WO2022199363A1 - 天线、无线信号处理设备及无人机 - Google Patents

天线、无线信号处理设备及无人机 Download PDF

Info

Publication number
WO2022199363A1
WO2022199363A1 PCT/CN2022/079360 CN2022079360W WO2022199363A1 WO 2022199363 A1 WO2022199363 A1 WO 2022199363A1 CN 2022079360 W CN2022079360 W CN 2022079360W WO 2022199363 A1 WO2022199363 A1 WO 2022199363A1
Authority
WO
WIPO (PCT)
Prior art keywords
vibrator
substrate
antenna
oscillator
feeder
Prior art date
Application number
PCT/CN2022/079360
Other languages
English (en)
French (fr)
Inventor
宋建平
王建磊
Original Assignee
深圳市道通智能航空技术股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市道通智能航空技术股份有限公司 filed Critical 深圳市道通智能航空技术股份有限公司
Priority to EP22774025.5A priority Critical patent/EP4318801A1/en
Publication of WO2022199363A1 publication Critical patent/WO2022199363A1/zh
Priority to US18/373,109 priority patent/US20240030605A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/27Adaptation for use in or on movable bodies
    • H01Q1/28Adaptation for use in or on aircraft, missiles, satellites, or balloons
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/40Imbricated or interleaved structures; Combined or electromagnetically coupled arrangements, e.g. comprising two or more non-connected fed radiating elements
    • H01Q5/48Combinations of two or more dipole type antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/27Adaptation for use in or on movable bodies
    • H01Q1/28Adaptation for use in or on aircraft, missiles, satellites, or balloons
    • H01Q1/285Aircraft wire antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • H01Q9/045Substantially flat resonant element parallel to ground plane, e.g. patch antenna with particular feeding means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/16Resonant antennas with feed intermediate between the extremities of the antenna, e.g. centre-fed dipole
    • H01Q9/28Conical, cylindrical, cage, strip, gauze, or like elements having an extended radiating surface; Elements comprising two conical surfaces having collinear axes and adjacent apices and fed by two-conductor transmission lines
    • H01Q9/285Planar dipole

