WO2022198714A1 - 一种可变履带的管道巡检机器人及其控制方法 - Google Patents

一种可变履带的管道巡检机器人及其控制方法 Download PDF

Info

Publication number
WO2022198714A1
WO2022198714A1 PCT/CN2021/084851 CN2021084851W WO2022198714A1 WO 2022198714 A1 WO2022198714 A1 WO 2022198714A1 CN 2021084851 W CN2021084851 W CN 2021084851W WO 2022198714 A1 WO2022198714 A1 WO 2022198714A1
Authority
WO
WIPO (PCT)
Prior art keywords
crawler
track
robot
pipeline inspection
inspection robot
Prior art date
Application number
PCT/CN2021/084851
Other languages
English (en)
French (fr)
Inventor
宋爱国
缪天缘
邵斌澄
徐宝国
宋光明
徐波
刘爽
闵济海
Original Assignee
东南大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to US17/635,967 priority Critical patent/US11965620B2/en
Application filed by 东南大学 filed Critical 东南大学
Publication of WO2022198714A1 publication Critical patent/WO2022198714A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D55/00Endless track vehicles
    • B62D55/06Endless track vehicles with tracks without ground wheels
    • B62D55/065Multi-track vehicles, i.e. more than two tracks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L55/00Devices or appurtenances for use in, or in connection with, pipes or pipe systems
    • F16L55/26Pigs or moles, i.e. devices movable in a pipe or conduit with or without self-contained propulsion means
    • F16L55/28Constructional aspects
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L55/00Devices or appurtenances for use in, or in connection with, pipes or pipe systems
    • F16L55/26Pigs or moles, i.e. devices movable in a pipe or conduit with or without self-contained propulsion means
    • F16L55/28Constructional aspects
    • F16L55/30Constructional aspects of the propulsion means, e.g. towed by cables
    • F16L55/32Constructional aspects of the propulsion means, e.g. towed by cables being self-contained
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J11/00Manipulators not otherwise provided for
    • B25J11/008Manipulators for service tasks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D55/00Endless track vehicles
    • B62D55/08Endless track units; Parts thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D55/00Endless track vehicles
    • B62D55/08Endless track units; Parts thereof
    • B62D55/104Suspension devices for wheels, rollers, bogies or frames
    • B62D55/116Attitude or position control of chassis by action on suspension, e.g. to compensate for a slope
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D55/00Endless track vehicles
    • B62D55/08Endless track units; Parts thereof
    • B62D55/18Tracks
    • B62D55/26Ground engaging parts or elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L55/00Devices or appurtenances for use in, or in connection with, pipes or pipe systems
    • F16L55/26Pigs or moles, i.e. devices movable in a pipe or conduit with or without self-contained propulsion means
    • F16L55/28Constructional aspects
    • F16L55/40Constructional aspects of the body
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L5/00Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes
    • G01L5/16Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes for measuring several components of force
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L2101/00Uses or applications of pigs or moles
    • F16L2101/30Inspecting, measuring or testing

