WO2022199198A1 - 一种血管内纳米机器人装置、最优化控制系统、方法 - Google Patents

一种血管内纳米机器人装置、最优化控制系统、方法 Download PDF

Info

Publication number
WO2022199198A1
WO2022199198A1 PCT/CN2022/000045 CN2022000045W WO2022199198A1 WO 2022199198 A1 WO2022199198 A1 WO 2022199198A1 CN 2022000045 W CN2022000045 W CN 2022000045W WO 2022199198 A1 WO2022199198 A1 WO 2022199198A1
Authority
WO
WIPO (PCT)
Prior art keywords
intravascular
blood vessel
pressure
nanorobot
blood
Prior art date
Application number
PCT/CN2022/000045
Other languages
English (en)
French (fr)
Inventor
谈斯聪
于皓
于梦非
谈勇学
于志英
Original Assignee
谈斯聪
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 谈斯聪 filed Critical 谈斯聪
Priority to AU2022244782A priority Critical patent/AU2022244782A1/en
Publication of WO2022199198A1 publication Critical patent/WO2022199198A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/12Diagnosis using ultrasonic, sonic or infrasonic waves in body cavities or body tracts, e.g. by using catheters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/04Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/18Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
    • A61B18/20Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser
    • A61B18/22Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser the beam being directed along or through a flexible conduit, e.g. an optical fibre; Couplings or hand-pieces therefor
    • A61B18/24Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser the beam being directed along or through a flexible conduit, e.g. an optical fibre; Couplings or hand-pieces therefor with a catheter
    • A61B18/245Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser the beam being directed along or through a flexible conduit, e.g. an optical fibre; Couplings or hand-pieces therefor with a catheter for removing obstructions in blood vessels or calculi
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/08Detecting organic movements or changes, e.g. tumours, cysts, swellings
    • A61B8/0891Detecting organic movements or changes, e.g. tumours, cysts, swellings for diagnosis of blood vessels
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M29/00Dilators with or without means for introducing media, e.g. remedies
    • A61M29/02Dilators made of swellable material
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/24Classification techniques
    • G06F18/241Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0012Biomedical image inspection
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00315Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for treatment of particular body parts
    • A61B2018/00345Vascular system
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20081Training; Learning
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20084Artificial neural networks [ANN]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30004Biomedical image processing
    • G06T2207/30101Blood vessel; Artery; Vein; Vascular