Definitions

  • the present invention relates to the technical field of antenna structures, in particular to an antenna, a wireless signal processing device and an unmanned aerial vehicle.
  • Antenna is a key component used to realize the transmission and reception of electromagnetic wave wireless signals. Its performance has a major impact on devices such as drones that require long-range wireless data transmission. With the continuous development of electronic information technology, wireless transmission has higher and higher requirements for the number of frequency bands covered and bandwidth. This poses a great challenge to the structural design of the antenna.
  • Embodiments of the present invention aim to provide an antenna, a wireless signal processing device, and an unmanned aerial vehicle, which can solve the defects of the existing large-bandwidth antennas with complex structure and difficulty in miniaturization.
  • an antenna The antenna includes:
  • the substrate has a first surface and a second surface opposite to the first surface;
  • the first vibrator and the second vibrator are arranged on the first surface, the first vibrator and the second vibrator are in opposite directions, the first vibrator is located at the end close to the head of the substrate, and the second vibrator is located at the end of the base plate. one end close to the base of the substrate;
  • a third vibrator arranged on the second surface, the third vibrator is mirror-symmetrical to a part of the first vibrator, and is connected to the second vibrator, so that the first vibrator, the first vibrator and the second vibrator are connected.
  • the two oscillators and the third oscillator form a coupling resonance point;
  • a feeder connected to the first vibrator, the second vibrator and the third vibrator.
  • the antenna further comprises: a fourth vibrator and a fifth vibrator arranged on the second surface;
  • the fourth vibrator and the fifth vibrator are arranged symmetrically and have opposite orientations, and the fourth vibrator faces one end of the head of the substrate.
  • the feeder includes a first feeder and a second feeder;
  • the first feeder runs on the first surface of the substrate and is connected with the first vibrator, the second vibrator and the third vibrator;
  • the second feed line runs on the second surface of the substrate and is connected with the fourth vibrator and the fifth vibrator.
  • the first feeder and the second feeder are coaxial;
  • the first vibrator is connected to the inner conductor of the first feeder, and the second vibrator and the third vibrator form a path and are connected to the outer conductor of the first feeder;
  • the fourth vibrator is connected to the inner conductor of the second feeder, and the fifth vibrator is connected to the outer conductor of the second feeder.
  • the first vibrator and the second vibrator are symmetrically arranged along the axis direction of the substrate.
  • the difference between the effective length of the first vibrator and the effective length of the second vibrator is greater than zero and less than a preset length threshold.
  • the first vibrator includes:
  • the first vibrator body having a predetermined length extending along the radial direction of the substrate;
  • a first microstrip line arranged on the symmetry axis of the first vibrator, the length of the first microstrip line is greater than that of the vibrating arm, and communicated with the main body of the vibrator;
  • the length of the second microstrip line is greater than that of the first microstrip line, and is connected with the first vibrator
  • the main body is connected.
  • the third vibrator is mirror-symmetrical to the first vibrator body and a pair of the second microstrip lines.
  • the second vibrator includes:
  • the second vibrator body having a predetermined length extending along the radial direction of the substrate
  • a pair of third microstrip lines, the third microstrip lines are arranged between a pair of the second vibrating arms.
  • the third microstrip line extends to one end of the base of the substrate; the width of the third microstrip line is larger than that of the second vibrating arm.
  • the fourth vibrator includes: a fourth vibrator main body and a pair of fourth vibrating arms formed by two ends of the fourth vibrator extending along the axis direction of the substrate.
  • the first vibrator, the second vibrator and the third vibrator form a first radiation part
  • the fourth vibrator and the fifth vibrator form a second radiation part
  • the first radiation part corresponds to the first frequency band; the second radiation part corresponds to the second frequency band, and has a size and length between 1/8 to 3/4 of the resonant wavelength of the second frequency band; the first frequency band frequency is higher than the second frequency band.
  • the first frequency band is a 900MHz frequency band
  • the second frequency band is a 5.8GHz frequency band.
  • the antenna further includes: a pad body with a preset size,
  • the pad body is disposed between the feeder line and the substrate to keep the feeder line at a distance from the substrate.
  • the cushion body includes: a foam layer, a plastic frame or a wood frame.
  • the fixing method for fixing the feeder and the pad body on the substrate includes: binding and fixing or sticking and fixing.
  • the embodiments of the present invention further provide the following technical solution: a wireless signal processing device.
  • the wireless signal processing device includes: the above-mentioned antenna, used for sending or receiving wireless signals; a receiving path, used for analyzing the wireless signal received by the antenna to obtain the information content contained in the wireless signal; a transmitting path, It is used to load the information content into the radio frequency carrier signal to form a wireless signal and send it through the antenna.
  • a drone comprises: a fuselage with a landing gear on the fuselage; a motor installed at the connection between the fuselage and the landing gear, and used to provide flying power for the drone; as described above
  • the antenna is installed in the landing gear.
  • the antenna of the embodiment of the present invention adopts reasonable wiring and structural design, and uses the first oscillator, the second oscillator and the third oscillator located on both sides of the substrate to form a coupling resonance point, which can realize a larger size on a smaller substrate. bandwidth, overcoming the difficulty of miniaturization of large-bandwidth antennas.
  • FIG. 1 is a schematic structural diagram of an antenna provided by an embodiment of the present invention.
  • FIG. 2 is a schematic structural diagram of a first vibrator and a second vibrator provided by an embodiment of the present invention
  • FIG. 3 is a side view of an antenna provided by an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of a low-frequency S-parameter of an antenna provided by an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of a high-frequency S-parameter of an antenna provided by an embodiment of the present invention.
  • FIG. 6 is a directional diagram of an antenna in a low frequency band provided by an embodiment of the present invention.
  • FIG. 7 is a directional diagram of an antenna in a high frequency band provided by an embodiment of the present invention.
  • FIG. 8 is a schematic diagram of a wireless signal processing device according to an embodiment of the present invention.
  • FIG. 9 is a schematic diagram of an application scenario of an antenna provided in an embodiment of the present invention in a drone.
  • FIG. 1 is a schematic structural diagram of an antenna provided by an embodiment of the present invention.
  • the front surface of the antenna is referred to as “first surface A”
  • the rear surface thereof is referred to as “second surface B”.
  • the “first” and “second” are only used to distinguish the front and back surfaces of the substrate 10, and are not used to define the surface.
  • the antenna mainly includes a substrate 10 as the basis of the antenna structure, and vibrators ( 211 , 212 , 213 , 221 , 222 ) that are arranged on the first surface A and the second surface B of the substrate and have specific structural shapes. and feeders (31, 32) connected to the vibrator.
  • the substrate 10 can be made of any type of material (eg, plastic, foam), and has a non-conductive structure with a specific shape (eg, trapezoid). It has a relatively flat shape, forming flat first and second surfaces.
  • a specific shape eg, trapezoid
  • the vibrator is a conductor (such as copper foil) with a specific shape and length arranged on the surface of the substrate. It can be fixed on the surface of the substrate in any suitable form (such as a patch type) and exposed to the outside, and can receive or transmit wireless signals in a specific frequency band through the principle of electromagnetic induction.
  • a conductor such as copper foil
  • the vibrator can be fixed on the surface of the substrate in any suitable form (such as a patch type) and exposed to the outside, and can receive or transmit wireless signals in a specific frequency band through the principle of electromagnetic induction.
  • One or more vibrators can form a resonance unit for receiving or transmitting wireless signals in a specific frequency band.
  • a resonance unit may be referred to as a "radiating part".
  • the substrate 10 may be provided with a first vibrator 211 , a second vibrator 212 and a third vibrator 213 to form the first radiation portion 21 corresponding to the first frequency band.
  • first vibrator 211 and the second vibrator 212 are arranged on the first surface A, and their orientations are opposite. Specifically, as shown in FIG. 1 , the orientation of the first vibrator 211 is opposite to the extending direction of the feeder, and the orientation of the second vibrator 212 is the same as the extending direction of the feeder.
  • the second vibrator 212 is located at a position closer to the root of the substrate (ie, the end through which the feed line leaves the substrate) than the first vibrator 211 .
  • the first vibrator 211 is located closer to the head of the substrate.
  • the end close to the extension direction of the feeder is referred to as the "substrate root”
  • the end away from the extension direction of the feeder is referred to as the "substrate head”.
  • the third vibrator 213 is a vibrator provided on the opposite surface of the substrate (ie, the second surface B).
  • the third vibrator 213 has the same structural form as a part of the first vibrator 211 . It is in a "mirror-symmetric" relationship with the structure of the first vibrator 211 .
  • the mirror symmetry can also be called mirror symmetry, which means that the vibrator structures located on the two opposite surfaces of the substrate are symmetrical with respect to the plane of the substrate.
  • the third vibrator 213 can be considered as a vibrator structure formed after a part of the vibrator structure in the first vibrator 211 is horizontally flipped to the second surface B. As shown in FIG.
  • the third vibrator 213 is also in communication or conduction with the second vibrator 212 .
  • the third vibrator 213 and the second vibrator 212 belong to the same channel.
  • any suitable method can be used to make the third vibrator 213 on the back of the substrate 10 pass through the substrate to establish a connection (eg, a connected wire) with the second vibrator 212 on the front of the substrate 10 .
  • the space of the substrate is fully utilized, and the first oscillator, the second oscillator and the third oscillator can form a coupling resonance point through the above-mentioned reasonable wiring arrangement of the antenna structure, which greatly improves the The bandwidth of the first radiating portion enables the antenna to achieve structural miniaturization while meeting the use requirement of a larger bandwidth.
  • the length of the vibrator (also referred to as the size length or the effective length) is an important size parameter in the antenna, and is closely related to the frequency band of wireless signal reception or transmission.
  • the first vibrator 211 may have an effective length slightly larger than that of the second vibrator 212 .
  • the "slightly greater than” means that the difference between the two is smaller than a certain threshold or within a smaller numerical range. In other words, the difference between the effective length of the first vibrator 211 and the effective length of the second vibrator 212 is in the range from zero to a preset length threshold.
  • the preset length threshold indicates the degree of difference between the effective lengths of the first vibrator 211 and the second vibrator 212 .
  • the length threshold is an empirical value, which can be selectively set by technicians according to actual conditions, so as to achieve the effect that the effective length of the first vibrator 211 is slightly larger than that of the second vibrator 212 .
  • FIG. 2 is a schematic structural diagram of a first vibrator 211 and a second vibrator 212 according to an embodiment of the present invention.
  • the oscillator structure shown in FIG. 2 it was surprisingly found that when the oscillator structure shown in FIG. 2 is used, good antenna performance can be obtained under the premise of a small volume.
  • first vibrator 211 and the second vibrator 212 are symmetrically arranged along the axis direction of the substrate 40 .
  • the structures of the first vibrator 211 and the second vibrator 212 on both sides of the axis of the substrate are symmetrical.
  • the first vibrator 211 may include: a first vibrator body 211a, a first vibrating arm 211b, a first microstrip line 211c and a second microstrip line 211d.
  • the first vibrator body 211a is a conductor structure such as a microstrip line with a predetermined length extending along the radial direction of the substrate, where the radial direction refers to a direction perpendicular to the axial direction of the substrate.
  • the predetermined length is an empirical value, which can be set by technicians according to actual needs.
  • first vibrating arms 211b which are respectively located at two ends of the first vibrator body 211a, and are symmetrical along the axis of the substrate.
  • the extension direction of the first vibrating arm 211b is in the axial direction, and extends toward the head of the substrate by a certain length.
  • the first microstrip line 211c is similar to the first vibrating arm 211b, and similarly extends a certain length from the first vibrator body to the axial direction. The difference is that its position is located on the axis of symmetry of the first vibrator (ie, the axis of the substrate), which overlaps with the axis of symmetry. In other words, the first microstrip line 211c is located between the first vibrating arms 211b on both sides, and has a length greater than that of the first vibrating arm 211b, so that it is combined with the first vibrating arm 211b and the vibrator body 211a to form a vibrator similar to the "mountain" shape shape.
  • the second microstrip lines 211d are also arranged in pairs, which are respectively located on both sides of the axis of the substrate between the first microstrip line 211c and the first vibrating arm 211b. It is also communicated with the first vibrator body 211a, and has a length greater than that of the first microstrip line 211c, so as to form a complete structure of the first vibrator.
  • the second microstrip line 211d may have a certain inclination, extending from the vibrator body 211a to a length greater than that of the first microstrip line 211c.
  • the third vibrator arranged on the second surface B may have a vibrator structure similar to the “ ⁇ ” shape, and the first vibrator arranged on the first surface A
  • the vibrator structure composed of the vibrator main body 211a and the pair of third microstrip lines 211c is in a mirror-symmetrical relationship.