Definitions

  • the invention relates to a pipeline inspection robot with variable crawlers and a control method thereof, belonging to the technical field of robots.
  • Pipeline transportation has been widely used in oil, natural gas, water resources supply, nuclear industry and other fields due to the advantages of large transportation volume, low cost and fast transportation speed. Corrosion and damage of pipelines, material left in pipelines, etc., cause material leakage, blockage and other failures.
  • the pipeline needs to be inspected regularly.
  • the traditional manual method has shortcomings such as low efficiency, high difficulty, and limited manual measurement range. It is necessary to design a pipeline inspection robot instead of manpower to complete the pipeline inspection task.
  • pipeline inspection robots include wheeled robots, crawler robots, and abdominal wall robots.
  • Wheeled robots cannot adapt to obstacles inside pipelines and the transition area of pipelines.
  • Crawler robots can be improved by virtue of their strong gripping ability.
  • the mobility of the inspection in the pipeline, but the angle of the crawler needs to be adjusted so that the crawler surface is in contact with the pipe wall to improve the transmission efficiency.
  • the Chinese patent application number is: 201310690872.0, and the patent document with the authorization date is January 21, 2015, which discloses a pipeline robot with adjustable crawler angle. By adjusting the gear on the rotating shaft, the left and right main crawler can be adjusted outward to a certain angle.
  • the crawler surface is in contact with the pipe wall, and has good adaptability to the pipe wall, but there are some defects in the pipeline robot mechanism:
  • the gear transmission mechanism is exposed to the outside and is easily eroded and has large mechanical wear, which It has a great influence on the adjustment angle of the crawler in the invention;
  • the inclination angle of the crawler is adjusted through gear transmission, and the camber angle of the left and right crawler is the same, so that the robot has good stability during the movement process, but in some irregular pipeline scenes
  • the limitation of angle adjustment will lead to the problem of insufficient contact between one track and the wall surface;
  • the left and right tracks and the frame are designed as separate modules, and the stepper motor for driving the track is installed and the track assembly is required.
  • the volume and torque of the motor selection are limited, and at the same time, the weight of the crawler assembly is increased, which brings a greater burden to adjust the inclination of the crawler.
  • the Chinese patent application number is 201810981630.X, and the patent document published on December 11, 2018 proposes a relatively novel pipeline robot, which connects two mirrored three-track walking mechanisms and the fuselage through a universal joint.
  • the stepping motor controls the rotation of the lead screw and adjusts the opening degree of the track foot, which has a certain adaptability to the pipeline environment, but there are also problems such as limited selection of the drive motor of the track foot and insufficient torque of the driving wheel.
  • the Chinese patent application number is: 201811494015.2, the patent document published on June 16, 2020, discloses a pipeline robot, which independently changes each driving wheel and the pipe by controlling the spring group at one end of each driving wheel to expand and contract.
  • the contact position of the wall so that each of the plurality of driving wheels can be in contact with the pipe wall, making it easier for the pipe robot to pass through the variable diameter area, but this mechanism cannot meet the requirements of the driving wheel and the pipe wall when adjusting the spring group.
  • Complete contact the driving wheel will be worn to a certain extent during the traveling process.
  • the entire robot system must include not only the driving motor but also the driving motors for adjusting the spring groups.
  • the driving mechanism is many and complex, difficult to control, and low working efficiency .
  • the purpose of the present invention is to solve the problem of insufficient contact between the crawler surface and the pipe wall while ensuring the driving ability, and propose an automatic A method of adjusting the mechanism to adapt to changes in pipe diameter.
  • the technical scheme adopted in the present invention is:
  • a pipeline inspection robot with variable tracks comprises a robot body, track assemblies symmetrically arranged on the left and right sides of the robot body, and a traveling drive mechanism; the robot body and the track assemblies on the left and right sides are connected by a track fixing frame,
  • a crawler angle adjustment mechanism is respectively connected between the robot body and its left and right crawler assemblies; each crawler angle adjustment mechanism includes a slide rail connected with the robot body, and a push rod motor is installed on the slide rail.
  • the power output shaft of the push rod motor drives a slider that can reciprocate on the slide rail, and a four-bar linkage mechanism is installed on the slider, and the four-bar linkage mechanism includes a lower link and an upper link.
  • Two side links one end of the lower link is installed on the lower pin shaft through a rotating pair, and the other end is matched with the ball head of the track assembly; the lower parts of the two side links are connected to the The lower pin is connected, and the upper part is connected with the upper pin through a rotation pair; the upper link is mounted on the upper pin through the rotation pair, and the other end is matched with the ball head of the track assembly.
  • the crawler assembly includes a drive wheel, a tensioner, a support wheel, and crawler fixed side plates; the crawler fixed side plates are respectively arranged on the inner side of the crawler assembly on both sides , the driving wheel and the tensioning wheel are respectively located at the front and rear ends of the track, and the support wheel is arranged in the middle of the track.
  • a three-dimensional force sensor is respectively provided on the tensioner wheels of the track assemblies on the left and right sides.
  • the pipeline inspection robot with variable crawler there are two sets of travel drive mechanisms, which are symmetrically installed at the front of the robot body, including a servo motor, a reinforcing link and a universal joint, and the servo motor is fixed inside the robot body.
  • the bottom plate is connected with the reinforcing connecting rod, one end of the universal joint is connected with the reinforcing connecting rod, and the other end is connected with the crawler driving wheel.
  • the crawler fixing frame has four groups, which are installed symmetrically in the front and rear and left and right inside the robot body.
  • the height of the lateral central axis of the fixed side plate of the crawler adopts a "herringbone" shape structure, one end is hinged with the fixed side plate of the crawler through a spherical hinge, and the two forks extending from the other end are connected to the main body of the robot.
  • the ball head of the track assembly is arranged on the fixed side plate of the track.
  • control method of the above-mentioned variable crawler pipeline inspection robot includes the following steps:
  • Step 1 Sampling the Y-axis direction and Z-axis direction force values output by the three-dimensional force sensor, the sampling frequency is 100Hz, and filtering using the median value averaging algorithm to obtain the Y-axis direction force F Y1 , Z-axis direction force F Z1 and Y-axis direction force F Y2 and Z-axis direction force F Z2 of the right crawler;
  • Step 2 Calculate the ratio of the Y-axis direction force to the Z-axis direction force of the left and right crawler belts, respectively ⁇ 1 and ⁇ 2 .
  • Step 3 Calculate the basis for determining the crawler inclination angle adjustment, and select an appropriate control algorithm.
  • is the set positive threshold.
  • both the left and right tracks need to be retracted inward;
  • Step 4 when the pipeline inspection robot passes through the pipeline variable diameter area or the irregular pipeline area, the contact state between the crawler and the pipe wall is automatically monitored in steps 1-3.
  • the knuckles are adjusted to the appropriate angle, and then the track inclination is automatically adjusted to the best state through the track angle adjustment mechanism;
  • Step 5 the above steps 1-4 are the adaptive adjustment steps of the crawler inclination angle, the movement of the pipeline inspection robot is realized by the traveling drive mechanism, and the steering of the vehicle body is controlled by the left and right crawler track differential method.
  • the present invention adopts the combination of the plane four-link and the push rod motor, and connects the crawler track assembly through the spherical hinge, which can realize the inclination adjustment of the crawler track.
  • Each group of crawler track angle adjustment mechanism is independent and has good flexibility to adapt to different pipelines. surroundings.
  • the present invention adopts a three-dimensional force sensor, which is installed at the tensioner of each group of crawler belts, which can accurately measure the force value of each axial direction, and infer the current contact state of each group of crawler belts and the pipe wall.
  • the present invention adopts the method of combining gradient descent and PI control, which can automatically adjust the inclination angle of the crawler track so that the crawler track surface is in contact with the pipe wall, and the crawler track surface is in contact with the pipe wall.
  • the push rod motor pushes the slider to the left, it drives the plane four-bar linkage mechanism, and the fixed side plate of the crawler and the crawler are rotated clockwise around its transverse center axis through the spherical hinge, and vice versa.
