas-liquid separation is carried out by the second gas-liquid separation system 6, and the separated HCl gas is passed into the tail gas absorption system 13 for absorption, and the reaction obtained by separation Liquid B enters the third microchannel reactor 7, is heated to 100°C by the preheating module of the third microchannel reactor 7, and then enters the reaction module group.
  • the fourth stop valve 17 is opened.
  • the AHF pressurized and vaporized by the liquid pressurization system 11 enters the reaction module group of the third microchannel reactor 7 through the mass flow meter 12, the AHF flow rate is 6g/min, the reaction temperature is 100°C, the reaction residence time is 80s, and the pressure drop Maintain at 0.18MPa, carry out gas-liquid separation through the third gas-liquid separation system 8 after the reaction, and sample at the bottom of the third gas-liquid separation system 8 (that is, the reaction liquid C), the single-pass conversion rate is 77.2%, and the Cl content in the reaction liquid C is 4.09 %, the separated HCl gas is passed into the tail gas absorption system 13 to absorb, and the reaction solution C obtained by separation is removed through the light-removing tower 9 to remove the component whose boiling point is lower than HFSI, then enters the rectifying tower 10, and rectifies under the condition of 2mmHg, The fractions at 41°C were collected to obtain 99.8% HFSI with a yield of 47.0 g/min and a yield of 77.3%
  • the reaction temperature of the first microchannel reactor 3, the second microchannel reactor 5 and the third microchannel reactor 7 was set to 110°C.
  • HClSI and adiponitrile are mixed to form material 1, which is charged into a jacket heat exchanger 1 and preheated to 60° C., and the amount of adiponitrile added is 6.5% of the mass of HClSI.
  • Anhydrous AHF is pressurized to 1.2MPa by the liquid pressurizing system 11 for standby.
  • the preheated material 1 in the jacket heat exchanger 1 was pumped into the first microchannel reactor 3 through the metering pump 2, and the flow rate was 18ml/min, and was heated to 110 through the preheating module of the first microchannel reactor 3. After °C, it enters the reaction module group.
  • the first shut-off valve 14 and the second shut-off valve 15 are opened.
  • the AHF flow rate is 3g/min
  • the reaction temperature is 110°C
  • the reaction residence time is 40s
  • the pressure drop is maintained at 0.22MPa.
  • the HCl gas is passed into the tail gas absorption system 13 for absorption, and the separated reaction solution A enters the second microchannel reactor 5, and is heated to 110° C.
  • the reaction module group is filled with the reaction module group, the third shut-off valve 16 is opened, and the AHF vaporized by the liquid pressurization system 11 enters the reaction module group of the second microchannel reactor 5 through the mass flow meter 12, and the AHF flow rate is 3 g/min. , the reaction temperature is 110°C, the reaction residence time is 40s, and the pressure drop is maintained at 0.20MPa.
  • the gas-liquid separation is carried out by the second gas-liquid separation system 6, and the separated HCl gas is passed into the tail gas absorption system 13 for absorption, and the reaction obtained by separation Liquid B enters the third microchannel reactor 7, is heated to 110°C by the preheating module of the third microchannel reactor 7, and then enters the reaction module group.
  • the fourth stop valve 17 is opened.
  • the AHF pressurized and vaporized by the liquid pressurization system 11 enters the reaction module group of the third microchannel reactor 7 through the mass flow meter 12, the AHF flow rate is 3g/min, the reaction temperature is 110°C, the reaction residence time is 40s, and the pressure drop Maintained at 0.12MPa, after the reaction, gas-liquid separation was carried out through the third gas-liquid separation system 8, and sampling was performed at the bottom of the third gas-liquid separation system 8 (that is, the reaction liquid C), the single-pass conversion rate was 94.5%, and the Cl content in the reaction liquid C was 0.98 %, the separated HCl gas is passed into the tail gas absorption system 13 to absorb, and the reaction solution C obtained by separation is removed through the light-removing tower 9 to remove the component whose boiling point is lower than HFSI, then enters the rectifying tower 10, and rectifies under the condition of 2mmHg, The fractions at 42°C were collected to obtain HFSI with a purity of 99.8%, a yield of 28.7 g/
  • the reaction temperature of the first microchannel reactor 3, the second microchannel reactor 5 and the third microchannel reactor 7 was set to 110°C.
  • the HClSI and phenylacetonitrile are mixed to form a material 1, which is loaded into a jacketed heat exchanger 1 and preheated to 60° C., and the addition amount of phenylacetonitrile is 6.6% of the mass of HClSI.
  • Anhydrous AHF is pressurized to 1.2MPa by the liquid pressurizing system 11 for standby.
  • the preheated material 1 in the jacket heat exchanger 1 is pumped into the first microchannel reactor 3 through the metering pump 2, and the flow rate is 23ml/min, and is heated to 110 through the preheating module of the first microchannel reactor 3. After °C, it enters the reaction module group.
  • the first shut-off valve 14 and the second shut-off valve 15 are opened.
  • the AHF flow rate is 3.7g/min
  • the reaction temperature is 110°C
  • the reaction residence time is 50s
  • the pressure drop is maintained at 0.24MPa.
  • the first gas-liquid separation system 4 is used for gas-liquid separation, separation
  • the HCl gas is passed into the tail gas absorption system 13 for absorption, and the separated reaction solution A enters the second microchannel reactor 5, and is heated to 110 °C by the preheating module of the second microchannel reactor 5, and then enters the reaction module group.
  • the third shut-off valve 16 is opened, and the AHF pressurized and vaporized by the liquid pressurization system 11 enters the reaction module group of the second microchannel reactor 5 through the mass flow meter 12, and the AHF flow rate is 3.7g. /min, the reaction temperature is 110°C, the reaction residence time is 50s, and the pressure drop is maintained at 0.19MPa.
  • reaction solution B entered into the third microchannel reactor 7, heated to 110 °C by the preheating module of the third microchannel reactor 7, and then entered into the reaction module group.
  • the fourth cutoff was opened Valve 17, the AHF vaporized by the liquid pressurization system 11 enters the reaction module group of the third microchannel reactor 7 through the mass flow meter 12, the AHF flow rate is 3.7g/min, the reaction temperature is 110°C, and the reaction residence time is 50s , the pressure drop is maintained at 0.15MPa, after the reaction, the gas-liquid separation is carried out through the third gas-liquid separation system 8, and sampling is performed at the bottom of the third gas-liquid separation system 8 (that is, the reaction liquid C), and the conversion rate per pass is 84.9%.
  • the Cl content is 2.7%
  • the separated HCl gas is passed into the tail gas absorption system 13 for absorption, and the separated reaction liquid C is removed through the light-removing tower 9 to remove the components whose boiling points are lower than HFSI, and then enters the rectifying tower 10 and carries out under the condition of 2mmHg. After rectification, the fractions at 40°C were collected to obtain 99.9% HFSI with a yield of 33.0 g/min and a yield of 84.8%.
  • the HFSI synthesis process of the present embodiment has the following advantages: 1.
  • the reaction solution selected for the process is obtained by the direct fluorination reaction of HClSI and AHF, with high atom utilization, simple process route, cheap raw materials, and low industrial production cost; 2.
  • the microchannel continuous flow synthesis process can significantly reduce the amplification effect, and can quickly realize the mass production of the product; 3.
  • the reaction can significantly improve the synthesis yield by adding catalytic active components, mainly nitrile, phosphine or amine reagents , shortening the reaction time and reducing the occurrence of side reactions; 4.
  • the reaction generates HCl gas by removing the reaction in time through the gas-liquid separation process, which improves the single-pass conversion rate and has high industrial value; 5.
  • a continuous According to the distillation purification method, the final product obtained has good quality, high purity and high yield, which meets the application requirements in the field of lithium battery electrolyte.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

