WO2022198694A1 - 应急电源继电器灭弧控制系统及方法 - Google Patents

应急电源继电器灭弧控制系统及方法 Download PDF

Info

Publication number
WO2022198694A1
WO2022198694A1 PCT/CN2021/084055 CN2021084055W WO2022198694A1 WO 2022198694 A1 WO2022198694 A1 WO 2022198694A1 CN 2021084055 W CN2021084055 W CN 2021084055W WO 2022198694 A1 WO2022198694 A1 WO 2022198694A1
Authority
WO
WIPO (PCT)
Prior art keywords
relay
control
transistor
resistor
switch tube
Prior art date
Application number
PCT/CN2021/084055
Other languages
English (en)
French (fr)
Inventor
刘淼
刘冰
陶功蛟
胡兵华
黎曾权
Original Assignee
深圳市格瑞普电池有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市格瑞普电池有限公司 filed Critical 深圳市格瑞普电池有限公司
Priority to EP21932312.8A priority Critical patent/EP4318840A1/en
Priority to US18/277,085 priority patent/US20240128738A1/en
Publication of WO2022198694A1 publication Critical patent/WO2022198694A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/18Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for batteries; for accumulators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/08Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to excess current
    • H02H3/081Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to excess current and depending on the direction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/02Details
    • H01H33/04Means for extinguishing or preventing arc between current-carrying parts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H47/00Circuit arrangements not adapted to a particular application of the relay and designed to obtain desired operating characteristics or to provide energising current
    • H01H47/02Circuit arrangements not adapted to a particular application of the relay and designed to obtain desired operating characteristics or to provide energising current for modifying the operation of the relay
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H9/00Details of switching devices, not covered by groups H01H1/00 - H01H7/00
    • H01H9/30Means for extinguishing or preventing arc between current-carrying parts
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/08Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to excess current
    • H02H3/087Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to excess current for dc applications

Definitions

  • the invention relates to the technical field of power supply, in particular to an emergency power supply relay arc extinguishing control system and method which can be applied to a vehicle emergency starting power supply.
  • the on-board battery When the vehicle is started, the on-board battery is used to provide starting power, which drives the starter motor to run, and then drives the engine to ignite and start. At the same time, when the engine of the vehicle is not started, the battery can be used for power supply of other on-board electrical equipment. In some cases, the on-board battery may fail to start the vehicle because it is damaged or runs out of power. For example, the battery is exhausted because the lights are turned off after parking, and it is necessary to use the vehicle emergency start power supply to replace the vehicle battery to supply power for the engine start.
  • the emergency power supply of the vehicle mainly includes a battery pack, a switch circuit, a control module and a battery clip.
  • the battery pack is connected to the battery clip through the power output ground of the corresponding power supply line, and a switch circuit is set in the power supply line, and the control module is used to control the connection to the switch circuit to realize the start-up power supply of the emergency power supply.
  • the control module is used to control the connection to the switch circuit to realize the start-up power supply of the emergency power supply.
  • connect the battery clip to the vehicle battery and perform related operations to trigger the operation of the starter motor.
  • the starter motor will start to generate electricity as a car engine, charge the on-board battery, and also reversely charge the starter power supply.
  • This voltage is much higher than the voltage that the internal battery of the emergency power supply can withstand, and a large reverse charging current is formed, thereby damaging the emergency power supply. If the battery clip is not disconnected immediately, it may even cause a fire. Therefore, the control module of the emergency power supply needs to be equipped with a corresponding detection circuit, and after detecting the successful startup, it drives the switch circuit to quickly turn off the output of the startup power supply. Even so, there must still be a large current reverse charge phenomenon.
  • a 12V automobile emergency start power supply which mainly uses a relay as the main control switch, and uses a bypass heating circuit to consume a large current for reverse charging.