  • Track inclination adjustment According to the pipeline inspection robot mechanism, by limiting the stroke of the slider in the crawler angle adjustment mechanism, the maximum adjustment angle of the crawler in the forward and reverse directions can be limited. Thereby reducing the wear of the crawler, reducing the energy loss, and improving the working efficiency of the pipeline inspection robot.
  • Each track assembly of the present invention is hinged with the main body of the robot through a set of spherical hinges, and the hinge is on the lateral center axis of the fixed side plate of the track, which restricts the adjustment of the inclination of the track, and at the same time can reduce the push and pull on the plane four-link. force, reducing the energy consumption of inclination adjustment.
  • the crawler inclination adjustment method adopted in the present invention places the traveling driving mechanism inside the robot body, and connects the crawler driving wheel through the universal joint, so that the crawler angle can be adjusted and the driving ability of the crawler can also be ensured.
  • Fig. 1 shows a top view of a pipeline inspection robot mechanism with a variable crawler of the present invention
  • Figure 2 shows a side view of a pipeline inspection robot mechanism with a variable crawler of the present invention
  • FIG. 3 shows a schematic top view structure of a variable crawler pipeline inspection robot mechanism of the present invention
  • Figure 4 shows a schematic side view of the structure of a pipeline inspection robot mechanism with variable crawler of the present invention
  • Figure 5 shows a schematic structural diagram of the track angle adjustment mechanism
  • Figure 6 shows a schematic diagram of the state before and after the pipeline inspection robot automatically adjusts the crawler inclination angle inside the pipeline to fit the pipe wall.
  • Figure 6(a) is a schematic diagram of the state before the crawler inclination angle is adjusted, and
  • Figure 6(b) is after adjusting the crawler inclination angle. state diagram.
  • a variable crawler pipeline inspection robot mechanism includes a robot body 1, left and right crawler track assemblies 2, and a travel drive mechanism 3; the robot body and its left and right crawler track assemblies They are connected by a crawler fixing frame 11, and a crawler angle adjusting mechanism 12 is respectively connected between the robot main body and its left and right crawler assemblies.
  • the track fixing frame has four groups, which are installed symmetrically in the front and rear and left and right inside the main body of the robot.
  • the symmetrical plane installed in the front and rear is the plane where the four-bar linkage mechanism is located, and the installation height is the height of the lateral center axis 24 of the fixed side plate of the track. It has a restraining effect on the adjustment of the inclination angle of the crawler, and at the same time, it can reduce the push-pull force on the plane four-link and reduce the energy consumption of the inclination adjustment.
  • the crawler fixed frame adopts a "herringbone" shape structure, one end is hinged with the crawler fixed side plate through a spherical hinge, and the two forks extending from the other end are connected with the main body of the robot.
  • Each crawler angle adjustment mechanism includes a slide rail 123 connected to the robot body.
  • the power output shaft of the push rod motor drives a slide block 122 that can reciprocate on the slide rail.
  • a four-bar linkage mechanism is installed on the slide block, and the four-bar linkage mechanism includes a lower connecting rod 125 and an upper connecting rod 124.
  • side connecting rod 126 one end of the lower connecting rod is installed on the lower pin shaft 128 through a rotating pair, and the other end is a spherical groove, which is matched with the ball head of the track assembly; the lower parts of the two side connecting rods are rotated by rotating The pair is connected with the lower pin shaft, and the upper part is connected with the upper pin shaft 127 through a rotating pair; the upper link is installed on the upper pin shaft through a rotating pair, and the other end is a spherical groove, which is connected with the track assembly. Ball head fit.
  • the upper link 124 and the lower link 125 of the plane four-link pass through the main body casing of the robot, and leave a transmission gap with the main body casing.
  • the plane four-link and the push rod motor are combined to connect the crawler assembly through a spherical hinge.
  • the inclination angle adjustment of the crawler can be realized, and each group of crawler angle adjustment mechanism is independent, which has good flexibility to adapt to different pipeline environments.
  • the crawler track assembly includes a drive wheel 21, a tensioner 22, a support wheel 23, and crawler track fixed side plates 24;
  • the tensioning wheels are respectively located at the front and rear ends of the crawler, and the support wheels are arranged in the middle of the crawler.
  • the track-fixed side plate has a total of four ball joints, the front and rear two ball joints are larger for docking with the track fixing frame, the upper and lower two ball joints are smaller for docking with the plane four-link, the front and rear two ball joints
  • the mounting holes are on the lateral center axis of the fixed side plate of the crawler, and are symmetrical on both sides of the plane four-link. The positions of the mounting holes of the upper and lower ball heads are symmetrical up and down.
  • a three-dimensional force sensor is installed at each of the crawler tensioners, which is used to accurately measure the force value of each axial direction.
  • the driving mechanisms which are symmetrically installed at the front of the robot body, including a servo motor 31, a reinforcing link 32 and a universal joint 33.
  • the servo motor is fixed on the inner bottom plate of the robot body, and one end of the universal joint is It is connected with the reinforcing link, and the other end is connected with the track drive wheel.
  • the fixed position of the universal joint passes through the main body casing of the robot and leaves a transmission gap with the main body casing.
  • the invention also provides a control method for a pipeline inspection robot with variable crawler track, which is based on a three-dimensional force sensor and uses a combination of gradient descent and PI control (proportional-integral control) to automatically adjust the crawler track inclination to make the track surface contact the pipe wall.
  • PI control proportional-integral control
  • a control method for a pipeline inspection robot with variable crawler comprising the following steps.
  • Step 1 Sampling the Y-axis direction and Z-axis direction force values output by the three-dimensional force sensor, the sampling frequency is 100Hz, and filtering using the median value averaging algorithm to obtain the Y-axis direction force F Y1 , Z-axis direction force F Z1 and Y-axis direction force F Y2 and Z-axis direction force F Z2 of the right crawler.
  • Step 2 Calculate the ratio of the Y-axis direction force to the Z-axis direction force of the left and right crawler belts, respectively ⁇ 1 and ⁇ 2 .
  • the control method of a pipeline inspection robot with variable crawler of the present invention can adjust the inclination angle of the crawler, so that the crawler surface is in contact with the pipe wall, and the adjustment of the crawler inclination is realized by the crawler angle adjustment mechanism.
  • the motor pushes the slider to the left, driving the plane four-bar linkage mechanism, and through the spherical hinge, the fixed side plate of the crawler and the crawler are rotated clockwise around its transverse center axis, and vice versa.
  • the present invention can infer the current contact state of each group of crawler belts and the pipe wall.
  • Step 3 Calculate the basis for determining the crawler inclination angle adjustment, and select an appropriate control algorithm.
  • is the set positive threshold.
  • the present invention uses the gradient descent method to control two push rod motors at the same time, and adjusts the track inclination to quickly approach the optimal state ; 0), or when both the left and right tracks need to be adjusted clockwise (counter-clockwise) (that is, when ⁇ 1 >0, ⁇ 2 >0 and ⁇ 0), adopt the method of “fixing one and moving one” and PI control.
  • Step 4 when the pipeline inspection robot passes through the variable diameter area or the irregular pipeline area, the contact state between the crawler and the pipe wall can be automatically monitored from steps 1-3. If the crawler is detected to be in a non-optimal state, it will be adjusted by the servo motor first. The universal joint is adjusted to the appropriate angle, and then the crawler inclination angle is automatically adjusted to the best state through the crawler angle adjustment mechanism;
  • Step 5 the above steps 1-4 are the steps of adaptive adjustment of the crawler inclination angle, the movement of the pipeline inspection robot is realized by the traveling drive mechanism, and the vehicle body steering uses the left and right crawler track differential method.
  • the combination of gradient descent and PI control can automatically adjust the inclination of the crawler to make the crawler surface contact the pipe wall, reduce the wear of the crawler, reduce the energy loss, and improve the working efficiency of the pipeline inspection robot.
  • the crawler inclination adjustment is based on the pipeline inspection robot mechanism, and by limiting the stroke of the slider in the crawler angle adjustment mechanism, the maximum adjustment angle of the crawler in the forward and reverse directions can be limited.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Robotics (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Manipulator (AREA)

