WO2022199362A1 - 天线、无线信号处理设备及无人机 - Google Patents

天线、无线信号处理设备及无人机 Download PDF

Info

Publication number
WO2022199362A1
WO2022199362A1 PCT/CN2022/079358 CN2022079358W WO2022199362A1 WO 2022199362 A1 WO2022199362 A1 WO 2022199362A1 CN 2022079358 W CN2022079358 W CN 2022079358W WO 2022199362 A1 WO2022199362 A1 WO 2022199362A1
Authority
WO
WIPO (PCT)
Prior art keywords
vibrator
substrate
antenna
frequency band
feeder
Prior art date
Application number
PCT/CN2022/079358
Other languages
English (en)
French (fr)
Inventor
宋建平
王建磊
Original Assignee
深圳市道通智能航空技术股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市道通智能航空技术股份有限公司 filed Critical 深圳市道通智能航空技术股份有限公司
Publication of WO2022199362A1 publication Critical patent/WO2022199362A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/27Adaptation for use in or on movable bodies
    • H01Q1/28Adaptation for use in or on aircraft, missiles, satellites, or balloons
    • H01Q1/285Aircraft wire antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith

Definitions

  • the present invention relates to the technical field of antenna structures, in particular to an antenna, a wireless signal processing device and an unmanned aerial vehicle.
  • Antenna is a key component used to realize the transmission and reception of electromagnetic wave wireless signals. Its performance has a major impact on devices such as drones that require long-range wireless data transmission. With the continuous development of electronic information technology, the requirements for wireless transmission performance are getting higher and higher, which brings great challenges to the structural design of the antenna.
  • the embodiments of the present invention aim to provide an antenna, a wireless signal processing device and an unmanned aerial vehicle, which can solve the contradiction between the existing complex antenna structure and the miniaturization of the antenna size.
  • an antenna The antenna includes:
  • the first radiating part and the second radiating part arranged on the surface of the substrate, the first radiating part and the second radiating part are symmetrical along the axis of the substrate, corresponding to different frequency bands;
  • a feeder connected to the first radiating part and the second radiating part respectively;
  • a pad body with a preset size is provided between the feed line and the surface of the substrate, so that the feed line maintains a distance from the surface of the substrate.
  • the pad body is made of non-conductive material, and the non-conductive material includes: foam, plastic and wood.
  • the cushion body is a foam layer with a preset thickness, a wood frame or a plastic frame.
  • a fixing manner for fixing the feeder and the pad body on the substrate includes: binding and fixing or sticking and fixing.
  • the first radiation part includes:
  • a first vibrator symmetrical along the axis of the substrate, the first vibrator has multiple bends to form two first openings facing the same and a second opening opposite to the first opening;
  • a vibrating body connected with the feeder; the vibrating body communicates with the first vibrator;
  • a pair of vibrating arms formed by extending the bent portion by a predetermined length.
  • the antenna further includes: a pair of hollow grooves; the hollow grooves are symmetrically arranged along the axis of the substrate and located in the first vibrator.
  • the hollow groove is arranged between two longitudinal microstrip lines forming the first opening;
  • the first vibrator is composed of a plurality of longitudinal microstrip lines extending in the axial direction of the substrate and a plurality of transverse microstrip lines extending in the radial direction of the substrate.
  • the second radiation part includes:
  • a third vibrator located at the head portion of the substrate surface, where the head portion of the substrate surface is one end away from the extension direction of the feeder;
  • a fourth vibrator connected between the third vibrator and the feeder.
  • the third vibrator includes:
  • a vibrator head having a second width, the vibrator head being located at the head of the substrate surface;
  • a vibrator connecting portion located between the vibrator head and the fourth vibrator, the fourth vibrator has a first width smaller than the second width, and the vibrator connecting portion has a reduced width from the second width to the transition structure of the first width.
  • the first radiation portion corresponds to a first frequency band
  • the second radiation portion corresponds to a second frequency band with a frequency higher than the first frequency band
  • the total length of the first oscillator and the second oscillator is between 1/8 to 3/4 of the resonant wavelength of the first frequency band;
  • the total length of the third vibrator and the fourth vibrator is between 1/8 to 3/4 of the resonant wavelength of the second frequency band.
  • the first frequency band is a 900MHz frequency band
  • the second frequency band is a 2.4GHz frequency band.
  • the feed line is a coaxial line; the inner conductor of the coaxial line is connected to the fourth vibrator, and the outer conductor of the coaxial line is connected to the second vibrator.
  • the embodiments of the present invention further provide the following technical solution: a wireless signal processing device.
  • the wireless signal processing device includes: the above-mentioned antenna for sending or receiving wireless signals; a transmission path for loading information content into a radio frequency carrier signal to form a wireless signal and send it through the antenna.
  • a drone comprises: a fuselage with a landing gear; a motor mounted on the fuselage for providing flying power for the drone; the above-mentioned antenna mounted on the inside the landing gear.
  • the antenna of the embodiment of the present invention adopts a reasonable wiring and structural design, and can meet the usage requirements of a multi-band antenna on a substrate with a small volume.
  • the pad body structure can increase the distance between the feeder and the substrate, so as to avoid the interference of the resonant wave caused by the feeder when transmitting signals.
  • FIG. 1 is a schematic structural diagram of an antenna provided by an embodiment of the present invention.
  • FIG. 2 is a side view of an antenna provided by an embodiment of the present invention.
  • FIG. 3 is a schematic structural diagram of a first radiation portion according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of an S parameter of an antenna provided by an embodiment of the present invention.
  • FIG. 5 is a low frequency pattern of an antenna in a horizontal direction (H direction) according to an embodiment of the present invention
  • FIG. 6 is a high frequency pattern of an antenna in a horizontal direction (H direction) provided by an embodiment of the present invention.
  • FIG. 7 is a schematic diagram of a wireless signal processing device according to an embodiment of the present invention.
  • FIG. 8 is a schematic diagram of an antenna structure provided by an embodiment of the present invention.
  • FIG. 9 is a schematic diagram of an unmanned aerial vehicle provided by an embodiment of the present invention.
  • FIG. 1 is a schematic structural diagram of an antenna provided by an embodiment of the present invention.
  • the antenna mainly includes a substrate 10 as the basis of the antenna structure, a radiating portion (21, 22) composed of a vibrator with a specific structure and shape arranged on the surface of the substrate, and a feeder 30 connected to the vibrator and used for signal transmission and a pad body 40 having a preset size.
  • the substrate 10 can be made of any type of material (eg, plastic, foam), and has a non-conductive structure with a specific shape (eg, a long rectangle, a trapezoid). It has a relatively flat shape, creating a flat surface.
  • a specific shape eg, a long rectangle, a trapezoid
  • the substrate 10 along the extension direction of the feeder 30, close to the connection device is called “root”
  • the other end opposite to the root of the substrate is called “head”.
  • the “radiating part” (21, 22) refers to the resonance unit used to receive or transmit wireless signals in a specific frequency band, and is the core of the entire antenna system. It can usually be composed of one or more same or different vibrators with a specific shape or structure. These vibrators can be conductors with specific sizes and shapes, which are fixed on the surface of the substrate 10 in any suitable form (eg, patch type). It can receive or transmit wireless signals belonging to a specific frequency band through the principle of electromagnetic induction.
  • the antenna may be provided with a first radiating portion 21 and a second radiating portion 22, respectively corresponding to wireless signals of different frequency bands, so as to meet the usage requirements of dual-band signals.
  • the first radiation part 21 may correspond to a low frequency signal
  • the second radiation part 22 may correspond to a high frequency signal.
  • the above-mentioned "low frequency” and “high frequency” are a set of relative concepts, which are only used to indicate that the frequency band corresponding to the first radiation part 21 is lower than that of the second radiation part 22, and not used to limit the first radiation part 21 and the second radiation part 22. specific frequency bands.
  • the first radiation part 21 may correspond to the 900MHz frequency band
  • the second radiation part 22 may correspond to the 2.4GHz frequency band with a higher frequency.
  • the feeder 30 is a signal transmission path connecting the "radiating part" and other signal processing systems. It usually uses a coaxial wire or similar wire with good shielding and signal transmission performance to transmit the wireless signal received or transmitted by the "radiating part".
  • the position where it establishes a connection with the radiating part is usually located near the middle of the surface of the substrate.
  • the feeder 30 needs to start from the connection point C at the middle of the substrate and extend a certain length toward the root of the substrate until it leaves the substrate and other signal processing systems. connect. In other words, as shown in FIG. 1 , a part of the feeder 30 may pass or walk on the surface of the substrate.