Definitions

  • the invention belongs to the technical field of artificial intelligence robot health medical equipment, and relates to the technical field of nano-robots, an image intelligent recognition method, remote control, self-learning, and optimization theory related technologies.
  • the administrator is remotely controlled, and the self-learning control and remote control dual modes are used to realize the flexible intravascular expansion by using the improved neural network method.
  • Intelligently identify and locate the position of the stent to be placed in the blood vessel guide the nanorobot to move, move to the surgical position, place, expand the stent, support the blood vessel, dilate the blood vessel, use laser, radio frequency and other devices to ablate intravascular embolism and restore blood supply.
  • nano-robots to assist in identifying and solving intravascular diseases, solving vascular stenosis, ablating plaque, and solving embolism, according to the size of plaque embolism, quantitative and accurate drug delivery can effectively prevent major intravascular diseases.
  • the purpose of the present invention is to overcome the above-mentioned shortcomings and deficiencies of the prior art, and to provide an intravascular nanorobot device, which can be sent into the blood vessel through a needle tube and a catheter, collect sensor data in real time, intelligently identify diseases, and solve vascular stenosis. Ablation of plaque, solving embolism, solving the problems of artificial diagnosis and treatment errors, reducing the risk of extracorporeal surgery, and realizing basic non-invasive surgery.
  • the invention provides a remote control for administrators, which utilizes a neural network improvement method for autonomous learning and dual modes of remote control to adjust nanorobot parameters, and flexibly expands in blood vessels.
  • the invention also provides a method for intelligently identifying intravascular embolism, locating its position, locating the position of the stent to be placed, and guiding the nano-robot to move, move to the surgical position, place, open the stent, support the blood vessel, expand the blood vessel, restore blood for.
  • the invention also provides a device for ablating intravascular embolism using a nano-robot laser radio frequency device, assisting in identifying and solving intravascular diseases, solving blood vessel stenosis, ablating plaques, solving embolism, and effectively preventing major diseases such as intravascular diseases.
  • nanorobots Through the remote control of nanorobots, it can solve the mistakes of medical staff in surgical operations, improve the image recognition of intravascular vascular stenosis, plaque, embolism, etc., and solve clinical cases with high efficiency and flexibility.
  • Intravascular real-time monitoring, vascular expansion, embolization ablation nanorobot device, optimal control system, intravascular image autonomous identification method, tour expansion method is characterized in that intravascular real-time monitoring, vascular expansion, embolization and ablation nanorobot devices include:
  • a robot main control system the robot main system is connected with the in vitro imaging system and controls the nano-robot device.
  • the nanorobot device includes: a visual recognition module, a multi-sensing module, a driving device, a guide wire guide tube, a pressure device, a jellyfish-like balloon device, a stent, a laser, a radio frequency device, and a precise drug delivery device.
  • a visual recognition module includes: an ultrasound probe, a nano-microscope and other in-vivo imaging systems are connected and communicated with in-vitro imaging systems, and are used to collect and intelligently identify images of various diseases in blood vessels.
  • the multi-sensing module the main control system of the robot is connected with the multi-sensors, and is used to collect the information of the blood vessel sensors, including the pressure sensor and one or more kinds of various sensors for blood monitoring.
  • the main control system of the robot is connected with the driving device for driving the nanorobot to move in the blood vessel.
  • the driving device for driving the nanorobot to move in the blood vessel.
  • Guide wire guide catheter used to clear intravascular plaque, embolize, and restore blood supply.
  • Pressure device through the pressure device, inflatable balloon, balloon, dilate blood vessels.
  • the jellyfish-like swinging device applies pressure through the pressure device, and the inflatable balloon is used for vascular expansion, and the pressure device compresses and contracts the jellyfish swinging device, which is used for imitating the jellyfish to expand, expand, and inflate the balloon.
  • Stents where pressure is applied through a pressure device for the stent to expand and place to support the blood vessel.
  • Laser radio frequency device for ablation of intravascular plaque and embolization.
  • Precise drug delivery device is used to locate vascular plaque, embolization position, calculate plaque, embolism size, precise drug determination, and drug delivery.
  • the visual recognition module is connected to the in vitro imaging system, and the visual recognition module includes in vivo imaging communication such as an ultrasonic probe, a nano microscope, etc., for collecting and recognizing images.
  • the images under the microscope include: images within the blood vessels, intelligently identify blood vessel stenosis, occlusion, plaque, embolism and its size, its location range, coordinates and other information.
  • the vision module includes: an in-vitro imaging system, one or more of an in-vivo ultrasound probe, an in-vivo microscope, an infrared imaging device and other visual devices.
  • the multi-sensing module is used for collecting data of various micro-sensors.
  • the collected multi-sensing data include intravascular pressure, blood flow, platelets, blood coagulation, vascular compression, vascular stress and other data.
  • the driving device is used to drive the nanorobot to move in the blood vessel.
  • the driving method includes: one of pneumatic, electric and other methods.
  • the vascular expansion device includes: a balloon balloon imitating jellyfish, a pressure device, and a guide wire guide tube, which are used for the movement of the guide wire to expand the blood vessel and restore the blood supply through the pressure device, the inflatable balloon, and the balloon.
  • the plaque and embolization ablation device includes a laser emitting device and a radio frequency device.
  • the guide wire guide catheter device is used for the movement of the guide wire, the internal positioning of the blood vessel, and the cleaning of the blood vessel.
  • the visual recognition device is used to intelligently identify the embolism, locate, move to the embolization position, and use the laser emission device and the radio frequency device to ablate the intravascular plaque, embolize, dilate the blood vessel, and restore the blood supply.
  • the stent device uses a visual recognition device and a guiding device to intelligently identify and locate the position of the stent to be placed in the blood vessel, guide the nanorobot, move to the surgical position, and use the pressure device to open the stent, place the stent, support the blood vessel, and dilate the blood vessel. , restore blood supply.
  • the precise drug delivery device uses a nanorobot to carry a drug device, uses a visual device, an in vitro imaging device, etc. to locate the vascular plaque and the embolization position, uses a guiding device to guide the nanorobot to move to the plaque embolization position, calculates the plaque, and embolizes the position. Size level, precise drug setting, and drug delivery.
  • the remote control device includes a main control system, and the in vitro vascular imaging device controls the in vivo nano-robot.
  • the in vitro vascular imaging device controls the in vivo nano-robot.
  • Through magnetic guidance, infrared guidance, ultrasonic guidance, etc. to guide the nanorobots in the body, locate the nanorobots, select the position and range of the blood vessels in the body, and issue autonomous flexible tour expansion commands.
  • the intravascular data includes: vessel lumen diameter, cross-sectional area, volume, vessel segment length, curvature, torsion, plaque volume , hemodynamics, etc.
  • the method for intelligently identifying vascular diseases by integrating intravascular image data and multi-sensing data includes the following steps:
  • the robot camera publishes the intravascular image picture and the coordinates of the corresponding position area, and the sensor publishes the intravascular sensor information.
  • the main system subscribes to image information, sensor information, services and their location coordinates.
  • the remote master control system issues a movement command according to the subscribed position of the blood vessel collection area.
  • the remote main control system extracts the color features and shape features of vascular embolism, vascular stenosis, and sensor information released by the comprehensive pressure sensor for the pictures in the blood vessel.
  • the improved neural network autonomous learning and flexible tour expansion method of remote control the specific steps are as follows:
  • Robot camera and pressure sensor publish intravascular images and intravascular pressure data.
  • the main system subscribes to image information, publishes data information from multiple sensors, and uses improved intelligent analysis and data classification methods to intelligently identify the location target area of stenotic blood vessels, and autonomously tour the blood vessel location target area.
  • the remote main control system returns the area information and coordinates of the position of the stenotic blood vessel according to the subscribed position of the blood vessel collection area, and guides the nanorobot to move to the target area.
  • S5. Input multiple data information in the blood vessel at different time points, the stenosis area of the target area of the blood vessel, and the degree of stenosis.
  • the remote administrator adjusts the parameters of the pressure device, and flexibly sets the safety range of each parameter of the pressure device in the current vascular environment.
  • the nanorobot follows the position target area and uses the vascular guide wire to independently learn to set the parameters of the pressure device and adjust the pressure device inflatable ball according to the degree of vascular stenosis.
  • the sac and stomata adjust the intravascular pressure autonomously and flexibly, travel to the target area autonomously, dilate blood vessels, and improve blood circulation.
  • the multi-objective optimal regulation method of intravascular comprehensive index the specific steps are as follows:
  • the optimal mathematical model for establishing the blood circulation of different blood vessel positions includes:
  • Vascular model the stenosis value of different blood vessel positions, the blood flow value, the blood pressure parameter value, the compression force value, and the stress value are constant.
  • the pressure variable of the pressure device is the pressure variable of the pressure device.
  • Constraints include:
  • Multi-target includes:
  • Intravascular calcification lesions are minimal
  • the invention can solve the problem of remote control of nano-robots, guide wire to guide the movement of wires through nano-robot device, intelligently identify embolism by using visual recognition device, locate its position, move to embolization position, use laser emitting device, radio frequency device, and ablate blood vessels. Internal embolization, dilation of blood vessels, and restoration of blood supply.
  • the nanorobot uses the vascular guide wire along the target area, and according to the degree of stenosis of the blood vessel, it can learn to set the parameters of the pressure device and adjust the pressure device inflatable balloon at the far end. Improve blood circulation.
  • Solve and effectively use pressure devices place stents, expand stents, support blood vessels, dilate blood vessels, and restore blood supply. It has improved the problems of doctors, nurses and other personnel with many surgical errors, and greatly improved work efficiency.
  • the invention can monitor and control the state of blood vessels in real time by optimizing the control system, and the blood environment is optimized.
  • Fig. 1 is the schematic diagram of the nano-robot device module in the specification of the present application, and Fig. 1 is marked:
  • 101-robot main system 102-multi-sensing module; 103-camera vision module; 104-pressure device module; 105-balloon airbag; 106-capsule holder; 107-laser device module; 108-drive module; 109-guide Silk catheter module; 110-distal control module;
  • FIG. 2 is a schematic diagram of the composition of the nanorobot device in the description of the application, and the accompanying drawing 2 is marked:
  • 201-camera 202-robot main system/in vitro imaging system; 203-imitation jellyfish swing device; 204-drive guide device;
  • the purpose of the present invention is to design a remote control intravascular nanorobot device that can replace human work, realize real-time monitoring in blood vessels, and solve various vascular diseases such as vascular stenosis, plaque, embolization and ablation by non-invasive treatment. Effectively improve the precision of vascular surgery.
  • the needle can be sent into the blood vessel through the catheter, which reduces the risk of extracorporeal surgery, achieves basic non-invasiveness, and efficiently realizes the optimal regulation in the blood vessel by using the nano-robot device.
  • Intelligently identify and locate the position of the stent to be placed in the blood vessel guide the nanorobot to move, move to the surgical position, place, expand the stent, support the blood vessel, dilate the blood vessel, use laser, radio frequency and other devices to ablate intravascular embolism and restore blood supply.
  • the visual recognition device is used to intelligently identify the embolism
  • the nanorobot locates the inside of the blood vessel, locates, moves to the embolization position, uses the movement of the wire, uses the laser emission, the radio frequency device, ablates the endovascular embolism, dilates the blood vessel, Restore blood supply.
  • Remote control by administrators, self-learning and remote control dual-mode with improved neural network to achieve flexible intravascular expansion intelligently identify and locate the stent to be placed in the blood vessel, and guide the nanorobot to move, move to the surgical position, place, expand Open stents, support blood vessels, dilate blood vessels, use lasers, radio frequency and other devices to ablate intravascular embolism to restore blood supply.
  • a nanorobot device includes:
  • the robot main system 101, the robot main system module 101, used to connect and control the nano-robot device module includes: a multi-sensing module 102, a vision module and a visual recognition module 103, a pressure device module 104, a jellyfish-like device, and a balloon air bag Module 105 , stent module 106 , laser radio frequency device module 107 , drive module 108 , guide wire catheter module 109 , remote control in vitro imaging module 110 , and precise drug delivery device 111 .
  • the multi-sensor module 102, the robot main control system 101 is connected with the multi-sensor 102, and is used for collecting blood vessel sensor information, including blood monitoring sensors and pressure sensors. It is used to collect, classify and identify the sensor data in the blood vessel.
  • the visual recognition module 103 includes: an ultrasound probe, a nano-microscope and other in-vivo imaging systems are connected and communicated with in-vitro imaging systems, and are used to collect and intelligently identify images of various diseases in blood vessels.
  • the jellyfish-like swing device applies pressure through the pressure device 104 to inflate the balloon, which is used for vascular expansion, and the pressure device compresses and contracts the jellyfish swing device, which is used for imitating the jellyfish to expand, expand, and inflate the balloon.
  • Stent 106 with pressure applied by pressure device 104, is used to expand the stent and place the supporting blood vessel.
  • the pressure device 104 through the pressure device, the inflatable balloon, the balloon 105, dilates the blood vessel.
  • the laser radio frequency device 107 is used for ablation of intravascular plaque and embolization.
  • the guide wire guide catheter device 109 is used for the internal positioning of the blood vessel, the movement of the wire, the intelligent identification of the embolism by the visual recognition device, the positioning, the movement to the embolization position, the radio frequency device 109 of the laser emitting device, the ablation of the intravascular embolism, the expansion of the blood vessel, and the restoration. blood supply.
  • the robot main control system 101 is connected to the driving device 104 for driving the nanorobot to move in the blood vessel. Using magnetic guidance and infrared guidance to guide the nanorobots in vivo, locate the position of the nanorobots and the positions of vascular stenosis, plaque and embolism.
  • the stent 206 applies pressure through a pressure device for the stent to expand and place the support.
  • the guiding device 207 intelligently identify and locate the position of the stent to be placed in the blood vessel, guide the nanorobot to move, move to the surgical position, use the pressure device 205, place the stent, open the stent, support the blood vessel, dilate the blood vessel, restore blood for.
  • the precise drug delivery device 111 is used for locating vascular plaque, embolization position, calculating the size of the plaque and embolism, accurately determining the drug, and administering the drug.
  • the robot camera 201 publishes the intravascular image picture and the coordinates of its corresponding position area, and the sensor 210 publishes the intravascular sensor information. Based on intravascular pictures, sensor 210 data, the host system 201 subscribes to image information, sensor 210 information, services and their location coordinates. The remote master control system 201 issues a movement command according to the subscribed position of the blood vessel collection area. The remote main control system 201 extracts the color features and shape features of blood vessel embolism, blood vessel stenosis, and sensor information released by the integrated pressure sensor 210 for the pictures in the blood vessel.
  • vascular diseases including vascular stenosis, plaque, and embolism.
  • classify the output value of abnormal data classify and identify normal blood vessel area, stenosis area, and embolism location. According to the output results, it can be accurately classified to identify the position of the disease in the blood vessel, the type of the disease, and the degree of stenosis and embolism to the administrators and users of the main robot system.
  • the robot camera 201 and the pressure sensor 210 publish intravascular images and intravascular pressure data.
  • the main system subscribes to image information, multi-sensing 210 publishes data information, and uses improved intelligent analysis and data classification methods to intelligently identify the location target area of stenotic blood vessels, and autonomously tour the blood vessel location target area.
  • the remote main control system 201 returns the area information and coordinates of the position of the stenotic blood vessel according to the subscribed position of the blood vessel collection area, and guides the nanorobot to move to the target area. Enter the intravascular multi-data information at different time points, the stenosis area of the target area of the blood vessel location, and the degree of stenosis.
  • the remote administrator adjusts the parameters of the pressure device, and flexibly sets the safety range of each parameter of the pressure device under the current vascular environment.
  • the neural network self-learning method is used to calculate and analyze the self-training data, self-learning, and adjust the parameters of the pressure device and the treatment device.
  • self-learning and remote administrator adjustment of the parameters of the inflatable balloon 208 and the air hole 208 the blood vessel pressure is gently adjusted and the blood vessel is expanded.
  • the nanorobot follows the position target area and uses the vascular guide wire 207 to learn and set the parameters of the pressure device 205 according to the degree of vascular stenosis, and the remote administrator adjusts the inflation of the pressure device 205.
  • the balloon, the stomata can adjust the intravascular pressure autonomously and flexibly, travel around the target area autonomously, dilate the blood vessels, and improve blood circulation.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Surgery (AREA)
  • Theoretical Computer Science (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Medical Informatics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biophysics (AREA)
  • General Physics & Mathematics (AREA)
  • Radiology & Medical Imaging (AREA)
  • Data Mining & Analysis (AREA)
  • Vascular Medicine (AREA)
  • Evolutionary Computation (AREA)
  • Artificial Intelligence (AREA)
  • Pathology (AREA)
  • General Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Computational Linguistics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Otolaryngology (AREA)
  • Software Systems (AREA)
  • Mathematical Physics (AREA)
  • Computing Systems (AREA)
  • Quality & Reliability (AREA)
  • Plasma & Fusion (AREA)
  • Evolutionary Biology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Electromagnetism (AREA)
  • Anesthesiology (AREA)
  • Hematology (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)

