WO2022199610A1 - 补偿臂架挠度的方法和装置及控制臂架的方法和装置 - Google Patents

补偿臂架挠度的方法和装置及控制臂架的方法和装置 Download PDF

Info

Publication number
WO2022199610A1
WO2022199610A1 PCT/CN2022/082483 CN2022082483W WO2022199610A1 WO 2022199610 A1 WO2022199610 A1 WO 2022199610A1 CN 2022082483 W CN2022082483 W CN 2022082483W WO 2022199610 A1 WO2022199610 A1 WO 2022199610A1
Authority
WO
WIPO (PCT)
Prior art keywords
joint
joints
joint angle
boom
adjusted
Prior art date
Application number
PCT/CN2022/082483
Other languages
English (en)
French (fr)
Inventor
付玲
皮皓杰
刘延斌
尹莉
唐律
Original Assignee
中联重科股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中联重科股份有限公司 filed Critical 中联重科股份有限公司
Priority to EP22774266.5A priority Critical patent/EP4316754A1/en
Priority to US18/283,514 priority patent/US20240173859A1/en
Publication of WO2022199610A1 publication Critical patent/WO2022199610A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1628Programme controls characterised by the control loop
    • B25J9/1638Programme controls characterised by the control loop compensation for arm bending/inertia, pay load weight/inertia
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J18/00Arms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J17/00Joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J17/00Joints
    • B25J17/02Wrist joints
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04GSCAFFOLDING; FORMS; SHUTTERING; BUILDING IMPLEMENTS OR AIDS, OR THEIR USE; HANDLING BUILDING MATERIALS ON THE SITE; REPAIRING, BREAKING-UP OR OTHER WORK ON EXISTING BUILDINGS
    • E04G21/00Preparing, conveying, or working-up building materials or building elements in situ; Other devices or measures for constructional work
    • E04G21/02Conveying or working-up concrete or similar masses able to be heaped or cast
    • E04G21/04Devices for both conveying and distributing
    • E04G21/0418Devices for both conveying and distributing with distribution hose
    • E04G21/0436Devices for both conveying and distributing with distribution hose on a mobile support, e.g. truck
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04GSCAFFOLDING; FORMS; SHUTTERING; BUILDING IMPLEMENTS OR AIDS, OR THEIR USE; HANDLING BUILDING MATERIALS ON THE SITE; REPAIRING, BREAKING-UP OR OTHER WORK ON EXISTING BUILDINGS
    • E04G21/00Preparing, conveying, or working-up building materials or building elements in situ; Other devices or measures for constructional work
    • E04G21/02Conveying or working-up concrete or similar masses able to be heaped or cast
    • E04G21/04Devices for both conveying and distributing
    • E04G21/0418Devices for both conveying and distributing with distribution hose
    • E04G21/0445Devices for both conveying and distributing with distribution hose with booms
    • E04G21/0463Devices for both conveying and distributing with distribution hose with booms with boom control mechanisms, e.g. to automate concrete distribution
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/39Robotics, robotics to robotics hand
    • G05B2219/39176Compensation deflection arm