  • the pad body 40 is a filling structure disposed between the feed line 30 and the surface of the substrate. It has a predetermined size and is padded under the feeder 30 so that the feeder 30 is kept a sufficient distance from the surface of the substrate.
  • "dimension" refers to the combination of various parameters (such as thickness, width or length) related to the shape of the pad body and used to characterize the outer shape of the filling structure. The specific parameters included can be based on The actual selection of the shape of the pad body 40 is determined by the distance between the feeder 30 and the substrate surface (eg, the vertical distance between the feeder 30 and the substrate surface).
  • the above-mentioned predetermined size is an empirical value, which can be determined by those skilled in the art according to actual needs, as long as the feeder line 30 can maintain a sufficient distance from the surface of the substrate.
  • the pad body 40 can be made of any suitable type of non-conductive material, including but not limited to foam, plastic and wood. As described above, considering the different manufacturing materials used for the cushion body 40, a corresponding structure may also be adopted. For example, when foam is used, the pad body 40 can be a foam layer with a certain thickness, while when wood or plastic is used, a wood frame or a plastic frame with a shape and structure suitable for the feeder 30 can be selected as the pad body 40.
  • any suitable type of fixing method can be used to fix the feeder lines (31, 32).
  • any suitable type of fixing method such as sticking fixation or bundling fixation
  • sticking fixation or bundling fixation can be used to fix the feeder lines (31, 32).
  • bundling fixation can be used to fix the feeder lines (31, 32).
  • the pad body 40 is fixed on the pad body 40 to keep the substrate 10 , the pad body 40 and the feeder 30 integrally fixed.
  • the feeder 30 may be fixed on the pad body 40 and the base plate 10 by a binding and fixing method such as a wire tie 60 .
  • the cable ties 60 pass through the holes or hollow grooves provided on the base plate 10 to bind and fix the feeder wires 30 , so as to keep the feeder wires 30 and the base body 10 integrally fixed without relative movement.
  • an appropriate number of cable ties 60 may be provided according to the distance or length of the feeder 30 on the substrate 10 .
  • any other suitable type of fixing method can also be selected according to actual needs, for example, a sticking fixing method is used to fix the feeder 30 on the pad body 40 and the substrate 10 through components such as glue or tape.
  • the feeder 30 running on the surface of the substrate is fixed on the pad body 40 to maintain a sufficient vertical distance from the surface of the substrate to reduce the interference caused by the transmission signal of the feeder 30 to the radiating part located on the surface of the substrate.
  • the vertical distance between the feeder 30 and the surface of the substrate is an empirical value, and only needs to be able to meet the needs of use.
  • Technicians can pre-determine the minimum standard or suitable standard for the vertical distance between the feeder 30 and the substrate surface according to actual needs (such as performance indicators, experimental results), and then choose to use a pad with a corresponding size.
  • a filling structure with a reasonable size is arranged between the feeder 30 and the surface of the substrate, and the feeder 30 is raised to ensure that the feeder 30 running on the substrate is kept at a certain distance from the surface of the substrate.
  • the effect of reducing the influence or interference of the feeder 30 on the resonant wave (such as the high-frequency signal or the low-frequency signal corresponding to the radiating part) during the signal transmission process is beneficial to improve the overall performance of the antenna.
  • the first radiating portion 21 and the second radiating portion 22 adopting a unique layout or structural form can meet the requirements of low frequency (such as 900MHz) and high frequency (2.4GHz) frequency bands.
  • the first radiation part 21 may include a first vibrator 211 and a second vibrator 212 .
  • the first vibrator 211 and the second vibrator 212 are symmetrical in shape, and are symmetrically arranged along the axis A of the substrate.
  • the first vibrator 211 is closer to the head of the substrate than the second vibrator 212 .
  • the second vibrator 212 is located close to the root of the substrate. That is, the first vibrator 211 is located before the second vibrator 212 .
  • the first vibrator 211 is bent multiple times to form a structure similar to a “W” shape.
  • the W-shaped structure form can also be considered to be formed by a combination of three U-shaped structures, wherein the first openings S1 of the two U-shaped shapes are oriented in the same direction, toward the root of the substrate.
  • the other U-shaped second opening S2 is located between the two first openings S1 , which is opposite to the first opening S1 and faces the head of the substrate.
  • the first vibrator 211 can also be fine-tuned accordingly on the basis of the W-shaped structure, such as the angle of inclination, the length of the vibrator, and the like.
  • the first vibrator 211 may be composed of four vertical microstrip lines 211a and three horizontal microstrip lines 211b.
  • “Longitudinal microstrip line” refers to a microstrip line that mainly extends along the direction of the axis A of the substrate for a certain length, but does not necessarily have to extend along the direction of the axis A, and can have a certain angle of inclination. The projected length in the direction of the substrate axis A.
  • the "transverse microstrip line” refers to a microstrip line extending a certain length in the radial direction of the substrate (ie, the direction perpendicular to the axis A). Similarly, the transverse microstrip line is only used to indicate that the projected length of the microstrip line in the radial direction is much larger than the projected length in the axial direction, and is not used to limit the specific extension direction of the microstrip line.
  • the three transverse microstrip lines 211b are respectively staggered and arranged at different ends of the longitudinal microstrip lines 211a, thereby forming the above-mentioned first opening S1 and second opening S2.
  • the first opening S1 faces the root of the substrate, and the second opening S2 faces the head of the substrate, which is opposite to the first opening.
  • the second vibrator 212 can be roughly divided into three parts: a vibrating body 212 a , a bending part 212 b and a vibrating arm 212 c .
  • the bent portions 212b are respectively located at two ends of the vibrating body 212a, and extend outward along a certain angle, thereby forming a U-shaped structural form.
  • the vibrating body 212a communicates with the first vibrating element 211, and serves as a specific connecting portion where the first radiating portion is connected with the feeder.
  • the vibrating body 212a may specifically adopt any suitable form to achieve communication with the vibrating element 211 .
  • the vibrating body 212a may be one of the transverse microstrip lines constituting the first vibrator 211 or a part thereof.
  • a pair of hollow grooves 50 may be added on the substrate 10 . Similar to the first radiation portion, the recess 50 is also symmetrically arranged along the axis A of the substrate, and is located in the region where the first vibrator 211 is located. That is, it is installed in the first vibrator 211 .
  • the recess 50 can be opened in the area between the two vertical microstrip lines 221a that form the first opening S1, and the capacitance structure of the two vertical microstrip lines 221a can be adjusted, thereby effectively improving the coverage of the antenna for low-frequency signals Rate.
  • the second radiating portion 22 may include a third vibrator 221 and a fourth vibrator 222 . Similar to the first radiating part 21 , the third vibrator 221 and the fourth vibrator 222 constituting the second radiating part 22 are arranged symmetrically along the axis A of the substrate, and the third vibrator 221 is relative to the fourth vibrator 222 , which is located at the head of the substrate 10 , and the fourth vibrator 222 is arranged relatively behind.
  • the third vibrator 221 can be roughly divided into a vibrator head 221 a and a vibrator connecting portion 221 b connecting the fourth vibrator 222 .
  • the vibrator head 221a of the third vibrator 221 has a significantly larger wiring width.
  • the vibrator connecting portion 221b is a transition structure connected between the vibrator head 221a and the fourth vibrator 222, and gradually transitions from the vibrator head 221a to the fourth vibrator 222 with a smaller width.
  • the fourth vibrator 222 is a connecting portion between the third vibrator 221 and the feeder 30 , and connects the third vibrator 221 and the feeder 30 to form the second radiating portion 22 .
  • the fourth vibrator 222 may be a microstrip line with a narrow first width
  • the vibrator connecting portion 221b may have a structure similar to a trapezoid, which is gradually narrowed from the second width of the vibrator head 221a to The first width of the fourth vibrator 222 . Therefore, the third vibrator 221 and the fourth vibrator 222 form a structure similar to the "! (exclamation mark) type.
  • the second radiating portion 22 provided in this embodiment has a larger wiring width, which can effectively improve the signal attenuation formed during signal transmission and improve the performance of the antenna.
  • the antenna shown in FIG. 1 is only used for exemplary illustration, and those skilled in the art can add, adjust, replace or reduce one or more functional components according to the needs of the actual situation, and are not limited to the FIG. 1 shown.
  • the technical features involved in the embodiment of the antenna shown in FIG. 1 can be combined with each other as long as they do not conflict with each other, and can be independently applied in different embodiments as long as they do not depend on each other.
