WO2015109976A1 - 一种混凝土泵车及臂架控制方法与控制装置 - Google Patents

一种混凝土泵车及臂架控制方法与控制装置 Download PDF

Info

Publication number
WO2015109976A1
WO2015109976A1 PCT/CN2015/070991 CN2015070991W WO2015109976A1 WO 2015109976 A1 WO2015109976 A1 WO 2015109976A1 CN 2015070991 W CN2015070991 W CN 2015070991W WO 2015109976 A1 WO2015109976 A1 WO 2015109976A1
Authority
WO
WIPO (PCT)
Prior art keywords
boom
arm
angle
movement
signal
Prior art date
Application number
PCT/CN2015/070991
Other languages
English (en)
French (fr)
Inventor
代晴华
谭凌群
唐修俊
武利冲
Original Assignee
三一汽车制造有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三一汽车制造有限公司 filed Critical 三一汽车制造有限公司
Publication of WO2015109976A1 publication Critical patent/WO2015109976A1/zh

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04GSCAFFOLDING; FORMS; SHUTTERING; BUILDING IMPLEMENTS OR AIDS, OR THEIR USE; HANDLING BUILDING MATERIALS ON THE SITE; REPAIRING, BREAKING-UP OR OTHER WORK ON EXISTING BUILDINGS
    • E04G21/00Preparing, conveying, or working-up building materials or building elements in situ; Other devices or measures for constructional work
    • E04G21/02Conveying or working-up concrete or similar masses able to be heaped or cast
    • E04G21/04Devices for both conveying and distributing
    • E04G21/0418Devices for both conveying and distributing with distribution hose
    • E04G21/0445Devices for both conveying and distributing with distribution hose with booms
    • E04G21/0463Devices for both conveying and distributing with distribution hose with booms with boom control mechanisms, e.g. to automate concrete distribution