  • the relay itself can withstand a large current, and no additional heat sink is required, but as a mechanical switch with physical contact, when the load is turned on and off, an arc will be generated, and the contacts of the relay will be damaged, causing the relay to absorb suction. After closing, the contact internal resistance increases, which ultimately affects the use of the emergency power supply.
  • the Chinese invention patent with the publication number CN204794038U discloses a protection circuit for an automobile emergency starting power supply, which uses a MOS-type electronic switch as the main control switch, which has a relatively fast turn-on and turn-off speed, but The time it can withstand high current is short, and an additional radiator is required; and a unidirectional diode connected in series on the power supply line is used to prevent high current reverse charging.
  • the quality and quantity of electronic switch tubes and single-phase diodes are required to be high, so the cost is high.
  • the main purpose of the present invention is to provide an emergency power supply relay arc extinguishing control system and method, which can realize the use of a relay with lower cost, higher current bearing capacity and no need to add an additional radiator as a relay. It uses the fast response characteristics of the electronic switch tube to delay the turn-on and turn-off of the relay at a subtle level, so that the electronic switch tube can withstand the sudden change of voltage before the relay is disconnected, so that the relay does not generate arcs.
  • the present invention adopts the following technical scheme:
  • the present invention provides an emergency power relay arc extinguishing control system in a first aspect, including:
  • a power supply line one side of which is provided with a first port for connecting the battery, and the other side of which is provided with a second port for connecting the load;
  • a relay connected to the first port with its input end and connected to the second port with its output end, for turning on and off the power supply line;
  • control module used for respectively controlling the control terminal connected to the relay and the control terminal of the electronic switch tube, so that the electronic switch tube can withstand the voltage change when the relay is turned off;
  • control system optionally, also includes:
  • the reverse charge induction circuit is used to sense the reverse voltage applied from the output terminal to the input terminal of the relay,
  • the reverse charge feedback circuit is used to feed back the induced reverse voltage to the control terminal of the electronic switch tube through the step-down, so as to control the electronic switch tube to turn off when the reverse current occurs.
  • the reverse charge feedback circuit includes a first resistor, a first transistor, a second resistor and a second transistor; both ends of the first resistor are connected in parallel between the input end and the output end of the relay.
  • the emitter and base of the first transistor are respectively connected to both ends of the first resistor, the collector of the first transistor is connected to the base of the second transistor, and the base of the first transistor is connected to The collector of the second transistor, the base and the emitter of the second transistor are respectively connected to both ends of the second resistor, the emitter of the second transistor is connected to the control terminal of the electronic switch,
  • the first A resistor flows a reverse current to apply a turn-on voltage between the emitter and base of the first transistor, and the conduction of the first transistor causes a current to flow through the second resistor to apply a conduction voltage to the base and emitter of the second transistor The voltage is turned on, so that the electronic switch tube is switched off.
  • the reverse charging induction circuit includes a fourth resistor and a second freewheeling diode, one end of the first resistor is connected to the output end of the relay, and the other end of the first resistor is connected to the first resistor.
  • One end of the four resistors, the other end of the fourth resistor is connected to the anode of the second freewheeling diode, and the cathode of the second freewheeling diode is connected to the input end of the relay, so that the reverse current flows through the first resistor and the The series circuit of the fourth resistor will form a voltage at the first resistor which is suitable for turning on the first transistor.
  • the above control system optionally, further includes a first freewheeling diode and a third resistor
  • the electronic switch tube is a field effect transistor, its drain is connected to the output end of the relay, and its source is connected to the first freewheeling diode
  • the anode of the second transistor is connected to the emitter of the second transistor, the drain and the gate of the electronic switch are respectively connected to the two ends of the third resistor; the emitter of the second transistor and the output of the relay are connected to the third resistor.
  • the formation causes the electronic switch tube to be turned off during reverse charging; the cathode of the first freewheeling diode is connected to the input end of the relay.