一种连续流动反应装置及基于该装置的流动合成双(氟磺酰)亚胺的方法。连续流动反应装置包括依次连通的夹套换热器(1)、计量泵(2)、第一微通道反应器(3)、第一气液分离系统(4)、第二微通道反应器(5)、第二气液分离系统(6)、第三微通道反应器(7)、第三气液分离系统(8)、脱轻塔(9)和精馏塔(10),还包括液体增压系统(11)、质量流量计(12)和尾气吸收系统(13)。本发明采用三组微通道反应器+气液分离系统串联,汽化的氟化氢分成三股分别打入第一、第二和第三微通道反应器(3,5,7),及时将反应产生的HCl气体排出体系,降低了反应压降,提高了反应的选择性,持续补充AHF使得反应更加充分,提高了单程转化率,缩短了反应时间,减少了副反应的发生。

Description

一种连续流动反应装置及基于该装置的流动合成双(氟磺酰)亚胺的方法 技术领域:
本发明涉及氟化工锂电池电解质技术领域,具体涉及一种连续流动反应装置及基于该装置的流动合成双(氟磺酰)亚胺的方法。
背景技术:
双(氟磺酰)亚胺(cas:14984-73-7),分子式HN(SO 2F) 2,简称HFSI。是一种强酸,其盐及离子液体已被证实在催化领域、电解质领域、氟化试剂领域具有广泛应用,尤其是其锂盐(LiFSI)已被证实特别适用于电池和超级电容器。
已公开的LiFSI合成方法很多,如专利US2004097757中记载,是采用HClSI直接与氟化锂LiF反应制备LiFSI,该方法直接产生大量的腐蚀性气体氟化氢,同时过量LiF与LiFSI难彻底分离,产品F离子含量高,影响产品品质。
专利US2013331609,US2012041233,EP2415757,US2011034716,CN101747242A公开的LiFSI的合成方法是先合成HClSI,然后由其与氟代金属盐MFX反应,制备相应的双氟磺酰亚胺盐中间体,该中间体再与氢氧化锂LiOH或碳酸锂Li 2CO 3进行阳离子交换制得LiFSI,缺陷在于阳离子交换达到平衡后很难继续进行完全,未反应完全的中间体难以与LiFSI完全分离,从而无法得到高品质的产品。
现有最为经济有效的方法是采用HFSI直接与LiOH或Li 2CO 3反应,生成LiFSI。因此合成和提纯中间体HFSI便成了制备LiFSI的关键。
专利US2012/0020867 A1,CN 102378755A,CN 107986248A公开了使用磺酰氟和氨气(或氟化铵)制备双(氟磺酰)亚胺的方法,该反应为放热反应,存在快速升压现象,副反 应多,产物为双(氟磺酰)亚胺与三乙胺的络合物,产品提纯困难,原料腐蚀性强,对设备要求高,三废高,不符合绿色化工理念。
专利US 8337797,US 9156692,US 5916475报导了氟磺酸和尿素合成双(氟磺酰)亚胺的方法,该方法需要使用PTFE反应器,在120~130℃条件下完成,危险性大,对设备要求高,且反应有HF生成,产品收率40%左右,不适合工业化生产。
文献B.Krumm et al,Inorg.chem.1998,37,6295和专利ZL 201210262032.X公开了AsF 3和SbF 3制备双(氟磺酰)亚胺的合成方法,由于As剧毒,副产物SbCl 3容易升华,HFSI提纯困难,该方法也不是制备HFSI的优选方案。
专利CN 200980111233.6报导了选用氟磺酸、氯磺酸、甲基磺酸、三氟甲磺酸等与双(氟磺酰)亚胺盐制备双(氟磺酰)亚胺的方法,通过实验发现氯磺酸参与反应容易发生副反应,不易得到高纯HFSI。氟磺酸有强腐蚀性,价格昂贵,供应商很少,并且氟磺酸与HFSI的沸点相差较少,用减压蒸馏方式分离HFSI与过量或没反应完的氟磺酸很难,毕竟两者沸点相差不大,因此想得到高纯度的HFSI较困难。甲基磺酸、三氟甲磺酸价格太贵,对设备要求也很高,不利于工业化生产。
制备HFSI最简单的反应之一是使HClSI与氟化氢反应,专利CN 200910063820.4、CN 201410112056.6和CN 201480035708.9公开了选用HF对双(氯磺酰)亚胺进行氟化反应制备双(氟磺酰)亚胺的方法,密闭条件下会出现快速升压现象,产品收率约70%,对设备要求高,危险性大。美国第7,919,629号专利的实施例10公开了在各种温度下HClSI与无水HF的反应。最佳产率是在130℃下反应2小时得到的55%。在30℃和50℃下反应12小时后观察到一些反应(<10%产率)。该专利的发明人观察到氟磺酸作为降解产物出现。总结出“…使 用HF合成HFSI并不令人满意”。
综上所述,这些专利报道的HFSI氟化方法普遍存在副产物难分离,高温高压反应环境,收率低,三废高,耗能高,安全风险高,亟待以开发相对安全/或简单的高产率制备高纯HFSI的方法。
发明内容:
为了解决AHF合成HFSI工艺中,反应条件苛刻,副产物多,产物收率低,釜式反应存在放大效应的技术难题,本发明提供了一种快速、高收率、高选择性、安全、连续流动制备高纯HFSI的连续流动反应装置及基于该装置的流动合成双(氟磺酰)亚胺的方法。