Definitions

  • the present invention relates to the field of deflection compensation, in particular, to a method and device for compensating the deflection of a boom and a method and device for controlling the boom.
  • the user only needs to set the position of the distribution point, and the corresponding joint angles need to be obtained through the algorithm.
  • the boom is simplified into a rigid body, and the corresponding joints can be obtained through the rigid inverse kinematics of the boom.
  • the actual boom has a large elastic deformation under the influence of gravity, so that the end of the boom cannot accurately reach the position of the target distribution point.
  • an aspect of the present invention provides a method for compensating for deflection of a boom, the method comprising: determining if the end of the boom reaches a preset value when the boom is regarded as a rigid body
  • the target position is the joint angle group of the boom, wherein the joint angle group includes the joint angles of each joint of the boom; the joint angle group is determined so that the actual position of the end reached by the joint angle group; the preset The deviation between the target position and the actual position; and if the deviation does not meet a preset condition, adjusting the joint angle group, and if the deviation determined according to the adjusted joint angle group does not Continue to adjust the joint angle group when the preset condition is met until the deviation satisfies the preset condition.
  • the boom is a boom of a construction machine.
  • the adjusting the joint angle group is based on the deviation.
  • the adjusting the joint angle group is adjusting the joint angles of at least two joints in each joint of the boom, wherein the at least two joints are adjacent in sequence in the boom.
  • the at least two joints are selected in sequence from the end of the boom.
  • the adjustment amount of the joint angle of the at least two joints is determined according to at least one of the following: the pseudo-inverse matrix of the Jacobian matrix of the sub-jib composed of the at least two joints, the deviation, and A preset function, wherein the preset function is a function of the magnitude of the deviation and decreases as the magnitude of the deviation decreases, and the value range of the preset function is less than or equal to 1.
  • the preset function is: where ⁇ e is a vector and ⁇ e is the deviation.
  • the method further includes: judging whether the joint angle of at least one of the at least two joints is within the joint limit; and a joint If the angle of the joint is not within the limit of the joint corresponding to the joint, the joint angle that controls the joint will no longer be adjusted; and/or the joint that can be adjusted from the arm frame Reselect the at least two joints whose angle of the joint is adjusted from the joints whose angles are adjusted, wherein the at least two joints that are reselected are adjacent in sequence among the joints of the boom whose joint angles can be adjusted .
  • the method further includes: The method includes: adjusting the joint angle of each of the at least two joints back to the joint angle before the adjustment of the joint angle group is performed, wherein the angle from the arm frame can be The step of re-selecting the at least two joints whose joint angles are adjusted from the joints whose joint angles are adjusted is to adjust the joint angles of each of the at least two joints back to performing the process. After the step of adjusting the joint angle before the joint angle group.
  • the method further includes: increasing the number of joints whose joint angles are adjusted when the joint angle group is adjusted again when the following conditions are met: the number of times the joint angle group is adjusted exceeds a first preset value, The number of joints whose joint angles are adjusted each time the joint angle group is adjusted is a second preset value, the deviation becomes smaller as the number of times of adjusting the joint angle group increases, and the deviation does not meet the preset value.
  • Set conditions the number of joints whose joint angles are adjusted when the joint angle group is adjusted again when the following conditions are met: the number of times the joint angle group is adjusted exceeds a first preset value, The number of joints whose joint angles are adjusted each time the joint angle group is adjusted is a second preset value, the deviation becomes smaller as the number of times of adjusting the joint angle group increases, and the deviation does not meet the preset value.
  • the determining of the joint angle group is such that the number of times the end reaches the actual position does not exceed a third preset value.
  • the preset condition is that the magnitude of the deviation is smaller than a fourth preset value.
  • the method is applied in automatic cloth, and the fourth preset value is related to the cloth scene.
  • the value range of the fourth preset value is greater than 0 and less than or equal to the cloth point compensation accuracy.
  • another aspect of the present invention also provides a method for controlling a boom, the method comprising: determining the joint angle of each joint of the boom according to the above-mentioned method for compensating the deflection of the boom, wherein the The determined joint angle of each joint is the joint angle of each joint for which the deviation satisfies the preset condition; and each joint of the boom is controlled according to the determined joint angle of each joint.
  • another aspect of the present invention also provides a device for compensating the deflection of a boom, the device comprising: a joint angle group determination module for determining if the boom is regarded as a rigid body The end of the boom reaches the preset target position, the joint angle group of the boom, wherein the joint angle group includes the joint angles of each joint of the boom; the actual position determination module is used to determine the joint angle a set of actual positions that make the end reach; a deviation determination module for determining the deviation between the preset target position and the actual position; and a processing module for when the deviation does not meet a preset condition , adjust the joint angle group, and continue to adjust the joint angle group if the deviation determined according to the adjusted joint angle group does not meet the preset condition, until the deviation satisfies the preset conditions.
  • a joint angle group determination module for determining if the boom is regarded as a rigid body The end of the boom reaches the preset target position, the joint angle group of the boom, wherein the joint angle group includes the joint angles
  • the boom is a boom of a construction machine.
  • the processing module adjusts the joint angle group based on the deviation.
  • the adjustment of the joint angle group by the processing module is to adjust the joint angles of at least two joints in each joint of the boom, wherein the at least two joints are in sequence in the boom. adjacent.
  • the at least two joints are selected in sequence from the end of the boom.
  • the adjustment amount of the joint angle of the at least two joints is determined according to at least one of the following: the pseudo-inverse matrix of the Jacobian matrix of the sub-jib composed of the at least two joints, the deviation, and A preset function, wherein the preset function is a function of the magnitude of the deviation and decreases as the magnitude of the deviation decreases, and the value range of the preset function is less than or equal to 1.
  • the preset function is: where ⁇ e is a vector and ⁇ e is the deviation.
  • the device further includes: a judging module for judging whether the joint angle of at least one of the at least two joints is within the joint limit after the adjustment of the joint angle group is performed once ; the processing module is further configured to: in the case that the joint angle of a joint is not within the joint limit corresponding to the joint, the joint angle controlling the joint will no longer be adjusted; and/or The at least two joints whose joint angles are adjusted are reselected from the joints of the boom whose joint angles can be adjusted, wherein the reselected at least two joints are in the available joints of the boom.
  • the joints whose joint angles are adjusted are adjacent in sequence.
  • the processing module is further configured to: after the adjustment of the joint angle group is performed once, the joint angle of one of the at least two joints is not in the joint limit corresponding to the joint In the case that the joint angle of each of the at least two joints is adjusted back to the joint angle before the adjustment of the joint angle group is performed this time, wherein the In the step of re-selecting the at least two joints whose joint angles are adjusted from among the joints whose joint angles can be adjusted, the joint angle of each of the at least two joints is adjusted back to After performing the step of adjusting the joint angle before the joint angle group this time.
  • the processing module is further configured to: increase the number of joints whose joint angles are adjusted when the joint angle group is adjusted again when the following conditions are met: the number of times the joint angle group is adjusted exceeds a first preset number of times.
  • the set value, the number of joints whose joint angles are adjusted each time the joint angle group is adjusted is the second preset value, the deviation becomes smaller as the number of times of adjusting the joint angle group increases, and the deviation does not satisfy the preset conditions.
  • the actual position determination module determines the joint angle group such that the number of times the actual position of the tip reaches does not exceed a third preset value.
  • the preset condition is that the magnitude of the deviation is smaller than a fourth preset value.
  • the device is applied in automatic cloth, and the fourth preset value is related to the cloth scene.
  • the value range of the fourth preset value is greater than 0 and less than or equal to the cloth point compensation accuracy.
  • another aspect of the present invention also provides a device for controlling a boom, the device comprising: a joint angle determination module for determining each a joint angle of the joint, wherein the determined joint angle of each joint is the joint angle of each joint for which the deviation satisfies the preset condition; and a control module for determining the joint angle of each joint according to the determined The joint angle controls each joint of the boom.
  • another aspect of the present invention also provides a construction machine, the construction machine comprising: the above-mentioned device for compensating the deflection of the boom; and/or the above-mentioned device for controlling the boom.
  • another aspect of the present invention also provides a machine-readable storage medium, where instructions are stored on the machine-readable storage medium for causing a machine to execute the above-mentioned method for compensating for deflection of a boom or the above-mentioned method for compensating for deflection of a boom.
  • the method of controlling the boom is also provided.
  • the joint angle group is adjusted, Until the deviation satisfies the preset condition, when the deviation satisfies the preset condition, the actual position is very close to the preset target position. In this way, the deflection of the end of the boom is compensated, so that the actual position is very close to the preset target position, so that the end of the boom is The preset target position can be reached more accurately.
  • the joint angle of each joint included in the joint angle group whose deviation satisfies the preset condition is the joint angle of each joint that enables the end of the boom to reach the preset target position relatively accurately.
  • FIG. 1 is a schematic diagram of a boom provided by an embodiment of the present invention.
  • FIG. 2 is a flowchart of a method for compensating for deflection of a boom provided by another embodiment of the present invention
  • FIG. 3 is a schematic diagram of a boom provided by another embodiment of the present invention.
  • FIG. 4 is a schematic diagram of a logic diagram of a method for compensating for deflection of a boom provided by another embodiment of the present invention.
  • FIG. 5 is a structural block diagram of an apparatus for compensating the deflection of a boom provided by another embodiment of the present invention.
  • the movable joints of the boom include 7, J0-J6.
  • A be the position where the end of the boom is expected to reach, for example, the desired distribution point, that is, the point e of the end of the boom is expected to reach the point A shown in FIG. 1 .
  • the boom is rigid, a set of joint angles corresponding to the end e of the boom reaching point A can be calculated according to its inverse motion model. It is assumed that the arm frame configuration corresponding to the obtained set of joint angles is shown by the black solid line in Figure 1. Due to the elastic deformation of the boom, the actual end position of the boom corresponding to the set of joint angles is A', as shown by the dotted line in Figure 1 . How to calculate the joint angle of the boom so that the end can still reach the desired position under the condition of deformation is a problem that can be solved by the present invention.
  • One aspect of embodiments of the present invention provides a method for compensating for deflection of a boom.
  • the deflection of the boom is a set of joint angles obtained by assuming that the end of the boom reaches the target position when the boom is regarded as a rigid body due to the elastic deformation of the boom, so that there is a gap between the position actually reached by the end of the boom and the target position deviation.
  • FIG. 2 is a flowchart of a method for compensating for deflection of a boom provided by an embodiment of the present invention. As shown in Figure 2, the method includes the following.
  • step S20 determine the joint angle group of the boom if the end of the boom reaches the preset target position under the condition that the boom is regarded as a rigid body, wherein the joint angle group includes the joint angles of each joint of the boom, and also That is, the joint angle group includes the angle values that each joint of the boom should reach when the end of the boom reaches the preset target position under the condition that the boom is regarded as a rigid body.
  • rigid inverse kinematics may be used to determine the joint angle group. Specifically, the inverse kinematics of the rigid boom can be solved by numerical solution.
  • the process is to first select a set of joint angles as seeds, and then use the forward kinematics model to calculate the position of the boom end corresponding to the set of joints, and calculate the position and the target.
  • the end position deviation is mapped into the joint space through the inverse matrix of the Jacobian matrix of the boom, so as to calculate the joint angle that can adjust the end position to the desired target position.
  • the boom is regarded as a rigid body, and the joint angle group q of the end e of the boom reaching the preset target position A can be calculated by using rigid inverse kinematics.
  • the joint angle of a joint is the angle between the two joint arms connected by the joint.
  • the angle between the two arms of a joint has two cases, one is an acute angle and the other is an obtuse angle, which can be set according to the specific situation, as long as the joint angles of all joints adopt the same setting That's it.
  • the arm frame may be any arm with redundant degrees of freedom. For example, it can be the boom of construction machinery.
  • the joint angle group is determined so that the actual position of the end of the boom is reached.
  • the actual position is determined by using the deflection calculation model of the boom, and the actual position reached by the end of the boom is obtained by the joint angle group through the deflection calculation model of the boom.
  • a large database is established by collecting a large number of end positions of the boom corresponding to different joint angles through sensors, and then table look-up and fitting are performed according to the joint angles to obtain the actual position of the end of the boom.
  • the joint angle group is determined so that the actual position A' of the end of the boom is reached.
  • the deviation between the preset target position and the actual position is determined.
  • the deviation may be the distance between the preset target position and the actual position.
  • the vector between the preset target position and the actual position may be determined according to the coordinate value between the coordinate value of the preset target position and the actual position.
  • step S23 it is judged whether the deviation satisfies the preset condition, if so, step S25 is executed; if not, step S24 is executed.
  • the preset condition may be that the magnitude of the deviation is smaller than the fourth preset value.
  • the magnitude of the deviation when the deviation is a vector, the magnitude of the deviation is the modulo value of the deviation, and the preset condition may be that the modulo value of the deviation is smaller than the fourth preset value.
  • the magnitude of the deviation may be a distance value
  • the preset condition may be that the distance value between the preset target position and the actual position is smaller than a fourth preset value.
  • the fourth preset value may be determined according to a specific situation. The smaller the fourth preset value is, the closer the actual position of the end after deflection compensation is to the preset target position, or the joints of each joint obtained by solving the end of the boom to reach the preset target position when the boom is deformed. The higher the accuracy of the angle.
  • the method for compensating the deflection of the boom is applied in automatic cloth, and the fourth preset value is related to the cloth scene.
  • the value range of the fourth preset value is greater than 0 and less than or equal to the cloth point compensation accuracy.
  • step S24 the joint angle group is adjusted.
  • the adjustment joint angle group is the value of the joint angles included in the adjustment joint angle group.
  • the joint angle group may be adjusted according to the deviation.
  • adjusting the joint angle group may be adjusting the joint angles of at least two joints in each joint of the boom, wherein at least two joints are adjacent in sequence in the boom, at least There is no joint between any two of the two joints.
  • the adjacent relationship between the at least two joints whose joint angles are adjusted is uninterrupted.
  • FIG. 3 is used as an example for illustration, and it is assumed that the at least two joints include two joints. As shown in FIG.
  • the at least two joints may be joints J5 and J6, or joints J3 and J4, or joints J4 and J5..., and the at least two joints are adjacent in sequence in the arm frame.
  • at least two joints cannot be joints J2 and J4, and joints J2 and J4 cannot be adjacent in sequence because joint J3 is spaced between joints J2 and J4.
  • at least two joints include 3 joints, they can be joints J2, J3, and J4, but not J2, J3, and J5. Therefore, the adjacent relationship between joints J2, J3, and J5 is discontinuous.
  • Joint J4 is spaced between J5.
  • the at least two joints whose joint angles are adjusted may be at least two joints adjacent to each other in any order of the boom. Specifically, the joint angles of several joints of the boom are adjusted according to specific conditions.
  • the at least two joints whose joint angles are adjusted may be at least two joints selected in sequence from the end of the boom. Wherein, selecting at least two joints from the end of the boom can make the deviation meet the preset condition as soon as possible when adjusting the joint angle group when the adjustment range is small, reduce the calculation process, and improve the work efficiency.
  • step S21 to step S23 are performed again, that is, the actual position and deviation are re-determined according to the adjusted joint angle group, and it is judged whether the deviation satisfies the preset condition, and the deviation is still not after adjusting the joint angle group again.
  • the joint angle group is adjusted again, the deviation is determined, and it is judged whether the deviation satisfies the preset conditions, until the deviation satisfies the preset conditions.
  • the number of joints included in the at least two joints to be adjusted each time the joint angle group is adjusted may be the same or different.
  • the joints included in the at least two joints adjusted each time the joint angle group is adjusted may be the same joints as the joints adjusted when the joint angle group was adjusted last time, or the joints adjusted when the joint angle group was adjusted last time.
  • the joints of the joints are not the same, wherein, if they are not the same, they may all be different or some of them may be different. There is no restriction on this, as long as the joint angles of at least two joints can be adjusted.
  • step S25 it ends.
  • the joint angle group is adjusted, Until the deviation satisfies the preset condition, when the deviation satisfies the preset condition, the actual position is very close to the preset target position. In this way, the deflection of the end of the boom is compensated, so that the actual position is very close to the preset target position, so that the end of the boom is The preset target position can be reached more accurately.
  • the joint angle of each joint included in the joint angle group whose deviation satisfies the preset condition is the joint angle of each joint that enables the end of the boom to reach the preset target position relatively accurately.
  • the adjustment amount of the joint angles of the at least two joints is determined according to at least one of the following: a pseudo-inverse matrix, a deviation, and a pre-set Jacobian matrix of the sub-arm frame composed of the at least two joints.
  • a function is assumed, wherein the preset function is a function of the magnitude of the deviation and decreases as the magnitude of the deviation decreases, and the value range of the preset function is less than or equal to 1.
  • the pseudo-inverse matrix can be a right pseudo-inverse matrix Calculated as
  • the element value in ⁇ q is the adjustment amount of the joint angle of at least two joints; ⁇ e is the deviation, M is the preset function, and J is the pseudo-inverse matrix.
  • the dimension of ⁇ q is equal to the number of joints included in the at least two joints, and each element value in ⁇ q corresponds to the adjustment amount of the joint angle of one of the at least two joints, wherein the element value in ⁇ q is related to the at least two joints.
  • the corresponding relationship of the joints in can be determined according to the specific situation, which is not limited.
  • ⁇ q is a 3-dimensional vector
  • the second element value, and the third element value in ⁇ q may be the adjustment amounts of the joint angles of the joints J3, J4, and J2, respectively, or the first element value, the first element value, and the third element value in ⁇ q.