  • the reverse charge feedback circuit is provided with a second energy storage element, so that the reverse voltage has an on-time for charging the second energy storage element before driving the electronic switch tube to turn off.
  • control module is connected to the control terminal of the relay with a first control signal, and is connected to the control terminal of the electronic switch tube with a second control signal delayed from the first control signal.
  • the control module includes a first drive circuit, a second drive circuit, a first energy storage element, and a master control port, and the master control port is connected to the first drive circuit with a first control signal.
  • the control terminal, the first driving circuit is driven and connected to the control terminal of the relay, and the general control port is connected to the control terminal of the second driving circuit with the first control signal and the second control signal transformed by the first energy storage element, so
  • the second drive circuit is driven and connected to the control terminal of the electronic switch tube, so that the conduction control of the electronic switch tube by the master control port is delayed from the conduction control of the relay by the control module, and the turn-off control of the electronic switch tube by the master control port is delayed.
  • the turn-off control is delayed from the turn-off control of the relay by the control module.
  • the first drive circuit includes a third transistor and a fifth resistor that forms an on-voltage drop in the third transistor, the base of the third transistor is connected to the general control port, and the third transistor is connected to the general control port.
  • the collector of the three transistors is connected to one end of the relay electromagnet, the other end of the relay electromagnet is connected to the first port, and the emitter of the third transistor is connected to the common ground;
  • the second drive circuit includes a fourth a transistor, a sixth resistor that forms an on-voltage drop in the fourth transistor, and a seventh resistor that forms an on-voltage drop in the electronic switch, the base of the fourth transistor is connected to the master control port, the fourth The emitter of the transistor is connected to the common ground terminal, one end of the seventh resistor is connected to the collector of the fourth transistor, the other end of the seventh resistor is connected to the control terminal of the electronic switch tube, and the sixth resistor is connected in parallel
  • the second aspect of the present invention also provides an emergency power supply anti-reverse charging and relay arc extinguishing control method, which is applied to the above-mentioned emergency power supply anti-reverse charging and relay arc extinguishing control system.
  • the name of the control method includes the steps:
  • the present invention uses the physical contact relay as the main switch circuit for controlling the emergency power supply, and is connected to both ends of the relay through the electronic switch tube, and quickly responds to bear the sudden change of the voltage when the relay is turned off, so as to avoid the relay when the relay is turned off.
  • Arc sparks are generated in the process, which solves the common problems of arc damage and large internal resistance of existing relays, and realizes the use of relays with lower cost, higher current bearing capacity and no need to add additional heat sinks as on-off control devices, making
  • the emergency starting power supply for vehicles has better safety, durability and market benefits.
  • the present invention uses the reverse charging induction circuit and the reverse charging feedback circuit when facing the phenomenon of high current reverse charging after the vehicle is started, so that when the reverse charging of the battery from the load occurs, the reverse charging current is directly fed back to the battery.
  • the control end of the electronic switch tube can quickly turn off the electronic switch tube and protect the safety and durability of the emergency start power supply.
  • the electronic switch tube is turned on or off with a delay relative to the relay with a response speed of the millisecond level, and the accuracy of the control is ensured by the implementation of the hardware structure,
  • the electronic switch tube is made to have a reasonable high current carrying time, and the durability of the electronic switch tube is improved.
  • the present invention further realizes the locking of the feedback current by setting the reverse charging feedback circuit and utilizing the connection mode of the first transistor and the second transistor, so that the current output to the control end of the electronic switch tube is within a safe range.
  • the present invention further connects the electronic switch tube in parallel with the relay through one-way conduction, and the large current supplied by the emergency start power supply to the load will not pass through the electronic switch tube; similarly, the reverse charging induction circuit is also set through the one-way conduction. In the normal operation, the components in it do not consume power; and the conductive relay is equivalent to short-circuiting the electronic switch tube and the reverse induction circuit.
  • FIG. 1 is a schematic diagram of the principle of an emergency power relay arc extinguishing control system according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram of a circuit structure of an emergency power relay arc extinguishing control system according to an embodiment of the present invention.