本发明的第一个目的是提供一种连续流动反应装置,包括依次连通的夹套换热器、计量泵、第一微通道反应器、第一气液分离系统、第二微通道反应器、第二气液分离系统、第三微通道反应器、第三气液分离系统、脱轻塔和精馏塔,还包括液体增压系统、质量流量计和尾气吸收系统,所述液体增压系统通过质量流量计分别与第一微通道反应器、第二微通道反应器和第三微通道反应器连通,所述液体增压系统与质量流量计之间设有第一截止阀,所述质量流量计与第一微通道反应器、第二微通道反应器和第三微通道反应器之间分别设有第二截止阀、第三截止阀和第四截止阀,所述第一气液分离系统、第二气液分离系统和第三气液分离系统分别与尾气吸收系统连通。
所述的尾气吸收系统优选为装有碱液的容器。容器可以为烧瓶、塑料盆等任何能够装碱液的容器。
所述的碱液优选为质量分数5%的KOH溶液。
本发明的第二个目的是提供一种基于所述的连续流动反应装置的流动合成双(氟磺酰) 亚胺的方法,包括以下步骤:
将双(氯磺酰)亚胺与反应促进剂混合形成物料1装入夹套换热器中,经计量泵泵入第一微通道反应器中,流速为18-36ml/min,打开第一截止阀和第二截止阀,经液体增压系统加压汽化的氟化氢经质量流量计进入第一微通道反应器中,氟化氢流量3-6g/min,反应温度80℃-120℃,反应停留时间为40~80s,反应后经第一气液分离系统进行气液分离,分离的气体通入尾气吸收系统吸收,分离得到的反应液A进入第二微通道反应器中,打开第三截止阀,经液体增压系统加压汽化的氟化氢经质量流量计进入第二微通道反应器中,氟化氢流量3-6g/min,反应温度80℃-120℃,反应停留时间为40~80s,反应后经第二气液分离系统进行气液分离,分离的气体通入尾气吸收系统吸收,分离得到的反应液B进入第三微通道反应器中,打开第四截止阀,经液体增压系统加压汽化的氟化氢经质量流量计进入第三微通道反应器中,氟化氢流量3-6g/min,反应温度80℃-120℃,反应停留时间为40~80s,反应后经第三气液分离系统进行气液分离,分离的气体通入尾气吸收系统吸收,分离得到的反应液C经脱轻塔和精馏塔纯化得到双(氟磺酰)亚胺。
优选,所述的反应促进剂选自乙腈、N,N-二甲基甲酰胺、丁基膦酸二丁酯、正戊腈、己二腈、苯乙腈中的一种或几种。
优选,所述的反应促进剂的添加量为双(氯磺酰)亚胺质量的2.7%-6.6%。
优选,所述的分离得到的反应液C经脱轻塔和精馏塔纯化得到双(氟磺酰)亚胺具体为:分离得到的反应液C经脱轻塔脱去沸点低于双(氟磺酰)亚胺的组分,然后进入精馏塔,在2mmHg条件下进行精馏,收集39~42℃的馏分,得到双(氟磺酰)亚胺。
微通道反应器的夹心结构设计相比釜式反应器换热效率提高了约1000倍,内部心形加挡 板结构的通道设计相较于釜式机械搅拌传质效率提高了约100倍,在1mm微通道内完成的高效传质传热可以实现快速高选择性高收率制备HFSI的过程。产生的HCl气体通过气液分离系统及时移出反应体系,使串联模块压降维持在0.5~1.0MPa,在反应温度80℃-120℃条件下,反应总停留时间约为10-20min,单程转化率即可达到77.2%~96.2%,得到的HFSI混合液直接进入脱轻塔和精馏塔纯化,快速连续高收率得到高纯HFSI。
本发明采用三组微通道反应器+气液分离系统串联,汽化的氟化氢分成三股分别打入第一、第二和第三微通道反应器,及时将反应产生的HCl气体排出体系,降低了反应压降,提高了反应的选择性,持续补充AHF使得反应更加充分,提高了单程转化率,缩短了反应时间,减少了副反应的发生。
本发明的方法克服了从HClSI制备HFSI工艺过程繁琐,副产多,收率低,三废高,产品难纯化的问题,工艺流程设计简单,产品收率高,纯度高,适合工业化转化,具有较高的AHF利用率,低三废,低能耗,是一种安全、环保制备HFSI的合成方法,产生良好的经济效益。
本发明的技术效果:1.采用微通道流动工艺合成HFSI,单个反应模块持液量仅8ml,相对釜式合成工艺安全性能得到极大提高;2.采用微通道流动工艺高效传质传热的特点在10~30min内实现了快速高选择性高收率制备高纯HFSI的目的;3.采用添加腈类、胺类或膦类反应促进剂的方式显著提高了合成转化率和产品收率;4.采用微通道与气液分离系统串联的模式,及时将反应产生的HCl排出体系,降低了反应压降,提高了反应的选择性。5.本发明采用HClSI与AHF直接氟化制备高纯HFSI,工艺路线简单,可操作性强,原料价格便宜,工业化生产成本低。
附图说明:
图1为实施例1的连续流动反应装置结构示意图;
附图标记说明:1-夹套换热器,2-计量泵,3-第一微通道反应器,4-第一气液分离系统,5-第二微通道反应器,6-第二气液分离系统,7-第三微通道反应器,8-第三气液分离系统,9-脱轻塔,10-精馏塔,11-液体增压系统,12-质量流量计,13-尾气吸收系统,14-第一截止阀,15-第二截止阀,16-第三截止阀,17-第四截止阀。
具体实施方式:
下面的实施例用来说明本发明的几个具体的实施方式,但并不将本发明局限于这些具体实施方式。本领域技术人员应该认识到,本发明涵盖了权利要求书范围内所可能包括的所有备选方案、改进方案和等效方案。
在实施例中,第一微通道反应器、第二微通道反应器和第三微通道反应器购自康宁微通道反应器技术有限公司(G1-SiC)。第一微通道反应器、第二微通道反应器和第三微通道反应器均包括一个预热模块和1个由3个串联的反应模块(心型)组成的反应模块组。