Definitions

  • the invention relates to the field of engineering machinery, in particular to a concrete pump truck and a boom control method and a control device.
  • the concrete pump truck boom is generally hinged by four arms, five arms and six arms.
  • the concrete is transported to the target pouring point through the boom.
  • the usual control method is that the operator uses the remote controller to control each arm separately, that is, one arm arm attitude control, so that the whole arm moves from the initial posture to the target posture. More complicated and less efficient.
  • the CN201110197146.6 patent discloses "a control method and a control device for a construction machine and a robot arm".
  • the patented technology employs a two-degree-of-freedom robot arm for each movement, and the arm arm displacement is minimized.
  • the principle is to obtain the two armes that need to be actuated according to the control command through a predefined "slope". Although this simplifies the algorithm, it will cause the two arm movements of the adjustment to be abrupt, the movement of the boom is discontinuous, and the stability of the movement of the boom is poor.
  • each arm is driven by a hydraulic cylinder.
  • the present invention provides a concrete pump truck and boom control method and control device to achieve minimum arm movement and smoothness, and to increase the range of the boom.
  • the present invention provides a boom control method comprising the following steps:
  • Step 1 establish a mathematical model according to the current position of the boom to the next target position; establish a target constraint function according to the principle of minimum arm movement and stability of each arm;
  • Step 2 Obtain the action signal of the remote controller, the current state angle signal of each arm of the boom, and the current rotation angle signal of the boom;
  • Step 3 obtaining the arm movement angle and the boom target rotation angle by calculation
  • Step 4 Determine whether the moving angle of each arm exceeds the moving range of the boom
  • Step 5 If all the arm movement angles exceed the boom movement range, stop the control boom motion; if the section arm movement angle exceeds the boom movement range, return to step 3 to recalculate. Otherwise, the control boom moves.
  • target constraint function includes the following:
  • OBJ 2 ⁇ w i ⁇ (( ⁇ i - ⁇ i-1 )-( ⁇ i-1 - ⁇ i-2 )) 2
  • w i represents the weight of the i-section arm
  • ⁇ i represents the target of the pitch arm movement
  • ⁇ i-1 represents the current angle
  • ⁇ i-2 represents the angle of the previous step.
  • the weight w i of the i-section arm is zero.
  • the hydraulic cylinder expansion and contraction amount is calculated based on the relationship between the arm angles and the hydraulic cylinder expansion and contraction amount for driving the respective arm movements, and the control boom operation is performed.
  • step 3 the spatial trajectory planning is divided into two calculations of the jib rotation and the mechanical arm plane motion, respectively, and the arm movement angle and the jib target rotation angle are respectively obtained.
  • ⁇ min ⁇ ⁇ i ⁇ ⁇ max
  • ⁇ i is the angle between the i-section arm and the i-1-section arm
  • ⁇ min represents the minimum movement angle of the i-section arm
  • ⁇ max represents the maximum movement angle of the i-section arm
  • ⁇ 0 is The angle of rotation
  • l i is the length of each arm
  • x end , y end , z end is the coordinates of the end point
  • N is the number of arm of the boom.
  • step 6 if the remote controller stops acting, stopping the boom motion; If the remote control continues to operate, return to step 1.
  • the present invention also provides a boom control device, comprising: a remote control device, a signal acquisition device, a signal preprocessing device, a calculation module device, and an output device, wherein the signal acquisition device includes each arm angle sensor and a rotation angle of the turntable.
  • the sensor, the wireless signal receiving device, and the wireless signal receiving device receive the remote device operating signal; each of the arm angle sensor signals, the turntable rotation angle sensor signal, and the remote control device action signal are processed by the signal preprocessing device, and the arm portions are obtained through the calculation module device. Move the angle and then control the boom movement through the output device.
  • the remote control device includes a pitch arm locking device.
  • the present invention also provides a concrete pump truck comprising the above-described boom control device.
  • the invention provides a concrete pump truck and a boom control method and a control device, and establishes a target constraint function according to the principle of minimum arm movement and motion stability of each arm; and determines an optimal solution by the target constraint function to realize the boom At the same time, it improves the stability and precise control of the movement of the boom, prevents the sudden movement and instability of the boom, and reduces the amount of movement of each arm to save energy and reduce emissions.
  • the spatial trajectory planning is divided into two calculations: the boom rotation and the mechanical arm plane motion, respectively, and the movement angles of each section arm and the target rotation angle of the boom are respectively obtained, and then it is judged whether the boom movement range is exceeded or not. The purpose of the intelligent control of the boom.
  • the relationship between the articulated linkage mechanism of the boom is also considered, the kinematics and dynamics relationship are integrated, and the trajectory algorithm is adjusted; the control current is a ramp function.
  • the arm locking function is added. If the i-section arm is locked by the operating hand, the weight w i of the i-section arm is zero. In this way, the operator can lock the arbitrary target arm according to the current boom posture to realize the trajectory planning of the target point, which makes the operation more flexible, and expands the scope of the construction work and the versatility of the boom planning strategy.
  • FIG. 1 is a schematic flow chart of a boom control method according to the present invention.
  • FIG. 2 is a schematic diagram of a calculation process of a plane motion planning of a boom according to the present invention
  • FIG 3 is a schematic structural view of a boom device of the present invention.
  • a preferred boom control method of the present invention comprises the following steps:
  • Step 1 establish a mathematical model according to the current position of the boom to the next target position; establish a target constraint function according to the principle of minimum arm movement and stability of each arm;
  • Step 2 Obtain the action signal of the remote controller, the current state angle signal of each arm of the boom, and the current rotation angle signal of the boom;
  • Step 3 obtaining the arm movement angle and the boom target rotation angle by calculation
  • Step 4 Determine whether the moving angle of each arm exceeds the moving range of the boom
  • Step 5 If all the arm movement angles exceed the boom movement range, stop the control boom motion; if the section arm movement angle exceeds the boom movement range, return to step 3 to recalculate; otherwise, the control boom moves.
  • the hinge position of the concrete pump truck turntable and the starting end of the boom frame is taken as the coordinate origin, and the hopper direction of the vehicle body is the X positive half shaft, and the direction perpendicular to the vehicle body is the positive half axis of the Y axis, according to the right hand rule of the Cartesian coordinate system.
  • the Z axis can be determined.
  • This coordinate system is the reference coordinate system of the boom intelligent motion system, that is, The motion planning strategy for the boom design is based on this coordinate system.
  • the remote control action signal includes a direction signal and a speed signal of the operation handle
  • the signal acquisition device receives the action signal of the remote control device through the wireless signal receiving device, and acquires the current state angle signal of each arm of the boom and the current rotation angle signal of the boom through the angle sensor.
  • ⁇ min ⁇ ⁇ i ⁇ ⁇ max
  • ⁇ i is the angle between the i-section arm and the i-1-section arm
  • ⁇ min represents the minimum movement angle of the i-section arm
  • ⁇ max represents the maximum movement angle of the i-section arm
  • ⁇ 0 is The angle of rotation
  • l i is the length of each arm
  • x end , y end , z end is the coordinates of the end point
  • N is the number of arm of the boom.
  • the spatial trajectory planning is divided into two calculations: the boom rotation and the mechanical arm plane motion, respectively, and respectively obtain the movement angle of each section arm and the target rotation angle of the boom.
  • the boom movement is as small as possible, that is, energy saving and emission reduction
  • the boom moves smoothly, avoiding drastic speed changes, especially reverse motion.
  • OBJ 2 ⁇ w i ⁇ (( ⁇ i - ⁇ i-1 )-( ⁇ i-1 - ⁇ i-2 )) 2
  • w i represents the weight of the i-section arm
  • ⁇ i represents the target angle at which the i- section arm moves
  • ⁇ i-1 represents the current angle
  • ⁇ i-2 represents the angle of the previous step.
  • the weight w i of the i-section arm is zero.
  • Step 1 Set the initial value and set the current state angle signal of each arm of the obtained boom For the initial value, the current rotation angle signal of the boom is set to the initial value;
  • Step 2 Calculate the step size h or adopt a negative gradient method using a one-dimensional linear search method
  • the fourth step otherwise jump to the second step.
  • step 5 According to the relationship between the arm angle and the hydraulic cylinder expansion and contraction function of driving the arm movements, it is necessary to fully consider the structural kinematics and dynamics, calculate the hydraulic cylinder expansion and contraction amount, and control the electromagnetic cylinder to electromagnetic exchange.
  • the control current is input to the valve, and the control current is a ramp function, not a rectangular function. Ensure that the boom moves continuously and smoothly.
  • step 6 If the remote control stops, stop the boom motion; if the remote controller continues to operate, return to step 1.
  • the invention provides a boom control method, which establishes a target constraint function according to the principle of minimum arm movement and motion stability of each arm; and determines an optimal solution by the target constraint function to realize the continuity of the boom motion; Improve the stability and precise control of the movement of the boom, and prevent the unstable movement of the boom from occurring. Reduce the amount of arm movement, energy saving and emission reduction.
  • the spatial trajectory planning is divided into two calculations: the boom rotation and the mechanical arm plane motion, respectively, and respectively obtain the movement angle of each section arm and the target rotation angle of the boom, and then determine whether the movement range of the boom is exceeded, and prevent Collision with obstacles, the purpose of intelligent control of the boom.
  • the relationship between the articulated linkage mechanism of the boom is also considered, the kinematics and dynamics relationship are integrated, and the trajectory algorithm is adjusted; the control current is a ramp function.
  • the arm locking function is added. If the i-section arm is locked by the operating hand, the weight w i of the i-section arm is 0, so that the operator can follow the current arm.
  • the posture of the frame is locked by any section arm to realize the trajectory planning of the target point, which makes the operation more flexible, and expands the scope of construction work and the versatility of the boom planning strategy.
  • the present invention further provides a boom control device, comprising: a remote control device, a signal acquisition device, a signal preprocessing device, a calculation module device, and an output device, wherein the signal acquisition device includes each arm angle sensor and a turntable. a rotation angle sensor and a wireless signal receiving device, the wireless signal receiving device receives the operation direction and the speed signal of the remote control device; each of the arm angle sensor signals and the turntable rotation angle sensor signal and the remote control device action signal are processed by the signal preprocessing device, and then passed through the calculation module
  • the device obtains the movement angle of each arm, and then controls the movement of the boom through the output device.
  • a set arm locking device is provided on the remote control device. Used to operate the hand to set the arm lock.
  • the present invention also provides a concrete pump truck comprising the above-described boom control device.