  • the two-element value and the third-element value correspond to the adjustment amounts of the joint angles of the joints J3, J2, and J4, and so on.
  • the corresponding relationship between the element value in ⁇ q and the joint whose joint angle is adjusted can be set according to the specific situation, which is not limited.
  • the preset function is: Among them, ⁇ e is the vector, ⁇ e is the deviation; ⁇ e ⁇ is the modulo of ⁇ e, that is, the modulo value of ⁇ e.
  • the method further includes: judging whether the joint angle of at least one joint of the at least two joints is within the joint limit; and If the joint angle is not within the joint limit corresponding to the joint, the joint angle controlling the joint will not be adjusted; At least two joints, wherein the reselected at least two joints are adjacent in sequence among the joints whose joint angles of the boom can be adjusted. Reselect at least two joints from the joints whose joint angles can be adjusted to adjust the joint angles, and the at least two reselected joints are adjacent to each other in the joints of the boom whose joint angles can be adjusted. For example, take FIG. 3 as an example Be explained.
  • At least two joints selected each time is the same, which is 3.
  • At least two joints selected at one time are joints J4, J5, and J6.
  • the three joints selected again are from joints J1, J2, J3, J4, and J6. Selected and adjacent in sequence in joints J1, J2, J3, J4, J6.
  • joints J3, J4, and J6 can be selected.
  • joints J3, J4, and J6 are not adjacent in sequence, and joints J4 and J6 are separated by joint J5, the adjustable joint angle Among all the joints of , joints J4 and J6 are adjacent.
  • the adjustment of the joint angle group can be performed effectively, and the joint angle group whose deviation satisfies the preset condition can be found as soon as possible. efficiency.
  • the method further includes: adjusting the joint angle of each of the at least two joints back to the joint angle before performing the adjustment of the joint angle group, wherein from The step of reselecting the at least two joints whose joint angles are adjusted from among the joints of the boom whose joint angles can be adjusted is to change the joint angle of each of the at least two joints. Both are adjusted back to after the step of adjusting the joint angle group before this time.
  • the joint angles of the restricted joints whose joint angles are no longer adjusted will be limited to the joint angle values before the adjustment of the joint angle group, and the joint angles cannot be adjusted thereafter;
  • the joint angle of the joint whose joint angle is adjusted again is adjusted back to the joint angle value before the joint angle group adjustment is performed.
  • each joint angle of at least two joints is adjusted back to the joint angle group for this adjustment.
  • at least two joints are selected from the joints of the boom whose joint angles can be adjusted to adjust the joint angles.
  • the number of joints included in at least two joints whose joint angles are adjusted when the joint angle group is adjusted next time is the same as the number of joints that are adjusted this time.
  • the number of joints whose joint angles may be the same or different has no relationship with the number of joints whose joint angles are adjusted this time, as long as the joints whose joint angles are restricted and whose joint angles are no longer adjusted are not included. For example, taking FIG. 3 as an example, when a joint angle group is adjusted at a certain time, the number of joints whose joint angles are adjusted is three, and the joints are J4, J5, and J6 respectively.
  • the restricted joint angle of J5 will no longer be adjusted, and the joint angle of J5 is restricted to the joint angle before this adjustment of the joint angle group is performed.
  • the number of joints whose joint angles are adjusted can be 2 or 3, or other values.
  • the at least two joints whose joint angles are adjusted when the joint angle group is adjusted next time may include the joint angle adjusted this time.
  • One or more joints among the at least two joints may not include at least two joints whose joint angles are adjusted this time.
  • the method further includes: increasing the number of joints whose joint angles are adjusted when the joint angle group is adjusted again when the following conditions are met: the number of times the joint angle group is adjusted exceeds a first preset value .
  • the number of joints whose joint angles are adjusted each time the joint angle group is adjusted is the second preset value, the deviation becomes smaller as the number of times of adjusting the joint angle group increases, and the deviation does not meet the preset condition.
  • the first preset value and the second preset value may be limited according to specific conditions.
  • the second preset value of joints has been adjusted from the beginning of adjusting the joint angle group. As the number of times of adjusting the joint angle group increases, the deviation becomes smaller.
  • the deviation still does not meet the preset value.
  • the number of adjusted joint angles will be increased when the joint angle group is adjusted again.
  • the number of the added joints may be determined according to the specific situation, for example, one joint is added, two joints are added, and so on.
  • the second preset value joints whose joint angles are adjusted each time can be the same joints or different joints; if the joints adjusted each time are the same joints, the efficiency can be improved, and the joint angles that meet the conditions can be found as soon as possible. group so that the deviation satisfies the preset condition.
  • the joints that are adjusted each time are the same joints without considering the joint limit or the joint angle of the joint is in the corresponding joint limit, when the joint angle of a joint is not in the When it is within the corresponding joint limit, specific consideration needs to be made according to the relevant introduction in the embodiments of the present invention.
  • the condition for adjusting the joint angle group again after adjusting the joint angle group once is that the number of joints that are not controlled and are no longer adjusted exceeds one. That is, in the whole boom, the joint angles of at least two joints can be adjusted.
  • the joint angle group is determined so that the number of times the end reaches the actual position does not exceed a third preset value.
  • the joint angle group is re-determined so that the actual position of the end of the boom is determined, and the number of times the joint angle group is determined so that the actual position of the end of the boom is reached does not exceed the third preset number value.
  • FIG. 4 is a logical schematic diagram of a method for compensating for deflection of a boom provided by another embodiment of the present invention.
  • the 7-DOF boom shown in FIG. 3 is taken as an example for description.
  • two joints are selected to adjust the joint angle each time the joint angle group is adjusted, and the two selected joints are selected sequentially from the end of the boom.
  • the method for compensating the deflection of the boom is applied to the automatic distribution, and the preset target position is the target distribution point.
  • the method for compensating the deflection of the boom provided by the embodiment of the present invention first obtains a set of joint angles reaching the target distribution point through the rigid inverse kinematics model of the boom, and then obtains the deformation amount of the end of the boom under the state of the set of joint angles, and also It is the deviation between the actual position and the target cloth point. Part of the joint position of the boom is adjusted by the deformation amount, and the joint position is adjusted iteratively for many times to finally calculate the joint position corresponding to the target cloth point. Among them, the joint position is adjusted by adjusting the joint angle.
  • the compensation method is described in detail below.
  • the position of the preset target position A, the third preset value and the fourth preset value described in the above embodiment are input.
  • the boom is regarded as a rigid body, and the rigid inverse kinematics is used to calculate the joint angle group q for the end e of the boom to reach the preset target position A.
  • the free joints are the joints whose joint angles can be adjusted. As shown in Figure 3, first select joints J5 and J6. Then, the joint angle group q is obtained through the boom deflection calculation model, so that the actual position A' actually reached by the boom end e, and the number of iterations is increased by one. is the number of times the actual location is determined.
  • is a small value, the smaller the value, the higher the solution accuracy, that is, the end of the boom after compensation is closer to the desired target position, but the corresponding number of iterations will increase.
  • can be set according to the specific situation. For example, in automatic cloth, ⁇ can be set according to the cloth scene, 0 ⁇ cloth point compensation accuracy, and the cloth point compensation accuracy is related to the cloth scene. For example, when pouring a small-sized square beam, the area of the square distribution opening is small, so set a small compensation precision.
  • the modulus value ⁇ e ⁇ is greater than or equal to the fourth preset value and the number of iterations does not exceed the third preset value, continue to enter the next iteration process until it is determined that the joint whose modulus value ⁇ e ⁇ is smaller than the fourth preset value is determined.
  • the angle group ends the iteration process and returns the result.
  • the joint angle group is output; if the magnitude of the deviation does not exceed the fourth preset value, the pseudo-inverse matrix of the Jacobian matrix of the sub-jib is calculated, wherein, in this embodiment Take the right pseudo-inverse.
  • the joints J5 and J6 are selected first, then the right pseudo-inverse matrix of the Jacobian matrix of the sub-jib composed of joints J5 and J6 is calculated.
  • the joints J5 and J6 are selected first, and the adjustment amount of the joint angle of each of the joints J5 and J6 is calculated. For a specific method for calculating the adjustment amount, refer to the method described in the above embodiment.
  • ⁇ q 56 is a two-dimensional vector
  • the value of the first element is the adjustment amount of the joint angle of the joint J5
  • the value of the second element is the adjustment amount of the joint angle of the joint J6.
  • a preset function k( ⁇ e ⁇ ) that decreases as the deviation size ⁇ e ⁇ decreases, and satisfies k( ⁇ e ⁇ ) ⁇ 1 can be constructed as follows function: The joint angle of each joint in the sub-arm is added to its corresponding adjustment amount to obtain the updated joint angle.
  • each joint in the sub-arm frame It is judged whether the updated joint angle of each joint in the sub-arm frame is within its corresponding joint limit, and each joint corresponds to its own joint limit. If the updated joint angles of all the joints in the sub-boom are within their corresponding joint limits, the actual position of the end of the boom is re-determined according to the joint angle group composed of the adjusted joint angles, and the number of iterations is increased by one , and repeat the above process of judging the number of iterations, the size of the deviation, etc. If the updated joint angle of a joint in the sub-arm frame is not within its corresponding joint limit, the joint will be locked and the joint will lose its freedom. Will be limited to the joint angle before this adjustment of the joint angle. Determine if there is more than one unlocked joint in the boom.
  • the boom does not have more than one unlocked joint, end the end deflection compensation process. In addition, after the compensation process is finished, the user can also be prompted that the target cloth point is unreachable. If there is more than one unlocked joint in the boom, re-select the sub-boom.
  • the selection principle is to select two unlocked joints from the end of the boom to form a new sub-boom, assuming that the selected joint is the first joint. i and jth, calculate the right pseudo-inverse of the Jacobian matrix of the sub-jib The adjustment amounts of the joint angles of the i-th joint and the j-th joint are calculated by formula (1).
  • joints J5 and J6 are selected first, and J5 is locked, the two joints to be re-selected are J4 and J6. Then it is judged again whether the updated joint angle of each joint in the reselected sub-arm is within its corresponding joint limit. If the updated joint angle of each joint in the reselected sub-arm is within its corresponding joint limit, the above-mentioned determination of the actual position and the subsequent process are repeated. If the updated joint angle of a certain joint in the reselected sub-arm is not within its corresponding joint limit, repeat the above locking joint and the subsequent process. If after multiple selections, each joint of the boom does not satisfy that more than one joint is not locked, the end deflection compensation process ends. In addition, after the end deflection compensation process is completed, the user can also be prompted that the target cloth point is unreachable.
  • the updated joint angle of each joint in the sub-boom is within its corresponding joint limit, enter the next iteration process, that is, use the boom deflection calculation model to obtain the updated joint angle of the joint in the sub-boom
  • An embodiment of the present invention provides a method for compensating the deflection of a boom, which mainly includes the following aspects: 1) According to the characteristic that the deflection at the end of the boom is a nonlinear function related to the type of the boom, using the deformation of the boom The deviation between the actual position and the expected target position is used to determine the adjustment amount of the boom joints, and the angles of some joints of the boom are continuously adjusted by iterative solution, so that the actual end position of the boom after deformation gradually converges to the desired target cloth 2) In the iterative process, the sub-boom near the end of the boom is preferentially selected to calculate the angle of joint adjustment, and at the same time, it is judged whether the sub-boom needs to be re-selected according to whether the adjusted joint angle satisfies the joint limit constraints of the corresponding joint.
  • the joint beyond the limit is locked, that is, the joint arm adjacent to the joint is regarded as a whole, and then the joint that is not locked and close to the end of the arm frame is selected to form a new sub-arm 4) Construct a function that decreases as the deviation between the deformed actual position of the boom and the desired target position decreases, and modulate the sub-jib The size of the joint angle adjustment in .
  • the method for compensating the deflection of the boom provided by the embodiment of the present invention can iteratively solve the joint angle corresponding to the target distribution point of the flexible boom and satisfy the joint limit constraints of the boom, which solves the problem of the inability to connect multiple joints in series in the prior art.
  • the strategy of selecting the sub-jib is to adjust the joint angle of the joints in the sub-jib according to the deviation between the target distribution point and the end position of the elastically deformed boom, which reduces the possibility that the compensation algorithm cannot converge due to the change of other joints.
  • the joint limit check is performed on the adjusted joint angle, so as to avoid calculating the angle that exceeds the joint limit constraint, and make full use of the
  • the feature of the redundant degrees of freedom of the boom is to lock the joints that exceed the limit to avoid the updated joint angle exceeding the joint limit again during the next iteration, and then reselect the unlocked joints in the boom to form a new sub
  • the boom adjusts the joint angle, which maximizes the possibility of the algorithm finding a feasible solution; the introduction of a modulation function related to the deviation distance can make the joint adjustment amount decrease as the boom end position gradually approaches the target position , thereby effectively improving the convergence of the compensation algorithm and reducing the number of iterations.
  • another aspect of the embodiments of the present invention also provides a method for controlling a boom, the method comprising: determining each joint of the boom according to the method for compensating the deflection of the boom described in the above embodiments
  • the determined joint angle of each joint is the joint angle of each joint for which the deviation satisfies the preset condition; and the arm is controlled according to the determined joint angle of each joint each joint of the frame.
  • another aspect of the embodiments of the present invention further provides a device for compensating for deflection of a boom.
  • FIG. 5 is a structural block diagram of an apparatus for compensating the deflection of a boom provided by another embodiment of the present invention.
  • the device includes a joint angle group determination module 1 , an actual position determination module 2 , a deviation determination module 3 and a processing module 4 .
  • the joint angle group determination module 1 is used to determine the joint angle group of the boom if the end of the boom reaches the preset target position under the condition that the boom is regarded as a rigid body, wherein the joint angle group includes each joint of the boom
  • the actual position determination module 2 is used to determine the actual position of the joint angle group to make the end reach
  • the deviation determination module 3 is used to determine the deviation between the preset target position and the actual position
  • the processing module 4 is used to determine the deviation In the case of a preset condition, adjust the joint angle group, and continue to adjust the joint angle group if the deviation determined according to the adjusted joint angle group does not meet the preset condition, until the deviation satisfies the preset condition.
  • the boom is a boom of a construction machine.
  • the processing module adjusts the joint angle group based on the deviation.
  • the processing module adjusts the joint angle group to adjust the joint angles of at least two joints in each joint of the boom, wherein the at least two joints are adjacent in sequence in the boom.
  • the adjustment amount of the joint angles of the at least two joints is determined according to at least one of the following: a pseudo-inverse matrix, a deviation, and a pre-set Jacobian matrix of the sub-arm frame composed of the at least two joints.
  • a function is assumed, wherein the preset function is a function of the magnitude of the deviation and decreases as the magnitude of the deviation decreases, and the value range of the preset function is less than or equal to 1.
  • the element value in ⁇ q is the adjustment amount of the joint angles of at least two joints; ⁇ e is the deviation, M is the preset function, and J is the pseudo-inverse matrix.
  • the preset function is: where ⁇ e is the vector and ⁇ e is the deviation.
  • the device further includes: a judgment module, configured to judge whether the joint angle of at least one of the at least two joints is within the joint limit after adjusting the joint angle group once;
  • the processing module is further used for: in the case that the joint angle of a joint is not within the joint limit corresponding to the joint, the joint angle of the control joint will no longer be adjusted; and/or the adjustable joint angle of the arm frame At least two joints whose joint angles are adjusted are reselected from the joints of the jib, wherein the at least two joints that are reselected are adjacent in sequence among the joints whose joint angles of the boom can be adjusted.
  • the processing module is further configured to: after the adjustment of the joint angle group is performed once, the joint angle of one of the at least two joints is not in the joint angle In the case where the corresponding joint is within the limit, the joint angle of each of the at least two joints is adjusted back to the joint angle before the adjustment of the joint angle group is performed this time, wherein, the step of reselecting the at least two joints whose joint angles can be adjusted from the joints of the arm frame whose joint angles can be adjusted is in the step of selecting all the joints of each of the at least two joints. The joint angles are adjusted back to the joint angle before the step of adjusting the joint angle group this time.
  • the processing module is further configured to: increase the number of joints whose joint angles are adjusted when the joint angle group is adjusted again when the following conditions are met: the number of times the joint angle group is adjusted exceeds the first The preset value and the number of joints whose joint angles are adjusted each time the joint angle group is adjusted are the second preset value, the deviation becomes smaller as the number of times of adjusting the joint angle group increases, and the deviation does not meet the preset condition.
  • the actual position determination module determines the joint angle group so that the number of times the actual position of the end reaches does not exceed a third preset value.
  • the preset condition is that the magnitude of the deviation is smaller than a fourth preset value.
  • the device is applied in automatic cloth, and the fourth preset value is related to the cloth scene.
  • the value range of the fourth preset value is greater than 0 and less than or equal to the cloth point compensation accuracy.
  • another aspect of the embodiments of the present invention further provides a device for controlling a boom, the device comprising: a joint angle determination module for compensating for the deflection of the boom according to the method described in the above embodiments determining the joint angle of each joint of the boom, wherein the determined joint angle of each joint is the joint angle of each joint whose deviation satisfies a preset condition; and a control module for controlling the determined joint angle of each joint All joints of the boom.
  • another aspect of the embodiments of the present invention further provides a construction machine, the construction machine comprising: the device for compensating the deflection of the boom described in the above embodiments; and/or the device described in the above embodiments for A device that controls the boom.
  • another aspect of the embodiments of the present invention further provides a machine-readable storage medium, where instructions are stored on the machine-readable storage medium, and the instructions are used to cause the machine to execute the compensation boom described in the foregoing embodiments.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Robotics (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Forklifts And Lifting Vehicles (AREA)
  • On-Site Construction Work That Accompanies The Preparation And Application Of Concrete (AREA)
  • Operation Control Of Excavators (AREA)