Abstract

本发明公开一种可变履带的管道巡检机器人及其控制方法,本发明的管道巡检机器人,包括机器人主体、对称设置在机器人主体左右两侧的履带组件、行进驱动机构;所述机器人主体与其左右两侧的履带组件之间通过履带固定架连接,所述机器人主体与其左右两侧的履带组件之间分别连接一个履带角度调节机构。本发明可实现对履带的倾角调节,每组履带角度调节机构独立,具有很好的灵活性以适应不同的管道环境。

Description

一种可变履带的管道巡检机器人及其控制方法 技术领域
本发明涉及一种可变履带的管道巡检机器人及其控制方法,属于机器人技术领域。
背景技术
随着自动化水平提高,物料输送需求增大,管道运输凭借输送量大、成本低、运输速度快等优势,已广泛应用于石油、天然气、水资源供给、核工业等领域,但管道运输过程存在管道侵蚀破损、物料遗留管道等问题,造成物料泄露、堵塞等故障。需要定期对管道进行巡检工作,传统的人工方式存在效率低、难度大、且人工测量范围有限等缺点,需要设计一种管道巡检机器人代替人力完成管道巡检任务。
目前常见的管道巡检机器人种类有轮式机器人、履带式机器人和腹壁式机器人等,轮式机器人无法适应管道内部越障和管道变径交接区域,履带式机器人可以凭借抓地能力强的优势提高在管道内巡检的机动性,但需要调整履带角度,使履带面与管壁接触,提高传动效率,腹壁式机器人通过伸张机械臂紧贴管道内壁,需要多节驱动,效率低,控制难。
中国专利申请号为:201310690872.0,授权日为2015年1月21日的专利文献,公开了一种可调履带角度的管道机器人,通过转轴上调节齿轮使左右主履带可向外调整到某一个角度,呈八字形,履带面与管壁接触,具有很好的管壁适应能力,但该管道机器人机构上存在 一些缺陷:其一,齿轮传动机构裸露在外易受侵蚀且存在较大机械磨损,这对发明中的履带调节角度有很大影响;其二,通过齿轮传动调节履带倾角的方式,左右履带外倾角度一致,使机器人在运动过程具有很好的稳定性,但在一些不规则管道场景下,角度调节的局限性会引发一侧履带与壁面接触不充分的问题;其三,左右履带与车架为分体模块化设计,驱动履带进行的步进电机安装与履带组件中,对所选电机的体积与扭矩有一些限制,同时增加了履带组件的重量,给调节履带倾角带来更大负担。中国专利申请号为201810981630.X,公布日为2018年12月11日的专利文献提出了一种比较新颖的管道机器人,通过万向节连接两个镜像的三履带式行走机构与机身,用步进电机控制丝杆旋转,调节履带足的张开程度,具有一定的管道环境适应性,但也存在履带足驱动电机选型受限,驱动轮扭矩不足的问题。
中国专利申请号为:201811494015.2,公布日为2020年6月16日的专利文献,公开了一种管道机器人,通过控制每个驱动轮所在一端的弹簧组进行伸缩来单独改变每个驱动轮与管壁的接触位置,从而使多个驱动轮中的每个驱动轮都可以与管壁接触,更易于管道机器人通过变径区域,但这种机构在调节弹簧组时无法满足驱动轮与管壁的完全接触,在行进过程会对驱动轮产生一定的磨损,整个机器人系统不仅要包含进行的驱动电机还要包含多个调节弹簧组的驱动电机,驱动机构多而复杂,控制难,工作效率较低。
目前,如何让管道巡检机器人在行进过程中,不需要人工干预,可自动调整机构使之适应管径变化也是亟需解决的一个问题。
发明内容
本发明的目的是针对上述现有技术的不足,提供一种可变履带的管道巡检机器人及其控制方法,在保证驱动能力的同时解决履带面与管壁接触不充分的问题,并提出自动调整机构使之适应管径变化的方法。
为解决上述技术问题,本发明采用的技术方案是:
一种可变履带的管道巡检机器人,包括机器人主体、对称设置在机器人主体左右两侧的履带组件、行进驱动机构;所述机器人主体与其左右两侧的履带组件之间通过履带固定架连接,所述机器人主体与其左右两侧的履带组件之间分别连接一个履带角度调节机构;每个所述履带角度调节机构包括与所述机器人主体连接的滑轨,所述滑轨上安装推杆电机,所述推杆电机的动力输出轴驱动一个能在滑轨上往复运动的滑块,所述滑块上安装一个四连杆机构,所述四连杆机构包括一个下连杆、一个上连杆、两个侧连杆,所述下连杆的一端通过转动副安装在下销轴上,另一端与所述履带组件的球头配合;两个所述侧连杆的下部通过转动副与所述下销轴连接,上部通过转动副与上销轴连接;所述上连杆又通过转动副安装在所述上销轴上,另一端与所述履带组件的球头配合。
所述的可变履带的管道巡检机器人,所述履带组件包括驱动轮、涨紧轮、支撑轮、履带固定侧板;所述履带固定侧板分别设置在两侧所述的履带组件的内侧,所述驱动轮和所述涨紧轮分别位于履带的前、后两端,所述支撑轮设置在履带中部。
所述的可变履带的管道巡检机器人,左右两侧的履带组件的涨紧轮上分别设置有一个三维力传感器。
所述的可变履带的管道巡检机器人,所述行进驱动机构有两组, 对称安装于机器人主体前部,包括伺服电机、加强连杆和万向节,所述伺服电机固定于机器人主体内部底板上并与所述的加强连杆连接,所述万向节一端与加强连杆连接,另一端与所述履带驱动轮连接。
所述的可变履带的管道巡检机器人,所述履带固定架有四组,前后对称、左右对称安装于机器人主体内部,其前后安装的对称面为四连杆机构所在平面,且安装高度为履带固定侧板的横向中轴线的高度,采用“人”字型结构,一端通过球形铰链与履带固定侧板铰接,另外一端伸出的两个分叉与机器人主体连接。