Abstract

一种臂架控制方法,包括以下几个步骤:步骤1:根据臂架当前位置至下一个目标位置建立数学模型;根据各节臂移动量最小和运动平稳性原则,建立目标约束函数;步骤2:获取遥控器动作信号、臂架的各节臂当前状态角度信号、臂架当前旋转角度信号;步骤3:通过计算获得各节臂移动角度和臂架目标旋转角度;步骤4:判断是否超出臂架移动范围;步骤5:如果超出臂架移动范围,停止控制臂架动作;否则,控制臂架动作。一种实现上述控制方法的控制装置以及具有该控制装置的混凝土泵车。该臂架运动量小、平稳性和连续性好、精确度高,作业范围大。

Description

一种混凝土泵车及臂架控制方法与控制装置
本申请要求于2014年1月26日提交中国专利局、申请号为201410038191.0、发明名称为“一种混凝土泵车及臂架控制方法与控制装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及工程机械领域,特别涉及一种混凝土泵车及臂架控制方法与控制装置。
背景技术
混凝土泵车臂架,一般由4节臂、5节臂、6节臂相互铰接而成,混凝土通过臂架输送到目标浇注点。对于臂架的控制,通常的控制方式是由操作人员使用遥控器对各节臂分别进行控制,即一个一个节臂姿态控制,使臂架的整体从初始姿态运动到目标姿态,这种方式操作较为复杂,并且效率较低。
针对上述的控制方法中存在的不足,目前已开发了多种智能程度更高的控制方法,并且运动学逆向求解的方法已能够根据目标点坐标和各节臂的相关参数,通过运动方程和矩阵变换求出各个自由度的值。逆向求解的结果会出现多组解。因为多自由度的臂架,臂架末端移动到目标点,各节臂之间有不同的姿态达到目标点。这样就需要确定一组较优解作为实际控制策略。目前确定一个最优解较为复杂,控制效果不佳。
为了解决上述的技术问题,CN201110197146.6专利公开了“一种工程机械以及机械臂的控制方法与控制装置”该专利技术每次动作采用两个自由度的机械臂,并遵从节臂位移量最小的原则,通过预先定义的“斜率”,根据控制指令获取需要动作的两个节臂。这样虽然简化了算法,但会导致调节的两个节臂运动突变,臂架运动不连续,臂架运动稳定性差。另外,各节臂是由液压油缸驱动的,臂架在实际运动过程中,液压油缸伸缩量与各节臂角度变化量不是线性函数关系,而是非线性函数关系,因此,即使液压油缸的小位移动作,也会导致节臂角度大幅变化,造成节臂动作突变,进而导致臂架不稳定等问题。
发明内容
有鉴于此,本发明提出一种混凝土泵车及臂架控制方法与控制装置,以实现臂架运动量最小和平稳性好,及增大臂架作用范围。
一方面,本发明提供了一种臂架控制方法,包括以下几个步骤:
步骤1:根据臂架当前位置至下一个目标位置建立数学模型;根据各节臂移动量最小和运动平稳性原则,建立目标约束函数;
步骤2:获取遥控器动作信号、臂架的各节臂当前状态角度信号、臂架当前旋转角度信号;
步骤3:通过计算获得各节臂移动角度和臂架目标旋转角度;
步骤4:判断各节臂移动角度是否超出臂架移动范围;
步骤5:如果所有节臂移动角度均超出臂架移动范围,停止控制臂架动作;如果部分节臂移动角度超出臂架移动范围,返回步骤3重新计算, 否则,控制臂架动作。
进一步地,目标约束函数包括如下:
OBJ1=Σwi·(θii-1)2
OBJ2=Σwi·((θii-1)-(θi-1i-2))2
其中,wi表示i节臂的权重;θi表示节臂移动的目标,θi-1表示当前角度,θi-2表示前一步的角度。
进一步地,如果i节臂被操作手锁定,i节臂的权重wi为0。
进一步地,根据各节臂角度与驱动各节臂动作的液压油缸伸缩量函数关系,计算液压油缸伸缩量,进行控制臂架动作。
进一步地,在步骤3中:将空间轨迹规划分成臂架旋转和机械臂平面动作两个规划分别进行计算,分别获得各节臂移动角度和臂架目标旋转角度。
进一步地,数学模型如下:
Figure PCTCN2015070991-appb-000001
Figure PCTCN2015070991-appb-000002
Figure PCTCN2015070991-appb-000003
其中,θmin≤θi≤θmax,θi为i节臂与i-1节臂的夹角,θmin表示i节臂最小移动角度,θmax表示i节臂最大移动角度;θ0为旋转角度;li为各节臂长度;xend,yend,zend为末端点坐标,N为臂架的节臂数量。
进一步地,还包括步骤6,如果遥控器停止动作,停止臂架动作;如 果遥控器继续动作,返回步骤1。
另一方面,本发明还提供了一种臂架控制装置,包括:遥控装置、信号采集装置、信号预处理装置、计算模块装置、输出装置,信号采集装置包括各节臂角度传感器、转台旋转角度传感器、无线信号接收装置,无线信号接收装置接收遥控装置动作信号;各节臂角度传感器信号和转台旋转角度传感器信号及遥控装置动作信号经过信号预处理装置处理后,通过计算模块装置获得各节臂移动角度,再通过输出装置控制臂架动作。
进一步地,遥控装置包括节臂锁定装置。
再一方面,本发明还提供了一种混凝土泵车,包括上述的臂架控制装置。