  • an emergency power relay arc extinguishing control system includes a power supply line 10, a relay 20, an electronic switch tube 30, a control module 40, a reverse charging induction circuit 51 and a reverse charging feedback circuit 52.
  • the power supply line 10 is provided in the emergency power supply, and includes a first port 11 for connecting the battery and a second port 12 for connecting the load line.
  • the positive line of the power supply line 10 is shown in FIG. 1 and FIG. Including the negative line forming the current loop, all of which are within the expression range of the first port 11 and the second port 12 .
  • the relay 20 is connected to the power supply line 10 in series.
  • the electronic switch tube 30 is a controllable semiconductor switch device, specifically a MOS field effect transistor capable of resisting a large current impact. It can be understood that, in other embodiments, the electronic switch tube 30 may also be other types of fully-controlled semiconductor switching devices, and the source and drain of the MOS field effect transistor are connected to the input terminal and the output terminal of the relay 20, respectively, and also Even the ends of the armature part.
  • control module 40 is used to control the control terminal connected to the relay 20, that is, the electromagnetic coil of the relay 20, and to supply power to the electromagnetic coil or stop the power supply to the battery coil, and to adjust the corresponding on and off states of the relay 20.
  • control module 40 is also used to control the turn-on and turn-off of the electronic switch tube 30, that is, to set a high-level voltage or a low-level voltage at the drain of the MOS field effect tube, and adjust the MOS field effect tube. Operates in ON and OFF states.
  • control relay 20 After the control relay 20 is turned off, it is only necessary to continue to control the electronic switch tube 30 to maintain the conduction state of the millisecond level, so as to eliminate the factors of arc generation and prevent the relay 20 from being damaged by the arc. and arc fire hazards.
  • the emergency power relay arc extinguishing control system of the present embodiment is equipped with a reverse charging induction circuit 51 and a reverse charging feedback circuit 52, wherein the reverse charging refers to that after the emergency starting power supply successfully charges the starting motor, Operation will be reversed as a generator, ie a high current flowing from the second port 12 towards the first port 11 , ie in the reverse direction of the load supplied by the emergency power battery in the normal state.
  • the reverse charging induction circuit 51 is connected in parallel between the emergency power battery and the load, and obtains the reverse voltage or reverse current through the sensor, so as to obtain the reverse voltage or reverse current through the sensor, so that only the Determine whether there is a set reverse voltage or reverse current.
  • the reverse charging feedback circuit 52 is directly connected to the electronic switch tube 30 by means of power conversion by directly using the induced reverse current, and makes it pass over the control module 40 when a large reverse current is generated. In a longer way, the electronic switching device is quickly turned off.
  • the relay 20 itself has the ability to resist large current, and no additional heat dissipation is required.
  • the control module 40 can be used to quickly turn off the relay 20, and after a short delay, the reverse current can be used directly to control The electronic switch tube 30 is disconnected. Further, on the basis of arc extinguishing of the relay 20 , the electronic switch tube 30 is turned off and protected at a faster speed than in the state of no reverse charging current.
  • the embodiment of the present invention is also embodied as an emergency power relay arc extinguishing control method.
  • the method includes:
  • the relay 20 When the power supply line 10 needs to be turned on, the relay 20 is turned on first, and the electronic switch tube 30 is turned on last. (Because the electronic switch tube 30 has a certain impedance, and the impedance of the relay 20 is lower, it is safer);
  • the relay 20 is turned off first, and the electronic switch tube 30 is turned off later with a longer delay (let the armature of the relay 20 be turned off). parts are fully separated);
  • the reverse charge induction circuit 51 senses and judges, and drives the reverse charge feedback circuit 52 to convert the reverse charge current parameter through power conversion, and then outputs and controls the turn-off of the electronic switch tube 30 (there are corresponding countermeasures for large currents in the prior art.