  • the length of the vibrator or the effective length of the vibrator arm is an important dimension parameter in the antenna, and is closely related to the frequency band of the wireless signal reception or transmission. Based on the different signal frequency bands corresponding to different radiating parts, it is necessary to control the size and length of the vibrator to ensure that the use requirements of the antenna are met.
  • the size and length of the first radiating portion composed of the W-shaped first vibrator 211 and the U-shaped second vibrator 212 (that is, the two longitudinal microstrip lines located above the substrate axis A, the vibration of the second vibrator body, the sum of the lengths of the bent portion and the extension portion of the second vibrator above the substrate axis A) needs to be controlled between 1/8 to 3/4 of the resonant wavelength of the first frequency band.
  • the size and length of the second radiating portion using the "!-shaped structure that is, the sum of the lengths of the third vibrator 221 and the fourth vibrator 222) needs to be controlled at 1/8 to 3/8 of the resonant wavelength in the second frequency band. between 4.
  • the first frequency band is a lower frequency band than the second frequency band. That is, the dimension length of the first radiating portion 21 needs to be controlled between 1/8 to 3/4 of the low frequency resonance wavelength.
  • the dimension length of the second radiating portion 22 is kept between 1/8 to 3/4 of the high frequency resonance wavelength.
  • the embodiment of the present invention provides a specific example of a dual-frequency antenna that can operate in two frequency bands of 900 MHz and 2.4 GHz.
  • the dual-frequency antenna includes: a substrate 10 , a first vibrator 211 , a second vibrator 212 , a third vibrator 221 , a fourth vibrator 222 , a feeder 30 , a pad body 40 , and an air escape slot 50 .
  • the substrate 10 is roughly in the shape of a trapezoid.
  • the narrower top side of the trapezoid is the head of the substrate 10
  • the wider bottom side of the trapezoid is the root of the substrate 10 .
  • the feeder 30 is realized by a coaxial line, which starts from the connection point located in the middle of the substrate 10 and travels a certain distance on the substrate 10 until it leaves the substrate 10 from the root of the substrate 10 and extends outward to other external devices or circuits connected to the antenna. .
  • the pad body 40 is made of 0.5mm foam, and is placed between the feeder 30 and the substrate 10 .
  • the feeder 30 is fixed on the pad body 40 through the tie 60 and is integrally fixed with the substrate 10 .
  • the feeder 30 is raised by the pad body 40 so that the distance between the feeder 30 and the substrate 10 is maintained, which can effectively avoid interference when the feeder transmits signals.
  • first vibrator 211, second vibrator 212, third vibrator 221 and fourth vibrator 222 are all arranged on the surface of the substrate, and have conductors (such as microstrip lines) with specific shapes, lengths and widths, which are partially exposed to receive or Sends wireless signals in a specific frequency band.
  • conductors such as microstrip lines
  • the first vibrator 211 can be in the shape of a W-shaped vibrator formed by bending multiple times, and the second vibrator 212 is in the shape of a "U"-shaped vibrator.
  • the first vibrator 211 and the second vibrator 212 are partially overlapped (shared), and the overlapped portion is connected to the outer conductor of the coaxial line (feeder line 30 ).
  • the length of the vibrator part of which the first radiating part is located on one side of the axis of the substrate is 1/8 to 3/4 of the resonance wavelength of the low frequency (900 MHz).
  • the pair of hollow grooves 50 are symmetrical along the axis of the substrate, and are formed between the two longitudinal microstrip lines of the first oscillator 211 to improve the capacitance structure of the first oscillator 211 and increase the coverage of low frequency signals.
  • the third vibrator 221 has a larger wiring width at the head, and gradually narrows at the transition portion, forming a "!-shaped vibrator shape with the narrower fourth vibrator 222, forming a second vibrator corresponding to the high-frequency signal. Radiation Department.
  • the fourth vibrator 222 is connected to the inner conductor of the coaxial line (feeder line 30).
  • the size and length of the third vibrator 221 and the fourth vibrator 222 are 1/8 to 3/4 of the resonance wavelength of the high frequency (2.4 GHz). By arranging the third vibrator 221 with wider wiring, the attenuation during high-frequency signal transmission can be effectively reduced.
  • FIG. 4 is a schematic diagram of an S parameter of an antenna provided by an embodiment of the present invention.
  • the antenna provided by the above embodiment can work in 890MHz-940MHz (low frequency band) and 2.26GHz-2.56GHz (high frequency band). Therefore, coverage of the two frequency bands of 900MHz and 2.4GHz can be achieved.
  • FIG. 5 and FIG. 6 are antenna directional diagrams of an antenna in a low frequency band and a high frequency band, respectively, according to an embodiment of the present invention.
  • the antenna provided by the embodiment of the present invention has good directivity in both low frequency band and high frequency band, has good omnidirectionality, and has no defect in a specific direction.
  • the embodiment of the present invention further provides a wireless signal processing device.
  • This embodiment does not limit the specific implementation of the wireless signal processing device, which may be any type or type of electronic device used to send and receive wireless signals, such as a remote control, a smart terminal, a wearable device, or a mobile vehicle. signal transceiver.
  • FIG. 7 is a schematic structural diagram of a wireless signal processing device according to an embodiment of the present invention.
  • the wireless signal processing device includes: an antenna 100 , a transmission path 200 and a reception path 300 .
  • the antenna 100 is connected to the receiving path 200 or the transmitting path 300 through a feeder, so as to realize mutual signal transmission.
  • the antenna 100 may specifically be the antenna described in one or more of the above embodiments, which is determined by the specific implementation of the wireless signal processing device.
  • the antenna 100 may be an omnidirectional antenna covering two frequency bands.
  • the transmission path 200 is a functional module for loading the information content to be sent into the carrier signal to form a wireless signal.
  • it can be of any type, formed by a combination of one or more electronic components, and an electronic system that can generate wireless signals, such as a radio frequency chip.
  • the receiving path 300 is an electronic system for analyzing the wireless signal received by the antenna to obtain the information content contained in the wireless signal, such as a specific type of decoding chip. It has the opposite information flow direction to the transmitting channel 200, and is a functional module for completing information acquisition.
  • one of the transmit path 200 and the receive path 300 may be omitted based on the specific implementation of the wireless signal processing device. For example, when the wireless signal processing device is a remote controller, the receiving path 300 can be omitted, and only the transmitting path 200 needs to be provided.
  • FIG. 8 is a schematic diagram of an application scenario of an antenna provided by an embodiment of the present invention. As shown in FIG. 8 , this application scenario may include: a main structure 400 , an antenna housing 410 and the antenna described in the above embodiments.
  • the main structure 400 is a structure that provides an installation position for the antenna housing 400 .
  • the main structure 400 may be a part of the casing of any type of device.
  • the main structure 400 may be part of the fuselage shell of the drone.
  • the antenna housing 410 is a casing that wraps the antenna and is used for protection and the like.
  • the antenna housing 200 can be made of any suitable type of non-conductive material, and has a specific shape to meet usage requirements. For example, it can be set in a curved shape as shown in Fig. 8, and can be used as a landing gear of a drone.
  • the antenna in the above embodiments is wrapped in the antenna casing 410 (not shown in the figure), and the substrate 10 may have or be formed in a shape matching the antenna casing 410 . It realizes the signal transmission between the radiation part and the receiving channel/transmitting channel through the feeder.
  • the drone may include: a body 400, motors (510, 520) and an antenna.
  • the fuselage 400 as the main structure of the UAV, can be made of any suitable material and has a structure and size that meet the needs of use (as shown in the fixed-wing UAV shown in FIG. 9).
  • the fuselage 400 may be provided with various functional components such as a landing gear 410 , a propeller 420 , and a camera 430 .
  • a landing gear 410 a landing gear 410
  • a propeller 420 , and a camera 430 .
  • a camera 430 a camera 430 .
  • those skilled in the art can also add or omit one or more functional components according to actual needs, for example, a corresponding pan/tilt 440 can be added for the camera 430 .
  • Motors (510, 520) are installed on the fuselage 400, and are used to provide flying power for the drone.
  • the motor may be provided with one or more motors, which are arranged at corresponding positions of the fuselage 400 (eg, the fuselage motor 510 and the wingtip motor 520 ) to perform different functions (eg, drive the propeller 420 to rotate, control the fuselage attitude, etc.) ).
  • the antenna can be installed and accommodated in the landing gear 410 (for example, in the nose landing gear shown in FIG. 9 , labeled 410 ), as part of the wireless signal transceiver device, used to receive remote control operation instructions from the remote control or to the remote control. Or other intelligent terminals feed back relevant data information (such as captured images, operating state parameters of the drone itself).