  • the second vibrator 212 can be roughly divided into: a second vibrator body 212a, a second vibrating arm 212b, a third microstrip line 212c, and the like.
  • the second vibrator body 212a is similar to the first vibrator body 211a, and has a predetermined length extending along the radial direction of the substrate.
  • the second vibrating arms 212b are also arranged in pairs, and are respectively formed to extend a certain length along the axial direction of the substrate at positions close to the two ends of the second vibrator body.
  • the third microstrip line 212c is disposed between the pair of second vibrating arms 212b and maintains symmetry along the axis of the substrate. Specifically, both the third microstrip line 212c and the second vibrating arm 212b may have a certain inclination, so as to form a vibrator structure similar to “ ⁇ ” shape with the second vibrator body 212a on the axis side of the substrate. Therefore, the second vibrator 212 as a whole has a vibrator structure similar to a double " ⁇ " shape.
  • a third microstrip line 212c extending to the end of the base of the substrate can be used, and the width w1 of the third microstrip line 212c is greater than the width w2 of the second vibrating arm 212b, so as to improve the antenna's ability to respond to low frequency bands signal coverage.
  • the antenna may further include a second radiating portion 22 composed of a fourth vibrator 221 and a fifth vibrator 222 .
  • the frequency band corresponding to the second radiating portion 22 is different from that of the first radiating portion 21 , and corresponds to a higher second frequency band. In this way, the high frequency band can be covered by the second radiating part, and the low frequency band can be covered by the first radiating part, thereby obtaining a dual-frequency antenna.
  • first frequency band corresponding to the first radiation portion 21 and the second frequency band corresponding to the second radiation portion 22 may be set according to actual needs, and are not limited to specific frequency bands.
  • the "first” and “second” are only used to distinguish the frequency bands corresponding to or covered by the two radiating parts, and represent the relative level of frequencies between the two.
  • the fourth vibrator 221 and the fifth vibrator 222 may be symmetrically arranged and have dipole structures with opposite orientations.
  • the fourth vibrator 221 faces one end of the head of the substrate, and the fifth vibrator 222 faces one end of the root of the substrate, and the two are symmetrically arranged along a line in which the radial direction of the substrate is located.
  • the fourth vibrator 221 may be composed of a fourth vibrator body 221a and a pair of fourth vibrating arms 221b extending along the axis direction of the substrate at two ends of the fourth vibrator, forming a U-shaped vibrator structure .
  • the fifth vibrator 222 adopts a symmetrical structure with that of the fourth vibrator 221, which is not repeated here for the sake of simplicity.
  • Feeder lines (31, 32) are lines that connect the "radiating part" and other signal processing systems to form a signal transmission path. Specifically, any suitable type of wire (such as a coaxial wire) with sufficient shielding and signal transmission properties can be used. In some embodiments, corresponding to the two radiating parts, the feeder lines can also be set to two: the first feeder line 31 and the second feeder line 32, which are respectively used to transmit low-frequency signals and high-frequency signals, and run on the first feeder 31 of the substrate 10. A surface A and a second surface B.
  • the feeder lines ( 31 , 32 ) generally need to start from the position connected to the radiating part and extend a certain length in the direction of the base of the base plate until they leave the base plate 10 .
  • the feeder 30 will pass or walk on the surface of the substrate.
  • “Walking” refers to the situation in which the feeder lines (31, 32) pass on the surface of the substrate 10 or a certain distance from the surface of the substrate.
  • the feeder lines (31, 32) When the feeder lines (31, 32) transmit signals, it will affect or interfere with the resonant signal of the radiating part of the passing substrate surface. In a preferred embodiment, the interference generated when the feeders (31, 32) transmit signals can be reduced as much as possible by arranging the pad body 40.
  • the pad body 40 is a filling structure disposed between the feed lines ( 31 , 32 ) and the surface of the substrate. It has a predetermined size and is padded under the feeder so that the feeder 30 is kept a sufficient distance from the surface of the substrate.
  • dimension refers to the combination of various parameters (such as thickness, width or length) related to the shape of the pad body and used to characterize the outer shape of the filling structure.
  • the specific parameters included can be based on The actual selection of the shape of the pad body 40 or the distance between the feed lines ( 31 , 32 ) and the surface of the substrate is determined.
  • the above-mentioned predetermined size is an empirical value, which can be determined by those skilled in the art according to the actual situation, as long as the feeder lines (31, 32) can keep a sufficient distance from the substrate.
  • the distance between the feeders (31, 32) and the substrate can be characterized or measured by one or more parameters. For example, the vertical distance between the feed lines (31, 32) and the surface of the substrate can be passed.
  • the vertical distance is an empirical value, and only needs to be able to meet the needs of use.
  • Technicians can pre-determine the minimum standard or suitable standard for the vertical distance between the feeder (31, 32) and the surface of the substrate according to the needs of the actual situation (such as performance indicators, experimental results), and then choose to use pads with corresponding dimensions. body.
  • the cushion body 40 can be made of any suitable type of non-conductive material, including but not limited to foam, plastic and wood. Considering the different materials used for the pad body 40, corresponding structures can also be used.
  • the pad body 40 when using foam, can be a foam layer with a certain thickness (eg, 0.5mm thick foam), while when using wood or plastic, you can choose to use a foam layer with a thickness suitable for the feeders (31, 32).
  • a wood frame or a plastic frame with a matching shape structure is used as the cushion body 40 .
  • any suitable type of fixing method such as sticking fixing or bundling fixing may be adopted. ) to fix the feeders ( 31 , 32 ) on the pad body 40 to keep the substrate 10 , the pad body 40 and the feeder wires 30 integrally fixed.
  • ropes such as hemp ropes 60 and the like can be passed through the avoidance grooves 70 or other similar holes provided on the base plate 10 at intervals.
  • the feed lines ( 31 , 32 ) and the pad body 40 are bundled and fixed on the base plate 10 .
  • hemp ropes 60 may be provided according to the distance or length of the feeder 30 running on the substrate 10 .
  • other non-conductive bundling materials such as plastic ties that will not affect the received or transmitted signals of the antenna can also be used.
  • the feeder lines ( 31 , 32 ), the pad body 40 and the substrate 10 can be stuck and fixed by a suitable type of glue or adhesive tape with sticking force.
  • the above bundling fixing and pasting fixing methods can also be used in combination, not necessarily independently.
  • the pad body 40 can be pasted and fixed on the substrate 10
  • the feeders ( 31 , 32 ) can be bundled and fixed on the pad body 40 .
  • the feeder (31, 32) is raised to ensure the feeder (31, 32) running on the substrate.
  • the feeder (31, 32) Keeping a certain distance from the surface of the substrate can reduce the influence or interference caused by the feeder (31, 32) to the resonant wave (such as the high-frequency signal or low-frequency signal corresponding to the above-mentioned radiation part) during the signal transmission process, It is beneficial to improve the overall performance of the antenna.
  • the antenna shown in FIG. 1 is only used for exemplary illustration, and those skilled in the art can add, adjust, replace or reduce one or more functional components according to the needs of the actual situation, and are not limited to the FIG. 1 shown.
  • the technical features involved in the embodiment of the antenna shown in FIG. 1 can be combined with each other as long as they do not conflict with each other, and can be independently applied in different embodiments as long as they do not depend on each other.
  • the embodiment of the present invention provides a specific example of a dual-frequency antenna that can operate in two frequency bands of 900 MHz and 5.8 GHz.
  • the dual-frequency antenna includes: a substrate 10 , a first vibrator 211 , a second vibrator 212 , a third vibrator 213 , a fourth vibrator 221 , a fifth vibrator 222 , a sixth vibrator 233 , and a first feeder 31 , the second feeder 32 and the pad body 40 .
  • the first vibrator 211 adopts a vibrator shape similar to the “mountain” shape as a whole, and a pair of inclined microstrip lines are newly added to the vibrator shape of the “mountain” shape.
  • the second vibrator 212 adopts a vibrator shape similar to that formed by the superposition of two " ⁇ " characters, and the effective length of the first vibrator is slightly larger than that of the second vibrator.
  • the third vibrator 213 is arranged on the reverse side, and has a vibrator shape similar to the " ⁇ " shape (mirror symmetry with a part of the first vibrator 211 ).
  • the third vibrator 213 communicates with the second vibrator 212 and belongs to the same channel.
  • the first feeder 31 is a coaxial wire, the first vibrator 211 is connected to the inner conductor of the coaxial wire 31 , and the path where the second vibrator 212 and the third vibrator 213 are located is connected to the outer conductor of the coaxial wire 31 .
  • the first feeder 31 running on the front surface of the base plate 10 is fixed on the base plate 10 by tying with twine.
  • a foam layer with a thickness of 0.5 mm is provided between the first feeder 31 and the substrate 10 to ensure a sufficient distance between the first feeder 31 and the first surface A. As shown in FIG.
  • the first vibrator 211 , the second vibrator 212 and the third vibrator 213 form a coupling resonance point, which corresponds to the low frequency band (900 MHz) as the first radiating part, and provides a larger low frequency bandwidth.
  • the fourth vibrator 221 and the fifth vibrator 222 are also arranged on the opposite side of the substrate to form a second radiating part to cover the high frequency band (5.8GHz). Both the fourth vibrator 221 and the fifth vibrator 222 adopt a similar "U"-shaped vibrator structure, and the total size and length of the two are controlled within the range of 1/8 to 3/4 of the high frequency resonance wavelength.
  • the second feed line 32 runs on the opposite side of the substrate 10, and a coaxial line is also used.
  • the fourth vibrator 221 is connected to the inner conductor of the coaxial wire 32
  • the fifth vibrator 222 is connected to the outer conductor of the coaxial wire 32 .
  • the second feeder 32 is also fixed on the substrate 10 in a bundled and fixed manner through multiple sets of hemp ropes passing through the substrate 10 , and is connected to the second feeder 32 on the second surface B of the substrate 10 .
  • a foam layer with a thickness of 0.5 mm is also arranged therebetween to ensure the distance between the second feed line 32 and the second surface B.
  • FIG. 4 is a schematic diagram of S-parameters of an antenna in a low frequency band provided by an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of S-parameters of an antenna in a high frequency band according to an embodiment of the present invention.
  • the antenna provided by the above-mentioned embodiment can work in 0.94 GHz-1.11 GHz (low frequency band) and 5.18 GHz-6.0 GHz (high frequency band). Therefore, coverage of two frequency bands of 900MHz (17.8%) and 5.8GHz can be achieved.
  • FIG. 6 and FIG. 7 are antenna directional diagrams of an antenna in a low frequency band and a high frequency band, respectively, according to an embodiment of the present invention.
  • the antenna provided by the embodiment of the present invention has good directivity in both the low frequency band and the high frequency band, has good omnidirectionality, and has no defects in a specific direction.
  • the embodiment of the present invention further provides a wireless signal processing device.
  • This embodiment does not limit the specific implementation of the wireless signal processing device, which may be any type or type of electronic device used to send and receive wireless signals, such as a remote control, a smart terminal, a wearable device, or a mobile vehicle. signal transceiver.
  • FIG. 8 is a schematic structural diagram of a wireless signal processing device according to an embodiment of the present invention.
  • the wireless signal processing device includes: an antenna 100 , a transmission path 200 and a reception path 300 .
  • the antenna 100 is connected to the receiving path 200 or the transmitting path 300 through a feeder, so as to realize mutual signal transmission.
  • the antenna 100 may specifically be the antenna described in one or more of the above embodiments, which is determined by the specific implementation of the wireless signal processing device.
  • the antenna 100 may be an omnidirectional antenna covering two frequency bands.
  • the transmission path 200 is a functional module for loading the information content to be sent into the carrier signal to form a wireless signal.
  • it can be of any type, formed by a combination of one or more electronic components, and an electronic system that can generate wireless signals, such as a radio frequency chip.
  • the receiving path 300 is an electronic system for analyzing the wireless signal received by the antenna to obtain the information content contained in the wireless signal, such as a specific type of decoding chip. It has the opposite information flow direction to the transmitting channel 200, and is a functional module for completing information acquisition.
  • one of the transmit path 200 and the receive path 300 may be omitted based on the specific implementation of the wireless signal processing device. For example, when the wireless signal processing device is a remote controller, the receiving path 300 can be omitted, and only the transmitting path 200 needs to be provided.
  • FIG. 9 is a schematic structural diagram of an antenna provided in an embodiment of the present invention applied to an unmanned aerial vehicle.
  • the drone may include: a body 400, motors (510, 520) and an antenna.
  • the fuselage 400 as the main structure of the drone, can be made of any suitable material and has a structure and size that meet the needs of use (as shown in the fixed-wing drone shown in FIG. 9).
  • the fuselage 400 may be provided with various functional components such as a landing gear 410 , a propeller 420 , and a camera 430 .
  • a corresponding pan/tilt 440 can be added for the camera 430 .
  • the motors (510, 520) are installed on the fuselage 400, and are used to provide flying power for the drone.
  • the motor may be provided with one or more motors, which are arranged at corresponding positions of the fuselage 400 (eg, the fuselage motor 510 and the wingtip motor 520 ) to perform different functions (eg, drive the propeller 420 to rotate, control the fuselage attitude, etc.) .
  • the antenna can be installed and accommodated in the landing gear 410 (for example, in the rear landing gear shown in FIG. 9 , labeled 410 ), as part of the wireless signal transceiver device, used to receive remote control operation instructions from the remote control or to the remote control. Or other intelligent terminals feed back relevant data information (such as captured images, operating state parameters of the drone itself).