实施例1
如图1所示,本发明的连续流动反应装置,包括依次连通的夹套换热器1、计量泵2、第一微通道反应器3、第一气液分离系统4、第二微通道反应器5、第二气液分离系统6、第三微通道反应器7、第三气液分离系统8、脱轻塔9和精馏塔10,还包括液体增压系统11、质量流量计12和尾气吸收系统13,所述液体增压系统11通过质量流量计12分别与第一微通道反应器3、第二微通道反应器5和第三微通道反应器7连通,所述液体增压系统11与质量流量计12之间设有第一截止阀14,所述质量流量计12与第一微通道反应器3、第二微通道 反应器5和第三微通道反应器7之间分别设有第二截止阀15、第三截止阀16和第四截止阀17,所述第一气液分离系统4、第二气液分离系统6和第三气液分离系统8分别与尾气吸收系统13连通。尾气吸收系统13为装有碱液的烧瓶,碱液为质量分数5%的KOH溶液。
使用上述的连续流动反应装置连续流动制备高纯HFSI,具体步骤如下:
设定第一微通道反应器3、第二微通道反应器5和第三微通道反应器7的反应温度为80℃。将双(氯磺酰)亚胺(分子式HN(SO 2Cl) 2,简称HClSI)与乙腈混合形成物料1装入夹套换热器1中预热至60℃,乙腈的添加量为HClSI质量的2.7%。无水氟化氢(简称AHF)通过液体增压系统11加压至1.2MPa备用。
将夹套换热器1中预热后的物料1经计量泵2泵入第一微通道反应器3中,流速为30ml/min,经第一微通道反应器3的预热模块加热至80℃后进入反应模块组,待物料1充满反应模块组时,打开第一截止阀14和第二截止阀15,经液体增压系统11加压汽化的AHF经质量流量计12进入第一微通道反应器3的反应模块组中,AHF流量5g/min,反应温度80℃,反应停留时间为1.1min,压降维持在0.25MPa,反应后经第一气液分离系统4进行气液分离,分离的HCl气体通入尾气吸收系统13吸收,分离得到的反应液A进入第二微通道反应器5中,经第二微通道反应器5的预热模块加热至80℃后进入反应模块组,待反应液A充满反应模块组时,打开第三截止阀16,经液体增压系统11加压汽化的AHF经质量流量计12进入第二微通道反应器5的反应模块组中,AHF流量5g/min,反应温度80℃,反应停留时间为1min,压降维持在0.22MPa,反应后经第二气液分离系统6进行气液分离,分离的HCl气体通入尾气吸收系统13吸收,分离得到的反应液B进入第三微通道反应器7中,经第三微通道反应器7的预热模块加热至80℃后进入反应模块组,待反应液B充满反应模块组时,打 开第四截止阀17,经液体增压系统11加压汽化的AHF经质量流量计12进入第三微通道反应器7的反应模块组中,AHF流量5g/min,反应温度80℃,反应停留时间为1min,压降维持在0.15MPa,反应后经第三气液分离系统8进行气液分离,在第三气液分离系统8底部取样(即反应液C),单程转化率95.0%,反应液C中Cl含量0.89%,分离的HCl气体通入尾气吸收系统13吸收,分离得到的反应液C经脱轻塔9脱去沸点低于双(氟磺酰)亚胺(简称HFSI)的组分,然后进入精馏塔10,在2mmHg条件下进行精馏,收集40℃的馏分,得到纯度99.9%HFSI,产量48.0g/min,收率94.6%。
实施例2
使用实施例1的连续流动反应装置连续流动制备高纯HFSI,具体步骤如下:
设定第一微通道反应器3、第二微通道反应器5和第三微通道反应器7的反应温度为90℃。将HClSI与N,N-二甲基甲酰胺(DMF)混合形成物料1装入夹套换热器1中预热至60℃,DMF的添加量为HClSI质量的3.3%。无水AHF通过液体增压系统11加压至1.2MPa备用。
将夹套换热器1中预热后的物料1经计量泵2泵入第一微通道反应器3中,流速为24ml/min,经第一微通道反应器3的预热模块加热至90℃后进入反应模块组,待物料1充满反应模块组时,打开第一截止阀14和第二截止阀15,经液体增压系统11加压汽化的AHF经质量流量计12进入第一微通道反应器3的反应模块组中,AHF流量4g/min,反应温度90℃,反应停留时间为54s,压降维持在0.24MPa,反应后经第一气液分离系统4进行气液分离,分离的HCl气体通入尾气吸收系统13吸收,分离得到的反应液A进入第二微通道反应器5中,经第二微通道反应器5的预热模块加热至90℃后进入反应模块组,待反应液A充满反应 模块组时,打开第三截止阀16,经液体增压系统11加压汽化的AHF经质量流量计12进入第二微通道反应器5的反应模块组中,AHF流量4g/min,反应温度90℃,反应停留时间为55s,压降维持在0.21MPa,反应后经第二气液分离系统6进行气液分离,分离的HCl气体通入尾气吸收系统13吸收,分离得到的反应液B进入第三微通道反应器7中,经第三微通道反应器7的预热模块加热至90℃后进入反应模块组,待反应液B充满反应模块组时,打开第四截止阀17,经液体增压系统11加压汽化的AHF经质量流量计12进入第三微通道反应器7的反应模块组中,AHF流量4g/min,反应温度90℃,反应停留时间为55s,压降维持在0.132MPa,反应后经第三气液分离系统8进行气液分离,在第三气液分离系统8底部取样(即反应液C),单程转化率96.2%,反应液C中Cl含量0.69%,分离的HCl气体通入尾气吸收系统13吸收,分离得到的反应液C经脱轻塔9脱去沸点低于HFSI的组分,然后进入精馏塔10,在2mmHg条件下进行精馏,收集40℃的馏分,得到纯度99.8%HFSI,产量39.1g/min,收率96.5%。