Abstract

一种用于补偿臂架挠度的方法,该方法包括:确定在臂架被视为刚性体的情况下若臂架的末端到达预设目标位置臂架的关节角度组,其中,关节角度组包括臂架的各个关节的关节角度;确定关节角度组使得末端到达的实际位置;确定预设目标位置与实际位置之间的偏差;以及在偏差不满足预设条件的情况下,调整关节角度组,并在根据调整后的关节角度组确定的偏差不满足预设条件的情况下继续调整关节角度组,直到偏差满足预设条件。藉此,使得臂架的末端可以较准确的到达预设目标位置。还涉及一种用于控制臂架的方法、一种用于补偿臂架挠度的装置、一种用于控制臂架的装置、一种工程机械及一种机器可读存储介质。

Description

补偿臂架挠度的方法和装置及控制臂架的方法和装置
相关申请的交叉引用
本申请要求2021年03月23日提交的中国专利申请202110308323.7的权益,该申请的内容通过引用被合并于本文。
技术领域
本发明涉及挠度补偿领域,具体地,涉及一种补偿臂架挠度的方法和装置及控制臂架的方法和装置。
背景技术
在自动布料中用户只需设定布料点的位置,需要通过算法获得对应的各个关节角度,现有技术中将臂架简化成刚性体,可通过臂架的刚性逆运动学获得对应的各个关节角,然而实际臂架在重力的影响下存在较大的弹性变形,导致臂架末端无法准确到达目标布料点的位置。
发明内容
本发明的目的是提供一种补偿臂架挠度的方法和装置及控制臂架的方法和装置,其可解决或至少部分解决上述问题。
为了实现上述目的,本发明的一个方面提供一种用于补偿臂架挠度的方法,该方法包括:确定在所述臂架被视为刚性体的情况下若所述臂架的末端到达预设目标位置所述臂架的关节角度组,其中,所述关节角度组包括所述臂架的各个关节的关节角度;确定所述关节角度组使得所述末端到达的实际位置;确定所述预设目标位置与所述实际位置之间的偏差;以及在所述偏差不满足预设条件的情况下,调整所述关节角度组,并在根据调整后的所述关节角度组确定的所述偏差不满足所述预设条件的情况下继续调整所述关节角度组,直到所述偏差满足所述预设条件。
可选地,所述臂架为工程机械的臂架。
可选地,所述调整所述关节角度组为基于所述偏差进行调整。
可选地,所述调整所述关节角度组为调整所述臂架的各个关节中至少两个关节的所述关节角度,其中,所述至少两个关节在所述臂架中依次相邻。
可选地,选取所述至少两个关节时为从所述臂架的末端开始依次选取。
可选地,所述至少两个关节的所述关节角度的调整量根据以下至少一者被确定:所述至少两个关节组成的子臂架的雅克比矩阵的伪逆矩阵、所述偏差以及预设函数,其中,所述预设函数为所述偏差的大小的函数且随着所述偏差的大小的减小而减小,所述预设函数的取值范围为小于或等于1。
可选地,所述调整量根据以下公式被确定:Δq=M*J*Δe,其中,Δq、Δe为向量,Δq的维度与所述至少两个关节包括的关节的数量相等,Δq中的元素值为所述至少两个关节的所述关节角度的所述调整量;Δe为所述偏差,M为所述预设函数,J为所述伪逆矩阵。
可选地,所述预设函数为:
Figure PCTCN2022082483-appb-000001
其中,Δe为向量,Δe为所述偏差。
可选地,在进行一次所述调整所述关节角度组后,该方法还包括:判断所述至少两个关节中的至少一关节的所述关节角度是否处于关节限位内;以及在一关节的所述关节角度不处于该关节对应的所述关节限位内的情况下,控制该关节的所述关节角度将不再被调整;和/或从所述臂架的可被调整所述关节角度的关节中重新选取被调整所述关节角度的所述至少两个关节,其中被重新选取的所述至少两个关节在所述臂架的可被调整所述关节角度的关节中依次相邻。
可选地,在进行一次所述调整所述关节角度组后所述至少两个关节中的一关节的所述关节角度不处于该关节对应的所述关节限位内的情况下,该方法还包括:将所述至少两个关节中的每一关节的所述关节角度均调整回到在进行该次调整所述关节角度组之前的所述关节角度,其中,从所述臂架的可被调整所述关节角度的关节中重新选取被调整所述关节角度的所述至少两个关节的步骤在将所述至少两个关节中的每一关节的所述关节角度均调整回到在进行该次调整所述关节角度组之前的所述关节角度的步骤之后。
可选地,该方法还包括:当满足以下条件时再次调整所述关节角度组时将被调整所述关节角度的关节的数量增加:调整所述关节角度组的次数超过第一预设值、每次调整所述关节角度组时被调整关节角度的关节的数量均为第二预设值、随着调整所述关节角度组次数的增加所述偏差变小以及所述偏差不满足所述预设条件。。
可选地,所述确定所述关节角度组使得所述末端到达的实际位置的次数不超过第三预设值。
可选地,所述预设条件为所述偏差的大小小于第四预设值。
可选地,该方法被应用在自动布料中,所述第四预设值与布料场景相关。
可选地,所述第四预设值的取值范围为大于0且小于或等于布料点补偿精度。
此外,本发明的另一方面还提供一种用于控制臂架的方法,该方法包括:根据上述的用于补偿臂架挠度的方法确定所述臂架的各个关节的关节角度,其中,所确定的各个关节的关节角度为使得所述偏差满足所述预设条件的各个关节的所述关节角度;以及根据所确定的各个关节的所述关节角度控制所述臂架的各个关节。
相应地,本发明的另一方面还提供一种用于补偿臂架挠度的装置,该装置包括:关节角度组确定模块,用于确定在所述臂架被视为刚性体的情况下若所述臂架的末端到达预设目标位置所述臂架的关节角度组,其中,所述关节角度组包括所述臂架的各个关节的关节角度;实际位置确定模块,用于确定所述关节角度组使得所述末端到达的实际位置;偏差确定模块,用于确定所述预设目标位置与所述实际位置之间的偏差;以及处理模块,用于在所述偏差不满足预设条件的情况下,调整所述关节角度组,并在根据调整后的所述关节角度组确定的所述偏差不满足所述预设条件的情况下继续调整所述关节角度组,直到所述偏差满足所述预设条件。
可选地,所述臂架为工程机械的臂架。
可选地,所述处理模块调整所述关节角度组为基于所述偏差进行调整。
可选地,所述处理模块调整所述关节角度组为调整所述臂架的各个关节中至少两个关节的所述关节角度,其中,所述至少两个关节在所述臂架中依次相邻。
可选地,选取所述至少两个关节时为从所述臂架的末端开始依次选取。
可选地,所述至少两个关节的所述关节角度的调整量根据以下至少一者被确定:所述至少两个关节组成的子臂架的雅克比矩阵的伪逆矩阵、所述偏差以及预设函数,其中,所述预设函数为所述偏差的大小的函数且随着所述偏差的大小的减小而减小,所述预设函数的取值范围为小于或等于1。
可选地,所述调整量根据以下公式被确定:Δq=M*J*Δe,其中,Δq、Δe为向量,Δq的维度与所述至少两个关节包括的关节的数量相等,Δq中的元素值为所述至少两个关节的所述关节角度的所述调整量;Δe为所述偏差,M为所述预设函数,J为所述伪逆矩阵。
可选地,所述预设函数为:
Figure PCTCN2022082483-appb-000002
其中,Δe为向量,Δe为所述偏差。
可选地,该装置还包括:判断模块,用于在进行一次所述调整所述关节角度组后,判断所述至少两个关节中的至少一关节的所述关节角度是否处于关节限位内;所述处理模块还用于:在一关节的所述关节角度不处于该关节对应的所述关节限位内的情况下, 控制该关节的所述关节角度将不再被调整;和/或从所述臂架的可被调整所述关节角度的关节中重新选取被调整所述关节角度的所述至少两个关节,其中被重新选取的所述至少两个关节在所述臂架的可被调整所述关节角度的关节中依次相邻。
可选地,所述处理模块还用于:在进行一次所述调整所述关节角度组后所述至少两个关节中的一关节的所述关节角度不处于该关节对应的所述关节限位内的情况下,将所述至少两个关节中的每一关节的所述关节角度均调整回到在进行该次调整所述关节角度组之前的所述关节角度,其中,从所述臂架的可被调整所述关节角度的关节中重新选取被调整所述关节角度的所述至少两个关节的步骤在将所述至少两个关节中的每一关节的所述关节角度均调整回到在进行该次调整所述关节角度组之前的所述关节角度的步骤之后。
可选地,所述处理模块还用于:当满足以下条件时再次调整所述关节角度组时将被调整所述关节角度的关节的数量增加:调整所述关节角度组的次数超过第一预设值、每次调整所述关节角度组时被调整关节角度的关节的数量均为第二预设值、随着调整所述关节角度组次数的增加所述偏差变小以及所述偏差不满足所述预设条件。
可选地,所述实际位置确定模块确定所述关节角度组使得所述末端到达的实际位置的次数不超过第三预设值。
可选地,所述预设条件为所述偏差的大小小于第四预设值。
可选地,该装置被应用在自动布料中,所述第四预设值与布料场景相关。
可选地,所述第四预设值的取值范围为大于0且小于或等于布料点补偿精度。
相应地,本发明的另一方面还提供一种用于控制臂架的装置,该装置包括:关节角度确定模块,用于根据上述的用于补偿臂架挠度的方法确定所述臂架的各个关节的关节角度,其中,所确定的各个关节的关节角度为使得所述偏差满足所述预设条件的各个关节的所述关节角度;以及控制模块,用于根据所确定的各个关节的所述关节角度控制所述臂架的各个关节。
此外,本发明的另一方面还提供一种工程机械,该工程机械包括:上述的用于补偿臂架挠度的装置;和/或上述的用于控制臂架的装置。
另外,本发明的另一方面还提供一种机器可读存储介质,该机器可读存储介质上存储有指令,该指令用于使得机器执行上述用于补偿臂架挠度的方法或上述的用于控制臂架的方法。
通过上述技术方案,在臂架被视为刚性体确定的关节角度组使得臂架的末端到达的 实际位置与预设目标位置之间的偏差不满足预设条件的情况下,调整关节角度组,直到偏差满足预设条件,当偏差满足预设条件时,实际位置非常靠近预设目标位置,如此,实现了补偿臂架末端的挠度,使得实际位置非常靠近预设目标位置,使得臂架的末端可以较准确的到达预设目标位置。此外,使得偏差满足预设条件的关节角度组中包括的各个关节的关节角度即为使得臂架末端可以相对较准确的到达预设目标位置的各个关节的关节角度。
本发明的其它特征和优点将在随后的具体实施方式部分予以详细说明。
附图说明
附图是用来提供对本发明的进一步理解,并且构成说明书的一部分,与下面的具体实施方式一起用于解释本发明,但并不构成对本发明的限制。在附图中:
图1是本发明一实施例提供的臂架示意图;
图2是本发明另一实施例提供的用于补偿臂架挠度的方法的流程图;
图3是本发明另一实施例提供的臂架示意图;
图4是本发明另一实施例提供的用于补偿臂架挠度的方法的逻辑示意图;以及
图5是本发明另一实施例提供的用于补偿臂架挠度的装置的结构框图。
附图标记说明
1    关节角度组确定模块       2    实际位置确定模块
3    偏差确定模块             4    处理模块
具体实施方式
以下结合附图对本发明的具体实施方式进行详细说明。应当理解的是,此处所描述的具体实施方式仅用于说明和解释本发明,并不用于限制本发明。
以7自由度臂架为例,其结构如图1所示,该臂架可以活动的关节包括7个,J0-J6。设A为期望臂架末端到达的位置,例如,期望的布料点,即期望臂架末端点e到达图1中所示的A点。若臂架为刚性,则根据其逆运动模型可计算出使得臂架末端e到达A点对应的一组关节角度。假设求得的该组关节角度对应的臂架构型如图1中黑色实线所示。由于臂架存在弹性变形,该组关节角对应的臂架的实际末端位置是A',如图1中虚线所示。如何计算臂架的关节角度使其末端在变形的情况下依然能到达期望的位置是本发明 可以解决的问题。
本发明实施例的一个方面提供一种用于补偿臂架挠度的方法。其中,臂架挠度为由于臂架存在弹性变形导致臂架被视为刚性体的情况下假设臂架末端到达目标位置得到的一组关节角度使得臂架末端实际到达的位置与目标位置之间存在的偏差。
图2是本发明一实施例提供的用于补偿臂架挠度的方法的流程图。如图2所示,该方法包括以下内容。
在步骤S20中,确定在臂架被视为刚性体的情况下若臂架的末端到达预设目标位置臂架的关节角度组,其中,关节角度组包括臂架的各个关节的关节角度,也就是,关节角度组包括在臂架被视为刚性体的情况下当臂架的末端到达预设目标位置时臂架的各个关节应该达到的角度值。可选地,在本发明实施例中,可以采用刚性逆运动学来确定出关节角度组。具体地,刚性臂架的逆运动学可通过数值解法求解,其过程为首先选取一组关节角作为种子,然后利用正运动学模型计算该组关节对应的臂架末端位置,计算该位置与目标位置的偏差,通过臂架的雅可比矩阵的逆矩阵将末端位置偏差映射到关节空间中,从而计算出能够将末端位置调整到期望的目标位置所对应的关节角度。如图3所示,以7自由度臂架为例,将臂架视为刚性体,利用刚性逆运动学可计算臂架的末端e到达预设目标位置A的关节角度组q。此外,在本发明实施例中,一关节的关节角度为该关节连接的两个节臂之间的角度。在实际情况中,一关节的两个节臂之间的角度有两种情况,一种情况是锐角另一种情况是钝角,根据具体情况设置即可,只要所有关节的关节角度采用相同的设置即可。可选地,在本发明实施例中,臂架可以是任何具有冗余自由度的臂。例如,可以是工程机械的臂架。