Abstract

一种血管内纳米机器人装置、最优化控制系统及调控方法,其中血管内纳米机器人装置通过针管导管送入血管内,利用神经网络改进方法自主学习控制及远端控制双模式实现纳米机器人仿水母游动,在血管内巡回,柔性扩张血管,实时监测,智能识别血管狭窄、斑块、栓塞。纳米机器人携带、放置支架(106),支撑血管;利用激光器或射频装置(209)消融血管内栓塞,并在栓塞位置精准投药。血管送入纳米机器人可减少体外手术的风险,实现基本无创伤的实时监测和最优化控制,有效防止血管内重大疾病的发生。

Description

一种血管内纳米机器人装置、最优化控制系统、方法 技术领域:
本发明属于人工智能机器人健康医疗设备技术领域,涉及纳米机器人技术领域,图像智能识别方法,远程控制,自主学习,最优化理论相关技术。
背景技术:
目前应用于医疗领域,在血管检查过程由于各种人为因素分析,识别病情精准度差。血管内实时监测,血管狭窄,斑块,栓塞等各种血管疾病的解决对策较为有限,且血管外科手术的精准度要求高,由于各种人为因素,导致治疗效果差。各专科医生对病情的掌握程度较差,无法实时监测血管内的各项数据,血管狭窄,斑块,栓塞等发现慢,治疗难,效果差,治疗栓塞投药不精准,维持畅通良好的血液循环成为重要的课题。
可通过针管,导管送入血管内,减少体外手术的风险,实现基本无创伤,高效地实现了血管内实时监测,最优化控制。
管理员远端控制,利用神经网络改进方法自主学习控制及远端控制双模式实现柔性血管内巡回扩张。
智能识别定位血管内待放置支架位置,通过引导纳米机器人移动,移动到手术位置,放置,张开支架,支撑血管,扩张血管,利用激光器,射频等装置消融血管内栓塞,恢复血供。
血管内图片实时采集,血管内图像数据,传感器数据疾病的智能识别方法。
利用纳米机器人辅助识别解决血管内的疾病,解决血管狭窄,消融斑块,解决栓塞,针对斑块栓塞尺寸,程度定量精准投药,有效防止血管内重大疾病。
发明内容:
本发明的目的就在于克服上述现有技术的缺点和不足,提供一种用于血管内纳米机器人装置,可通过针管,导管送入血管内,实时采集传感器数据,智能识别疾病,解决血管狭窄,消融斑块,解决栓塞,解决了人为的诊断治疗失误,减少体外手术的风险,实现基本无创伤手术等问题。
本发明提供了一种管理员远端控制,利用神经网络改进方法自主学习及远端控制双模式调解纳米机器人参数,血管内柔性巡回扩张。
本发明还提供了一种智能识别血管内栓塞的方法,定位其位置,定位待放置支架位置,通过引导纳米机器人移动,移动到手术位置,放置,张开支架,支撑血管,扩张血管,恢复血供。
本发明还提供了一种利用纳米机器人激光器射频器,消融血管内栓塞的装置,辅助识别解决血管内的疾病,解决血管狭窄,消融斑块,解决栓塞,有效防止血管内疾病等重大疾病。
通过远端控制纳米机器人,解决医护人员手术作业失误,提高血管内血管狭窄,斑块,栓塞等图像识别,高效率,灵活解决临床案例。
本发明的采用的技术方案:
血管内实时监测,血管扩张,栓塞消融的纳米机器人装置,最优化控制系统,血管内图像自主识别方法,巡回扩张方法的特征在于,血管内实时监测,血管扩张,栓塞消融的纳米机器人装置包括:
机器人主控制系统,所述机器人主系统与体外成像系统连接,并控制纳米机器人装置。纳米机器人装置包括:视觉识别模块,多传感模块,驱动装置,导丝导引导管,压力装置,仿水母气囊球囊装置,支架,激光器,射频装置,精准投药装置。
视觉识别模块,所述的视觉识别模块包括:超声探头,纳米显微镜等体内成像与体外成像系统连接,通信,用于采集并智能识别血管内多种疾病图像。
多传感模块,机器人主控制系统与多传感器连接,用于采集血管传感器信息,包括压力传感器,血液监测的多种传感器的一种及多种。
驱动,引导自主定位移动模块。机器人主控制系统与驱动装置连接,用于驱动纳米机器人血管内移动。采用磁引导及红外引导超声引导的方式对体内纳米机器人进行引导,定位纳米机器人位置及血管狭窄,斑块,栓塞位置。
导丝导引导管,用于清理血管内斑块,栓塞,回复血供。
压力装置,通过压力装置,充气气囊,球囊,扩张血管。
仿水母的摆动装置,气囊球囊,通过压力装置施加压力,充气球囊,用于血管扩张,压力装置收压收缩水母摆动装置,用于仿水母收张游动及充气球囊。
支架,通过压力装置施加压力,用于支架张开,放置支撑血管。
激光器射频器,用于消融血管内斑块,栓塞。
精准投药装置,用于定位血管斑块,栓塞位置,计算斑块,栓塞的尺寸程度,精准定药,投药。
所述的视觉识别模块与体外成像系统连接,所述的视觉识别模块包括:超声探头,纳米显微镜等体内成像通信,用于采集并识别图像。体内血管图像,显微镜下的图像包括:血管内的图像,智能识别血管狭窄,闭塞,斑块,栓塞及其尺寸,其所在的位置范围,坐标等信息。所述的视觉模块包括:体外成像系统以及体内超声探头,体内显微镜,红外成像装置等视觉装置中的一种及多种。
所述的多传感模块,所述的多传感模块用于采集多种微型传感器数据。采集的多传感数据包括,血管内压力,血液流动,血小板,血凝,血管受压,血管应压等多种数据。
所述的驱动装置,用于驱动纳米机器人血管内移动。驱动方式包括:气动,电动等方式中的一种。
所述的扩张血管装置包括:仿水母的气囊球囊,压力装置,导丝导引导管,用于导线的移动,通过压力装置,充气气囊,球囊,扩张血管,恢复血供。
所述的斑块,栓塞消融装置包括激光发射装置,射频装置。导丝导引导管装置用于导丝的移动,血管的内定位,清理血管。利用视觉识别装置智能识别栓塞,定位,移动到栓塞位置,利用激光发射装置,射频装置,消融血管内斑块,栓塞,扩张血管,恢复血供。
所述的支架装置,利用视觉识别装置,引导装置,智能识别定位血管内待放置支架位置,通过引导纳米机器人,移动到手术位置,利用压力装置,张开支架,放置支架,支撑血管,扩张血管,恢复血供。