实施例3
使用实施例1的连续流动反应装置连续流动制备高纯HFSI,具体步骤如下:
设定第一微通道反应器3、第二微通道反应器5和第三微通道反应器7的反应温度为120℃。将HClSI与丁基膦酸二丁酯(DBBP)混合形成物料1装入夹套换热器1中预热至60℃,DBBP的添加量为HClSI质量的5.7%。无水AHF通过液体增压系统11加压至1.2MPa备用。
将夹套换热器1中预热后的物料1经计量泵2泵入第一微通道反应器3中,流速为24ml/min,经第一微通道反应器3的预热模块加热至120℃后进入反应模块组,待物料1充满反应模块组时,打开第一截止阀14和第二截止阀15,经液体增压系统11加压汽化的AHF 经质量流量计12进入第一微通道反应器3的反应模块组中,AHF流量4g/min,反应温度120℃,反应停留时间为53s,压降维持在0.25MPa,反应后经第一气液分离系统4进行气液分离,分离的HCl气体通入尾气吸收系统13吸收,分离得到的反应液A进入第二微通道反应器5中,经第二微通道反应器5的预热模块加热至120℃后进入反应模块组,待反应液A充满反应模块组时,打开第三截止阀16,经液体增压系统11加压汽化的AHF经质量流量计12进入第二微通道反应器5的反应模块组中,AHF流量4g/min,反应温度120℃,反应停留时间为53s,压降维持在0.22MPa,反应后经第二气液分离系统6进行气液分离,分离的HCl气体通入尾气吸收系统13吸收,分离得到的反应液B进入第三微通道反应器7中,经第三微通道反应器7的预热模块加热至120℃后进入反应模块组,待反应液B充满反应模块组时,打开第四截止阀17,经液体增压系统11加压汽化的AHF经质量流量计12进入第三微通道反应器7的反应模块组中,AHF流量4g/min,反应温度120℃,反应停留时间为53s,压降维持在0.18MPa,反应后经第三气液分离系统8进行气液分离,在第三气液分离系统8底部取样(即反应液C),单程转化率85.8%,反应液C中Cl含量2.56%,分离的HCl气体通入尾气吸收系统13吸收,分离得到的反应液C经脱轻塔9脱去沸点低于HFSI的组分,然后进入精馏塔10,在2mmHg条件下进行精馏,收集39℃的馏分,得到纯度99.7%HFSI,产量34.8g/min,收率85.9%。
实施例4
使用实施例1的连续流动反应装置连续流动制备高纯HFSI,具体步骤如下:
设定第一微通道反应器3、第二微通道反应器5和第三微通道反应器7的反应温度为100℃。将HClSI与正戊腈混合形成物料1装入夹套换热器1中预热至60℃,正戊腈的添加量为 HClSI质量的4.5%。无水AHF通过液体增压系统11加压至1.2MPa备用。
将夹套换热器1中预热后的物料1经计量泵2泵入第一微通道反应器3中,流速为36ml/min,经第一微通道反应器3的预热模块加热至100℃后进入反应模块组,待物料1充满反应模块组时,打开第一截止阀14和第二截止阀15,经液体增压系统11加压汽化的AHF经质量流量计12进入第一微通道反应器3的反应模块组中,AHF流量6g/min,反应温度100℃,反应停留时间为80s,压降维持在0.26MPa,反应后经第一气液分离系统4进行气液分离,分离的HCl气体通入尾气吸收系统13吸收,分离得到的反应液A进入第二微通道反应器5中,经第二微通道反应器5的预热模块加热至100℃后进入反应模块组,待反应液A充满反应模块组时,打开第三截止阀16,经液体增压系统11加压汽化的AHF经质量流量计12进入第二微通道反应器5的反应模块组中,AHF流量6g/min,反应温度100℃,反应停留时间为80s,压降维持在0.23MPa,反应后经第二气液分离系统6进行气液分离,分离的HCl气体通入尾气吸收系统13吸收,分离得到的反应液B进入第三微通道反应器7中,经第三微通道反应器7的预热模块加热至100℃后进入反应模块组,待反应液B充满反应模块组时,打开第四截止阀17,经液体增压系统11加压汽化的AHF经质量流量计12进入第三微通道反应器7的反应模块组中,AHF流量6g/min,反应温度100℃,反应停留时间为80s,压降维持在0.18MPa,反应后经第三气液分离系统8进行气液分离,在第三气液分离系统8底部取样(即反应液C),单程转化率77.2%,反应液C中Cl含量4.09%,分离的HCl气体通入尾气吸收系统13吸收,分离得到的反应液C经脱轻塔9脱去沸点低于HFSI的组分,然后进入精馏塔10,在2mmHg条件下进行精馏,收集41℃的馏分,得到纯度99.8%HFSI,产量47.0g/min,收率77.3%。
实施例5
使用实施例1的连续流动反应装置连续流动制备高纯HFSI,具体步骤如下:
设定第一微通道反应器3、第二微通道反应器5和第三微通道反应器7的反应温度为110℃。将HClSI与己二腈混合形成物料1装入夹套换热器1中预热至60℃,己二腈的添加量为HClSI质量的6.5%。无水AHF通过液体增压系统11加压至1.2MPa备用。