在步骤S21中,确定关节角度组使得臂架的末端到达的实际位置。例如,例如采用臂架挠度计算模型确定实际位置,通过臂架挠度计算模型获得关节角度组使得臂架末端到达的实际位置。例如,通过传感器采集大量的臂架不同关节角度对应的末端位置的数据,建立起一个大数据库,然后根据关节角度进行查表和拟合,获得臂架末端实际位置。如图3所示,确定关节角度组使得臂架的末端到达的实际位置A'。
在步骤S22中,确定预设目标位置与实际位置之间的偏差。例如,偏差可以是预设目标位置与实际位置之间的距离。或者,偏差可以是预设目标位置与实际位置之间的向量,如图3所示,Δe=A-A′。可选地,可以根据预设目标位置的坐标值与实际位置之间的坐标值确定出预设目标位置与实际位置之间的向量。
在步骤S23中,判断偏差是否满足预设条件,若满足则执行步骤S25;若不满足则 执行步骤S24。可选地,在本发明实施例中,预设条件可以是偏差的大小小于第四预设值。例如,当偏差为一向量时,偏差的大小为偏差的模值,预设条件可以是偏差的模值小于第四预设值。或者,当偏差为预设目标位置与实际位置之间的距离时,偏差的大小可以是距离值,预设条件可以是预设目标位置与实际位置之间的距离值小于第四预设值。可选地,在本发明实施例中,第四预设值可以根据具体情况而定。第四预设值越小,挠度补偿后末端的实际位置越接近预设目标位置,或者说在臂架存在变形的情况下求解使得臂架末端能够到达预设目标位置所得到的各个关节的关节角度的准确度越高。可选地,在本发明实施例中,用于补偿臂架挠度的方法被应用在自动布料中,第四预设值与布料场景相关。优选地,在本发明实施例中,第四预设值的取值范围为大于0且小于或等于布料点补偿精度。
在步骤S24中,调整关节角度组。调整关节角度组为调整关节角度组中包括的关节角度的值。可选地,在本发明实施例中,可以是根据偏差调整关节角度组。另外,可选地,在本发明实施例中,调整关节角度组可以是调整臂架的各个关节中的至少两个关节的关节角度,其中,至少两个关节在臂架中依次相邻,至少两个关节中任意两个关节之间不间隔关节。被调整关节角度的至少两个关节之间的相邻关系不间断,例如以图3为例进行说明,假设至少两个关节包括两个关节。如图3所示,至少两个关节可以是关节J5和J6,或者关节J3和J4,或者关节J4和J5……,至少两个关节在臂架中依次相邻。但是,至少两个关节不可以是关节J2和J4,关节J2和J4不能依次相邻,因为关节J2和J4之间间隔关节J3。或者在至少两个关节包括3个关节的情况下,可以是关节J2、J3、J4,不可以是J2、J3、J5,因此关节J2、J3、J5之间相邻关系出现间断,关节J3和J5之间间隔关节J4。
其中,被调整关节角度的至少两个关节可以是臂架的任意依次相邻的至少两个关节,具体地调节臂架的哪几个关节的关节角度可以根据具体情况而定。可选地,在本发明实施例中,被调整关节角度的至少两个关节可以是从臂架末端开始依次选取的至少两个关节。其中,从臂架末端依次选取至少两个关节可以使得在调整关节角度组时在调整幅度较小的情况下尽快的使得偏差满足预设条件,减少运算过程,提高工作效率。在执行完步骤S24后,再次执行步骤S21至步骤S23,也就是根据调整后的关节角度组重新确定实际位置、偏差并判断偏差是否满足预设条件,并在再次调整关节角度组后偏差仍然不满足预设条件的情况下再次调整关节角度组以及确定出偏差并判断偏差是否满足预设条件,直到偏差满足预设条件。另外,在本发明实施例中,每次调整关节角度组时所调整 的至少两个关节包括的关节的数量可以相同也可以不相同。另外,每次调整关节角度组时所调整的至少两个关节包括的关节可以是与上次调整关节角度组时所调整的关节相同的关节,也可以是与上次调整关节角度组时所调整的关节不相同的关节,其中,不相同的情况下可以全部不相同也可以是部分不相同。对此,均不限制,只要满足调节至少两个关节的关节角度即可。
在步骤S25中,结束。
通过上述技术方案,在臂架被视为刚性体确定的关节角度组使得臂架的末端到达的实际位置与预设目标位置之间的偏差不满足预设条件的情况下,调整关节角度组,直到偏差满足预设条件,当偏差满足预设条件时,实际位置非常靠近预设目标位置,如此,实现了补偿臂架末端的挠度,使得实际位置非常靠近预设目标位置,使得臂架的末端可以较准确的到达预设目标位置。此外,使得偏差满足预设条件的关节角度组中包括的各个关节的关节角度即为使得臂架末端相对较准确的到达预设目标位置的各个关节的关节角度。
可选地,在本发明实施例中,至少两个关节的关节角度的调整量根据以下至少一者被确定:至少两个关节组成的子臂架的雅克比矩阵的伪逆矩阵、偏差以及预设函数,其中,预设函数为偏差的大小的函数且随着偏差的大小的减小而减小,预设函数的取值范围为小于或等于1。计算至少两个关节组成的子臂架的雅可比矩阵的伪逆矩阵,可以是先求子臂架的雅可比矩阵J p,,需要的参数有至少两个关节的当前关节角度、子臂架的几何参数;然后求解雅可比矩阵的伪逆矩阵。可选地,此处伪逆矩阵可以是右伪逆矩阵
Figure PCTCN2022082483-appb-000003
计算方式为
Figure PCTCN2022082483-appb-000004
可选地,在本发明实施例中,调整量根据以下公式被确定:Δq=M*J*Δe,其中,Δq、Δe为向量,Δq的维度与至少两个关节包括的关节的数量相等,Δq中的元素值为至少两个关节的关节角度的调整量;Δe为偏差,M为预设函数,J为伪逆矩阵。Δq的维度与至少两个关节包括的关节的数量相等,Δq中的每一元素值对应至少两个关节中的一关节的关节角度的调整量,其中,Δq中的元素值与至少两个关节中的关节的对应关系可以根据具体情况而定,对此,不进行限制。例如,以图3所示的7自由度臂架为例,选取3个关节的关节角度进行调节,分别是关节J2、J3和J4,Δq为3维向量,Δq中的第一元素值、第二元素值及第三元素值分别对应关节J2、J3和J4的关节角度的调整量。此外,还可以是Δq中的第一元素值、第二元素值及第三元素值分别对应关节J3、J4和J2的关节 角度的调整量,或者还可以是Δq中的第一元素值、第二元素值及第三元素值分别对应关节J3、J2和J4的关节角度的调整量,等等。Δq中的元素值与被调整关节角度的关节之间的对应关系可以根据具体情况进行设定,对此,不进行限制。
可选地,在本发明实施例中,预设函数为:
Figure PCTCN2022082483-appb-000005
其中,Δe为向量,Δe为偏差;‖Δe‖为Δe取模,也就是Δe的模值。
可选地,在本发明实施例中,在进行一次调整关节角度组后,该方法还包括:判断至少两个关节中的至少一关节的关节角度是否处于关节限位内;以及在一关节的关节角度不处于该关节对应的关节限位内的情况下,控制该关节的关节角度将不再被调整;和/或从臂架的可被调整关节角度的关节中重新选取被调整关节角度的至少两个关节,其中被重新选取的至少两个关节在臂架的可被调整关节角度的关节中依次相邻。重新从可被调整关节角度的关节中选取至少两个关节调整关节角度,被重新选取的至少两个关节在臂架的可被调整关节角度的关节中依次相邻,例如,以图3为例进行说明。假设每次选取的至少两个关节数量相同,均为3。某一次选取的至少两个关节为关节J4、J5、J6,调整关节角度后关节J5被限制关节角度不可再被调整,再次选取的3个关节是从关节J1、J2、J3、J4、J6中进行选取且在关节J1、J2、J3、J4、J6中依次相邻。例如,可以选取关节J3、J4、J6,尽管从整个臂架的角度来看,关节J3、J4、J6不是依次相邻的,关节J4、J6之间间隔关节J5,但是在可被调整关节角度的所有关节中,关节J4、J6是相邻的。在本发明实施例中,通过判断关节的关节角度是否处于其对应的关节限位内,可以使得调整关节角度组进行的是有效的工作,尽快找到使得偏差满足预设条件的关节角度组,提高效率。
可选地,在本发明实施例中,在进行一次所述调整所述关节角度组后所述至少两个关节中的一关节的所述关节角度不处于该关节对应的所述关节限位内的情况下,该方法还包括:将所述至少两个关节中的每一关节的所述关节角度均调整回到在进行该次调整所述关节角度组之前的所述关节角度,其中,从所述臂架的可被调整所述关节角度的关节中重新选取被调整所述关节角度的所述至少两个关节的步骤在将所述至少两个关节中的每一关节的所述关节角度均调整回到在进行该次调整所述关节角度组之前的所述关节角度的步骤之后。进行一次调整关节角度组后,被限制不再被调整关节角度的关节的关节角度将被限制在进行该次调整关节角度组之前的关节角度值,此后均不能被调整关节角度;未被限制不可再被调整关节角度的关节的关节角度被调整回到进行该次调整关节角度组之前的关节角度值。在进行一次调整关节角度组后某一关节的关节角度不处于其 对应的关节限位内的情况下,在至少两个关节中的每一关节角度均被调整回到进行该次调整关节角度组之前的角度后,再从臂架的可被调整关节角度的关节中选择至少两个关节进行调整关节角度。
此外,在进行一次调整关节角度组后某些关节被限制将不再被调整的情况下,下一次调整关节角度组时被调整关节角度的至少两个关节包括的关节的数量与该次被调整关节角度的关节的数量可以相同也可以不相同,与该次被调整关节角度的关节的数量之间没有关系,只要不包括被限制不再被调整关节角度的关节即可。例如,以图3为例,某一次调整关节角度组时,调整的关节角度的关节的数量是3个,关节分别是J4、J5、J6。在该次调整关节角度组后,J5被限制关节角度将不再被调整,则J5的关节角度被限制在进行该次调整关节角度组之前的关节角度。下一次再调整关节角度组时,被调整关节角度的关节的数量可以是2也可以是3,还可以是其他值。另外,在进行一次调整关节角度组后某些关节被限制将不再被调整的情况下,下一次调整关节角度组时被调整关节角度的至少两个关节中可以包括该次被调整关节角度的至少两个关节中的某一个或多个关节,也可以不包括该次被调整关节角度的至少两个关节。
可选地,在本发明实施例中,该方法还包括:当满足以下条件时再次调整关节角度组时将被调整关节角度的关节的数量增加:调整关节角度组的次数超过第一预设值、每次调整关节角度组时被调整关节角度的关节的数量均为第二预设值、随着调整关节角度组次数的增加偏差变小以及偏差不满足预设条件。其中,第一预设值和第二预设值可以根据具体情况进行限定。从开始调整关节角度组开始一直调整第二预设值个关节,随着调整关节角度组次数的增加偏差变小,当调整关节角度组的次数超过第一预设值但偏差仍然不满足预设条件的情况下,再次调整关节角度组时将被调整关节角度的数量增加。其中,增加的关节的数量可以根据具体情况而定,例如,增加一个关节,两个关节等。此外,每次被调整关节角度的第二预设值个关节可以是相同的关节也可以是不同的关节;若每次调整的关节是相同的关节则可以提高效率,尽快找到符合条件的关节角度组,使得偏差满足预设条件。需要说明的是,此处所说的每次调整的关节是相同的关节是在不考虑关节限位或者关节的关节角度均处于对应的关节限位的情况下,当某一关节的关节角度不处于其对应的关节限位内时,需要根据本发明实施例中的相关介绍进行具体考虑。
可选地,在本发明实施例中,在进行一次调整关节角度组后再次进行调整关节角度组的条件为未被控制不再被调整的关节的数量超过1。也就是,在整个臂架中,至少有两个关节的关节角度是可以调节的。
可选地,在本发明实施例中,确定关节角度组使得末端到达的实际位置的次数不超过第三预设值。在本发明实施例中,在调整关节角度组后,重新确定关节角度组使得臂架的末端到达的实际位置,确定关节角度组使得臂架的末端到达的实际位置的次数不超过第三预设值。
图4是本发明另一实施例提供的用于补偿臂架挠度的方法的逻辑示意图。其中,在该实施例中,以图3所示的7自由度臂架为例进行说明。另外,在本发明实施例中,每次调整关节角度组时选择两个关节进行调整关节角度,且选择的两个关节为从臂架末端开始依次选取。此外,在本发明实施例中,将用于补偿臂架挠度的方法应用在自动布料中,预设目标位置即为目标布料点。本发明实施例提供的臂架挠度的补偿方法,首先通过臂架的刚性逆运动学模型获得到达目标布料点的一组关节角,然后获得该组关节角状态下臂架末端的变形量,也就是实际位置与目标布料点之间的偏差,通过该变形量调整臂架的部分关节位置,多次迭代调整关节位置最终计算出达目标布料点所对应的关节位置。其中,通过调节关节角度来调整关节位置。下面对补偿方法做详细描述。