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Remote Sensing (AREA)
  • Astronomy & Astrophysics (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Details Of Aerials (AREA)
  • Aerials With Secondary Devices (AREA)

Abstract

本发明实施例涉及天线技术领域,尤其涉及一种天线、无线信号处理设备及无人机。该天线包括:具有第一表面以及位于所述第一表面反面的第二表面的基板;设置在所述第一表面的第一振子和第二振子,所述第一振子与所述第二振子的朝向相反,所述第一振子位于接近基板头部的一端,所述第二振子位于接近基板根部的一端;设置在所述第二表面的第三振子,所述第三振子与所述第一振子的一部分结构镜像对称,并且与所述第二振子导通,以使所述第一振子、第二振子以及第三振子组成耦合谐振点;与所述第一振子、第二振子以及第三振子连接的馈线。该天线采用合理的布线和结构设计,可以在体积较小的基板上实现较大的带宽,克服了大带宽天线难以小型化的缺陷。

Description

天线、无线信号处理设备及无人机
本申请要求于2021年03月26日提交中国专利局、申请号为2021103264209、申请名称为“天线、无线信号处理设备及无人机”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
【技术领域】
本发明涉及天线结构技术领域,尤其涉及一种天线、无线信号处理设备及无人机。
【背景技术】
天线是用于实现电磁波无线信号收发的关键部件。其性能对于无人机等需要远程无线数据传输的设备具有重大影响。随着电子信息技术的不断发展,无线传输对于覆盖频段的数量以及带宽的要求也越来越高。这给天线的结构设计提出了较大的挑战。
为满足越来越高的带宽要求,往往需要使用复杂的结构设计来实现较大的带宽。但是,天线所具有的复杂结构会令天线的体积无法得到有效的控制,难以实现小型化,使其难以应用到无人机、遥控器等对于尺寸、结构敏感的小型产品中。
【发明内容】
本发明实施例旨在提供一种天线、无线信号处理设备及无人机,能够解决现有大带宽天线结构复杂,难以小型化的缺陷。
为解决上述技术问题,本发明实施例提供以下技术方案:一种天线。该天线包括:
基板,所述基板具有第一表面以及位于所述第一表面反面的第二表面;
设置在所述第一表面的第一振子和第二振子,所述第一振子与所述第二振子的朝向相反,所述第一振子位于接近基板头部的一端,所述第二振子位 于接近基板根部的一端;
设置在所述第二表面的第三振子,所述第三振子与所述第一振子的一部分结构镜像对称,并且与所述第二振子导通,以使所述第一振子、第二振子以及第三振子组成耦合谐振点;
与所述第一振子、第二振子以及第三振子连接的馈线。
可选地,所述天线还包括:设置在所述第二表面的第四振子和第五振子;
所述第四振子与所述第五振子对称设置,具有相反的朝向,所述第四振子朝向所述基板头部的一端。
可选地,所述馈线包括第一馈线和第二馈线;
所述第一馈线行走在所述基板的第一表面,与所述第一振子、第二振子以及第三振子连接;
所述第二馈线行走在所述基板的第二表面,与所述第四振子和第五振子连接。
可选地,所述第一馈线和所述第二馈线为同轴线;
所述第一振子与所述第一馈线的内导体连接,所述第二振子和所述第三振子形成通路与所述第一馈线的外导体连接;
所述第四振子与所述第二馈线的内导体连接,所述第五振子与所述第二馈线的外导体连接。
可选地,所述第一振子和所述第二振子沿所述基板的轴线方向对称设置。
可选地,所述第一振子的有效长度与所述第二振子的有效长度的差大于零,并且小于预设的长度阈值。
可选地,所述第一振子包括:
第一振子主体,所述第一振子主体具有沿所述基板的径向方向延伸的预定长度;
分别在所述第一振子主体的两个末端,沿所述基板的轴向方向延伸形成的一对第一振臂;
设置在所述第一振子的对称轴线上的第一微带线,所述第一微带线的长度大于所述振臂,并且与所述振子主体连通;
设置在所述第一微带线与所述第一振臂之间的一对第二微带线,所述第 二微带线长度大于所述第一微带线,并且与所述第一振子主体连通。
可选地,所述第三振子与所述第一振子主体以及一对所述第二微带线镜像对称。
可选地,所述第二振子包括:
第二振子主体,所述第二振子主体具有沿所述基板的径向方向延伸的预定长度;
一对第二振臂,所述第二振臂在靠近所述第二振子主体末端的位置,沿所述基板的轴向方向延伸形成;
一对第三微带线,所述第三微带线设置在一对所述第二振臂之间。
可选地,所述第三微带线延伸至所述基板根部的一端;所述第三微带线的宽度大于所述第二振臂。
可选地,所述第四振子包括:第四振子主体以及由所述第四振子的两个末端,沿所述基板的轴线方向延伸形成的一对第四振臂。
可选地,所述第一振子、第二振子和第三振子组成第一辐射部,所述第四振子和第五振子组成第二辐射部;
所述第一辐射部对应第一频段;所述第二辐射部对应第二频段,具有所述第二频段的谐振波长的1/8至3/4之间的尺寸长度;所述第一频段的频率高于所述第二频段。
可选地,所述第一频段为900MHz频段,所述第二频段为5.8GHz频段。
可选地,所述天线还包括:具有预设尺寸的垫体,
所述垫体设置在所述馈线与所述基板之间,以使所述馈线保持与所述基板的距离。
可选地,所述垫体包括:泡棉层、塑料架或者木材架。
可选地,将所述馈线和所述垫体固定在所述基板上的固定方式包括:捆扎固定或者粘贴固定。
为解决上述技术问题,本发明实施例还提供以下技术方案:一种无线信号处理设备。该无线信号处理设备包括:如上所述的天线,用于发送或接收无线信号;接收通路,用于对所述天线接收到无线信号进行解析,以获取无线信号中包含的信息内容;发射通路,用于将信息内容加载到射频载波信号 中,形成无线信号并通过所述天线发送。
为解决上述技术问题,本发明实施例还提供以下技术方案:一种无人机。该无人机包括:机身,所述机身上具有起落架;电机,安装于所述机身与所述起落架的连接处,用于为所述无人机提供飞行动力;如上所述的天线,安装于所述起落架内。
本发明实施例的天线采用合理的布线和结构设计,利用分别位于基板两侧的第一振子、第二振子以及第三振子组成耦合谐振点,可以在体积较小的基板上实现较大的带宽,克服了大带宽天线难以小型化的缺陷。
【附图说明】
一个或多个实施例通过与之对应的附图中的图片进行示例性说明,这些示例性说明并不构成对实施例的限定,附图中具有相同参考数字标号的元件表示为类似的元件,除非有特别申明,附图中的图不构成比例限制。
图1为本发明实施例提供的天线的结构示意图;
图2为本发明实施例提供的第一振子和第二振子的结构示意图;
图3为本发明实施例提供的天线的侧视图;
图4为本发明实施例提供的天线的低频S参数示意图;
图5为本发明实施例提供的天线的高频S参数示意图;
图6为本发明实施例提供的天线在低频段的方向图;
图7为本发明实施例提供的天线在高频段的方向图;
图8为本发明实施例提供的无线信号处理设备的示意图;
图9为本发明实施例提供的天线在无人机应用场景的示意图。
【具体实施方式】
为了便于理解本发明,下面结合附图和具体实施例,对本发明进行更详细的说明。需要说明的是,当元件被表述“固定于”另一个元件,它可以直接在另一个元件上、或者其间可以存在一个或多个居中的元件。当一个元件被表述“连接”另一个元件,它可以是直接连接到另一个元件、或者其间可以存在一个或多个居中的元件。本说明书所使用的术语“上”、“下”、“内”、“外”、“底 部”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语“第一”、“第二”“第三”等仅用于描述目的,而不能理解为指示或暗示相对重要性。
除非另有定义,本说明书所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本说明书中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是用于限制本发明。本说明书所使用的术语“和/或”包括一个或多个相关的所列项目的任意的和所有的组合。
此外,下面所描述的本发明不同实施例中所涉及的技术特征只要彼此之间未构成冲突就可以相互结合。
图1为本发明实施例提供的天线的结构示意图。在本实施例中,为陈述方便,将天线的正面称为“第一表面A”,同时将其背面称为“第二表面B”。该“第一”和“第二”仅用于区分基板10的正面和反面,不用于对表面的限定。
如图1所示,该天线主要包括作为天线结构基础的基板10、布置在基板的第一表面A和第二表面B上,具有特定结构形状的振子(211,212,213,221,222)以及与振子连接的馈线(31,32)。