所述的精准投药装置,利用纳米机器人携带药品装置,利用视觉装置,体外成像装置等,定位血管斑块,栓塞位置,利用引导装置引导纳米机器人移动到斑块栓塞位置,计算斑块,栓塞的尺寸程度,精准定药,投药。
所述的远端控制装置,包括主控制系统,体外血管成像装置控制体内纳米机器人。通过磁引导,红外引导,超声引导等的方式对体内纳米机器人进行引导,定位纳米机器人,选择体内巡回扩张血管位置,范围,下达自主柔性巡回扩张命令。
所述的血管内数据分析,血管内图像数据,传感器数据疾病的智能识别方法,所述的血管内数据包括:血管腔径,截面积,容积,血管段长度,曲率,挠率,斑块体积,血流动力等。
综合血管内图像数据,多传感数据,智能识别血管疾病的方法包括以下步骤:
S1、机器人摄像头发布血管内图像图片以及其对应的位置区坐标,传感器发布血管内传感器信息。
S2、依据血管内图片,传感器数据,主系统订阅图像信息,传感器信息,服务及其位置坐标。
S3、远端主控制系统依照订阅的血管采集区位置,发布移动命令。
S4、远端主控制系统针对血管内的图片,抽取血管栓塞,血管狭窄的颜色特征,形状特征,综合压力传感器等发布的传感器消息。将血管内的特征物信息作为特征项,输入颜色特征,形状轮廓特征,血管区域的位置信息,利用改进的神经网络方法及权值优化器,智能识别血管病症,包括血管狭窄,斑块,栓塞,分类异常数据的输出值,分类识别正常血管区,狭窄区,栓塞位置。
S5、依据输出结果,精准分类,识别血管内的疾病位置,疾病种类,狭窄栓塞的程度至机器人主系统的管理员及用户。
改进的神经网络自主学习及远端控制的柔性巡回扩张方法,具体步骤如下:
S1、机器人摄像头,压力传感器发布血管内图像图片,血管内压力数据。
S2、纳米机器人自主巡回的血管位置区的坐标范围。
S3、主系统订阅图像信息,多传感发布数据信息,利用改进的智能分析,分类数据方法,智能识别狭窄血管的位置目标区域,自主巡回的血管位置目标区。
S4、远端主控制系统依照订阅的血管采集区位置,返回狭窄血管位置的区域信息,坐标,引导纳米机器人移动到目标区。
S5、输入不同时间点的血管内多数据信息,血管位置目标区的狭窄区,狭窄程度。
S6、远端管理员调解压力装置参数,柔性设置当前血管环境下的压力装置的各参数的安全范围。
S7、通过改进的神经网络方法,利用神经网络自主学习方法,计算分析自主训练数据,自主学习,调解压力装置及治疗装置的参数。
S8、通过自主学习及远端管理员调解充气气囊,气孔的参数,柔和调解血管压力,扩张血管。
S9、远端及自主控制移动纳米机器人,下达自主巡回指令,纳米机器人沿位置目标区,利用血管导丝,依据血管狭窄的程度,自主学习设置压力装置参数及远端管理员调解压力装置充气球囊,气孔自主柔性调解血管内压力,自主巡回目标区,扩张血管,改善血液循环。
血管内综合指标多目标最优化调控方法,具体步骤如下:
S1.监测不同血管位置的狭窄值,血流值,血压参值,受压受力值,应力值。
S2.设置压力装置的压力变量。
S3.建立不同血管位置的血液循环最优的数学模型包括:
血管模型,不同血管位置的狭窄值,血流值,血压参值,受压受力值,应力值为常量。
压力装置的压力变量。
S4.制约条件包括:
1)压力装置的施加压力范围
2)血流的标准值范围
3)血管内标准的压力范围
4)球囊气囊受压受力范围
5)支架受力范围
6)激光/射频发射器的参数范围
7)消融位置范围
8)血管的位置区域范围
S5.多目标包括:
血管内的血液循环狭窄/慢性闭塞病变最小
血管内的斑块,栓塞病变最小
血管内的钙化病变最小
血液传感器反馈的综合指标与上下限差的绝对值(在指标上下限范围内为0)*权值之和最小
综合的血流储备分数(FFR)数值最大(冠脉压力适用)
综上,本发明的有益效果是:
本发明能够通过纳米机器人装置,解决远端控制纳米机器人,导丝导引导导线的移动,利用视觉识别装置智能识别栓塞,定位其位置,移动到栓塞位置,利用激光发射装置,射频装置,消融血管内栓塞,扩张血管,恢复血供。
纳米机器人沿位置目标区,利用血管导丝,依据血管狭窄的程度,自主学习设置压力装置参数及远端调解压力装置充气球囊,气孔自主柔性调解血管内压力,自主巡回目标区,扩张血管,改善血液循环。
解决并有效利用压力装置,放置支架,张开支架,支撑血管,扩张血管,恢复血供。改善了医生,护士等人员手术失误多等问题,大幅度提高工作效率。本发明能够通过最优化调控系统,实时监测,调控血管状态,血液环境最优。
附图说明:
图1是本申请说明书中纳米机器人装置模块示意图,附图1标记:
101-机器人主系统;102-多传感模块;103-摄像头视觉模块;104-压力装置模块;105-球囊气囊;106-胶囊支架;107-激光装置模块;108-驱动模块;109-导丝导管模块;110-远端控制模块;
图2是本申请说明书中纳米机器人装置组成结构示意图,附图2标记:
201-摄像头;       202-机器人主系统/体外成像系统;    203-仿水母摆动装置;    204-驱动引导装置;
205-压力装置;     206-支架;          207-导丝导管;          208-球囊气囊;
209-激光装置/射频装置;                210-多传感器;          211-精准投药装置;
具体实施方式
本发明的目的是设计取代人类工作的可远端控制血管内纳米机器人装置,实现血管内实时监测,解决无创伤治疗解决血管狭窄,斑块,栓塞消融等各种血管疾病。有效地提高血管外科手术的精准度。
实时监测血管内的各项数据,利用神经网络自主学习及远端控制的柔性巡回扩张血管的方法,维持畅通良好的血液循环成为重要的课题。