如图4所示,输入上述实施例中所述的预设目标位置A的位置、第三预设值及第四预设值。
将臂架视为刚性体,利用刚性逆运动学计算臂架的末端e到达预设目标位置A的关节角度组q。
从臂架末端开始选取两个自由的关节组成子臂架,自由的关节即为其关节角度可以调节的关节,如图3所示,先选择关节J5和J6。然后通过臂架挠度计算模型获得关节角度组q使得臂架末端e实际到达的实际位置A′,并将迭代次数加一,其中,当关节角度组被调整后需要重新确定实际位置,迭代次数也就是确定实际位置的次数。
判断迭代次数是否未超过第三预设值。若迭代次数超过第三预设值,则结束末端挠度补偿过程。此外,还可以提示用户目标布料点不可达。若迭代次数未超过第三预设值,则计算预设目标位置A与实际位置A′的偏差Δe=A-A′,Δe为一向量,判断偏差Δe的大小是否小于第四预设值,也就是判断偏差Δe的模值‖Δe‖是否小于第四预设值。例如,采用ε表示第四预设值。ε是一个较小的值,该值越小则求解精度越高,即补偿后的臂架末端更加靠近期望的目标位置,但相应的迭代次数则会增加。可以根据具体情况设置ε。例如,在自动布料中,ε可根据布料场景进行设置,0<ε≤布料点补偿精度,布料点的补偿精度与布料场景有关。例如,浇筑较小尺寸的方形梁时,该方形的布料口的面积较小,因此设置较小的补偿精度。布料点的补偿精度的计算方式为:布料点补偿精度=目标布料 点距离布料口边沿最小距离-臂架软管半径。若模值‖Δe‖大于或等于第四预设值且迭代次数未超过第三预设值,则继续进入下一步迭代过程,直到确定出满足模值‖Δe‖小于第四预设值的关节角度组则结束迭代过程并返回结果。
若偏差的大小小于第四预设值,则输出关节角度组;若偏差的大小未超过第四预设值,则计算子臂架的雅克比矩阵的伪逆矩阵,其中,在该实施例中采用右伪逆矩阵。首先选择的是关节J5和J6,则计算关节J5和J6组成的子臂架的雅克比矩阵的右伪逆矩阵
Figure PCTCN2022082483-appb-000006
计算子臂架中各个关节的关节角度的调整量。首先选择的是关节J5和J6,计算关节J5和J6中每个关节的关节角度的调整量。具体计算调整量的方法参见上述实施例中所述的方法。首先选择的是关节J5和J6,根据以下公式进行计算
Figure PCTCN2022082483-appb-000007
(1),Δq 56为二维向量,第一个元素的值为关节J5的关节角度的调整量,第二个元素的值为关节J6的关节角度的调整量。为了保证收敛性同时提高算法收敛速度,引入随着偏差大小‖Δe‖减小而减小的预设函数k(‖Δe‖),且满足k(‖Δe‖)≤1,可构造如下预设函数:
Figure PCTCN2022082483-appb-000008
将子臂架中每个关节的关节角度与其对应的调整量相加,得到更新后的关节角度。
判断子臂架中每个关节的更新后的关节角度是否处于其对应的关节限位内,每一关节对应其自己的关节限位。若子臂架中所有关节的更新后的关节角度均处于自己对应的关节限位内,则根据调整后的关节角度组成的关节角度组,重新确定臂架末端的实际位置,并且将迭代次数加一,重复上述判断迭代次数、偏差大小等的过程。若子臂架中某一关节的更新后的关节角度不处于其对应的关节限位内,则锁定该关节,该关节失去自由,即将该关节连接的节臂视为一个整体,该关节的关节角度将被限制在该次调整关节角度之前的关节角度。判断臂架是否存在一个以上未被锁定的关节。若臂架不存在一个以上未被锁定的关节则结束末端挠度补偿过程。另外,在结束补偿过程后,还可以提示用户目标布料点不可到达。若臂架存在一个以上未被锁定的关节,则重新选取子臂架,选取原则为从臂架末端依次开始选取未被锁定的两个关节来组成新的子臂架,假设选取的关节为第i个和第j个,计算该子臂架的雅可比矩阵的右伪逆矩阵
Figure PCTCN2022082483-appb-000009
通过公式(1)计算第i个关节和第j个关节的关节角度的调整量。例如,首先选取的是关节J5和J6,J5被锁定,则重新选择的两个关节是J4和J6。然后再次判断重新选择的子臂架中的每个关节的更新后的关节角度是否处于其对应的关节限位内。若重新选择的子臂架中的每个关节的更新后的关节角度均处于其对应的关节限位内,则重复上述确定实际位置以随后 的过程。若重新选择的子臂架中的某一关节的更新后的关节角度不处于其对应的关节限位内,则重复上述锁定关节以随后的过程。若经过多次选择使得臂架的各个关节不满足存在一个以上关节未被锁定,则结束末端挠度补偿过程。此外,在结束末端挠度补偿过程后还可以提示用户该目标布料点不可达。
若子臂架中每个关节的更新后的关节角度均处于其对应的关节限位内,则进入下一步迭代过程,即利用臂架挠度计算模型获得更新了子臂架中的关节的关节角度的关节角度组对应的末端实际位置A′、重新计算Δe、判断是否满足‖Δe‖<ε等过程。
本发明实施例提供了一种臂架挠度补偿的方法,主要包括以下几个方面的内容:1)根据臂架末端的挠度是与臂架构型相关的非线性函数的特性,利用臂架变形后的实际位置与期望的目标位置的偏差来确定臂架关节的调整量,通过迭代求解的方式不断调整臂架某些关节的角度,使得臂架变形后的实际末端位置逐渐收敛于期望的目标布料点;2)在迭代过程中优先选择靠近臂架末端的子臂架来计算关节调整的角度,同时根据调整后的关节角度是否满足对应关节的关节限位约束来判断是否需要重新选择子臂架;3)在迭代过程中将超出限位的关节进行锁定,即将该关节相邻的节臂视为一个整体,然后在臂架中选择未被锁定且靠近臂架末端的关节构成新的子臂架,计算该子臂架中包括的关节的关节角度的调整量;4)构造随着臂架变形后的实际位置与期望的目标位置的偏差的减小而减小的函数,调制子臂架中的关节角度调整量的大小。
本发明实施例提供的臂架挠度补偿的方法,能够迭代求解出柔性臂架达到目标布料点对应的关节角度且满足臂架的关节限位约束,解决了现有技术中无法对多关节串联冗余臂架末端进行挠度补偿的问题,因而在实际施工过程中无需人为将臂架移动到目标布料点进行各个关节角度的标定,为无人化布料施工过程奠定了基础;通过优先从臂架末端选取子臂架的策略,根据目标布料点与弹性变形后的臂架末端位置的偏差来调整子臂架中的关节的关节角度,减少了其他关节的变化导致补偿算法无法收敛的可能性,同时也减少了自动布料过程中关节的冗余运动,能够有效提高施工效率;在迭代求解过程中对调整后的关节角度进行关节限位检查,从而避免计算出超出关节限位约束的角度,充分利用臂架冗余自由度的特性,将超出限位的关节进行锁定,避免下次迭代过程中再次出现更新的关节角度超出关节限位,然后重新选择臂架中未被锁定的关节构成新的子臂架进行关节角度的调整,从而最大限度的提高了算法寻找到可行解的可能性;引入与偏差距离相关的调制函数能够使得关节调整量随着臂架末端位置逐渐靠近目标位置而不断减小,从而有效提高补偿算法的收敛性,减少迭代次数。
此外,本发明实施例的另一方面还提供一种用于控制臂架的方法,该方法包括:根据上述实施例中所述的用于补偿臂架挠度的方法确定所述臂架的各个关节的关节角度,其中,所确定的各个关节的关节角度为使得所述偏差满足所述预设条件的各个关节的所述关节角度;以及根据所确定的各个关节的所述关节角度控制所述臂架的各个关节。
相应地,本发明实施例的另一方面还提供一种用于补偿臂架挠度的装置。
图5是本发明另一实施例提供的用于补偿臂架挠度的装置的结构框图。如图5所示,该装置包括关节角度组确定模块1、实际位置确定模块2、偏差确定模块3和处理模块4。其中,关节角度组确定模块1用于确定在臂架被视为刚性体的情况下若臂架的末端到达预设目标位置臂架的关节角度组,其中,关节角度组包括臂架的各个关节的关节角度;实际位置确定模块2用于确定关节角度组使得末端到达的实际位置;偏差确定模块3用于确定预设目标位置与实际位置之间的偏差;处理模块4用于在偏差不满足预设条件的情况下,调整关节角度组,并在根据调整后的关节角度组确定的偏差不满足预设条件的情况下继续调整关节角度组,直到偏差满足预设条件。
可选地,在本发明实施例中,臂架为工程机械的臂架。
可选地,在本发明实施例中,处理模块调整关节角度组为基于偏差进行调整。
可选地,在本发明实施例中,处理模块调整关节角度组为调整臂架的各个关节中至少两个关节的关节角度,其中,至少两个关节在臂架中依次相邻。
可选地,在本发明实施例中,选取至少两个关节时为从臂架的末端开始依次选取。
可选地,在本发明实施例中,至少两个关节的关节角度的调整量根据以下至少一者被确定:至少两个关节组成的子臂架的雅克比矩阵的伪逆矩阵、偏差以及预设函数,其中,预设函数为偏差的大小的函数且随着偏差的大小的减小而减小,预设函数的取值范围为小于或等于1。
可选地,在本发明实施例中,调整量根据以下公式被确定:Δq=M*J*Δe,其中,Δq、Δe为向量,Δq的维度与至少两个关节包括的关节的数量相等,Δq中的元素值为至少两个关节的关节角度的所述调整量;Δe为偏差,M为预设函数,J为伪逆矩阵。
可选地,在本发明实施例中,预设函数为:
Figure PCTCN2022082483-appb-000010
其中,Δe为向量,Δe为偏差。
可选地,在本发明实施例中,该装置还包括:判断模块,用于在进行一次调整关节角度组后,判断至少两个关节中的至少一关节的关节角度是否处于关节限位内;处理模块还用于:在一关节的关节角度不处于该关节对应的关节限位内的情况下,控制该关节 的关节角度将不再被调整;和/或从臂架的可被调整关节角度的关节中重新选取被调整关节角度的至少两个关节,其中被重新选取的至少两个关节在臂架的可被调整关节角度的关节中依次相邻。
可选地,在本发明实施例中,所述处理模块还用于:在进行一次所述调整所述关节角度组后所述至少两个关节中的一关节的所述关节角度不处于该关节对应的所述关节限位内的情况下,将所述至少两个关节中的每一关节的所述关节角度均调整回到在进行该次调整所述关节角度组之前的所述关节角度,其中,从所述臂架的可被调整所述关节角度的关节中重新选取被调整所述关节角度的所述至少两个关节的步骤在将所述至少两个关节中的每一关节的所述关节角度均调整回到在进行该次调整所述关节角度组之前的所述关节角度的步骤之后。
可选地,在本发明实施例中,所述处理模块还用于:当满足以下条件时再次调整关节角度组时将被调整关节角度的关节的数量增加:调整关节角度组的次数超过第一预设值、每次调整关节角度组时被调整关节角度的关节的数量均为第二预设值、随着调整关节角度组次数的增加偏差变小以及偏差不满足所述预设条件。
可选地,在本发明实施例中,实际位置确定模块确定关节角度组使得末端到达的实际位置的次数不超过第三预设值。
可选地,在本发明实施例中,预设条件为所述偏差的大小小于第四预设值。
可选地,在本发明实施例中,该装置被应用在自动布料中,第四预设值与布料场景相关。
可选地,在本发明实施例中,第四预设值的取值范围为大于0且小于或等于布料点补偿精度。
本发明实施例提供的用于补偿臂架挠度的装置的具体工作原理及益处与本发明实施例提供的用于补偿臂架挠度的方法的具体工作原理及益处相似,这里将不再赘述。
相应地,本发明实施例的另一方面还提供一种用于控制臂架的装置,该装置包括:关节角度确定模块,用于根据上述实施例中所述的用于补偿臂架挠度的方法确定臂架的各个关节的关节角度,其中,所确定的各个关节的关节角度为使得偏差满足预设条件的各个关节的关节角度;以及控制模块,用于根据所确定的各个关节的关节角度控制臂架的各个关节。
本发明实施例提供的用于控制臂架的装置的具体工作原理及益处与本发明实施例中提供的控制臂架的方法的具体工作原理及益处相似,这里将不再赘述。
此外,本发明实施例的另一方面还提供一种工程机械,该工程机械包括:上述实施例中所述的用于补偿臂架挠度的装置;和/或上述实施例中所述的用于控制臂架的装置。
另外,本发明实施例的另一方面还提供一种机器可读存储介质,该机器可读存储介质上存储有指令,该指令用于使得机器执行上述实施例中所述的用于补偿臂架挠度的方法或上述实施例中所述的用于控制臂架的方法。
以上结合附图详细描述了本发明的优选实施方式,但是,本发明并不限于上述实施方式中的具体细节,在本发明的技术构思范围内,可以对本发明的技术方案进行多种简单变型,这些简单变型均属于本发明的保护范围。
另外需要说明的是,在上述具体实施方式中所描述的各个具体技术特征,在不矛盾的情况下,可以通过任何合适的方式进行组合。为了避免不必要的重复,本发明对各种可能的组合方式不再另行说明。
此外,本发明的各种不同的实施方式之间也可以进行任意组合,只要其不违背本发明的思想,其同样应当视为本发明所公开的内容。