所述的可变履带的管道巡检机器人,所述履带组件的球头设置在履带固定侧板上。
上述可变履带的管道巡检机器人的控制方法,该方法包括如下步骤:
步骤1,采样三维力传感器输出的Y轴方向和Z轴方向力值,采样频率为100Hz,使用中位值平均算法滤波,得到左履带的Y轴方向力F Y1、Z轴方向力F Z1和右履带的Y轴方向力F Y2、Z轴方向力F Z2
步骤2,计算左右履带各自Y轴方向力与Z轴方向力比值,分别为α 1和α 2
Figure PCTCN2021084851-appb-000001
步骤3,计算履带倾角调整判定依据,选择合适的控制算法。
Δ 1=|α 1|-δ             (2)
Δ 2=|α 2|-δ        (3)
η=α 1α 2         (4)
μ=Δ 12         (5)
δ为设定的正阈值,当α 1>δ且α 2>δ时,左右履带均需要向外张开;
当-α 1>δ且-α 2>δ时,左右履带均需要向内收缩;
处于以上两种状态下,使用梯度下降的方法同时控制两个推杆电机,调整履带倾角快速逼近最佳状态,即Δ 1≤0或Δ 2≤0;
在接近最佳状态情况下,即Δ 1≤0或Δ 2≤0,或者在左、右履带均需要顺/逆时针调整情况下,即当Δ 1>0,Δ 2>0且η<0时,采用“定一动一”PI控制的方法,所述“定一动一”PI控制的方法是:若μ>0,则只PI控制左推杆电机,调节左履带倾角,使α 1=0,反之则只PI控制右推杆电机,调节右履带倾角,使α 2=0,直至到达履带面与管壁接触的最佳状态,即α 1=0且α 2=0;
步骤4,当管道巡检机器人经过管道变径区域或不规则管道区域,由步骤1-3自动监测履带与管壁接触状态,若监测到履带处于非最佳状态,则先通过伺服电机调节万向节至合适角度,后通过履带角度调节机构自动调整履带倾角至最佳状态;
步骤5,上述步骤1-4为履带倾角自适应调节步骤,管道巡检机器人的运动通过行进驱动机构实现,车体转向使用左右履带差速方法控制。
有益效果:
1.本发明采用平面四连杆与推杆电机结合方式,通过球形铰链对接履带组件,可实现对履带的倾角调节,每组履带角度调节机构独立,具有很好的灵活性以适应不同的管道环境。
2.本发明采用三维力传感器,安装于每组履带的涨紧轮处,可以精确测量每个轴向的力值,并推断出当前每组履带与管壁的接触状态。
3.本发明采用梯度下降与PI控制结合的方法,可自动调节履带倾角使履带面与管壁接触,使履带面与管壁接触,履带倾角调节通过 履带角度调节机构实现,以左履带倾角调节为例,当推杆电机向左推动滑块,带动平面四连杆机构,通过球形铰链使履带固定侧板及履带绕其横向中轴线顺时针旋转,反之同理。履带倾角调节根据管道巡检机器人机构,通过限制履带角度调节机构中滑块的行程,可以限制履带顺逆方向的最大调节角度。从而减少履带磨损,降低能量损耗,提高管道巡检机器人的工作效率。
4.本发明每个履带组件与机器人主体通过一组球形铰链铰接,铰接处为履带固定侧板的横向中轴线上,对履带倾角调节起到约束作用,同时可减少平面四连杆上的推拉力,降低倾角调节能耗。
5.本发明采用的履带倾角调节方式,将行进驱动机构置于机器人主体内部,通过万向节连接履带驱动轮,解决履带角度可调的同时,也可保证履带的驱动能力。
附图说明
图1显示了本发明的一种可变履带的管道巡检机器人机构俯视图;
图2显示了本发明的一种可变履带的管道巡检机器人机构侧视图;
图3显示了本发明的一种可变履带的管道巡检机器人机构的俯视结构示意图;
图4显示了本发明的一种可变履带的管道巡检机器人机构的侧视结构示意图;
图5显示了履带角度调节机构的结构示意图;
图6显示了管道巡检机器人在管道内部自动调整履带倾角以适用管壁的前后的状态示意图,其中图6(a)为调整履带倾角前的状态示意图,图6(b)为调整履带倾角后的状态示意图。
附图中的标号分别表示为:
1:机器人主体;11:履带固定架;12:履带角度调节机构;121:推杆电机;122:滑块;123:滑轨;124:上连杆;125:下连杆;126:侧连杆;127:上销轴;128:下销轴;129:球形槽;2:履带组件;21:驱动轮;22:涨紧轮;23:支撑轮;24:履带固定侧板;25:三维力传感器;26:固定侧板横向中轴线;3:行进驱动机构;31:伺服电机;32:加强连杆;33:万向节。
具体实施方式
下面结合说明书附图和具体较佳实施方式对本发明作进一步详细的说明。
如图1和图2所示,一种可变履带的管道巡检机器人机构,包括机器人主体1、左右两侧的履带组件2、行进驱动机构3;所述机器人主体与其左右两侧的履带组件之间通过履带固定架11连接,所述机器人主体与其左右两侧的履带组件之间分别连接一个履带角度调节机构12。
所述履带固定架有四组,前后对称、左右对称安装于机器人主体内部,其前后安装的对称面为四连杆机构所在平面,且安装高度为履带固定侧板的横向中轴线24的高度,对履带倾角调节起到约束作用,同时可减少平面四连杆上的推拉力,降低倾角调节能耗。
所述履带固定架采用“人”字型结构,一端通过球形铰链与履带固定侧板铰接,另外一端伸出的两个分叉与机器人主体连接。