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • Astronomy & Astrophysics (AREA)
  • General Physics & Mathematics (AREA)
  • Details Of Aerials (AREA)

Abstract

本发明涉及天线技术领域,尤其涉及一种天线、无线信号处理设备及无人机。该天线包括:基板,具有平坦的基板表面;设置在所述基板表面的第一辐射部和第二辐射部,所述第一辐射部和所述第二辐射部沿所述基板的轴线对称,与不同的频段对应;分别与所述第一辐射部和所述第二辐射部连接的馈线;具有预设尺寸的垫体,所述垫体设置在所述馈线与所述基板表面之间,以使所述馈线保持与所述基板表面的距离。该天线采用合理的布线和结构设计,可以在体积较小的基板上满足多频天线的使用需求。而且,垫体结构可以增加馈线与基板之间的距离,避免了馈线在传输信号时对谐振波造成的干扰。

Description

天线、无线信号处理设备及无人机
本申请要求于2021年03月26日提交中国专利局、申请号为2021103256626、申请名称为“天线、无线信号处理设备及无人机”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
【技术领域】
本发明涉及天线结构技术领域,尤其涉及一种天线、无线信号处理设备及无人机。
【背景技术】
天线是用于实现电磁波无线信号收发的关键部件。其性能对于无人机等需要远程无线数据传输的设备具有重大影响。随着电子信息技术的不断发展,对于无线传输性能的要求也越来越高,这为天线的结构设计带来了非常大的挑战。
为了满足更大的带宽,覆盖更多频段的使用需求,技术人员往往需要使用具有复杂结构设计的天线。但是,这些具有复杂结构设计的天线很难实现天线小型化,难以应用到无人机、遥控器等对于尺寸、结构敏感的小型产品中。
【发明内容】
本发明实施例旨在提供一种天线、无线信号处理设备及无人机,能够解决现有复杂天线结构与天线尺寸小型化之间的矛盾。
为解决上述技术问题,本发明实施例提供以下技术方案:一种天线。该天线包括:
基板,所述基板具有平坦的基板表面;
设置在所述基板表面的第一辐射部和第二辐射部,所述第一辐射部和所 述第二辐射部沿所述基板的轴线对称,与不同的频段对应;
分别与所述第一辐射部和所述第二辐射部连接的馈线;
具有预设尺寸的垫体,所述垫体设置在所述馈线与所述基板表面之间,以使所述馈线保持与所述基板表面的距离。
可选地,所述垫体由非导电材料制成,所述非导电材料包括:泡棉、塑料和木材。
可选地,所述垫体为具有预设厚度的泡棉层、木材架或者塑料架。
可选地,所述馈线和所述垫体固定在所述基板上的固定方式包括:捆扎固定或者粘贴固定。
可选地,所述第一辐射部包括:
沿所述基板的轴线对称的第一振子,所述第一振子具有多次弯折,形成两个朝向相同的第一开口以及与所述第一开口的朝向相反的第二开口;
沿所述第一开口的延伸方向设置的第二振子,所述第二振子包括:
与所述馈线连接的振体;所述振体与所述第一振子连通;
分别设置在所述振体的两个末端的弯折部;以及
由所述弯折部延伸预定长度形成的一对振臂。
可选地,所述天线还包括:一对避空槽;所述避空槽沿所述基板的轴线对称设置,位于所述第一振子内。
可选地,所述避空槽设置在形成所述第一开口的两段纵向微带线之间;
所述第一振子由多段沿所述基板的轴线方向延伸的纵向微带线和多段沿所述基板的径向方向延伸的横向微带线组成。
可选地,所述第二辐射部包括:
位于所述基板表面的头部的第三振子,所述基板表面的头部为与所述馈线的延伸方向相离的一端;
连接在所述第三振子与所述馈线之间的第四振子。
可选地,所述第三振子包括:
具有第二宽度的振子头部,所述振子头部位于所述基板表面的头部;
位于所述振子头部与所述第四振子之间的振子连接部,所述第四振子具有小于所述第二宽度的第一宽度,所述振子连接部具有从所述第二宽度缩小 至所述第一宽度的过渡结构。
可选地,所述第一辐射部对应第一频段,所述第二辐射部对应频率高于所述第一频段的第二频段;
所述第一振子和所述第二振子的总长度在所述第一频段的谐振波长的1/8至3/4之间;
所述第三振子和所述第四振子的总长度在所述第二频段的谐振波长的1/8至3/4之间。
可选地,所述第一频段为900MHz频段,所述第二频段为2.4GHz频段。
可选地,所述馈线为同轴线;所述同轴线的内导体与所述第四振子连接,所述同轴线的外导体与所述第二振子连接。
为解决上述技术问题,本发明实施例还提供以下技术方案:一种无线信号处理设备。该无线信号处理设备包括:如上所述的天线,用于发送或接收无线信号;发射通路,用于将信息内容加载到射频载波信号中,形成无线信号并通过所述天线发送。
为解决上述技术问题,本发明实施例还提供以下技术方案:一种无人机。该无人机包括:机身,所述机身上具有起落架;电机,安装于所述机身上,用于为所述无人机提供飞行动力;如上所述的天线,安装于所述起落架内。
本发明实施例的天线采用合理的布线和结构设计,可以在体积较小的基板上实现多频段天线的使用需求。而且,垫体结构可以增加馈线与基板之间的距离,避免了馈线在传输信号时对谐振波造成的干扰。
【附图说明】
一个或多个实施例通过与之对应的附图中的图片进行示例性说明,这些示例性说明并不构成对实施例的限定,附图中具有相同参考数字标号的元件表示为类似的元件,除非有特别申明,附图中的图不构成比例限制。
图1为本发明实施例提供的天线的结构示意图;
图2为本发明实施例提供的天线的侧视图;
图3为本发明实施例提供的第一辐射部的结构示意图;
图4为本发明实施例提供的天线的S参数示意图;
图5为本发明实施例提供的天线在水平方向(H方向)的低频段方向图;
图6为本发明实施例提供的天线在水平方向(H方向)的高频段方向图;
图7为本发明实施例提供的无线信号处理设备的示意图;
图8为本发明实施例提供的天线结构的示意图;
图9为本发明实施例提供的无人机的示意图。
【具体实施方式】
为了便于理解本发明,下面结合附图和具体实施例,对本发明进行更详细的说明。需要说明的是,当元件被表述“固定于”另一个元件,它可以直接在另一个元件上、或者其间可以存在一个或多个居中的元件。当一个元件被表述“连接”另一个元件,它可以是直接连接到另一个元件、或者其间可以存在一个或多个居中的元件。本说明书所使用的术语“上”、“下”、“内”、“外”、“底部”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语“第一”、“第二”“第三”等仅用于描述目的,而不能理解为指示或暗示相对重要性。
除非另有定义,本说明书所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本说明书中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是用于限制本发明。本说明书所使用的术语“和/或”包括一个或多个相关的所列项目的任意的和所有的组合。
此外,下面所描述的本发明不同实施例中所涉及的技术特征只要彼此之间未构成冲突就可以相互结合。
图1为本发明实施例提供的天线的结构示意图。如图1所示,该天线主要包括作为天线结构基础的基板10、布置在基板表面,具有特定结构形状的振子组成的辐射部(21,22)、与振子连接,用于传输信号的馈线30以及具有预设尺寸的垫体40。
其中,基板10可以是采用任何类型的材质(如塑料、泡沫)制备形成,具有特定形状(如长矩形、梯形)的非导电结构。其具有相对扁平的形状,形成平坦的表面。在本实施例中,为便于陈述,将基板10顺着馈线30的延 伸方向,靠近连接设备的基板末端称为“根部”,将另一个与基板根部相对的末端称为“头部”。