实现通过针管,导管送入血管内,减少体外手术的风险,实现基本无创伤,高效地实现了利用纳米机器人装置在血管内最优化调控。
管理员远端控制,利用神经网络改进方法自主学习及远端控制双模式实现柔性血管内巡回扩张,
智能识别定位血管内待放置支架位置,通过引导纳米机器人移动,移动到手术位置,放置,张开支架,支撑血管,扩张血管,利用激光器,射频等装置消融血管内栓塞,恢复血供。
有效解决了人为的诊断治疗失误,实现机器人远端控制,自主血管内巡回柔性扩张,提高了智能精准度和医疗异常识别的准确度。为了更好的理解上述技术方案,下面结合实施例及附图,对本发明作进一步地的详细说明,但本发明的实施方式不限于此。
本申请实施中的技术方案为解决上述技术问题的总体思路如下:
通过纳米机器人的主控制系统,利用视觉识别装置智能识别栓塞,纳米机器人定位血管的内,定位,移动到栓塞位置,利用导线的移动,利用激光发射,射频装置,消融血管内栓塞,扩张血管,恢复血供。
管理员远端控制,利用神经网络改进方法自主学习及远端控制双模式实现柔性血管内巡回扩张,智能识别定位血管内待放置支架位置,通过引导纳米机器人移动,移动到手术位置,放置,张开支架,支撑血管,扩张血管,利用激光器,射频等装置消融血管内栓塞,恢复血供。
血管内图片实时采集,血管内图像数据,传感器数据疾病的智能识别疾病。
实施例1:
如图1,如图2所示,一种纳米机器人装置包括:
机器人主系统101,所述机器人主系统模块101,用于连接并控制纳米机器人装置模块包括:多传感模块102,视觉模块及视觉识别模块103,压力装置模块104,仿水母装置,球囊气囊模块105,支架模块106,激光射频装置模块107,驱动模块108,导丝导管模块109,远端控制体外成像模块110,精准投药装置111。
多传感模块102,机器人主控制系统101与多传感器102连接,用于采集血管传感器信息,包括血液监测传感器,压力传感器。用于采集,分类,识别血管内各传感器数据。
视觉识别模块103,所述的视觉识别模块包括:超声探头,纳米显微镜等体内成像与体外成像系统连接,通信,用于采集并智能识别血管内多种疾病图像。
仿水母的摆动装置,气囊球囊105,通过压力装置104施加压力,充气球囊,用于血管扩张,压力装置收压收缩水母摆动装置,用于仿水母收张游动及充气球囊。
支架106,通过压力装置104施加压力,用于支架张开,放置支撑血管。压力装置104,通过压力装置,充气气囊,球囊105,扩张血管。
激光器射频器107,用于消融血管内斑块,栓塞。激光器209,用于消融血管内栓塞。导丝导引导管装置109用于血管的内定位,导线的移动,利用视觉识别装置智能识别栓塞,定位,移动到栓塞位置,利用激光发射装置射频装置109,消融血管内栓塞,扩张血管,恢复血供。
驱动,引导自主定位移动模块108。机器人主控制系统101与驱动装置104连接,用于驱动纳米机器人血管内移动。采用磁引导及红外引导超声引导的方式对体内纳米机器人进行引导,定位纳米机器人位置及血管狭窄,斑块,栓塞位置。
气囊,球囊208,喷气孔,用于血管扩张。支架206,通过压力装置施加压力,用于支架张开,放置支撑。利用视觉识别装置,引导装置207,智能识别定位血管内待放置支架位置,通过引导纳米机器人移动,移动到手术位置,利用压力装置205,放置支架,张开支架,支撑血管,扩张血管,恢复血供。
精准投药装置111,用于定位血管斑块,栓塞位置,计算斑块,栓塞的尺寸程度,精准定药,投药。
实施例2:
如图2所示,血管内图片实时采集,血管内图像数据,传感器数据疾病的智能识别实施如下:
机器人摄像头201发布血管内图像图片以及其对应的位置区坐标,传感器210发布血管内传感器信息。依据血管内图片,传感器210数据,主系统201订阅图像信息,传感器210信息,服务及其位置坐标。远端主控制系统201依照订阅的血管采集区位置,发布移动命令。远端主控制系统201针对血管内的图片,抽取血管栓塞,血管狭窄的颜色特征,形状特征,综合压力传感器210等发布的传感器消息。将血管内的特征物信息作为特征项,输入颜色特征,形状轮廓特征,血管区域的位置信息,利用改进的神经网络方法及权值优化器,智能识别血管病症,包括血管狭窄,斑块,栓塞,分类异常数据的输出值,分类识别正常血管区,狭窄区,栓塞位置。依据输出结果,精准分类,识别血管内的疾病位置,疾病种类,狭窄栓塞的程度至机器人主系统的管理员及用户。
利用神经网络自主学习方法及远端管理员调解参数的纳米机器人柔性巡回扩张方法具体实施如下:
机器人摄像头201,压力传感器210发布血管内图像图片,血管内压力数据。纳米机器人自主巡回的血管位置区的坐标范围。主系统订阅图像信息,多传感210发布数据信息,利用改进的智能分析,分类数据方法,智能识别狭窄血管的位置目标区域,自主巡回的血管位置目标区。远端主控制系统201依照订阅的血管采集区位置,返回狭窄血管位置的区域信息,坐标,引导纳米机器人移动到目标区。输入不同时间点的血管内多数据信息,血管位置目标区的狭窄区,狭窄程度。远端管理员调解压力装置参数,柔性设置当前血管环境下的压力装置的各参数的安全范围。通过改进的神经网络方法,利用神经网络自主学习方法,计算分析自主训练数据,自主学习,调解压力装置及治疗装置的参数。通过自主学习及远端管理员调解充气气囊208,气孔208的参数,柔和调解血管压力,扩张血管。远端及自主控制移动纳米机器人,下达自主巡回指令,纳米机器人沿位置目标区,利用血管导丝207,依据血管狭窄的程度,自主学习设置压力装置205参数及远端管理员调解压力装置205充气球囊,气孔自主柔性调解血管内压力,自主巡回目标区,扩张血管,改善血液循环。