将夹套换热器1中预热后的物料1经计量泵2泵入第一微通道反应器3中,流速为18ml/min,经第一微通道反应器3的预热模块加热至110℃后进入反应模块组,待物料1充满反应模块组时,打开第一截止阀14和第二截止阀15,经液体增压系统11加压汽化的AHF经质量流量计12进入第一微通道反应器3的反应模块组中,AHF流量3g/min,反应温度110℃,反应停留时间为40s,压降维持在0.22MPa,反应后经第一气液分离系统4进行气液分离,分离的HCl气体通入尾气吸收系统13吸收,分离得到的反应液A进入第二微通道反应器5中,经第二微通道反应器5的预热模块加热至110℃后进入反应模块组,待反应液A充满反应模块组时,打开第三截止阀16,经液体增压系统11加压汽化的AHF经质量流量计12进入第二微通道反应器5的反应模块组中,AHF流量3g/min,反应温度110℃,反应停留时间为40s,压降维持在0.20MPa,反应后经第二气液分离系统6进行气液分离,分离的HCl气体通入尾气吸收系统13吸收,分离得到的反应液B进入第三微通道反应器7中,经第三微通道反应器7的预热模块加热至110℃后进入反应模块组,待反应液B充满反应模块组时,打开第四截止阀17,经液体增压系统11加压汽化的AHF经质量流量计12进入第三微通道反应器7的反应模块组中,AHF流量3g/min,反应温度110℃,反应停留时间为40s,压降维持在0.12MPa,反应后经第三气液分离系统8进行气液分离,在第三气液分离系统8底部 取样(即反应液C),单程转化率94.5%,反应液C中Cl含量0.98%,分离的HCl气体通入尾气吸收系统13吸收,分离得到的反应液C经脱轻塔9脱去沸点低于HFSI的组分,然后进入精馏塔10,在2mmHg条件下进行精馏,收集42℃的馏分,得到纯度99.8%的HFSI,产量28.7g/min,收率94.4%。
实施例6
使用实施例1的连续流动反应装置连续流动制备高纯HFSI,具体步骤如下:
设定第一微通道反应器3、第二微通道反应器5和第三微通道反应器7的反应温度为110℃。将HClSI与苯乙腈混合形成物料1装入夹套换热器1中预热至60℃,苯乙腈的添加量为HClSI质量的6.6%。无水AHF通过液体增压系统11加压至1.2MPa备用。
将夹套换热器1中预热后的物料1经计量泵2泵入第一微通道反应器3中,流速为23ml/min,经第一微通道反应器3的预热模块加热至110℃后进入反应模块组,待物料1充满反应模块组时,打开第一截止阀14和第二截止阀15,经液体增压系统11加压汽化的AHF经质量流量计12进入第一微通道反应器3的反应模块组中,AHF流量3.7g/min,反应温度110℃,反应停留时间为50s,压降维持在0.24MPa,反应后经第一气液分离系统4进行气液分离,分离的HCl气体通入尾气吸收系统13吸收,分离得到的反应液A进入第二微通道反应器5中,经第二微通道反应器5的预热模块加热至110℃后进入反应模块组,待反应液A充满反应模块组时,打开第三截止阀16,经液体增压系统11加压汽化的AHF经质量流量计12进入第二微通道反应器5的反应模块组中,AHF流量3.7g/min,反应温度110℃,反应停留时间为50s,压降维持在0.19MPa,反应后经第二气液分离系统6进行气液分离,分离的HCl气体通入尾气吸收系统13吸收,分离得到的反应液B进入第三微通道反应器7中,经第 三微通道反应器7的预热模块加热至110℃后进入反应模块组,待反应液B充满反应模块组时,打开第四截止阀17,经液体增压系统11加压汽化的AHF经质量流量计12进入第三微通道反应器7的反应模块组中,AHF流量3.7g/min,反应温度110℃,反应停留时间为50s,压降维持在0.15MPa,反应后经第三气液分离系统8进行气液分离,在第三气液分离系统8底部取样(即反应液C),单程转化率84.9%,反应液C中Cl含量2.7%,分离的HCl气体通入尾气吸收系统13吸收,分离得到的反应液C经脱轻塔9脱去沸点低于HFSI的组分,然后进入精馏塔10,在2mmHg条件下进行精馏,收集40℃的馏分,得到纯度99.9%HFSI,产量33.0g/min,收率84.8%。
本实施例的HFSI合成工艺具有以下优势:1.工艺选用的反应液是HClSI与AHF直接氟化反应制得,原子利用率高,工艺路线简单,原料价格便宜,工业化生产成本低;2.采用微通道连续流动合成工艺可显著减小放大效应,可快速实现产品的量产放大;3.反应通过添加催化量活性组分,主要指腈类、膦类或胺类试剂显著提高了合成收率,缩短了反应时间,减少了副反应的发生;4.反应通过气液分离工艺及时脱除反应生成HCl气体,提高了单程转化率,具有很高的工业化价值;5.反应完成后采用连续精馏纯化方式,得到的最终产品品质好,纯度高,产率高,符合锂电池电解液领域应用需求。
需要指出的是,上述较佳实施例仅为说明本发明的技术构思和特点,其目的在于让熟悉此项技术的人士能够了解本发明的内容并据以实施,并不能以此限制本发明的保护范围。凡根据本发明精神实质所做的等效变化或修饰,都涵盖在本发明的保护范围之内。