本发明提供的一种混凝土泵车及臂架控制方法与控制装置,根据各节臂移动量最小和运动平稳性原则,建立目标约束函数;通过目标约束函数,确定一个最优解,实现臂架运动的连续性;同时,提高了臂架运动平稳性和精确控制,防止臂架运动突变、不稳定的情况发生;减少各节臂移动量,起到节能减排的作用。另外,为了简化计算,将空间轨迹规划分成臂架旋转和机械臂平面动作两个规划分别进行计算,分别获得各节臂移动角度和臂架目标旋转角度,然后判断是否超出臂架移动范围,实现了臂架智能控制的目的。为了进一步提高臂架运动的连续性和平稳性能,还综合考虑臂架铰接连杆机构关系,融入运动学、动力学关系,调整轨迹算法;控制电流为斜坡函数。为了增大臂架作业范围,防止臂架与障碍物相碰,增加了节臂锁定功能,如果i节臂被操作手锁定,i节臂的权重wi为0。这样操作者可根据当前臂架姿态进行任意节臂的锁定实现目标点的轨迹规划,使得操作更加灵活,扩大施工作业范围和臂架规划策略通用性。
附图说明
图1为本发明臂架控制方法流程示意图;
图2为本发明臂架平面运动规划计算流程示意图;
图3为本发明臂架装置结构示意图。
具体实施方式
需要说明的是,在不冲突的情况下,本发明中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本发明。
如图1和图2所示,本发明优选的一种臂架控制方法,包括以下几个步骤:
步骤1:根据臂架当前位置至下一个目标位置建立数学模型;根据各节臂移动量最小和运动平稳性原则,建立目标约束函数;
步骤2:获取遥控器动作信号、臂架的各节臂当前状态角度信号、臂架当前旋转角度信号;
步骤3:通过计算获得各节臂移动角度和臂架目标旋转角度;
步骤4:判断各节臂移动角度是否超出臂架移动范围;
步骤5:如果所有节臂移动角度均超出臂架移动范围,停止控制臂架动作;如果部分节臂移动角度超出臂架移动范围,返回步骤3重新计算,否则,控制臂架动作。
具体实施如下:
1)建立坐标系
以混凝土泵车转台与臂架始端节臂铰接处作为坐标原点,以车身的料斗方向为X正半轴,以垂直于车身的方向为Y轴正半轴,根据笛卡尔坐标系右手定则,可确定Z轴。本坐标系是臂架智能运动系统基准坐标系,即 对臂架设计的运动规划策略都是以该坐标系作为参照的。
2)通过信号采集装置接收获取遥控器动作信号、臂架的各节臂当前状态角度信号、臂架当前旋转角度信号。遥控器动作信号包括操作手柄的方向信号和速度信号,信号采集装置通过无线信号接收装置接收遥控装置动作信号,通过角度传感器获取臂架的各节臂当前状态角度信号和臂架当前旋转角度信号。
3)臂架空间轨迹规划建立数学模型
设计多自由度臂架运动规划策略之前,首先需要建立系统数学模型。根据臂架结构运动学关系可知,在上述建立的坐标系基础上,数学模型为:
Figure PCTCN2015070991-appb-000004
Figure PCTCN2015070991-appb-000005
Figure PCTCN2015070991-appb-000006
其中,θmin≤θi≤θmax,θi为i节臂与i-1节臂的夹角,θmin表示i节臂最小移动角度,θmax表示i节臂最大移动角度;θ0为旋转角度;li为各节臂长度;xend,yend,zend为末端点坐标,N为臂架的节臂数量。
将空间轨迹规划分成臂架旋转和机械臂平面动作两个规划分别进行计算,分别获得各节臂移动角度和臂架目标旋转角度。
若只考虑臂架平面运动则上述数学模型简化为:
Figure PCTCN2015070991-appb-000007
Figure PCTCN2015070991-appb-000008
4)建立目标约束函数时需要考虑:
其一、从当前位置移动到目标位置,臂架移动尽量小,即节能减排;
其二、臂架平稳移动,避免剧烈的速度变化,特别是反向运动。
OBJ1=Σwi·(θii-1)2
OBJ2=Σwi·((θii-1)-(θi-1i-2))2
其中,wi表示i节臂的权重;θi表示i节臂移动的目标角度,θi-1表示当前角度,θi-2表示前一步的角度。
如果i节臂被操作手锁定,i节臂的权重wi为0。
5)建立带约束的优化问题,将带约束的优化问题转化为非约束的优化问题
下一步加入惩罚因子,将带约束的优化问题转化为非约束的优化问题
Figure PCTCN2015070991-appb-000009
因此只要求得g(θ)的解即可。
如图2所示,具体步骤如下:
第一步:设定初始值,将获得的臂架的各节臂当前状态角度信号设定 为初值、臂架当前旋转角度信号设定为初值;
第二步:采用一维线性搜索方法计算步长h或者采用负梯度方法;
第三步,如果,ceq1、2(x)<ε并且θimin≤θi≤θimax,则退出;
第四步,否则跳转第二步。
6)臂架在运动过程中某节臂被锁定
在运动过程中,某个节臂若因为人为或者结构原因,导致无法移动,需要在规划策略设计中降低一维或多维自由度。具体地分为两种情况:
其一、若臂架旋转无法满足输入命令要求,则停止运动;
其二、若臂架某个节臂被锁定,则将当前节臂姿态记录下来,通过节臂平面运动规划中,将该i节臂的权重wi为0。
7)通过计算获得各节臂移动角度和臂架目标旋转角度;
8)判断各节臂移动角度是否超出臂架移动范围;如果所有节臂移动角度均超出臂架移动范围,停止控制臂架动作;如果部分节臂移动角度超出臂架移动范围,返回步骤3重新计算,否则,控制臂架动作。
9)在步骤5中:根据各节臂角度与驱动各节臂动作的液压油缸伸缩量函数关系,需要充分考虑结构运动学和动力学,计算得到液压油缸伸缩量,向控制液压油缸的电磁换向阀输入控制电流,控制电流是一个斜坡函数,不是矩形函数。确保臂架动作连续性和平顺性。