Claims (9)

  1. 一种血管内纳米机器人装置、最优化控制系统、方法,其特征在于,一种血管内纳米机器人装置包括:
    机器人主控制系统,所述机器人主系统与体外成像系统连接,并控制纳米机器人装置;纳米机器人装置包括:视觉识别模块,多传感模块,驱动装置,导丝导引导管,压力装置,仿水母气囊球囊装置,支架,激光器,射频装置,精准投药装置;
    视觉识别模块,所述的视觉识别模块包括:超声探头,纳米显微镜等体内成像与体外成像系统连接,通信,用于采集并智能识别血管内多种疾病图像;
    多传感模块,机器人主控制系统与多传感器连接,用于采集血管传感器信息,包括压力传感器,血液监测的多种传感器的一种及多种;
    驱动,引导自主定位移动模块;机器人主控制系统与驱动装置连接,用于驱动纳米机器人血管内移动;采用磁引导及红外引导超声引导的方式对体内纳米机器人进行引导,定位纳米机器人位置及血管狭窄,斑块,栓塞位置;
    导丝导引导管,用于清理血管内斑块,栓塞,回复血供;
    压力装置,通过压力装置,充气气囊,球囊,扩张血管;
    仿水母的摆动装置,气囊球囊,通过压力装置施加压力,充气球囊,用于血管扩张,压力装置收压收缩水母摆动装置,用于仿水母收张游动及充气球囊;
    支架,通过压力装置施加压力,用于支架张开,放置支撑血管;
    激光器射频器,用于消融血管内斑块,栓塞;
    精准投药装置,用于定位血管斑块,栓塞位置,计算斑块,栓塞的尺寸程度,精准定药,投药。
  2. 根据权利要求1所述的一种血管内纳米机器人装置,其特征在于,所述的视觉识别模块与体外成像系统,主控制系统连接,超声探头,纳米显微镜,红外成像等体内成像装置,与体外主控制系统,体外成像系统通信,用于采集并识别血管图像;体内血管图像,显微镜下的图像包括:血管内的图像,血管狭窄,闭塞,斑块,栓塞及其尺寸,其所在的位置范围,坐标等信息;所述的视觉模块包括:体外成像系统以及体内超声探头,体内显微镜,红外成像装置等视觉装置中的一种及多种。
  3. 根据权利要求1所述的一种血管内纳米机器人装置,其特征在于,所述的多传感模块,用于采集多种微型传感器数据;采集的多传感数据包括,血管内压力,血液流动,血小板,血凝,血管受压,血管应压等多种数据。
  4. 根据权利要求1所述的一种血管内纳米机器人装置,其特征在于,驱动,引导自主定位移动装置,用于驱动纳米机器人血管内移动;驱动方式包括:气动,电动等方式中的一种;机器人主控制系统与驱动装置连接,用于驱动纳米机器人血管内移动;采用磁引导及红外引导超声引导的方式对体内纳米机器人进行引导,定位纳米机器人位置及血管狭窄,斑块,栓塞位置,引导驱动纳米机器人血管内游动。
  5. 根据权利要求1所述的一种血管内纳米机器人装置,其特征在于,所述的扩张血管装置,包括:仿水母游动的气囊球囊,压力装置,导丝导引导管;调解压力的四种方式,包括:球囊充气扩张,仿水母摆动游动,吸入收缩摆动的水母,撑支架;
    球囊充气扩张,是通过导线的移动,调解压力装置,在血管狭窄,斑块,栓塞位置充气气囊,球囊,扩张血管;
    仿水母摆动游动,是在正常的血管区域,柔性调解压力装置,仿水母摆动游动,加速血液循环;
    吸入收缩摆动的水母,是在血小板粘稠及微小斑块碎片位置区域,收缩摆动的水母,将微小斑块碎片吸入,清理,消融;
    支撑放支架,是利用视觉识别装置,引导装置,智能识别,定位血管内待放置支架位置,通过引导纳米机器人移动到手术位置,利用压力装置,张开支架,放置支架,支撑血管,扩张血管。
  6. 根据权利要求1所述的一种血管内纳米机器人装置,其特征在于,斑块,栓塞治疗装置。所述的斑块,栓塞治疗装置包括两种方式,斑块栓塞消融装置和精准投药装置;
    所述的斑块,栓塞消融装置包括激光发射装置,射频装置中的一种。利用视觉识别装置智能识别斑块,栓塞,导丝的移动,血管的内定位,移动到栓塞位置,利用激光发射装置,射频装置发射,消融血管内斑块,栓塞,恢复血供;
    所述的精准投药装置,是利用纳米机器人携带药品装置,利用视觉装置,体外成像装置等,定位血管斑块,栓塞位置,利用引导装置引导纳米机器人移动到斑块栓塞位置,计算斑块,栓塞的尺寸程度,精准定药,投药。
  7. 一种血管内纳米机器人装置、最优化控制系统、方法,其特征在于,血管内数据实时采集,分析,监测,对血管内图像数据,传感器数据疾病的智能识别方法,所述的血管内数据包括:血管腔径,截面积,容积,血管段长度,曲率,挠率,斑块体积,血流动力等;具体步骤如下:
    一种血管内图片数据,传感器数据实时采集,疾病的智能识别方法包括以下步骤:
    S1、机器人摄像头发布血管内图像图片以及其对应的位置区坐标;
    S2、依据血管内图片,主系统订阅图像信息,服务,及其位坐标;
    S3、远端主控制系统依照订阅的血管采集区位置,依照机器臂图像采集动作规划模块的动作,移动;发布采集的图像信息,机器人主系统及视觉识别模块订阅图像信息;
    S4、针对血管内的图片,抽取血管栓塞,血管狭窄的颜色特征,形状特征,综合压力传感器发布的血压信息;血管内的智能识别特征物信息,输入颜色特征,形状轮廓特征,血管区域的位置信息,利用改进的神经网络方法及权值优化器,得到智能识别血管病症,分类异常数据的输出值,分类识别正常血管区,狭窄区,栓塞位置;
    S5、依据输出结果,精准分类,识别血管内的疾病位置,疾病种类,狭窄栓塞的程度至机器人主系统的管理员及用户;
  8. 一种血管内纳米机器人装置、最优化控制系统、方法,其特征在于,改进的神经网络自主学习控制及远端控制纳米机器人血管内巡回游动柔性扩张方法,具体步骤如下:
    S1、机器人摄像头,压力传感器发布血管内图像图片,血管内压力数据以及其对应的纳米机器人自主巡回的血管位置区的坐标范围;
    S2、主系统订阅图像信息,多传感发布数据信息,利用改进的智能分析,分类数据方法,智能识别狭窄血管的位置目标区域,自主巡回的血管位置目标区;
    S3、远端主控制系统依照订阅的血管采集区位置,返回狭窄血管位置的区域信息,坐标,引导纳米机器人移动到目标区;
    S4、输入不同时间点的血管内多数据信息,血管位置目标区的狭窄区,狭窄程度;
    S5、远端管理员调解压力装置参数,柔性设置当前血管环境下的压力装置的各参数的安全范围;
    S6、通过改进的神经网络方法,利用神经网络自主学习方法,计算分析自主训练数据,自主学习,调解压力装置及治疗装置的参数;
    S7、通过自主学习及远端管理员调解充气气囊,气孔的参数,柔和调解血管压力,扩张血管;
    S8、远端及自主控制移动纳米机器人,下达自主巡回指令,纳米机器人沿位置目标区,利用血管导丝,依据血管狭窄的程度,自主学习设置压力装置参数及远端管理员调解压力装置充气球囊,气孔自主柔性调解血管内压力,自主巡回目标区,扩张血管,改善血液循环。
  9. 一种血管内纳米机器人装置、最优化控制系统、方法,其特征在于,血管内综合指标多目标最优化调控方法,具体步骤如下:
    S1.监测不同血管位置的狭窄值,血流值,血压参值,受压受力值,应力值;
    S2.设置压力装置的压力变量;
    S3.建立不同血管位置的血液循环最优的数学模型包括:
    血管模型,不同血管位置的狭窄值,血流值,血压参值,受压受力值,应力值为常量;
    压力装置的压力变量;
    S4.制约条件包括:
    1)压力装置的施加压力范围;
    2)血流的标准值范围;
    3)血管内标准的压力范围;
    4)球囊气囊受压受力范围;
    5)支架受力范围;
    6)激光/射频发射器的参数范围;
    7)消融位置范围;
    8)血管的位置区域范围;
    S5.多目标包括:
    血管内的血液循环狭窄/慢性闭塞病变最小;
    血管内的斑块,栓塞病变最小;
    血管内的钙化病变率最小;
    血液传感器反馈的指标与上下限差的绝对值(在指标上下限范围内为0)*权值之和最小;
    综合的血流储备分数(FFR)数值最大(冠脉压力适用);
PCT/CN2022/000045 2021-03-23 2022-03-18 一种血管内纳米机器人装置、最优化控制系统、方法 WO2022199198A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2022244782A AU2022244782A1 (en) 2021-03-23 2022-03-18 Intravascular nano robot apparatus, optimized control system, and method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110316489.3 2021-03-23
CN202110316489.3A CN113133786A (zh) 2021-03-23 2021-03-23 一种血管内纳米机器人装置、最优化控制系统、方法

Publications (1)

Publication Number Publication Date
WO2022199198A1 true WO2022199198A1 (zh) 2022-09-29

Family

ID=76810041

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/000045 WO2022199198A1 (zh) 2021-03-23 2022-03-18 一种血管内纳米机器人装置、最优化控制系统、方法

Country Status (3)

Country Link
CN (1) CN113133786A (zh)
AU (1) AU2022244782A1 (zh)
WO (1) WO2022199198A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113133786A (zh) * 2021-03-23 2021-07-20 谈斯聪 一种血管内纳米机器人装置、最优化控制系统、方法