“辐射部”(21,22)是指用于接收或者发射特定频段的无线信号的谐振单元,是整个天线系统的核心。其通常可以由一个或者多个相同或者不同的,具有特定形状或者结构的振子组成。这些振子可以是采用任何合适的形式(如贴片式)固定在基板10表面,具有特定尺寸和形状的导体。其可以通过电磁感应原理实现对属于特定频段的无线信号的接收或者发射。在本实施例中,该天线可以设置有第一辐射部21和第二辐射部22,分别与不同频段的无线信号相对应,实现双频段信号的使用需求。
其中,第一辐射部21可以对应低频信号,而第二辐射部22则对应高频信号。上述“低频”和“高频”是一组相对概念,仅用于表示第一辐射部21对应的频段低于第二辐射部22,而不用于限定第一辐射部21和第二辐射部22具体对应的频段。例如,第一辐射部21可以对应于900MHz频段,而第二辐射部22则对应于频率更高的2.4GHz频段。
馈线30是连接“辐射部”与其他信号处理系统的信号传输通路。其通常采用同轴线等类似的,具有良好的屏蔽和信号传输性能的线材,用以传输“辐射部”接收或者发射的无线信号。
其与辐射部建立连接的位置通常位于接近基板表面中部的位置,馈线30需要从该位于基板中部位置的连接点C开始,向基板的根部方向延伸一定的长度,直至离开基板与其他信号处理系统连接。换言之,如图1所示,馈线30的一部分会经过或者行走在基板表面。
垫体40是设置在馈线30和基板表面之间的填充结构。其具有预定的尺寸,垫在馈线30的下方从而使得馈线30与基板表面保持足够的距离。在本实施例中,“尺寸”是指与垫体的外形相关的,用以表征该填充结构的外部轮廓形态的多种参数的组合(如厚度、宽度或者长度),具体包含的参数可以根据实际选择使用的垫体40的外形结构或者馈线30与基板表面所要达到的距离所决定(如馈线30与基板表面之间在垂直方向上的距离)。
上述预定的尺寸是一个经验性数值,可以由本领域技术人员根据实际情况的需要来确定,只需要能够令馈线30与基板表面保持足够的距离即可。
具体的,该垫体40可以使用任何合适类型的非导电材料制成,包括但不 限于泡棉、塑料和木材。如上所述描述的,考虑到垫体40具体所使用的不同的制作材料,具体也可以采用相应的结构。例如,使用泡棉时,垫体40可以是具有一定厚度的泡棉层,而使用木材或者塑料时,则可以选择使用具有与馈线30相适配的形状结构的木材架或者塑料架作为垫体40。
为避免在天线日常使用过程中,馈线(31,32)与基板10和垫体40之间发生相对移动,可以采用任何合适类型的固定方式(如粘贴固定或者捆扎固定)将馈线(31,32)固定在垫体40上,保持基板10、垫体40以及馈线30的一体固定。
在一些实施例中,如图2所示,馈线30可以通过扎带60等类似的捆扎固定方式固定在垫体40和基板10上。扎带60穿过基板10上设置的孔洞或者避空槽,将馈线30捆扎固定,保持馈线30与基体10之间的一体固定,不会发生相对移动。具体可以根据馈线30在基板10上行走的距离或者长度,设置合适数量的扎带60。
当然,也可以根据实际情况的需要,选择使用其他任何合适类型的固定方式,如使用粘贴的固定方式,通过胶水或者胶带等部件将馈线30固定在垫体40和基板10上。
行走在基板表面的馈线30通过固定在垫体40上的方式,与基板表面保持足够的垂直距离,用以降低馈线30传输信号对位于基板表面的辐射部所造成的干扰。
馈线30与基板表面的垂直距离是一个经验性数值,只需要能够满足使用需要即可。技术人员可以根据实际情况的需要(如性能指标、实验结果),预先确定馈线30与基板表面之间垂直距离所要满足的最低标准或者合适的标准,然后选择使用具有相应尺寸的垫体。
在本发明实施例提供的天线结构,通过在馈线30与基板表面之间设置具有合理尺寸的填充结构,垫高馈线30从而确保在基板上行走的馈线30与基板表面保持一定的距离,可以起到减少馈线30在传输信号过程中对谐振波(如上述辐射部对应的高频信号或者低频信号)造成的影响或者干扰的效果,有利于改善天线的整体性能。
请继续参阅图1,在实现本申请的过程中,令人惊喜的发现,采用独特布局或结构形式的第一辐射部21和第二辐射部22能够在保持天线小型化的同 时满足低频(如900MHz)和高频(2.4GHz)两个频段的需求。
在一些实施例中,该第一辐射部21可以包括第一振子211和第二振子212。上述第一振子211和第二振子212均采用对称的形状,沿基板的轴线A对称设置。另外,第一振子211相对于第二振子212而言,接近基板的头部。而第二振子212则位于接近基板根部的位置。即第一振子211位于第二振子212之前。
其中,如图3所示,第一振子211具有多次弯折,形成类似于“W”型的结构形式。具体的,该W型结构形式也可以被认为是由3个U字型的结构组合形成,其中两个U字型的第一开口S1的朝向相同,朝向基板的根部。而另一个U字型的第二开口S2位于两个第一开口S1之间,其朝向与第一开口S1相反,朝向基板的头部。当然,第一振子211也可以在W型结构形式的基础上进行相应的微调,例如倾斜的角度,振子的长度等。
具体的,第一振子211可以由四段纵向微带线211a和三段横向微带线211b所组成。“纵向微带线”是指主要沿基板的轴线A的方向延伸一定长度的微带线,但不一定必须沿轴线A的方向延伸,可以具有一定的倾斜角度,只需要具有较长的,在基板轴线A的方向上的投影长度。而“横向微带线”则是指在基板的径向方向(即与轴线A垂直的方向)延伸一定长度的微带线。相类似地,横向微带线仅用于表示该微带线在径向方向上的投影长度远大于在轴线方向的投影长度,而不用于限定微带线具体的延伸方向。
三段横向微带线211b分别交错布置在纵向微带线211a不同的末端,从而组成了上述的第一开口S1和第二开口S2。其中,第一开口S1朝向基板的根部,而第二开口S2则朝向基板的头部,与第一开口的朝向相反。
请继续参阅图3,第二振子212可以被大致的划分为振体212a、弯折部212b以及振臂212c三个部分。弯折部212b分别位于振体212a的两个末端,沿一定的角度向外延伸,从而形成一个类似于U字型的结构形式。
另外,振体212a与第一振子211连通,并且作为第一辐射部与馈线连接的具体连接部分。振体212a具体可以采用任何合适的形式,实现与振子211的连通。例如,振体212a可以是组成第一振子211的其中一段横向微带线或者是其中的一部分。
在较佳的实施例中,如图1所示,还可以在基板10上增设一对避空槽50。 与第一辐射部相类似的,该避空槽50也沿基板的轴线A对称设置,位于第一振子211所在的区域内。亦即,开设在第一振子211内。
通过额外开设的避空槽50,可以起到改善第一振子211对低频信号的覆盖率的效果。
具体的,该避空槽50可以开设在组成第一开口S1的两段纵向微带线221a之间的区域,调整两段纵向微带线221a电容结构,从而有效的改善天线对低频信号的覆盖率。
在另一些实施例中,请继续参阅图1,该第二辐射部22可以包括第三振子221和第四振子222。与第一辐射部21相类似地,组成第二辐射部22的第三振子221和第四振子222均沿基板的轴线A对称设置,并且第三振子221相对于第四振子222而言,位于基板10的头部,而第四振子222相对靠后设置。
其中,第三振子221可以大致被划分为振子头部221a以及连接第四振子222的振子连接部221b。
第三振子221的振子头部221a相对于第四振子222而言,具有显著更大的布线宽度。振子连接部221b是连接在振子头部221a和第四振子222之间的过渡结构,从振子头部221a逐渐过渡至宽度较小的第四振子222。
第四振子222是位于第三振子221和馈线30之间的连接部分,其连通第三振子221和馈线30,从而组成第二辐射部22。
具体的,第四振子222可以是具有较窄的第一宽度的微带线,而振子连接部221b可以呈现为类似于梯形的结构,由振子头部221a所具有的第二宽度逐渐收窄至第四振子222所具有的第一宽度。由此,令第三振子221和第四振子222组成类似于“!”(感叹号)型的结构形式。
本实施例提供的第二辐射部22具有较大的布线宽度,可以有效改善信号传输时形成的信号衰减,提升天线的性能。