10)还包括步骤6,如果遥控器停止动作,停止臂架动作;如果遥控器继续动作,返回步骤1。
本发明提供的一种臂架控制方法,根据各节臂移动量最小和运动平稳性原则,建立目标约束函数;通过目标约束函数,确定一个最优解,实现 臂架运动的连续性;同时,提高了臂架运动平稳性和精确控制,防止臂架运动突变不稳定的情况发生。减少各节臂移动量,节能减排的作用。另外,为了简化计算,将空间轨迹规划分成臂架旋转和机械臂平面动作两个规划分别进行计算,分别获得各节臂移动角度和臂架目标旋转角度,然后判断是否超出臂架移动范围,防止与障碍物相碰,实现了臂架智能控制的目的。为了进一步提高臂架运动的连续性和平稳性能,还综合考虑臂架铰接连杆机构关系,融入运动学、动力学关系,调整轨迹算法;控制电流为一个斜坡函数。为了增大臂架作业范围,防止臂架与障碍物相碰,增加了节臂锁定功能,如果i节臂被操作手锁定,i节臂的权重wi为0,这样操作者可根据当前臂架姿态进行任意节臂的锁定实现目标点的轨迹规划,使得操作更加灵活,扩大施工作业范围和臂架规划策略通用性。
如图3所示,本发明还提供了一种臂架控制装置,包括:遥控装置、信号采集装置、信号预处理装置、计算模块装置、输出装置,信号采集装置包括各节臂角度传感器、转台旋转角度传感器、无线信号接收装置,无线信号接收装置接收遥控装置动作方向和速度信号;各节臂角度传感器信号和转台旋转角度传感器信号及遥控装置动作信号经过信号预处理装置处理后,通过计算模块装置获得各节臂移动角度,再通过输出装置控制臂架动作。在遥控装置上设置有设定节臂锁定装置。用于操作手设定节臂锁定。本发明还提供了一种混凝土泵车,包括上述的臂架控制装置。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种臂架控制方法,其特征在于,包括以下几个步骤:
    步骤1:根据臂架当前位置至下一个目标位置建立数学模型;根据各节臂移动量最小和运动平稳性原则,建立目标约束函数;
    步骤2:获取遥控器动作信号、臂架的各节臂当前状态角度信号、臂架当前旋转角度信号;
    步骤3:通过计算获得各节臂移动角度和臂架目标旋转角度;
    步骤4:判断各节臂移动角度是否超出臂架移动范围;
    步骤5:如果所有节臂移动角度均超出臂架移动范围,停止控制臂架动作;如果部分节臂移动角度超出臂架移动范围,返回步骤3重新计算,否则,控制臂架动作。
  2. 根据权利要求1所述的臂架控制方法,其特征在于,目标约束函数包括如下:
    OBJ1=Σwi·(θii-1)2
    OBJ2=Σwi·((θii-1)-(θi-1i-2))2
    其中,wi表示第i节臂的权重;θi表示i节臂移动的目标角度,θi-1表示当前角度,θi-2表示前一步的角度。
  3. 根据权利要求2所述的臂架控制方法,其特征在于,如果第i节臂被操作手锁定,i节臂的权重wi为0。
  4. 根据权利要求1所述的臂架控制方法,其特征在于,在步骤5中:根据各节臂角度与驱动各节臂动作的液压油缸伸缩量函数关系,计算液压油缸伸缩量,进行控制臂架动作。
  5. 根据权利要求1所述的臂架控制方法,其特征在于,在步骤3中:将空间轨迹规划分成臂架旋转和机械臂平面动作两个规划分别进行计算,分别获得各节臂移动角度和臂架目标旋转角度。
  6. 根据权利要求1所述的臂架控制方法,其特征/在于,数学模型如下:
    Figure PCTCN2015070991-appb-100001
    Figure PCTCN2015070991-appb-100002
    Figure PCTCN2015070991-appb-100003
    其中,θmin≤θi≤θmax,θi为i节臂与i-1节臂的夹角,θmin表示i节臂最小移动角度,θmax表示i节臂最大移动角度;θ0为旋转角度;li为各节臂长度;xend,yend,zend为末端点坐标,N为臂架的节臂数量。
  7. 根据权利要求1至6任意一项所述的臂架控制方法,其特征在于,还包括步骤6,如果遥控器停止动作,停止臂架动作;如果遥控器继续动作,返回步骤1。
  8. 一种臂架控制装置,其特征在于,包括:遥控装置、信号采集装置、信号预处理装置、计算模块装置、输出装置,信号采集装置包括各节臂角度传感器、转台旋转角度传感器、无线信号接收装置,无线信号接收装置接收遥控装置动作信号;各节臂角度传感器信号和转台旋转角度传感器信号及遥控装置动作信号经过信号预处理装置处理后,通过计算模块装置获得各节臂移动角度,再通过输出装置控制臂架动作。
  9. 根据权利要求8所述的臂架控制装置,其特征在于,遥控装置包括节臂锁定装置。
  10. 一种混凝土泵车,其特征在于,包括如权利要求8或9所述的臂架控制装置。
PCT/CN2015/070991 2014-01-26 2015-01-19 一种混凝土泵车及臂架控制方法与控制装置 WO2015109976A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410038191.0 2014-01-26
CN201410038191.0A CN103806667B (zh) 2014-01-26 2014-01-26 一种混凝土泵车及臂架控制方法与控制装置