其中,基板10可以是采用任何类型的材质(如塑料、泡沫)制备形成,具有特定形状(如梯形)的非导电结构。其具有相对扁平的形状,形成平坦的第一表面和第二表面。
振子是布置在基板表面,具有特定形状和长度的导体(如铜箔)。其可以通过任何合适的形式(如贴片式)固定在基板表面,并且暴露在外,通过电磁感应原理实现对特定频段的无线信号的接收或者发射。
一个或者多个振子可以组成用于接收或者发射特定频段的无线信号的谐振单元。在本实施例中,这样的谐振单元可以被称为“辐射部”。在多频天线中,通常可以具有多个辐射部,分别用于覆盖或者对应不同的频段。
在一些实施例中,基板10上可以设置有第一振子211、第二振子212以及第三振子213,组成对应于第一频段的第一辐射部21。
其中,第一振子211和第二振子212布置在第一表面A,两者的朝向相反。具体的,如图1所示,第一振子211的朝向与馈线的延伸方向相反,而第二振子212的朝向则与馈线的延伸方向相同。
另外,第二振子212相对于第一振子211而言,处于更接近基板根部(即馈线离开基板所经过的那个末端)的位置。换言之,第一振子211处于更接近基板头部的位置。在本实施例中,为陈述简便,将与馈线延伸方向相近的一端称为“基板根部”,而将与馈线延伸方向相离的一端称为“基板头部”。
第三振子213是设置在基板的反面(即第二表面B)的振子。第三振子213具有与第一振子211的一部分相同的结构形式。其与第一振子211的结构呈“镜像对称”的关系。
该镜像对称也可以被称为镜面对称,是指位于基板两个相对的表面的振子结构相对于基板这一平面对称。换言之,第三振子213可以认为是第一振子211中的一部分振子结构水平翻转到第二表面B以后形成的振子结构。
另外,第三振子213还与第二振子212连通或者导通。换言之,第三振子213和第二振子212是属于同一个通路的。具体可以采用任何合适的方式,令处于基板10背面的第三振子213穿过基板,与位于基板10正面的第二振子212建立连接(如连通的导线)。
在本实施例中,充分的利用了基板的空间,通过上述合理的天线结构走线布置,使第一振子、第二振子和第三振子可以组成一个耦合谐振点,从而极大的提升了第一辐射部的带宽,令天线在满足较大带宽的使用需求的同时实现了结构上的小型化。
由此,本领域技术人员可以根据实际情况的需要(如第一辐射部对应的频段),对第一振子211、第二振子212和第三振子213的有效长度、振子形状或者其他类似的振子参数中的一项或者多项进行调整。所有为实现第一振子211、第二振子212和第三振子213相互耦合,组成耦合谐振点而对本申请作出的调整、改变或者替换均属于本申请的保护范围。
本领域技术人员可以理解,振子的长度(又可以称为尺寸长度或者有效长度)是天线中重要的尺寸参数,与无线信号接收或者发送的频段密切相关。
在较佳的实施例中,第一振子211可以具有略大于第二振子212的有效长度。该“略大于”表示两者之间的差小于一定的阈值或者处于较小的数值 范围内。换言之,第一振子211的有效长度与第二振子212的有效长度的差在零到预设的长度阈值的范围内。
该预设的长度阈值表明了第一振子211和第二振子212两者之间有效长度之间的相差程度。该长度阈值是一个经验性数值,可以由技术人员根据实际情况而选择性设置,以达到第一振子211的有效长度略大于第二振子212的效果。
图2为本发明实施例提供的第一振子211和第二振子212的结构示意图。在实现本申请的过程中,令人惊喜的发现,采用图2所示的振子结构形式时,能够在较小体积的前提下,得到良好的天线性能。
其中,该第一振子211和第二振子212沿基板40的轴线方向对称设置。换言之,第一振子211和第二振子212在基板的轴线两侧的结构是对称的。
如图2所示,第一振子211可以包括:第一振子主体211a,第一振臂211b,第一微带线211c以及第二微带线211d。
其中,第一振子主体211a是具有沿基板的径向方向延伸的预定长度的微带线等类似的导体结构,该径向方向是指与基板的轴线方向垂直的方向。该预定长度是一个经验性数值,可以由技术人员根据实际情况的需要所设置。
第一振臂211b有一对,分别位于第一振子主体211a的两个末端,沿基板的轴线对称。第一振臂211b的延伸方向是在轴线方向上,朝基板头部延伸一定的长度。
第一微带线211c与第一振臂211b相类似,同样地也是从第一振子主体向轴线方向延伸一定的长度。区别在于其位置位于第一振子的对称轴线(即基板的轴线)上,与对称轴线重叠。换言之,第一微带线211c位于两侧的第一振臂211b之间,具有大于第一振臂211b的长度,从而与第一振臂211b和振子主体211a共同组合成类似于“山”字型的振子形状。
进一步地,第二微带线211d也成对设置,分别位于基板的轴线两侧的,第一微带线211c与第一振臂211b之间的位置。其同样与第一振子主体211a连通,并且长度大于第一微带线211c,从而形成完整的第一振子的结构。
具体的,第二微带线211d可以具有一定的倾斜度,从振子主体211a处延伸至大于第一微带线211c的长度。
在一些实施例中,如图1所示,布置在第二表面B的第三振子可以具有 类似于“π”字型的振子结构,与布置在第一表面A的第一振子的第一振子主体211a和一对第三微带线211c组成的振子结构成镜面对称的关系。
请继续参阅图2,第二振子212可以大致被划分为:第二振子主体212a、第二振臂212b以及第三微带线212c等。
其中,第二振子主体212a与第一振子主体211a相类似,具有沿基板的径向方向延伸的预定长度。
第二振臂212b也是成对的设置,分别在靠近第二振子主体两个末端的位置,沿基板的轴向方向延伸一定的长度形成。
第三微带线212c设置在一对第二振臂212b之间,并保持沿基板的轴线对称。具体的,第三微带线212c和第二振臂212b都可以具有一定的倾斜度,从而在基板的轴线一侧与第二振子主体212a形成类似“π”字型的振子结构。由此,从第二振子212整体来看,具有类似于双“π”字型的振子结构。
在较佳的实施例中,可以采用延伸到基板根部的末端的第三微带线212c,并且令第三微带线212c的宽度w1大于第二振臂212b的宽度w2,以改善天线对低频段信号的覆盖。
在另一些实施例中,除第一辐射部外,请继续参阅图1,该天线还可以包括由第四振子221和第五振子222组成的第二辐射部22。
该第二辐射部22与第一辐射部21所对应的频段不同,其对应更高的第二频段。由此,可以由第二辐射部覆盖高频段,而第一辐射部覆盖低频段,从而获得双频天线。
当然,第一辐射部21对应的第一频段和第二辐射部22对应的第二频段可以根据实际情况的需要而进行设置,而不限于具体的频段。该“第一”和“第二”仅用于区分两个辐射部所对应或者覆盖的频段,表示两者之间的频率的相对高低。
其中,第四振子221和第五振子222可以是采用对称设置,具有相反朝向的偶极子结构。第四振子221朝向于基板头部的一端,第五振子222朝向基板根部的一端,两者沿基板的径向方向所在的直线对称设置。
具体的,第四振子221可以由第四振子主体221a以及在第四振子的两个末端,沿基板的轴线方向延伸形成的一对第四振臂221b所组成,形成类似于U字型的振子结构。第五振子222采用与第四振子221相对称的结构,为陈 述简便,在此不作重复描述。
馈线(31,32)是连接“辐射部”与其他信号处理系统,形成信号传输通路的线路。其具体可以采用任何合适类型的,具有足够的屏蔽和信号传输性能的线材(如同轴线)。在一些实施例中,与两个辐射部相对应地,馈线也可以设置为第一馈线31和第二馈线32两条,分别用于传输低频段信号和高频段信号,行走在基板10的第一表面A和第二表面B。
如图1所示,馈线(31,32)通常需要从与辐射部连接的位置开始,向基板根部的方向延伸一定的长度,直至离开基板10。换言之,馈线30会经过或者行走在基板表面。“行走”是指馈线(31,32)在基板10的表面或者距离基板表面一定的距离经过的情形。
当馈线(31,32)传输信号时,会对经过的基板表面的辐射部的谐振信号产生影响或者干扰。在较佳的实施例中,可以通过设置垫体40的方式来尽可能的减少馈线(31,32)传输信号时所产生的干扰。
请继续参阅图1,该垫体40是设置在馈线(31,32)和基板表面之间的填充结构。其具有预定的尺寸,垫在馈线的下方从而使得馈线30与基板表面保持足够的距离。
在本实施例中,“尺寸”是指与垫体的外形相关的,用以表征该填充结构的外部轮廓形态的多种参数的组合(如厚度、宽度或者长度),具体包含的参数可以根据实际选择使用的垫体40的外形结构或者馈线(31,32)与基板表面所要达到的距离所决定。
上述预定的尺寸是一个经验性数值,可以由本领域技术人员根据实际情况的需要来确定,只需要能够令馈线(31,32)与基板保持足够的距离即可。