Claims (34)

  1. 一种用于补偿臂架挠度的方法,其特征在于,该方法包括:
    确定在所述臂架被视为刚性体的情况下若所述臂架的末端到达预设目标位置所述臂架的关节角度组,其中,所述关节角度组包括所述臂架的各个关节的关节角度;
    确定所述关节角度组使得所述末端到达的实际位置;
    确定所述预设目标位置与所述实际位置之间的偏差;以及
    在所述偏差不满足预设条件的情况下,调整所述关节角度组,并在根据调整后的所述关节角度组确定的所述偏差不满足所述预设条件的情况下继续调整所述关节角度组,直到所述偏差满足所述预设条件。
  2. 根据权利要求1所述的方法,其特征在于,所述臂架为工程机械的臂架。
  3. 根据权利要求1所述的方法,其特征在于,所述调整所述关节角度组为基于所述偏差进行调整。
  4. 根据权利要求1-3所述的方法,其特征在于,所述调整所述关节角度组为调整所述臂架的各个关节中至少两个关节的所述关节角度,其中,所述至少两个关节在所述臂架中依次相邻。
  5. 根据权利要求4所述的方法,其特征在于,选取所述至少两个关节时为从所述臂架的末端开始依次选取。
  6. 根据权利要求4所述的方法,其特征在于,所述至少两个关节的所述关节角度的调整量根据以下至少一者被确定:所述至少两个关节组成的子臂架的雅克比矩阵的伪逆矩阵、所述偏差以及预设函数,其中,所述预设函数为所述偏差的大小的函数且随着所述偏差的大小的减小而减小,所述预设函数的取值范围为小于或等于1。
  7. 根据权利要求6所述的方法,其特征在于,所述调整量根据以下公式被确定:
    Δq=M*J*Δe
    其中,Δq、Δe为向量,Δq的维度与所述至少两个关节包括的关节的数量相等,Δq中 的元素值为所述至少两个关节的所述关节角度的所述调整量;Δe为所述偏差,M为所述预设函数,J为所述伪逆矩阵。
  8. 根据权利要求6所述的方法,其特征在于,所述预设函数为:
    Figure PCTCN2022082483-appb-100001
    其中,Δe为向量,Δe为所述偏差。
  9. 根据权利要求4所述的方法,其特征在于,在进行一次所述调整所述关节角度组后,该方法还包括:
    判断所述至少两个关节中的至少一关节的所述关节角度是否处于关节限位内;以及
    在一关节的所述关节角度不处于该关节对应的所述关节限位内的情况下,
    控制该关节的所述关节角度将不再被调整;和/或
    从所述臂架的可被调整所述关节角度的关节中重新选取被调整所述关节角度的所述至少两个关节,其中被重新选取的所述至少两个关节在所述臂架的可被调整所述关节角度的关节中依次相邻。
  10. 根据权利要求9所述的方法,其特征在于,在进行一次所述调整所述关节角度组后所述至少两个关节中的一关节的所述关节角度不处于该关节对应的所述关节限位内的情况下,该方法还包括:
    将所述至少两个关节中的每一关节的所述关节角度均调整回到在进行该次调整所述关节角度组之前的所述关节角度,其中,从所述臂架的可被调整所述关节角度的关节中重新选取被调整所述关节角度的所述至少两个关节的步骤在将所述至少两个关节中的每一关节的所述关节角度均调整回到在进行该次调整所述关节角度组之前的所述关节角度的步骤之后。
  11. 根据权利要求4所述的方法,其特征在于,该方法还包括:
    当满足以下条件时再次调整所述关节角度组时将被调整所述关节角度的关节的数量增加:调整所述关节角度组的次数超过第一预设值、每次调整所述关节角度组时被调整关节角度的关节的数量均为第二预设值、随着调整所述关节角度组次数的增加所述偏差变小以及所述偏差不满足所述预设条件。
  12. 根据权利要求1所述的方法,其特征在于,所述确定所述关节角度组使得所述末端到达的实际位置的次数不超过第三预设值。
  13. 根据权利要求1所述的方法,其特征在于,所述预设条件为所述偏差的大小小于第四预设值。
  14. 根据权利要求13所述的方法,其特征在于,该方法被应用在自动布料中,所述第四预设值与布料场景相关。
  15. 根据权利要求14所述的方法,其特征在于,所述第四预设值的取值范围为大于0且小于或等于布料点补偿精度。
  16. 一种用于控制臂架的方法,其特征在于,该方法包括:
    根据权利要求1-15中任一项所述的方法确定所述臂架的各个关节的关节角度,其中,所确定的各个关节的关节角度为使得所述偏差满足所述预设条件的各个关节的所述关节角度;以及
    根据所确定的各个关节的所述关节角度控制所述臂架的各个关节。
  17. 一种用于补偿臂架挠度的装置,其特征在于,该装置包括:
    关节角度组确定模块,用于确定在所述臂架被视为刚性体的情况下若所述臂架的末端到达预设目标位置所述臂架的关节角度组,其中,所述关节角度组包括所述臂架的各个关节的关节角度;
    实际位置确定模块,用于确定所述关节角度组使得所述末端到达的实际位置;
    偏差确定模块,用于确定所述预设目标位置与所述实际位置之间的偏差;以及
    处理模块,用于在所述偏差不满足预设条件的情况下,调整所述关节角度组,并在根据调整后的所述关节角度组确定的所述偏差不满足所述预设条件的情况下继续调整所述关节角度组,直到所述偏差满足所述预设条件。
  18. 根据权利要求17所述的装置,其特征在于,所述臂架为工程机械的臂架。
  19. 根据权利要求17所述的装置,其特征在于,所述处理模块调整所述关节角度组为基于所述偏差进行调整。
  20. 根据权利要求17-19所述的装置,其特征在于,所述处理模块调整所述关节角度组为调整所述臂架的各个关节中至少两个关节的所述关节角度,其中,所述至少两个关节在所述臂架中依次相邻。
  21. 根据权利要求20所述的装置,其特征在于,选取所述至少两个关节时为从所述臂架的末端开始依次选取。
  22. 根据权利要求20所述的装置,其特征在于,所述至少两个关节的所述关节角度的调整量根据以下至少一者被确定:所述至少两个关节组成的子臂架的雅克比矩阵的伪逆矩阵、所述偏差以及预设函数,其中,所述预设函数为所述偏差的大小的函数且随着所述偏差的大小的减小而减小,所述预设函数的取值范围为小于或等于1。
  23. 根据权利要求22所述的装置,其特征在于,所述调整量根据以下公式被确定:
    Δq=M*J*Δe
    其中,Δq、Δe为向量,Δq的维度与所述至少两个关节包括的关节的数量相等,Δq中的元素值为所述至少两个关节的所述关节角度的所述调整量;Δe为所述偏差,M为所述预设函数,J为所述伪逆矩阵。
  24. 根据权利要求22所述的装置,其特征在于,所述预设函数为:
    Figure PCTCN2022082483-appb-100002
    其中,Δe为向量,Δe为所述偏差。
  25. 根据权利要求20所述的装置,其特征在于,该装置还包括:判断模块,用于在进行一次所述调整所述关节角度组后,判断所述至少两个关节中的至少一关节的所述关节角度是否处于关节限位内;
    所述处理模块还用于:在一关节的所述关节角度不处于该关节对应的所述关节限位 内的情况下,
    控制该关节的所述关节角度将不再被调整;和/或
    从所述臂架的可被调整所述关节角度的关节中重新选取被调整所述关节角度的所述至少两个关节,其中被重新选取的所述至少两个关节在所述臂架的可被调整所述关节角度的关节中依次相邻。
  26. 根据权利要求25所述的装置,其特征在于,所述处理模块还用于:
    在进行一次所述调整所述关节角度组后所述至少两个关节中的一关节的所述关节角度不处于该关节对应的所述关节限位内的情况下,将所述至少两个关节中的每一关节的所述关节角度均调整回到在进行该次调整所述关节角度组之前的所述关节角度,其中,从所述臂架的可被调整所述关节角度的关节中重新选取被调整所述关节角度的所述至少两个关节的步骤在将所述至少两个关节中的每一关节的所述关节角度均调整回到在进行该次调整所述关节角度组之前的所述关节角度的步骤之后。
  27. 根据权利要求20所述的装置,其特征在于,所述处理模块还用于:
    当满足以下条件时再次调整所述关节角度组时将被调整所述关节角度的关节的数量增加:调整所述关节角度组的次数超过第一预设值、每次调整所述关节角度组时被调整关节角度的关节的数量均为第二预设值、随着调整所述关节角度组次数的增加所述偏差变小以及所述偏差不满足所述预设条件。
  28. 根据权利要求17所述的装置,其特征在于,所述实际位置确定模块确定所述关节角度组使得所述末端到达的实际位置的次数不超过第三预设值。
  29. 根据权利要求17所述的装置,其特征在于,所述预设条件为所述偏差的大小小于第四预设值。
  30. 根据权利要求29所述的装置,其特征在于,该装置被应用在自动布料中,所述第四预设值与布料场景相关。
  31. 根据权利要求30所述的装置,其特征在于,所述第四预设值的取值范围为大 于0且小于或等于布料点补偿精度。
  32. 一种用于控制臂架的装置,其特征在于,该装置包括:
    关节角度确定模块,用于根据权利要求1-15中任一项所述的方法确定所述臂架的各个关节的关节角度,其中,所确定的各个关节的关节角度为使得所述偏差满足所述预设条件的各个关节的所述关节角度;以及
    控制模块,用于根据所确定的各个关节的所述关节角度控制所述臂架的各个关节。
  33. 一种工程机械,其特征在于,该工程机械包括:
    权利要求17-31中任一项所述的装置;和/或
    权利要求32所述的装置。
  34. 一种机器可读存储介质,其特征在于,该机器可读存储介质上存储有指令,该指令用于使得机器执行权利要求1-16中任一项所述的方法。
PCT/CN2022/082483 2021-03-23 2022-03-23 补偿臂架挠度的方法和装置及控制臂架的方法和装置 WO2022199610A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP22774266.5A EP4316754A1 (en) 2021-03-23 2022-03-23 Method and apparatus for compensating boom deflection, and method and apparatus for controlling boom
US18/283,514 US20240173859A1 (en) 2021-03-23 2022-03-23 Method and apparatus for compensating boom deflection, and method and apparatus for controlling boom