所述履带角度调节机构有两组,左右对称安装于机器人主体中部,每个所述履带角度调节机构包括与所述机器人主体连接的滑轨 123,所述滑轨上安装推杆电机121,所述推杆电机的动力输出轴驱动一个能在滑轨上往复运动的滑块122,所述滑块上安装一个四连杆机构,所述四连杆机构包括下连杆125、上连杆124、侧连杆126,所述下连杆的一端通过转动副安装在下销轴128上,另一端为球形槽,与所述履带组件的球头配合;两个所述侧连杆的下部通过转动副与所述下销轴连接,上部通过转动副与上销轴127连接;所述上连杆又通过转动副安装在所述上销轴上,另一端为球形槽,与所述履带组件的球头配合。
所述平面四连杆的上连杆124与下连杆125穿过机器人主体外壳,且与主体外壳留有传动间隙,采用平面四连杆与推杆电机结合方式,通过球形铰链对接履带组件,可实现对履带的倾角调节,每组履带角度调节机构独立,具有很好的灵活性以适应不同的管道环境。
所述履带组件包括驱动轮21、涨紧轮22、支撑轮23、履带固定侧板24;所述履带固定侧板分别设置在两侧所述的履带组件的内侧,所述驱动轮和所述涨紧轮分别位于履带的前、后两端,所述支撑轮设置在履带中部。所述履带固定侧板共有四个球头,前后两个球头较大,用于与履带固定架对接,上下两个球头较小,用于与平面四连杆对接,前后两个球头安装孔在履带固定侧板的横向中轴线上,且左右对称于平面四连杆两侧,上下两个球头的安装孔位置上下对称,对称轴为履带固定侧板的横向中轴线。
所述履带涨紧轮处各安装一个三维力传感器,用于精确测量每个轴向的力值。
所述进行驱动机构有两组,对称安装于机器人主体前部,包括伺服电机31、加强连杆32和万向节33,所述伺服电机固定于机器人主体内部底板上,所述万向节一端与加强连杆连接,另一端与履带驱动轮连接。
所述万向节固定位置穿过机器人主体外壳,且与主体外壳留有传动间隙。
本发明还提供一种可变履带的管道巡检机器人控制方法,基于三维力传感器,使用梯度下降与PI控制(比例积分控制)结合的方法,自动调节履带倾角使履带面与管壁接触。
一种可变履带的管道巡检机器人控制方法,包括如下步骤。
步骤1,采样三维力传感器输出的Y轴方向和Z轴方向力值,采样频率为100Hz,使用中位值平均算法滤波,得到左履带的Y轴方向力F Y1、Z轴方向力F Z1和右履带的Y轴方向力F Y2、Z轴方向力F Z2
步骤2,计算左右履带各自Y轴方向力与Z轴方向力比值,分别为α 1和α 2
Figure PCTCN2021084851-appb-000002
本发明的一种可变履带的管道巡检机器人控制方法,可调节履带倾角,使履带面与管壁接触,履带倾角调节通过履带角度调节机构实现,以左履带倾角调节为例,当推杆电机向左推动滑块,带动平面四连杆机构,通过球形铰链使履带固定侧板及履带绕其横向中轴线顺时针旋转,反之同理。
本发明根据三维力传感器返回力值,可推断出当前每组履带与管 壁的接触状态。
以左履带为例,当左履带只有左侧边沿与管壁接触时,α 1>0,此时需要使左履带绕履带固定侧板横向中轴线顺时针旋转,即推杆向左运动;当左履带的左侧边沿与右侧边沿均与管壁接触时,α 1=0(允许存在极小范围波动),此时为履带面与管壁接触的最佳状态;当左履带只有右侧边沿与管壁接触时,α 1<0,此时需要使左履带绕履带固定侧板横向中轴线逆时针旋转,即推杆向右运动。
步骤3,计算履带倾角调整判定依据,选择合适的控制算法。
Δ 1=|α 1|-δ       (2)
Δ 2=|α 2|-δ         (3)
η=α 1α 2         (4)
μ=Δ 12         (5)
δ为设定的正阈值,当α 1>δ且α 2>δ时,左右履带均需要向外张开,当-α 1>δ且-α 2>δ时,左右履带均需要向内收缩,处于以上两种状态下,本发明使用梯度下降的方法同时控制两个推杆电机,调整履带倾角快速逼近最佳状态;在接近最佳状态情况下(即当Δ 1≤0或Δ 2≤0时),或者在左右履带均需要顺(逆)时针调整情况下(即当Δ 1>0,Δ 2>0且η<0时),采用“定一动一”,PI控制的方法,若μ>0,则只PI控制左推杆电机,调节左履带倾角,使α 1=0,反之则只PI控制右推杆电机,调节右履带倾角,使α 2=0,直至到达履带面与管壁接触的最佳状态(α 1=0且α 2=0)。
步骤4,当管道巡检机器人经过管道变径区域或不规则管道区域, 由步骤1-3可自动监测履带与管壁接触状态,若监测到履带处于非最佳状态,则先通过伺服电机调节万向节至合适角度,后通过履带角度调节机构自动调整履带倾角至最佳状态;
步骤5,上述步骤1-4为履带倾角自适应调节步骤,管道巡检机器人的运动通过行进驱动机构实现,车体转向使用左右履带差速方法。
采用梯度下降与PI控制结合的方法,可自动调节履带倾角使履带面与管壁接触,减少履带磨损,降低能量损耗,提高管道巡检机器人的工作效率。
履带倾角调节根据管道巡检机器人机构,通过限制履带角度调节机构中滑块的行程,可以限制履带顺逆方向的最大调节角度。
以上详细描述了本发明的优选实施方式,但是,本发明并不限于上述实施方式中的具体细节,在本发明的技术构思范围内,可以对本发明的技术方案进行多种等同变换,这些等同变换均属于本发明的保护范围。