馈线(31,32)与基板之间的距离可以通过一种或者多种参数进行表征或者衡量。例如,可以通过馈线(31,32)与基板表面之间的垂直距离。
该垂直距离是一个经验性数值,只需要能够满足使用需要即可。技术人员可以根据实际情况的需要(如性能指标、实验结果),预先确定馈线(31,32)与基板表面之间垂直距离所要满足的最低标准或者合适的标准,然后选择使用具有相应尺寸的垫体。
具体的,作为垫高馈线的结构,该垫体40可以使用任何合适类型的非导电材料制成,包括但不限于泡棉、塑料和木材。考虑到垫体40具体所使用的 不同的制作材料,具体也可以采用相应的结构。例如,使用泡棉时,垫体40可以是具有一定厚度的泡棉层(如0.5mm厚的泡棉),而使用木材或者塑料时,则可以选择使用具有与馈线(31,32)相适配的形状结构的木材架或者塑料架作为垫体40。
在另一些实施例中,为避免在天线日常使用过程中,馈线(31,32)与基板10和垫体40之间发生相对移动,可以采用任何合适类型的固定方式(如粘贴固定或者捆扎固定)将馈线(31,32)固定在垫体40上,保持基板10、垫体40以及馈线30的一体固定。
具体的,如图3所示,在采用捆扎固定方式时,可以每间隔一段距离就通过麻绳60等类似的绳状物,穿过基板10上设置的避空槽70或者其他类似的孔洞,将馈线(31,32)和垫体40捆扎固定在基板10上。
具体可以根据馈线30在基板10上行走的距离或者长度,设置合适数量的麻绳60。当然,还可以使用其他不会对天线接收或者发射信号造成影响的,非导电的捆扎物料(如塑料扎带)。
而在采用粘贴固定方式时,则可以通过合适类型的胶水或者胶带等具有粘贴力的粘贴物,将馈线(31,32)、垫体40以及基板10粘贴固定。当然,以上的捆扎固定和粘贴固定方式还可以混合使用,而不一定独立使用。例如,垫体40可以粘贴固定在基板10上,馈线(31,32)可以捆扎固定在垫体40上。
在本发明实施例提供的天线结构,通过在馈线(31,32)与基板表面之间设置具有合理尺寸的填充结构,垫高馈线(31,32)从而确保在基板上行走的馈线(31,32)与基板表面保持一定的距离,可以起到减少馈线(31,32)在传输信号过程中对谐振波(如上述辐射部对应的高频信号或者低频信号)造成的影响或者干扰的效果,有利于改善天线的整体性能。
应当说明的是,图1所示的天线仅用于示例性说明,本领域技术人员可以根据实际情况的需要,添加、调整、替换或者减省其中的一个或者多个功能部件,而不限于图1所示。图1所示的天线的实施例中所涉及的技术特征只要彼此之间未构成冲突就可以相互结合,并且只要彼此之间未构成依赖就可以独立在不同的实施例中应用。
本发明实施例提供了可以工作在900MHz以及5.8GHz两个频段的双频天线的具体实例。
如图1所示,该双频天线包括:基板10、第一振子211、第二振子212、第三振子213、第四振子221、第五振子222、第六振子233、第一馈线31、第二馈线32以及垫体40。
其中,第一振子211整体上采用类似“山”字型的振子形状,在“山”字型的振子形状上新增有一对倾斜的微带线。第二振子212采用类似两个“π”字叠加形成的振子形状,第一振子的有效长度略大于第二振子的有效长度。
第三振子213布置在反面,具有类似“π”字型的振子形状(与第一振子211的一部呈镜面对称)。第三振子213与第二振子212连通,属于同一个通路。
第一馈线31采用同轴线,第一振子211与该同轴线31的内导体连接,第二振子212和第三振子213所在的通路与该同轴线31的外导体连接。行走在基板10正面的第一馈线31通过麻绳捆扎的方式,固定在基板10上。第一馈线31与基板10之间设置有0.5mm厚的泡棉层,以保证第一馈线31与第一表面A之间保持足够的距离。
第一振子211、第二振子212以及第三振子213组成耦合谐振点,作为第一辐射部与低频段(900MHz)对应,提供较大的低频带宽。
第四振子221和第五振子222同样布置在基板的反面,组成第二辐射部以覆盖高频段(5.8GHz)。第四振子221和第五振子222均采用类似“U”字型的振子结构,两者的尺寸总长度控制在高频谐振波长的1/8到3/4的范围之内。
第二馈线32行走在基板10的反面,也同样的采用同轴线。第四振子221与该同轴线32的内导体连接,第五振子222与同轴线32的外导体连接。与第一馈线31相类似地,第二馈线32也通过多组穿过基板10的麻绳,以捆扎固定的方式固定在基板10上,并且在基板10的第二表面B与第二馈线32之间同样地设置有0.5mm厚的泡棉层,以确保第二馈线32与第二表面B之间的距离。
图4为本发明实施例提供的天线在低频段的S参数示意图。图5为本发明实施例提供的天线在高频段的S参数示意图。
如图4和图5所示,上述实施例提供的天线可以工作在0.94GHz~1.11GHz(低频段)和5.18GHz~6.0GHz(高频段)。因此,可以实现对900MHz(17.8%) 以及5.8GHz两个频段的覆盖。
图6和图7分别为本发明实施例提供的天线在低频段以及高频段的天线方向图。如图6和图7所示,本发明实施例提供的天线在低频段以及高频段两个频段上都具有良好的方向性,全向性好,没有特定方向上的缺陷。
基于以上实施例提供的天线,本发明实施例还进一步提供了一种无线信号处理设备。本实施例并不对该无线信号处理设备的具体实现进行限定,其可以是任何类型或者种类的,用以进行无线信号收发的电子设备,例如遥控器、智能终端、可穿戴设备或者移动载具的信号收发器。
图8为本发明实施例提供的无线信号处理设备的结构示意图。如图8所示,该无线信号处理设备包括:天线100、发射通路200以及接收通路300。天线100通过馈线连接至接收通路200或发射通路300,以实现相互间的信号传输。
其中,天线100具体可以是以上一个或者多个实施例所述的天线,由无线信号处理设备的具体实现所决定。例如,天线100可以是覆盖两个频段的全向天线。
发射通路200是用于将待发送的信息内容加载到载波信号,形成无线信号的功能模块。其具体可以是任何类型的,由一个或者多个电子元件组合形成,可以生成无线信号的电子系统,如射频芯片。
接收通路300是用于对所述天线接收到无线信号进行解析,以获取无线信号中包含的信息内容的电子系统,如特定型号的解码芯片。其与发射通路200具有相反的信息流动方向,是用以完成信息获取的功能模块。
在一些实施例中,基于无线信号处理设备的具体实现的不同,发射通路200和接收通路300中的其中一个可以减省。例如,在无线信号处理设备为遥控器时,可以减省接收通路300,只需要具备发射通路200即可。
本发明实施例还进一步提供了以上实施例提供的天线的应用场景。图9为本发明实施例提供的的天线应用于无人机的结构示意图。
随着无人机技术的发展,总是期望能够尽可能地减小无人机的机身体积,以使得无人机可以适用于执行更多场景下的飞行任务。但在无人机机身体积缩小的情况下,对于天线的尺寸和结构提出了更高的要求,期望能够在有限的体积和尽可能简单的结构中实现。
由此,应用本发明实施例提供的天线,可以很好的满足具有较小机身的无人机关于天线体积和结构的需求。如图9所示,该无人机可以包括:机身400,电机(510,520)以及天线。
其中,机身400作为无人机的主体结构,可以采用任何合适的材料制成并具有符合使用需要的结构及尺寸(如图9所示的固定翼无人机)。机身400上可以设置有起落架410、螺旋桨420、摄像机430等多种不同的功能部件。当然,本领域技术人员还可以根据实际情况的需要,增加或者减省其中的一个或者多个功能部件,例如可以为摄像机430增设对应的云台440。
电机(510,520)安装于机身400,用于为无人机提供飞行动力。该电机可以设置有一个或者多个,布置于机身400相应的位置(如机身电机510,翼尖电机520)分别用于执行不同的功能(例如驱动螺旋桨420旋转、控制机身姿态等)。
天线可以安装收容于起落架410内(例如图9所示的,标号为410的后起落架内),作为无线信号收发设备的其中一部分,用以接收来自遥控器的遥控操作指令或者向遥控器或者其他的智能终端反馈相关的数据信息(如拍摄的图像、无人机自身的运行状态参数)。
当然,基于以上实施例提供的无人机应用场景,本领域技术人员还可以将以上实施例提供的天线应用于其他类似的无人驾驶的移动载具而不限于图9所示的无人机。
最后应说明的是:以上实施例仅用以说明本发明的技术方案,而非对其限制;在本发明的思路下,以上实施例或者不同实施例中的技术特征之间也可以进行组合,步骤可以以任意顺序实现,并存在如上所述的本发明的不同方面的许多其它变化,为了简明,它们没有在细节中提供;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (18)