应当说明的是,图1所示的天线仅用于示例性说明,本领域技术人员可以根据实际情况的需要,添加、调整、替换或者减省其中的一个或者多个功能部件,而不限于图1所示。图1所示的天线的实施例中所涉及的技术特征只要彼此之间未构成冲突就可以相互结合,并且只要彼此之间未构成依赖就可以独立在不同的实施例中应用。
本领域技术人员可以理解,振子的长度,或者振子臂的有效长度是天线中重要的尺寸参数,与无线信号接收或者发送的频段密切相关。基于不同辐射部所对应的信号频段的不同,需要控制振子的尺寸长度以确保满足天线的使用需求。
具体而言,由W字型的第一振子211和U型的第二振子212组成的第一辐射部的尺寸长度(即位于基板轴线A上方的两段纵向微带线,第二振子的振体,第二振子位于基板轴线A上方的弯折部和延伸部的长度之和)需要控制第一频段的谐振波长的1/8至3/4之间。而采用“!”字型结构形状的第二辐射部的尺寸长度(即第三振子221和第四振子222的长度之和)需要控制在第二频段的谐振波长的1/8至3/4之间。
其中,第一频段是相对于第二频段而言更低的频段。亦即,第一辐射部21的尺寸长度需要控制在低频谐振波长的1/8至3/4之间。第二辐射部22的尺寸长度则保持在高频谐振波长的1/8至3/4之间。
本发明实施例提供了可以工作在900MHz以及2.4GHz两个频段的双频天线的具体实例。
如图1所示,该双频天线包括:基板10、第一振子211、第二振子212、第三振子221、第四振子222、馈线30、垫体40以及避空槽50。
其中,基板10大致呈梯形的形状。梯形较窄的顶边部分为基板10的头部,较宽的梯形底边则为基板10的根部。
馈线30由同轴线实现,其从位于基板10中部位置的连接点开始,在基板10上行走一段距离直至从基板10的根部离开基板10,向外延伸至其他与天线连接的外部设备或者电路。
垫体40由0.5mm的泡棉制成,垫在馈线30与基板10之间。馈线30通过扎带60固定在垫体40上,与基板10固定为一体。通过垫体40垫高馈线30,使得馈线30保持与基板10之间的距离,可有效的避免馈线传输信号时的干扰。
上述第一振子211、第二振子212、第三振子221和第四振子222都是布置在基板表面,具有特定形状、长度和宽度的导体(如微带线),部分暴露在外以接收或者发送特定频段的无线信号。
其中,第一振子211可以采用多次弯折形成的W字型的振子形状,第二 振子212采用“U”字型振子形状。第一振子211与第二振子212的一部分重叠(共用),重叠部分与同轴线(馈线30)的外导体连接。
其组成的第一辐射部位于基板的轴线一侧的振子部分的尺寸长度为低频(900MHz)谐振波长的1/8至3/4。
成对的避空槽50沿基板的轴线对称,开设在第一振子211的两个纵向微带线之间,以改善第一振子211的电容结构,提升低频信号的覆盖率。
第三振子221在头部具有较大的布线宽度,在过渡部分逐渐收窄,与宽度较窄的第四振子222形成“!”字型的振子形状,组成与高频信号对应的第二辐射部。第四振子222与同轴线(馈线30)的内导体连接。
第三振子221和第四振子222的尺寸长度为高频(2.4GHz)谐振波长的1/8至3/4。通过设置具有较宽的布线的第三振子221可以有效的减少高频信号传输时的衰减。
图4为本发明实施例提供的天线的S参数示意图。如图4所示,上述实施例提供的天线可以工作在890MHz~940MHz(低频段)和2.26GHz~2.56GHz(高频段)。因此,可以实现对900MHz以及2.4GHz这两个频段的覆盖。
图5和图6分别为本发明实施例提供的天线在低频段以及高频段的天线方向图。如图5和图6所示,本发明实施例提供的天线在低频段以及高频段上都具有良好的方向性,全向性好,没有特定方向上的缺陷。
基于以上实施例提供的天线,本发明实施例还进一步提供了一种无线信号处理设备。本实施例并不对该无线信号处理设备的具体实现进行限定,其可以是任何类型或者种类的,用以进行无线信号收发的电子设备,例如遥控器、智能终端、可穿戴设备或者移动载具的信号收发器。
图7为本发明实施例提供的无线信号处理设备的结构示意图。如图7所示,该无线信号处理设备包括:天线100、发射通路200以及接收通路300。天线100通过馈线连接至接收通路200或发射通路300,以实现相互间的信号传输。
其中,天线100具体可以是以上一个或者多个实施例所述的天线,由无线信号处理设备的具体实现所决定。例如,天线100可以是覆盖两个频段的全向天线。
发射通路200是用于将待发送的信息内容加载到载波信号,形成无线信 号的功能模块。其具体可以是任何类型的,由一个或者多个电子元件组合形成,可以生成无线信号的电子系统,如射频芯片。
接收通路300是用于对所述天线接收到无线信号进行解析,以获取无线信号中包含的信息内容的电子系统,如特定型号的解码芯片。其与发射通路200具有相反的信息流动方向,是用以完成信息获取的功能模块。
在一些实施例中,基于无线信号处理设备的具体实现的不同,发射通路200和接收通路300中的其中一个可以减省。例如,在无线信号处理设备为遥控器时,可以减省接收通路300,只需要具备发射通路200即可。
本发明实施例还进一步提供了以上实施例提供的天线的应用场景。图8为本发明实施例提供的天线的应用场景示意图。如图8所示,在该应用场景中可以包括:主体结构400、天线壳体410以及如上实施例所述的天线。
其中,主体结构400是为天线壳体400提供安装位置的结构。根据天线具体的应用场景,主体结构400可以是任何类型的设备的外壳的一部分。例如,该主体结构400可以是无人机的机身外壳的一部分。
天线壳体410是包裹在天线外,用以起到保护等作用的外壳。该天线壳体200可以采用任何合适类型的,非导电材质制成,具有特定的形状以满足使用需求。例如,可以设置为图8所示的弯曲的形状,可以作为无人机的起落架使用。
以上实施例中的天线被包裹在天线壳体410之内(图中未示出),基板10可以具有或者形成与天线壳体410相适配的形状。其通过馈线实现辐射部与接收通路/发射通路之间的信号传递。
随着无人机技术的发展,总是期望能够尽可能地减小无人机的机身体积,以使得无人机可以适用于执行更多场景下的飞行任务。但在无人机机身体积缩小的情况下,对于天线的尺寸和结构提出了更高的要求,期望能够在有限的体积和尽可能简单的结构中实现。
由此,应用本发明实施例提供的天线结构,可以很好的满足具有较小机身的无人机关于天线体积和结构的需求。如图9所示,该无人机可以包括:机身400,电机(510,520)以及天线。
其中,机身400作为无人机的主体结构,可以采用任何合适的材料制成并具有符合使用需要的结构及尺寸(如图9所示的固定翼无人机)。机身400 上可以设置有起落架410、螺旋桨420、摄像机430等多种不同的功能部件。当然,本领域技术人员还可以根据实际情况的需要,增加或者减省其中的一个或者多个功能部件,例如可以为摄像机430增设对应的云台440。
电机(510,520)安装于机身400,用于为无人机提供飞行动力。该电机可以设置有一个或者多个,布置于机身400相应的位置(如机身电机510,翼尖电机520)分别用于不同执行不同的功能(例如驱动螺旋桨420旋转、控制机身姿态等)。
天线可以安装收容于起落架410内(例如图9所示的,标号为410的前起落架内),作为无线信号收发设备的其中一部分,用以接收来自遥控器的遥控操作指令或者向遥控器或者其他的智能终端反馈相关的数据信息(如拍摄的图像、无人机自身的运行状态参数)。
当然,基于以上实施例提供的无人机应用场景,本领域技术人员还可以将以上实施例提供的天线应用于其他类似的无人驾驶的移动载具而不限于图10所示的无人机。
最后应说明的是:以上实施例仅用以说明本发明的技术方案,而非对其限制;在本发明的思路下,以上实施例或者不同实施例中的技术特征之间也可以进行组合,步骤可以以任意顺序实现,并存在如上所述的本发明的不同方面的许多其它变化,为了简明,它们没有在细节中提供;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (14)