Claims (7)

  1. 一种可变履带的管道巡检机器人,包括机器人主体、对称设置在机器人主体左右两侧的履带组件、行进驱动机构;其特征在于,所述机器人主体与其左右两侧的履带组件之间通过履带固定架连接,所述机器人主体与其左右两侧的履带组件之间分别连接一个履带角度调节机构;每个所述履带角度调节机构包括与所述机器人主体连接的滑轨,所述滑轨上安装推杆电机,所述推杆电机的动力输出轴驱动一个能在滑轨上往复运动的滑块,所述滑块上安装一个四连杆机构,所述四连杆机构包括一个下连杆、一个上连杆、两个侧连杆,所述下连杆的一端通过转动副安装在下销轴上,另一端与所述履带组件的球头配合;两个所述侧连杆的下部通过转动副与所述下销轴连接,上部通过转动副与上销轴连接;所述上连杆又通过转动副安装在所述上销轴上,另一端与所述履带组件的球头配合。
  2. 根据权利要求1所述的可变履带的管道巡检机器人,其特征在于,所述履带组件包括驱动轮、涨紧轮、支撑轮、履带固定侧板;所述履带固定侧板分别设置在两侧所述的履带组件的内侧,所述驱动轮和所述涨紧轮分别位于履带的前、后两端,所述支撑轮设置在履带中部。
  3. 根据权利要求2所述的可变履带的管道巡检机器人,其特征在于,左右两侧的履带组件的涨紧轮上分别设置有一个三维力传感器。
  4. 根据权利要求1所述的可变履带的管道巡检机器人,其特征在于,所述行进驱动机构有两组,对称安装于机器人主体前部,包括伺服电机、加强连杆和万向节,所述伺服电机固定于机器人主体内部底板上 并与所述的加强连杆连接,所述万向节一端与加强连杆连接,另一端与所述履带驱动轮连接。
  5. 根据权利要求1所述的可变履带的管道巡检机器人,其特征在于,所述履带固定架有四组,前后对称、左右对称安装于机器人主体内部,其前后安装的对称面为四连杆机构所在平面,且安装高度为履带固定侧板的横向中轴线的高度,采用“人”字型结构,一端通过球形铰链与履带固定侧板铰接,另外一端伸出的两个分叉与机器人主体连接。
  6. 根据权利要求2所述的可变履带的管道巡检机器人,其特征在于,所述履带组件的球头设置在履带固定侧板上。
  7. 一种可变履带的管道巡检机器人的控制方法,其特征在于,该方法包括如下步骤:
    步骤1,采样三维力传感器输出的Y轴方向和Z轴方向力值,采样频率为100Hz,使用中位值平均算法滤波,得到左履带的Y轴方向力F Y1、Z轴方向力F Z1和右履带的Y轴方向力F Y2、Z轴方向力F Z2
    步骤2,计算左右履带各自Y轴方向力与Z轴方向力比值,分别为α 1和α 2
    Figure PCTCN2021084851-appb-100001
    步骤3,计算履带倾角调整判定依据,选择合适的控制算法;
    Δ 1=|α 1|-δ    (2)
    Δ 2=|α 2|-δ    (3)
    η=α 1α 2    (4)
    μ=Δ 12    (5)
    δ为设定的正阈值,当α 1>δ且α 2>δ时,左右履带均需要向外 张开;
    当-α 1>δ且-α 2>δ时,左右履带均需要向内收缩;
    处于以上两种状态下,使用梯度下降的方法同时控制两个推杆电机,调整履带倾角快速逼近最佳状态,即Δ 1≤0或Δ 2≤0;
    在接近最佳状态情况下,即Δ 1≤0或Δ 2≤0,或者在左、右履带均需要顺/逆时针调整情况下,即当Δ 1>0,Δ 2>0且η<0时,采用“定一动一”PI控制的方法,所述“定一动一”PI控制的方法是:若μ>0,则只PI控制左推杆电机,调节左履带倾角,使α 1=0,反之则只PI控制右推杆电机,调节右履带倾角,使α 2=0,直至到达履带面与管壁接触的最佳状态,即α 1=0且α 2=0;
    步骤4,当管道巡检机器人经过管道变径区域或不规则管道区域,由步骤1-3自动监测履带与管壁接触状态,若监测到履带处于非最佳状态,则先通过伺服电机调节万向节至合适角度,后通过履带角度调节机构自动调整履带倾角至最佳状态;
    步骤5,上述步骤1-4为履带倾角自适应调节步骤,管道巡检机器人的运动通过行进驱动机构实现,车体转向使用左右履带差速方法控制。
PCT/CN2021/084851 2021-03-24 2021-04-01 一种可变履带的管道巡检机器人及其控制方法 WO2022198714A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/635,967 US11965620B2 (en) 2021-03-24 2021-01-04 Pipeline patrol inspection robot having variable tracks and control method therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110312255.1 2021-03-24
CN202110312255.1A CN113002644B (zh) 2021-03-24 2021-03-24 一种可变履带的管道巡检机器人及其控制方法

Publications (1)

Publication Number Publication Date
WO2022198714A1 true WO2022198714A1 (zh) 2022-09-29

Family

ID=76405923

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/084851 WO2022198714A1 (zh) 2021-03-24 2021-04-01 一种可变履带的管道巡检机器人及其控制方法

Country Status (3)

Country Link
US (1) US11965620B2 (zh)
CN (1) CN113002644B (zh)
WO (1) WO2022198714A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115643715A (zh) * 2022-11-10 2023-01-24 尤洛卡(山东)矿业科技有限公司 一种矿山安全定位巡检机器人装置及使用方法
CN117028744A (zh) * 2023-10-10 2023-11-10 杭州城基管道科技有限公司 一种管道巡检机器人