  1. 一种天线,其特征在于,包括:
    基板,所述基板具有第一表面以及位于所述第一表面反面的第二表面;
    设置在所述第一表面的第一振子和第二振子,所述第一振子与所述第二振子的朝向相反,所述第一振子位于接近基板头部的一端,所述第二振子位于接近基板根部的一端;
    设置在所述第二表面的第三振子,所述第三振子与所述第一振子的一部分结构镜像对称,并且与所述第二振子导通,以使所述第一振子、第二振子以及第三振子组成耦合谐振点;
    与所述第一振子、第二振子以及第三振子连接的馈线。
  2. 根据权利要求1所述的天线,其特征在于,所述天线还包括:设置在所述第二表面的第四振子和第五振子;
    所述第四振子与所述第五振子对称设置,具有相反的朝向,所述第四振子朝向所述基板头部的一端。
  3. 根据权利要求2所述的天线,其特征在于,所述馈线包括第一馈线和第二馈线;
    所述第一馈线行走在所述基板的第一表面,与所述第一振子、第二振子以及第三振子连接;
    所述第二馈线行走在所述基板的第二表面,与所述第四振子和第五振子连接。
  4. 根据权利要求3所述的天线,其特征在于,所述第一馈线和所述第二馈线为同轴线;
    所述第一振子与所述第一馈线的内导体连接,所述第二振子和所述第三振子形成通路与所述第一馈线的外导体连接;
    所述第四振子与所述第二馈线的内导体连接,所述第五振子与所述第二馈线的外导体连接。
  5. 根据权利要求1所述的天线,其特征在于,所述第一振子和所述第二振子沿所述基板的轴线方向对称设置。
  6. 根据权利要求1所述的天线,其特征在于,所述第一振子的有效长度与所述第二振子的有效长度的差大于零,并且小于预设的长度阈值。
  7. 根据权利要求4或5或6所述的天线,其特征在于,所述第一振子包括:
    第一振子主体,所述第一振子主体具有沿所述基板的径向方向延伸的预定长度;
    分别在所述第一振子主体的两个末端,沿所述基板的轴向方向延伸形成的一对第一振臂;
    设置在所述第一振子的对称轴线上的第一微带线,所述第一微带线的长度大于所述振臂,并且与所述振子主体连通;
    设置在所述第一微带线与所述第一振臂之间的一对第二微带线,所述第二微带线长度大于所述第一微带线,并且与所述第一振子主体连通。
  8. 根据权利要求7所述的天线,其特征在于,所述第三振子与所述第一振子主体以及一对所述第二微带线镜像对称。
  9. 根据权利要求4或5或6所述的天线,其特征在于,所述第二振子包括:
    第二振子主体,所述第二振子主体具有沿所述基板的径向方向延伸的预定长度;
    一对第二振臂,所述第二振臂在靠近所述第二振子主体末端的位置,沿所述基板的轴向方向延伸形成;
    一对第三微带线,所述第三微带线设置在一对所述第二振臂之间。
  10. 根据权利要求9所述的天线,其特征在于,所述第三微带线延伸至所述基板根部的一端;所述第三微带线的宽度大于所述第二振臂。
  11. 根据权利要求2-5任一项所述的天线,其特征在于,所述第四振子包括:第四振子主体以及由所述第四振子的两个末端,沿所述基板的轴线方向延伸形成的一对第四振臂。
  12. 根据权利要求2-5任一项所述的天线,其特征在于,所述第一振子、第二振子和第三振子组成第一辐射部,所述第四振子和第五振子组成第二辐射部;
    所述第一辐射部对应第一频段;所述第二辐射部对应第二频段,具有所述第二频段的谐振波长的1/8至3/4之间的尺寸长度;所述第一频段的频率高于所述第二频段。
  13. 根据权利要求12所述的天线,其特征在于,所述第一频段为900MHz频段,所述第二频段为5.8GHz频段。
  14. 根据权利要求1-6任一项所述的天线,其特征在于,所述天线还包括:具有预设尺寸的垫体,
    所述垫体设置在所述馈线与所述基板之间,以使所述馈线保持与所述基板的距离。
  15. 根据权利要求14所述的天线,其特征在于,所述垫体包括:泡棉层、塑料架或者木材架。
  16. 根据权利要求14所述的天线,其特征在于,将所述馈线和所述垫体固定在所述基板上的固定方式包括:捆扎固定或者粘贴固定。
  17. 一种无线信号处理设备,其特征在于,包括:
    如权利要求1-16任一项所述的天线,用于发送或接收无线信号;
    发射通路,用于将信息内容加载到射频载波信号中,形成无线信号并通过所述天线发送。
  18. 一种无人机,其特征在于,包括:
    机身,所述机身上具有起落架;
    电机,安装于所述机身上,用于为所述无人机提供飞行动力;
    如权利要求1-16任一项所述的天线,安装于所述起落架内。
PCT/CN2022/079360 2021-03-26 2022-03-04 天线、无线信号处理设备及无人机 WO2022199363A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP22774025.5A EP4318801A1 (en) 2021-03-26 2022-03-04 Antenna, wireless signal processing device and unmanned aerial vehicle
US18/373,109 US20240030605A1 (en) 2021-03-26 2023-09-26 Antenna, wireless signal processing device, and unmanned aerial vehicle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110326420.9 2021-03-26
CN202110326420.9A CN112886215A (zh) 2021-03-26 2021-03-26 天线、无线信号处理设备及无人机