Claims (7)

  1. 一种连续流动反应装置,其特征在于:包括依次连通的夹套换热器、计量泵、第一微通道反应器、第一气液分离系统、第二微通道反应器、第二气液分离系统、第三微通道反应器、第三气液分离系统、脱轻塔和精馏塔,还包括液体增压系统、质量流量计和尾气吸收系统,所述液体增压系统通过质量流量计分别与第一微通道反应器、第二微通道反应器和第三微通道反应器连通,所述液体增压系统与质量流量计之间设有第一截止阀,所述质量流量计与第一微通道反应器、第二微通道反应器和第三微通道反应器之间分别设有第二截止阀、第三截止阀和第四截止阀,所述第一气液分离系统、第二气液分离系统和第三气液分离系统分别与尾气吸收系统连通。
  2. 根据权利要求1所述的连续流动反应装置,其特征在于:所述的尾气吸收系统为装有碱液的容器。
  3. 根据权利要求2所述的连续流动反应装置,其特征在于:所述的碱液为质量分数5%的KOH溶液。
  4. 一种基于权利要求1-3任一项所述的连续流动反应装置的流动合成双(氟磺酰)亚胺的方法,其特征在于,包括以下步骤:
    将双(氯磺酰)亚胺与反应促进剂混合形成物料1装入夹套换热器中,经计量泵泵入第一微通道反应器中,流速为18-36ml/min,打开第一截止阀和第二截止阀,经液体增压系统加压汽化的氟化氢经质量流量计进入第一微通道反应器中,氟化氢流量3-6g/min,反应温度80℃-120℃,反应停留时间为40~80s,反应后经第一气液分离系统进行气液分离,分离的气体通入尾气吸收系统吸收,分离得到的反应液A进入第二微通道反应器中,打开第三截止阀,经液体增压系统加压汽化的氟化氢经质量流量计进入第二微通道反应器中,氟化氢流量 3-6g/min,反应温度80℃-120℃,反应停留时间为40~80smin,反应后经第二气液分离系统进行气液分离,分离的气体通入尾气吸收系统吸收,分离得到的反应液B进入第三微通道反应器中,打开第四截止阀,经液体增压系统加压汽化的氟化氢经质量流量计进入第三微通道反应器中,氟化氢流量3-6g/min,反应温度80℃-120℃,反应停留时间为40~80min,反应后经第三气液分离系统进行气液分离,分离的气体通入尾气吸收系统吸收,分离得到的反应液C经脱轻塔和精馏塔纯化得到双(氟磺酰)亚胺。
  5. 根据权利要求4所述的方法,其特征在于:所述的反应促进剂选自乙腈、N,N-二甲基甲酰胺、丁基膦酸二丁酯、正戊腈、己二腈、苯乙腈中的一种或几种。
  6. 根据权利要求4或5所述的方法,其特征在于:所述的反应促进剂的添加量为双(氯磺酰)亚胺质量的2.7%-6.6%。
  7. 根据权利要求4或5所述的方法,其特征在于:所述的分离得到的反应液C经脱轻塔和精馏塔纯化得到双(氟磺酰)亚胺具体为:分离得到的反应液C经脱轻塔脱去沸点低于双(氟磺酰)亚胺的组分,然后进入精馏塔,在2mmHg条件下进行精馏,收集39~42℃的馏分,得到双(氟磺酰)亚胺。
PCT/CN2022/082641 2021-03-26 2022-03-24 一种连续流动反应装置及基于该装置的流动合成双(氟磺酰)亚胺的方法 WO2022199646A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110327860.6 2021-03-26
CN202110327860.6A CN113117618B (zh) 2021-03-26 2021-03-26 一种连续流动反应装置及基于该装置的流动合成双(氟磺酰)亚胺的方法