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11965620B2 (en) * 2021-03-24 2024-04-23 Southeast University Pipeline patrol inspection robot having variable tracks and control method therefor
CN114102623A (zh) * 2021-11-22 2022-03-01 宿迁柏特粮食设备有限公司 粮食平仓机器人
CN114235823A (zh) * 2021-12-29 2022-03-25 上海智楹机器人科技有限公司 一种检测用螺旋运动轨迹爬行机器人装置
CN114789759B (zh) * 2022-05-05 2023-10-24 东南大学 一种十字交叉变构履带的管道巡检机器人及其控制方法
CN115805579B (zh) * 2022-12-30 2023-09-15 国电建投内蒙古能源有限公司 一种煤矿巷道空地无人巡检设备
CN115783071B (zh) * 2023-02-10 2023-04-11 山东鲁鸿农业装备有限公司 一种应用于拖拉机的可调式底盘
CN116123387B (zh) * 2023-04-14 2023-08-01 广东广宇科技发展有限公司 一种管道采集机器人及采集方法
CN116697190B (zh) * 2023-08-08 2023-10-31 国网安徽省电力有限公司电力科学研究院 一种适用长支管道与主管道同步巡检的机器人及巡检方法
CN117080800B (zh) * 2023-10-16 2024-01-05 西安博深安全科技股份有限公司 一种挂轨式巡检机器人充电装置及其调节方法
CN117775130B (zh) * 2024-02-26 2024-05-17 湖南千智机器人科技发展有限公司 一种行走底盘、行走底盘的控制方法及应用方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013108951A1 (ko) * 2012-01-18 2013-07-25 서울대학교 산학협력단 캐터필러와 주행휠을 구비한 이동로봇
CN104477264A (zh) * 2014-11-27 2015-04-01 浙江理工大学 一种可变平行四边形履带式管内移动作业机器人
CN206514002U (zh) * 2016-12-09 2017-09-22 阳江核电有限公司 一种核电用管道机器人
CN110920766A (zh) * 2019-12-26 2020-03-27 无锡市浑水机器人有限公司 一种用于管道内检测的履带机器人
CN211118279U (zh) * 2019-10-29 2020-07-28 福建丽塔智能科技有限公司 一种履带式管道爬行机器人
CN113002644A (zh) * 2021-03-24 2021-06-22 东南大学 一种可变履带的管道巡检机器人及其控制方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201462867U (zh) * 2009-09-13 2010-05-12 杨瑞卿 多管螺旋式炉渣冷却机
KR101255674B1 (ko) 2011-11-02 2013-04-17 연세대학교 산학협력단 관 내 이동용 로봇
CN103672289B (zh) 2013-12-17 2015-01-21 王军 一种可调节履带角度的管道机器人
GB2544529A (en) 2015-11-20 2017-05-24 Nat Grid Gas Plc Pipeline inspection robot
CN106114661B (zh) 2016-07-20 2018-03-06 河北工业大学 一种基于四杆机构的履带可变形机器人移动平台
CN206230509U (zh) 2016-12-01 2017-06-09 南京天创电子技术有限公司 管道机器人的履带角度自适应机构
WO2019113488A1 (en) * 2017-12-09 2019-06-13 Oceaneering International, Inc. Maintenance of drilling risers
CN108980511A (zh) 2018-08-27 2018-12-11 大唐环境产业集团股份有限公司 一种新型管道机器人
CN209385918U (zh) * 2018-11-27 2019-09-13 西南科技大学 一种管道爬行装置
CN111288246B (zh) 2018-12-07 2021-08-03 中国石油天然气股份有限公司 管道机器人
CN111156368A (zh) 2020-01-22 2020-05-15 福建丽塔智能科技有限公司 一种履带式管道爬行机器人
CN112066157A (zh) 2020-09-17 2020-12-11 南京弘新锐科技有限公司 一种管道机器人
CN214531064U (zh) * 2021-03-05 2021-10-29 宁波台兴建设工程有限公司 一种用于城市管道清淤机械人的履带式驱动机构

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013108951A1 (ko) * 2012-01-18 2013-07-25 서울대학교 산학협력단 캐터필러와 주행휠을 구비한 이동로봇
CN104477264A (zh) * 2014-11-27 2015-04-01 浙江理工大学 一种可变平行四边形履带式管内移动作业机器人
CN206514002U (zh) * 2016-12-09 2017-09-22 阳江核电有限公司 一种核电用管道机器人
CN211118279U (zh) * 2019-10-29 2020-07-28 福建丽塔智能科技有限公司 一种履带式管道爬行机器人
CN110920766A (zh) * 2019-12-26 2020-03-27 无锡市浑水机器人有限公司 一种用于管道内检测的履带机器人
CN113002644A (zh) * 2021-03-24 2021-06-22 东南大学 一种可变履带的管道巡检机器人及其控制方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115643715A (zh) * 2022-11-10 2023-01-24 尤洛卡(山东)矿业科技有限公司 一种矿山安全定位巡检机器人装置及使用方法
CN115643715B (zh) * 2022-11-10 2023-09-22 尤洛卡(山东)矿业科技有限公司 一种矿山安全定位巡检机器人装置及使用方法
CN117028744A (zh) * 2023-10-10 2023-11-10 杭州城基管道科技有限公司 一种管道巡检机器人
CN117028744B (zh) * 2023-10-10 2024-01-16 杭州城基管道科技有限公司 一种管道巡检机器人

Also Published As

Publication number Publication date
CN113002644A (zh) 2021-06-22
US11965620B2 (en) 2024-04-23
CN113002644B (zh) 2022-01-21
US20220373122A1 (en) 2022-11-24

Similar Documents

Publication Publication Date Title
WO2022198714A1 (zh) 一种可变履带的管道巡检机器人及其控制方法
CN104500914A (zh) 水库涵管检测机器人
CN204328337U (zh) 一种水库涵管检测机器人
CN107756348A (zh) 一种动平台高度可大范围调整的六自由度并联试验平台
CN110594526B (zh) 一种蠕动式管道检测机器人
CN113028889B (zh) 基于混联机构的可移动式冷凝器清洗机器人
CN110593916B (zh) 拱架调整设备及拱架调整方法
CN109398476B (zh) 一种agv四轮独立转向与差速结合的控制机构
CN113619703B (zh) 一种履带式管道外壁爬行机器人
Zhang et al. Analysis of traveling-capability and obstacle-climbing capability for radially adjustable tracked pipeline robot
CN109305506A (zh) 举升设备
WO2021018184A1 (zh) 倾斜调整装置及一种载运机器人
CN110466296B (zh) 双驱动源的水陆两栖智能移动底盘及其工作方法
CN111519880A (zh) 一种并联抹平机器人及其控制方法
CN110481667B (zh) 一种履带雪橇复合行走极地机器人
CN110282042B (zh) 一种高性能自适应履带底盘装置及工作方法
CN208264341U (zh) 一种搬运机器人的底盘转向机构
CN109193457B (zh) 一种输电线路沿地线巡线机器人
CN114789759B (zh) 一种十字交叉变构履带的管道巡检机器人及其控制方法
CN209192843U (zh) 举升设备
CN114458868A (zh) 履带式管道机器人及其运动控制方法
CN115922765A (zh) 一种电除尘器现场安装用的升降式辅助机械手
CN114499030B (zh) Agv的驱动单元及agv
CN214889776U (zh) 一种管道厚度在线检测机器人的行进机构
CN201344337Y (zh) 一种管道移动机构

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21932332

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21932332

Country of ref document: EP

Kind code of ref document: A1