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/373,109 Continuation US20240030605A1 (en) 2021-03-26 2023-09-26 Antenna, wireless signal processing device, and unmanned aerial vehicle

Publications (1)

Publication Number Publication Date
WO2022199363A1 true WO2022199363A1 (zh) 2022-09-29

Family

ID=76042562

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/079360 WO2022199363A1 (zh) 2021-03-26 2022-03-04 天线、无线信号处理设备及无人机

Country Status (4)

Country Link
US (1) US20240030605A1 (zh)
EP (1) EP4318801A1 (zh)
CN (1) CN112886215A (zh)
WO (1) WO2022199363A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112886215A (zh) * 2021-03-26 2021-06-01 深圳市道通智能航空技术股份有限公司 天线、无线信号处理设备及无人机

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203850420U (zh) * 2014-03-03 2014-09-24 深圳市安拓浦科技有限公司 一种双面薄片天线
WO2016138763A1 (zh) * 2015-03-05 2016-09-09 中兴通讯股份有限公司 双极化天线
CN108513687A (zh) * 2017-05-22 2018-09-07 深圳市大疆创新科技有限公司 天线及无人机的信号处理设备
CN110808452A (zh) * 2019-10-22 2020-02-18 深圳市道通智能航空技术有限公司 双频天线以及无人飞行器
CN211126036U (zh) * 2019-10-22 2020-07-28 深圳市道通智能航空技术有限公司 双频天线以及无人飞行器
CN112531352A (zh) * 2020-12-08 2021-03-19 南京长峰航天电子科技有限公司 一种宽带多极化平面反射阵天线
CN112886215A (zh) * 2021-03-26 2021-06-01 深圳市道通智能航空技术股份有限公司 天线、无线信号处理设备及无人机

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203850420U (zh) * 2014-03-03 2014-09-24 深圳市安拓浦科技有限公司 一种双面薄片天线
WO2016138763A1 (zh) * 2015-03-05 2016-09-09 中兴通讯股份有限公司 双极化天线
CN108513687A (zh) * 2017-05-22 2018-09-07 深圳市大疆创新科技有限公司 天线及无人机的信号处理设备
CN110808452A (zh) * 2019-10-22 2020-02-18 深圳市道通智能航空技术有限公司 双频天线以及无人飞行器
CN211126036U (zh) * 2019-10-22 2020-07-28 深圳市道通智能航空技术有限公司 双频天线以及无人飞行器
CN112531352A (zh) * 2020-12-08 2021-03-19 南京长峰航天电子科技有限公司 一种宽带多极化平面反射阵天线
CN112886215A (zh) * 2021-03-26 2021-06-01 深圳市道通智能航空技术股份有限公司 天线、无线信号处理设备及无人机

Also Published As

Publication number Publication date
EP4318801A1 (en) 2024-02-07
CN112886215A (zh) 2021-06-01
US20240030605A1 (en) 2024-01-25

Similar Documents

Publication Publication Date Title
CN103891043B (zh) 采用多频带陷波器的多输入多输出(mimo)天线
CN110137671B (zh) 天线结构及具有该天线结构的无线通信装置
CN110892581A (zh) 天线系统和终端设备
WO2021078260A1 (zh) 双频天线和飞行器
WO2023155559A1 (zh) 电子设备
WO2019228309A1 (zh) 天线、无人飞行器的遥控器及无人飞行器
WO2019228339A1 (zh) 天线及无人飞行器
WO2022199363A1 (zh) 天线、无线信号处理设备及无人机
CN110277631A (zh) 一种双频天线及飞行器
WO2020038287A1 (zh) 天线及无人飞行器
CN105896084A (zh) 一种全频段车载天线
WO2022199362A1 (zh) 天线、无线信号处理设备及无人机
US20240079765A1 (en) Antenna, wireless signal processing device, and unmanned aerial vehicle
CN215220987U (zh) 天线、无线信号处理设备及无人机
WO2022199361A1 (zh) 天线、其调试方法、外置式天线结构及无人机
WO2023001037A1 (zh) 天线、无线信号处理设备及无人机
CN209658395U (zh) 一种小型化超宽带十频段手机天线
CN108183315A (zh) 应用于l/c频段的机载双频天线
CN215220988U (zh) 天线、无线信号处理设备及无人机
WO2023016317A1 (zh) 一种天线及无人飞行器
TWM599482U (zh) 多頻天線裝置
WO2020140547A1 (zh) 滤波器天线
KR20080029678A (ko) Pcb 프린트 타입의 듀얼 밴드 패치 안테나 및 이를일체화한 무선통신 모듈
WO2022228008A1 (zh) 一种天线及遥控器
CN110247175A (zh) 一种基于发卡型谐振器的滤波双工天线

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22774025

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022774025

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022774025

Country of ref document: EP

Effective date: 20231026