Publications (1)

Publication Number Publication Date
WO2015109976A1 true WO2015109976A1 (zh) 2015-07-30

Family

ID=50704011

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/070991 WO2015109976A1 (zh) 2014-01-26 2015-01-19 一种混凝土泵车及臂架控制方法与控制装置

Country Status (2)

Country Link
CN (1) CN103806667B (zh)
WO (1) WO2015109976A1 (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017174350A1 (de) * 2016-04-08 2017-10-12 Reschwitzer Saugbagger Produktions Gmbh Verfahren zur steuerung der bewegung eines gelenkschlauchträgers eines saugbaggers
WO2018115248A1 (de) * 2016-12-21 2018-06-28 Schwing Gmbh Grossmanipulator mit automatisiertem mastaufbau
EP3705664A1 (de) 2019-03-07 2020-09-09 Liebherr-Mischtechnik GmbH Gelenkarm-steuerung einer betonpumpe
EP3705662A1 (de) 2019-03-07 2020-09-09 Liebherr-Mischtechnik GmbH Gelenkarm-steuerung einer betonpumpe
EP3705663A1 (de) 2019-03-07 2020-09-09 Liebherr-Mischtechnik GmbH Gelenkarm-steuerung einer betonpumpe
CN111754141A (zh) * 2020-08-06 2020-10-09 湖南库特智能科技有限公司 一种泵车多臂协同控制方法及系统
CN112784428A (zh) * 2021-01-29 2021-05-11 华中科技大学鄂州工业技术研究院 一种基于dh参数的混凝土泵车拉格朗日动力学建模方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103806667B (zh) * 2014-01-26 2015-12-30 三一汽车制造有限公司 一种混凝土泵车及臂架控制方法与控制装置
CN106150101B (zh) * 2016-08-19 2018-08-07 北汽福田汽车股份有限公司 臂架的控制器、控制系统、控制方法及泵车
CN107520838B (zh) * 2017-08-21 2020-05-29 珠海格力电器股份有限公司 机械手臂及其控制方法和装置
CN112115929B (zh) * 2020-11-23 2021-03-02 国网瑞嘉(天津)智能机器人有限公司 一种作业臂架移动位姿的确定方法、装置及存储介质
CN114756063A (zh) * 2022-03-30 2022-07-15 徐州徐工施维英机械有限公司 一种臂架轨迹规划的控制方法及泵车

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000282687A (ja) * 1999-03-31 2000-10-10 Ishikawajima Constr Mach Co ブーム付コンクリートポンプ車の運転制御装置
CN101487343A (zh) * 2009-01-14 2009-07-22 三一重工股份有限公司 一种混凝土泵车的控制方法、装置及系统
CN101893900A (zh) * 2010-06-29 2010-11-24 三一重工股份有限公司 工程机械及其臂架控制系统
JP2011074712A (ja) * 2009-10-01 2011-04-14 Ihi Construction Machinery Ltd ブーム付きコンクリートポンプ車の残留コンクリート処理方法及び装置
CN103233581A (zh) * 2013-02-08 2013-08-07 上海格尼特控制技术有限公司 一种混凝土臂架泵车及其控制方法
CN103806667A (zh) * 2014-01-26 2014-05-21 三一汽车制造有限公司 一种混凝土泵车及臂架控制方法与控制装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100591880C (zh) * 2006-12-31 2010-02-24 三一重工股份有限公司 一种智能臂架控制装置
CN201406841Y (zh) * 2009-03-31 2010-02-17 北京易斯路电子有限公司 混凝土泵车智能臂架控制系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000282687A (ja) * 1999-03-31 2000-10-10 Ishikawajima Constr Mach Co ブーム付コンクリートポンプ車の運転制御装置
CN101487343A (zh) * 2009-01-14 2009-07-22 三一重工股份有限公司 一种混凝土泵车的控制方法、装置及系统
JP2011074712A (ja) * 2009-10-01 2011-04-14 Ihi Construction Machinery Ltd ブーム付きコンクリートポンプ車の残留コンクリート処理方法及び装置
CN101893900A (zh) * 2010-06-29 2010-11-24 三一重工股份有限公司 工程机械及其臂架控制系统
CN103233581A (zh) * 2013-02-08 2013-08-07 上海格尼特控制技术有限公司 一种混凝土臂架泵车及其控制方法
CN103806667A (zh) * 2014-01-26 2014-05-21 三一汽车制造有限公司 一种混凝土泵车及臂架控制方法与控制装置