  1. 一种天线,其特征在于,包括:
    基板,所述基板具有平坦的基板表面;
    设置在所述基板表面的第一辐射部和第二辐射部,所述第一辐射部和所述第二辐射部沿所述基板的轴线对称,与不同的频段对应;
    分别与所述第一辐射部和所述第二辐射部连接的馈线;
    具有预设尺寸的垫体,所述垫体设置在所述馈线与所述基板表面之间,以使所述馈线保持与所述基板表面的距离。
  2. 根据权利要求1所述的天线,其特征在于,所述垫体由非导电材料制成,所述非导电材料包括:泡棉、塑料和木材。
  3. 根据权利要求2所述的天线,其特征在于,所述垫体为具有预设厚度的泡棉层、木材架或者塑料架。
  4. 根据权利要求2所述的天线,其特征在于,所述馈线和所述垫体固定在所述基板上的固定方式包括:捆扎固定或者粘贴固定。
  5. 根据权利要求1-4任一项所述的天线,其特征在于,所述第一辐射部包括:
    沿所述基板的轴线对称的第一振子,所述第一振子具有多次弯折,形成两个朝向相同的第一开口以及与所述第一开口的朝向相反的第二开口;
    沿所述第一开口的延伸方向设置的第二振子,所述第二振子包括:
    与所述馈线连接的振体;所述振体与所述第一振子连通;
    分别设置在所述振体的两个末端的弯折部;以及
    由所述弯折部延伸预定长度形成的一对振臂。
  6. 根据权利要求5所述的天线,其特征在于,所述天线还包括:一对避空槽;所述避空槽沿所述基板的轴线对称设置,位于所述第一振子内。
  7. 根据权利要求6所述的天线,其特征在于,所述避空槽设置在形成所述第一开口的两段纵向微带线之间;
    所述第一振子由多段沿所述基板的轴线方向延伸的纵向微带线和多段沿所述基板的径向方向延伸的横向微带线组成。
  8. 根据权利要求5所述的天线,其特征在于,所述第二辐射部包括:
    位于所述基板表面的头部的第三振子,所述基板表面的头部为与所述馈线的延伸方向相离的一端;
    连接在所述第三振子与所述馈线之间的第四振子。
  9. 根据权利要求8所述的天线,其特征在于,所述第三振子包括:
    具有第二宽度的振子头部,所述振子头部位于所述基板表面的头部;
    位于所述振子头部与所述第四振子之间的振子连接部,所述第四振子具有小于所述第二宽度的第一宽度,所述振子连接部具有从所述第二宽度缩小至所述第一宽度的过渡结构。
  10. 根据权利要求8所述的天线,其特征在于,所述第一辐射部对应第一频段,所述第二辐射部对应频率高于所述第一频段的第二频段;
    所述第一振子和所述第二振子的总长度在所述第一频段的谐振波长的1/8至3/4之间;
    所述第三振子和所述第四振子的总长度在所述第二频段的谐振波长的1/8至3/4之间。
  11. 根据权利要求10所述的天线,其特征在于,所述第一频段为900MHz频段,所述第二频段为2.4GHz频段。
  12. 根据权利要求8所述的天线,其特征在于,所述馈线为同轴线;所述同轴线的内导体与所述第四振子连接,所述同轴线的外导体与所述第二振 子连接。
  13. 一种无线信号处理设备,其特征在于,包括:
    如权利要求1-12任一项所述的天线,用于发送或接收无线信号;
    发射通路,用于将信息内容加载到射频载波信号中,形成无线信号并通过所述天线发送。
  14. 一种无人机,其特征在于,包括:
    机身,所述机身上具有起落架;
    电机,安装于所述机身上,用于为所述无人机提供飞行动力;
    如权利要求1-12任一项所述的天线,安装于所述起落架内。
PCT/CN2022/079358 2021-03-26 2022-03-04 天线、无线信号处理设备及无人机 WO2022199362A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110325662.6 2021-03-26
CN202110325662.6A CN113036398A (zh) 2021-03-26 2021-03-26 天线、无线信号处理设备及无人机