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009145405A1 (en) * 2008-05-26 2009-12-03 Industry Foundation Of Chonnam National University Microrobot for intravascular therapy and microrobot system using it
KR20100015207A (ko) * 2008-08-04 2010-02-12 전남대학교산학협력단 혈관 치료용 마이크로 로봇의 유지 및 이동 시스템
US20100286708A1 (en) * 2009-05-06 2010-11-11 Dan Rittman System for blood vessels cleaning, such as for a coronary artery, peripheral artery or any other body vessel, based on mobile agent
CN102512206A (zh) * 2011-12-13 2012-06-27 苏州生物医学工程技术研究所 血管内超声超声诊断与光声治疗装置及其治疗方法
CN106473714A (zh) * 2016-09-21 2017-03-08 南京航空航天大学 一种微型血管探测机器人及其运动控制方法
CN107898487A (zh) * 2017-11-28 2018-04-13 郑州大学第附属医院 一种具有仿生水母收缩膨胀功能的通用型血栓碎取装置
CN109171976A (zh) * 2018-10-22 2019-01-11 中国人民解放军陆军军医大学第附属医院 一种可精确控制的血管手术机器人及其操作方法
CN109480803A (zh) * 2019-01-02 2019-03-19 上海市第人民医院 集传感器和载药囊为一体的生物兼容微型装置
CN110292346A (zh) * 2018-03-22 2019-10-01 尼尔·萨丹 利用腔内电磁工作胶囊的导管插入系统和方法
US20200156237A1 (en) * 2017-06-16 2020-05-21 Temple Universtiy-Of The Commonwealth Sytem of Higher Education Climbing soft robotics
CN112022279A (zh) * 2020-06-19 2020-12-04 吉林大学 清理血栓的仿生血管机器人
CN113133786A (zh) * 2021-03-23 2021-07-20 谈斯聪 一种血管内纳米机器人装置、最优化控制系统、方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1396422B1 (it) * 2009-11-16 2012-11-23 Scuola Superiore Di Studi Universitari E Di Perfez Dispositivo microrobotico miniaturizzato per la locomozione in ambiente fluido.
KR20130117627A (ko) * 2012-08-14 2013-10-28 이상윤 혈관탐사 마이크로-나노 로봇 조종시뮬레이터 시스템
US11324451B2 (en) * 2017-06-26 2022-05-10 Bruce Reiner Nanobots with embedded biosensors
KR102017597B1 (ko) * 2017-10-19 2019-09-03 전남대학교산학협력단 스퀴드를 이용한 의료용 마이크로/나노로봇의 자율 내비게이션 시스템
CN110076749B (zh) * 2019-03-01 2022-04-19 天津理工大学 一种仿水母磁控微型软体机器人及其制备方法和驱动方法
CN110236641B (zh) * 2019-06-28 2020-04-24 青岛大学附属医院 一种磁力纳米血栓疏通装置

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009145405A1 (en) * 2008-05-26 2009-12-03 Industry Foundation Of Chonnam National University Microrobot for intravascular therapy and microrobot system using it
KR20100015207A (ko) * 2008-08-04 2010-02-12 전남대학교산학협력단 혈관 치료용 마이크로 로봇의 유지 및 이동 시스템
US20100286708A1 (en) * 2009-05-06 2010-11-11 Dan Rittman System for blood vessels cleaning, such as for a coronary artery, peripheral artery or any other body vessel, based on mobile agent
CN102512206A (zh) * 2011-12-13 2012-06-27 苏州生物医学工程技术研究所 血管内超声超声诊断与光声治疗装置及其治疗方法
CN106473714A (zh) * 2016-09-21 2017-03-08 南京航空航天大学 一种微型血管探测机器人及其运动控制方法
US20200156237A1 (en) * 2017-06-16 2020-05-21 Temple Universtiy-Of The Commonwealth Sytem of Higher Education Climbing soft robotics
CN107898487A (zh) * 2017-11-28 2018-04-13 郑州大学第附属医院 一种具有仿生水母收缩膨胀功能的通用型血栓碎取装置
CN110292346A (zh) * 2018-03-22 2019-10-01 尼尔·萨丹 利用腔内电磁工作胶囊的导管插入系统和方法
CN109171976A (zh) * 2018-10-22 2019-01-11 中国人民解放军陆军军医大学第附属医院 一种可精确控制的血管手术机器人及其操作方法
CN109480803A (zh) * 2019-01-02 2019-03-19 上海市第人民医院 集传感器和载药囊为一体的生物兼容微型装置
CN112022279A (zh) * 2020-06-19 2020-12-04 吉林大学 清理血栓的仿生血管机器人
CN113133786A (zh) * 2021-03-23 2021-07-20 谈斯聪 一种血管内纳米机器人装置、最优化控制系统、方法

Also Published As

Publication number Publication date
CN113133786A (zh) 2021-07-20
AU2022244782A1 (en) 2023-11-09

Similar Documents

Publication Publication Date Title
US20200330159A1 (en) Path planning method with artificial potential field based on obstacle classification and medical system for steering flexible needle
US20200329995A1 (en) Endovascular occlusion device and method of use
US9211160B2 (en) Remotely controlled catheter insertion system with automatic control system
WO2017080016A1 (zh) 皮肤激光治疗辅助机器人及其辅助方法
JP3608448B2 (ja) 治療装置
CN109820695A (zh) 一种具有通信和自主导航移动功能的icu病房卧式双侧脑瘫下肢康复机器人
US20060258935A1 (en) System for autonomous robotic navigation
US20220000425A1 (en) Systems and methods for obtaining cardiovascular parameters
JP2015533523A (ja) 橈骨動脈装置
CA2616989A1 (en) Method and system for delivering a medical device to a selected position within a lumen
CN109044498A (zh) 一种动脉穿刺系统和确定动脉穿刺位置的方法
WO2022199198A1 (zh) 一种血管内纳米机器人装置、最优化控制系统、方法
CN107297016A (zh) 用于白血病患者化疗的picc静脉置管智能控制操作仪
CN106618803A (zh) 一种人工心脏瓣膜输送装置
WO2022206083A1 (zh) 一种体内微型机器人装置,最优化治疗调控系统及方法
CN116999167A (zh) 介入手术机器人系统以及导航方法
CN109567908B (zh) 基于温度场检测的静脉穿刺系统
CN107280714A (zh) 血管介入诊疗系统
CN205198665U (zh) 一种双层海波管的球囊扩张导管
Zhang et al. Summary of medical robot technology development
CN115192195A (zh) 计算机可读存储介质、电子设备及手术机器人系统
CN116434944A (zh) 预设的提供
US20220015770A1 (en) Integrated robotic surgery system with tourniquet system
CN109171976A (zh) 一种可精确控制的血管手术机器人及其操作方法
CN108577884A (zh) 一种远程听诊系统及方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22773863

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023550257

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: AU2022244782

Country of ref document: AU

Ref document number: 2022244782

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2022773863

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022244782

Country of ref document: AU

Date of ref document: 20220318

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: JP

ENP Entry into the national phase

Ref document number: 2022773863

Country of ref document: EP

Effective date: 20231023

122 Ep: pct application non-entry in european phase

Ref document number: 22773863

Country of ref document: EP

Kind code of ref document: A1