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11142886B2 (en) 2016-04-08 2021-10-12 Rsp Gmbh Method for controlling the movement of an articulated hose carrier of a suction excavator
WO2017174350A1 (de) * 2016-04-08 2017-10-12 Reschwitzer Saugbagger Produktions Gmbh Verfahren zur steuerung der bewegung eines gelenkschlauchträgers eines saugbaggers
WO2018115248A1 (de) * 2016-12-21 2018-06-28 Schwing Gmbh Grossmanipulator mit automatisiertem mastaufbau
KR20190095434A (ko) * 2016-12-21 2019-08-14 슈빙 게엠베하 자동화된 마스트 셋-업을 이용하는 대형 조작기
CN110337520A (zh) * 2016-12-21 2019-10-15 德国施维英有限公司 具有自动桅杆设置的大型机械手
US11655642B2 (en) 2016-12-21 2023-05-23 Schwing Gmbh Large manipulator with automated mast set-up
KR102439721B1 (ko) * 2016-12-21 2022-09-02 슈빙 게엠베하 자동화된 마스트 셋-업을 이용하는 대형 조작기
EP3705664A1 (de) 2019-03-07 2020-09-09 Liebherr-Mischtechnik GmbH Gelenkarm-steuerung einer betonpumpe
DE102019105817A1 (de) * 2019-03-07 2020-09-10 Liebherr-Mischtechnik Gmbh Gelenkarm-Steuerung einer Betonpumpe
DE102019105814A1 (de) * 2019-03-07 2020-09-10 Liebherr-Mischtechnik Gmbh Gelenkarm-Steuerung einer Betonpumpe
DE102019105871A1 (de) * 2019-03-07 2020-09-10 Liebherr-Mischtechnik Gmbh Gelenkarm-Steuerung einer Betonpumpe
EP3705663A1 (de) 2019-03-07 2020-09-09 Liebherr-Mischtechnik GmbH Gelenkarm-steuerung einer betonpumpe
EP3705662A1 (de) 2019-03-07 2020-09-09 Liebherr-Mischtechnik GmbH Gelenkarm-steuerung einer betonpumpe
CN111754141A (zh) * 2020-08-06 2020-10-09 湖南库特智能科技有限公司 一种泵车多臂协同控制方法及系统
CN111754141B (zh) * 2020-08-06 2024-03-01 湖南库特智能科技有限公司 一种泵车多臂协同控制方法及系统
CN112784428A (zh) * 2021-01-29 2021-05-11 华中科技大学鄂州工业技术研究院 一种基于dh参数的混凝土泵车拉格朗日动力学建模方法

Also Published As

Publication number Publication date
CN103806667B (zh) 2015-12-30
CN103806667A (zh) 2014-05-21

Similar Documents

Publication Publication Date Title
WO2015109976A1 (zh) 一种混凝土泵车及臂架控制方法与控制装置
WO2015109975A1 (zh) 一种混凝土泵车和臂架控制方法
US11642785B2 (en) Collision-free motion planning for closed kinematics
US6643563B2 (en) Trajectory planning and motion control strategies for a planar three-degree-of-freedom robotic arm
CN107966907B (zh) 一种应用于冗余度机械臂的障碍物躲避解决方法
CN110039542A (zh) 具有速度方向控制的视觉伺服跟踪控制方法及机器人系统
CN110815180A (zh) 六自由度并联机器人运动分析建模及快速求解方法
CN111993414B (zh) 一种机械臂多关节联动控制方法
CN109807901A (zh) 一种六足机器人及其足端轨迹的规划方法
WO2015165346A1 (zh) 一种工程机械和臂架控制系统
WO2013007039A1 (zh) 机械臂的控制方法与控制装置以及工程机械
Liao et al. Energy efficient swing leg trajectory planning for quadruped robots walking on rough terrain
Shao et al. Rrt-goalbias and path smoothing based motion planning of mobile manipulators with obstacle avoidance
WO2023173764A1 (zh) 一种机械臂与灵巧手的融合系统及运动控制方法
CN115057355A (zh) 变绳长双摆桥式吊车自抗扰控制方法及系统
Yuchen et al. Research on Multi-UUV Pursuit-Evasion games strategies under the condition of strongly manoeuvrable evader
Coelho et al. Hierarchical control of redundant aerial manipulators with enhanced field of view
Peng et al. Whole body collaborative planning method for legged locomotion manipulation system in operation process
WO2013007037A1 (zh) 工程机械以及机械臂的控制方法与控制装置
Maravall Control and stabilization of the inverted pendulum via vertical forces
Kang et al. A unified modeling and trajectory planning method based on system manipulability for the operation process of the legged locomotion manipulation system
CN113878578A (zh) 适用于复合型机器人的动态自适应定位方法和系统
Wang et al. Vision positioning-based estimation method and its simulation studies on state of underwater manipulator
CN112580196A (zh) 变绳长无人机减摆控制器生成方法、控制方法及生成系统
Alkkiomaki et al. Smooth transition from motion to force control in robotic manipulation using vision

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15740736

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15740736

Country of ref document: EP

Kind code of ref document: A1