Publications (1)

Publication Number Publication Date
WO2022199362A1 true WO2022199362A1 (zh) 2022-09-29

Family

ID=76474219

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/079358 WO2022199362A1 (zh) 2021-03-26 2022-03-04 天线、无线信号处理设备及无人机

Country Status (2)

Country Link
CN (1) CN113036398A (zh)
WO (1) WO2022199362A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113036398A (zh) * 2021-03-26 2021-06-25 深圳市道通智能航空技术股份有限公司 天线、无线信号处理设备及无人机

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100141545A1 (en) * 2008-12-09 2010-06-10 Pakosz Daniel A Dual-band omnidirectional antenna
EP3288112A1 (en) * 2016-08-23 2018-02-28 Laird Technologies, Inc. Omnidirectional multiband symmetrical dipole antennas
CN210111040U (zh) * 2019-08-29 2020-02-21 深圳市大疆创新科技有限公司 偶极子天线和无人飞行器
CN211578967U (zh) * 2020-03-11 2020-09-25 深圳市美科星通信技术有限公司 双频pcb天线及通讯装置
CN212648490U (zh) * 2020-07-27 2021-03-02 深圳数联天下智能科技有限公司 一种双频天线及iot设备
CN212751152U (zh) * 2020-08-11 2021-03-19 江苏爱吉亚电子科技有限公司 双频天线
CN113036398A (zh) * 2021-03-26 2021-06-25 深圳市道通智能航空技术股份有限公司 天线、无线信号处理设备及无人机
CN215220987U (zh) * 2021-03-26 2021-12-17 深圳市道通智能航空技术股份有限公司 天线、无线信号处理设备及无人机

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100141545A1 (en) * 2008-12-09 2010-06-10 Pakosz Daniel A Dual-band omnidirectional antenna
EP3288112A1 (en) * 2016-08-23 2018-02-28 Laird Technologies, Inc. Omnidirectional multiband symmetrical dipole antennas
CN210111040U (zh) * 2019-08-29 2020-02-21 深圳市大疆创新科技有限公司 偶极子天线和无人飞行器
CN211578967U (zh) * 2020-03-11 2020-09-25 深圳市美科星通信技术有限公司 双频pcb天线及通讯装置
CN212648490U (zh) * 2020-07-27 2021-03-02 深圳数联天下智能科技有限公司 一种双频天线及iot设备
CN212751152U (zh) * 2020-08-11 2021-03-19 江苏爱吉亚电子科技有限公司 双频天线
CN113036398A (zh) * 2021-03-26 2021-06-25 深圳市道通智能航空技术股份有限公司 天线、无线信号处理设备及无人机
CN215220987U (zh) * 2021-03-26 2021-12-17 深圳市道通智能航空技术股份有限公司 天线、无线信号处理设备及无人机

Also Published As

Publication number Publication date
CN113036398A (zh) 2021-06-25

Similar Documents

Publication Publication Date Title
CN103891043B (zh) 采用多频带陷波器的多输入多输出(mimo)天线
WO2021078260A1 (zh) 双频天线和飞行器
CN110892581A (zh) 天线系统和终端设备
US20100039329A1 (en) Wide-Band Antenna and Manufacturing Method Thereof
WO2019228309A1 (zh) 天线、无人飞行器的遥控器及无人飞行器
WO2022199362A1 (zh) 天线、无线信号处理设备及无人机
WO2019228339A1 (zh) 天线及无人飞行器
CN110380213A (zh) 一种天线阵列及终端
US20240030605A1 (en) Antenna, wireless signal processing device, and unmanned aerial vehicle
CN103187615B (zh) 天线及其制造方法、印刷电路板、通信终端
US20240079765A1 (en) Antenna, wireless signal processing device, and unmanned aerial vehicle
US8917216B2 (en) Antenna device with U-shaped slit
JP2003124729A (ja) ダイバーシティ機能を備えたデュアルフィードチップアンテナ
KR101011409B1 (ko) 핸드셋들 및 다른 디바이스들을 위한 다양한 스펙트럼 안테나
CN215220987U (zh) 天线、无线信号处理设备及无人机
CN103985957B (zh) 一种宽带多频段内置手机天线
WO2022199361A1 (zh) 天线、其调试方法、外置式天线结构及无人机
WO2023001037A1 (zh) 天线、无线信号处理设备及无人机
US7667653B2 (en) Antenna unit comprising first and second antenna patterns
CN209658395U (zh) 一种小型化超宽带十频段手机天线
CN215220988U (zh) 天线、无线信号处理设备及无人机
WO2022228008A1 (zh) 一种天线及遥控器
CN215220986U (zh) 天线、无线信号处理设备及无人机
CN214898855U (zh) 天线、外置式天线结构及无人机
CN110603685B (zh) 无人飞行器及其天线

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22774024

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22774024

Country of ref document: EP

Kind code of ref document: A1