Publications (1)

Publication Number Publication Date
WO2022199646A1 true WO2022199646A1 (zh) 2022-09-29

Family

ID=76773951

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/082641 WO2022199646A1 (zh) 2021-03-26 2022-03-24 一种连续流动反应装置及基于该装置的流动合成双(氟磺酰)亚胺的方法

Country Status (2)

Country Link
CN (1) CN113117618B (zh)
WO (1) WO2022199646A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115893337A (zh) * 2022-12-21 2023-04-04 浙江研一新能源科技有限公司 一种双氟磺酰亚胺锂的制备方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113117618B (zh) * 2021-03-26 2022-06-24 广州理文科技有限公司 一种连续流动反应装置及基于该装置的流动合成双(氟磺酰)亚胺的方法
CN113880057B (zh) * 2021-09-14 2023-09-12 山东凯盛新材料股份有限公司 双氟磺酰亚胺的清洁生产工艺
CN117263146B (zh) * 2023-11-23 2024-01-30 万华化学集团股份有限公司 一种液体双氟磺酰亚胺盐的连续生产装置系统及生产方法
CN117797734A (zh) * 2023-12-27 2024-04-02 武汉中科先进材料科技有限公司 一种双氟磺酰亚胺的连续生产系统及生产方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106430129A (zh) * 2016-08-30 2017-02-22 九江天赐高新材料有限公司 一种二氟磺酰亚胺盐的制备方法
CN106966897A (zh) * 2017-03-29 2017-07-21 江苏兄弟维生素有限公司 一种用于甲酸甲酯连续酯化合成方法及装置
US20180141901A1 (en) * 2015-05-06 2018-05-24 Lonza Ltd Method for preparation of bis(fluorosulfonyl)-imide
CN110922426A (zh) * 2019-11-22 2020-03-27 湖北泰盛化工有限公司 一种烷基酯法草甘膦连续化生产系统及工艺
US20210053913A1 (en) * 2019-08-22 2021-02-25 Fujian Yongjing Technology Co., Ltd Process for the Synthesis of Fluorinated Conductive Salts for Lithium Ion Batteries
CN113117618A (zh) * 2021-03-26 2021-07-16 广州理文科技有限公司 一种连续流动反应装置及基于该装置的流动合成双(氟磺酰)亚胺的方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110467163B (zh) * 2018-05-10 2021-05-18 浙江蓝天环保高科技股份有限公司 一种双氟磺酰亚胺的制备方法
FR3095438A1 (fr) * 2019-04-25 2020-10-30 Arkema France Procédé de préparation du bis(fluorosulfonyle) imide
CN110683563B (zh) * 2019-12-10 2020-05-12 中化蓝天集团有限公司 一种LiPF6生产工艺及生产系统
CN111717901B (zh) * 2020-06-23 2022-03-22 广州理文科技有限公司 一种利用酸酐-水系制备双(氟磺酰)亚胺的方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180141901A1 (en) * 2015-05-06 2018-05-24 Lonza Ltd Method for preparation of bis(fluorosulfonyl)-imide
CN106430129A (zh) * 2016-08-30 2017-02-22 九江天赐高新材料有限公司 一种二氟磺酰亚胺盐的制备方法
CN106966897A (zh) * 2017-03-29 2017-07-21 江苏兄弟维生素有限公司 一种用于甲酸甲酯连续酯化合成方法及装置
US20210053913A1 (en) * 2019-08-22 2021-02-25 Fujian Yongjing Technology Co., Ltd Process for the Synthesis of Fluorinated Conductive Salts for Lithium Ion Batteries
CN110922426A (zh) * 2019-11-22 2020-03-27 湖北泰盛化工有限公司 一种烷基酯法草甘膦连续化生产系统及工艺
CN113117618A (zh) * 2021-03-26 2021-07-16 广州理文科技有限公司 一种连续流动反应装置及基于该装置的流动合成双(氟磺酰)亚胺的方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115893337A (zh) * 2022-12-21 2023-04-04 浙江研一新能源科技有限公司 一种双氟磺酰亚胺锂的制备方法

Also Published As

Publication number Publication date
CN113117618B (zh) 2022-06-24
CN113117618A (zh) 2021-07-16

Similar Documents

Publication Publication Date Title
WO2022199646A1 (zh) 一种连续流动反应装置及基于该装置的流动合成双(氟磺酰)亚胺的方法
CN112739646B (zh) 一种双(氟磺酰)亚胺的超临界提纯方法
CN102531918B (zh) 一种对映纯对称反式二烷基环己胺的合成方法
CA2529107A1 (en) Equilibrium reaction and gas/liquid reaction in a loop reactor
WO2020024430A1 (zh) 一种双氟磺酰亚胺及其锂盐的制备方法
CN109748805A (zh) 液氨法生产异丙醇胺的方法
WO2022262175A1 (zh) 一种双氟磺酰亚胺锂及其制备方法和应用
CN105502436A (zh) 氢氰酸的清洁生产工艺
CN109264683B (zh) 一种双(氟磺酰)亚胺的提取与纯化方法
CN103787854B (zh) 一种全氟-2-甲基-3-戊酮的制备工艺
CN103553004A (zh) 一种连续制备叠氮化钠的方法
CN103819344B (zh) 一种1,2-丙二胺的合成方法
CN106543026B (zh) 一种甲基肼的制备方法
CN104844462A (zh) 二氨基苯化合物的合成工艺
WO2022199643A1 (zh) 一种双(氟磺酰)亚胺的合成方法
Qi et al. Histidine-catalyzed synthesis of cyclic carbonates in supercritical carbon dioxide
CN102875435B (zh) 一种有机硫代硫酸衍生物的制备方法
CN102653517A (zh) 一种由氨基甲酸酯制备异氰酸酯的方法
CN108610260A (zh) 一种在原料动态平衡中制备叔丁胺的工艺
CN104276928B (zh) 一种4,6-双[1-(4-羟基苯基)-1-甲基乙基]-1,3-苯二酚的制备方法
CN101972642B (zh) 固体碱催化剂及基于其合成3-氯-2-羟丙基-三甲基氯化铵的方法
CN101757947B (zh) 一种改性树脂催化剂及其制备方法
CN103254101A (zh) 制备氨基甲酸甲酯的方法及设备
CN101638399B (zh) 一种制备3-氨甲基-3-甲基氧杂环丁烷的方法
CN100415712C (zh) 低压溶剂化均相反应生产氨基甲酸甲酯的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22774301

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22774301

Country of ref document: EP

Kind code of ref document: A1