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110308323.7A CN113021408B (zh) 2021-03-23 2021-03-23 补偿臂架挠度的方法和装置及控制臂架的方法和装置
CN202110308323.7 2021-03-23

Publications (1)

Publication Number Publication Date
WO2022199610A1 true WO2022199610A1 (zh) 2022-09-29

Family

ID=76472792

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/082483 WO2022199610A1 (zh) 2021-03-23 2022-03-23 补偿臂架挠度的方法和装置及控制臂架的方法和装置

Country Status (4)

Country Link
US (1) US20240173859A1 (zh)
EP (1) EP4316754A1 (zh)
CN (1) CN113021408B (zh)
WO (1) WO2022199610A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113021408B (zh) * 2021-03-23 2022-08-05 中联重科股份有限公司 补偿臂架挠度的方法和装置及控制臂架的方法和装置
CN114408824B (zh) * 2022-01-19 2023-10-27 徐州海伦哲专用车辆股份有限公司 一种基于臂架回弹控制的平台调平系统
CN115305979B (zh) * 2022-08-16 2023-09-19 湖南中联重科智能高空作业机械有限公司 用于控制工程设备臂架的方法、处理器、装置及工程设备

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010058256A (ja) * 2008-09-08 2010-03-18 Yaskawa Electric Corp アーム位置調整方法及び装置並びにロボットシステム
CN103147577A (zh) * 2013-02-27 2013-06-12 中联重科股份有限公司 多关节类机械臂架的控制方法、设备、系统及工程机械
JP2018099743A (ja) * 2016-12-19 2018-06-28 株式会社デンソーウェーブ ロボットのたわみ補正方法、ロボットの制御装置
CN108297101A (zh) * 2018-03-20 2018-07-20 四川大学 多关节臂串联机器人末端位姿误差检测和动态补偿方法
CN109262659A (zh) * 2018-12-20 2019-01-25 中国铁建重工集团有限公司 一种机械臂关节传感器的零位校准方法和设备
CN109483529A (zh) * 2018-10-12 2019-03-19 华南智能机器人创新研究院 一种基于螺旋理论的机械臂伺服控制方法、系统及装置
CN110561419A (zh) * 2019-08-09 2019-12-13 哈尔滨工业大学(深圳) 臂型线约束柔性机器人轨迹规划方法及装置
DE102019118261B3 (de) * 2019-07-05 2020-08-20 Franka Emika Gmbh Vorgeben und Anwenden eines gewünschten Kontaktmoments eines Robotermanipulators
CN112109084A (zh) * 2020-08-21 2020-12-22 华南理工大学 基于机器人关节角度补偿的末端位置补偿方法及其应用
CN113021408A (zh) * 2021-03-23 2021-06-25 中联重科股份有限公司 补偿臂架挠度的方法和装置及控制臂架的方法和装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103206090B (zh) * 2012-12-27 2016-08-10 徐工集团工程机械股份有限公司江苏徐州工程机械研究院 一种混凝土泵车智能臂架控制及其变形补偿的方法
CN103806665B (zh) * 2014-01-26 2016-04-06 三一汽车制造有限公司 泵车智能臂弹性形变的矫正方法及装置
CN108406768B (zh) * 2018-03-09 2021-11-19 汇川技术(东莞)有限公司 一种基于自重和负载变形补偿的机器人标定方法以及系统
JP7305951B2 (ja) * 2018-12-14 2023-07-11 ニデック株式会社 キャリブレーション装置及びキャリブレーション方法
CN110450165B (zh) * 2019-08-22 2022-07-22 苏州科技大学 一种基于零力控制的机器人标定方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010058256A (ja) * 2008-09-08 2010-03-18 Yaskawa Electric Corp アーム位置調整方法及び装置並びにロボットシステム
CN103147577A (zh) * 2013-02-27 2013-06-12 中联重科股份有限公司 多关节类机械臂架的控制方法、设备、系统及工程机械
JP2018099743A (ja) * 2016-12-19 2018-06-28 株式会社デンソーウェーブ ロボットのたわみ補正方法、ロボットの制御装置
CN108297101A (zh) * 2018-03-20 2018-07-20 四川大学 多关节臂串联机器人末端位姿误差检测和动态补偿方法
CN109483529A (zh) * 2018-10-12 2019-03-19 华南智能机器人创新研究院 一种基于螺旋理论的机械臂伺服控制方法、系统及装置
CN109262659A (zh) * 2018-12-20 2019-01-25 中国铁建重工集团有限公司 一种机械臂关节传感器的零位校准方法和设备
DE102019118261B3 (de) * 2019-07-05 2020-08-20 Franka Emika Gmbh Vorgeben und Anwenden eines gewünschten Kontaktmoments eines Robotermanipulators
CN110561419A (zh) * 2019-08-09 2019-12-13 哈尔滨工业大学(深圳) 臂型线约束柔性机器人轨迹规划方法及装置
CN112109084A (zh) * 2020-08-21 2020-12-22 华南理工大学 基于机器人关节角度补偿的末端位置补偿方法及其应用
CN113021408A (zh) * 2021-03-23 2021-06-25 中联重科股份有限公司 补偿臂架挠度的方法和装置及控制臂架的方法和装置

Also Published As

Publication number Publication date
EP4316754A1 (en) 2024-02-07
CN113021408A (zh) 2021-06-25
CN113021408B (zh) 2022-08-05
US20240173859A1 (en) 2024-05-30

Similar Documents

Publication Publication Date Title
WO2022199610A1 (zh) 补偿臂架挠度的方法和装置及控制臂架的方法和装置
CN108932216B (zh) 一种基于粒子群优化算法的机器人逆运动学求解方法
Luk On the local existence for the characteristic initial value problem in general relativity
CN110275435A (zh) 基于观测器的多单臂机械手输出一致自适应命令滤波控制方法
CN109725644A (zh) 一种高超声速飞行器线性优化控制方法
CN105093931A (zh) 一种航空发动机非线性系统控制器设计方法
WO2015109976A1 (zh) 一种混凝土泵车及臂架控制方法与控制装置
CN108808889B (zh) 一种磁耦合无线电能传输系统的共振频率计算方法
JPH01316187A (ja) 関節式アームの移動制御方法
CN110018566A (zh) 自由曲面光学系统设计的方法、设备、系统及存储介质
CA2083020A1 (en) System for determining manipulator coordinates
CN107972030A (zh) 一种冗余机械臂重复运动中的初始位置修正方法
CN108255062B (zh) 基于改进差分进化机理的动力定位节能推力分配方法
CN101143443A (zh) 六自由度并联机器人解耦方法
CN113276833B (zh) 车辆的横向运动控制方法、控制终端及存储介质
CN110362110A (zh) 一种固定时自适应神经网络无人机航迹角控制方法
CN109634123A (zh) 用于pH中和过程的自抗扰控制参数整定方法
Burke et al. On the superlinear convergence of the variable metric proximal point algorithm using Broyden and BFGS matrix secant updating
CN113352327A (zh) 五自由度机械臂关节变量确定方法
CN107255926A (zh) 一种快速求解冗余度机械臂关节角偏移问题的方法
Hassan-Moghaddam et al. On the exponential convergence rate of proximal gradient flow algorithms
WO2023116129A1 (zh) 一种协作机器人的柔顺力控制方法及系统
WO2023029371A1 (zh) 一种射频电源的调谐方法
CN112650051B (zh) 一种广义二自由度pid控制器的预期动态整定方法
CN113110061B (zh) 基于改进粒子群算法优化的智能灌溉模糊控制方法及系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22774266

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18283514

Country of ref document: US

Ref document number: 2022774266

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022774266

Country of ref document: EP

Effective date: 20231023