  • the charging detection scheme and then control the relay 20 to make a turn-off reaction in advance).
  • control logic and logic program can be used to realize the effects of arc extinguishing and discharging and reverse charging of the emergency starting power supply of the vehicle.
  • the hardware method, and the realization not only has the effect of arc extinguishing and reverse charging, but also has the characteristics of low cost, good safety and durability.
  • the first freewheeling diode D1 and the electronic switch tube 30 are connected in series and then connected to both ends of the relay 20 in parallel.
  • the cathode of the first freewheeling diode D1 is connected to the input end of the relay 20, that is, the side of the first port 11, the anode of the first freewheeling diode D1 is connected to the source of the electronic switch tube 30, and the The drain is connected to the output of the relay 20 .
  • the electronic switch tube 30 is turned off, the forward voltage from the drain to the source is stopped, and if the electronic switch tube 30 is turned on, the circuit is connected.
  • the gate of the electronic switch tube 30 is the control terminal of the electronic switch tube 30 .
  • a third resistor R3 is arranged in parallel between the gate and the drain of the electronic switch tube 30 , which is used to configure the turn-on voltage of the electronic switch tube 30 .
  • the electronic switch tube 30 is turned on, and when the gate and drain voltages are insufficient or reverse voltage, the electronic switch is turned off. As shown by the arrow of the electronic switch tube 30 in FIG. 1 .
  • the first freewheeling diode D1 is used to cut off the forward current of the battery of the emergency power supply toward the second port 12 , and can also be used for the shunt of the relay 20 .
  • the control module 40 includes a first drive circuit 41 for controlling the relay 20, a second drive circuit 42 for controlling the electronic switch tube 30, a first energy storage element for forming a delay of the control signal, and The master control port 43 for issuing shutdown commands.
  • the first driving circuit 41 and the second driving circuit 42 are in accordance with an instruction of a master control port 43 , and the corresponding control terminals can output control signals in accordance with the instructions, such as turn-off control signals or turn-on control signals. Since the first energy storage element is provided, the control signals sent at the same time pass through the first driving circuit 41 provided with the first energy storage element, and will be delayed from the second driving circuit 42 without the energy storage element.
  • the delay is in the millisecond level, which satisfies the current range that the electronic switch tube 30 can withstand when the electronic switch tube 30 is delayed on and off.
  • the master control port 43 is connected to the base of the third transistor Q3 through a third diode D3 connected in series for isolating the power supply line 10 and through a resistor used for step-down and current limiting, and the third transistor Q3 collects
  • the electrode is connected to one end of the electromagnet of the relay 20, the other end of the electromagnet of the relay 20 is connected to the first port 11, the emitter of the third transistor Q3 is connected to the common ground, and the emitter of the third transistor Q3 is connected to the common ground , one end of the seventh resistor R7 is connected to the collector of the third transistor Q3, the other end of the seventh resistor R7 is connected to the gate of the electronic switch tube 30, and the fifth resistor R5 is connected with the second as the first energy storage element. Capacitor C2.
  • the second drive circuit 42 includes a fourth transistor Q4 and a sixth resistor R6.
  • the general control port 43 is connected to the base of the fourth transistor Q4 through a resistor for voltage reduction and current limiting, and is formed at the sixth resistor R6 for Turn on the voltage drop of the fourth transistor Q4, the collector of the fourth transistor Q4 is connected to one end of the electromagnet of the relay 20, the other end of the electromagnet of the relay 20 is connected to the first port 11, and the emitter of the fourth transistor Q4 is connected to the common. ground end.
  • the control signal needs to charge the first capacitor C1 first, and then configure the voltage drop for the fifth resistor R5 and turn on the third transistor Q3, and the control signal can directly A voltage drop is configured for the sixth resistor R6, and the fourth transistor Q4 is turned on. Similarly to Q4, the fourth transistor Q4 is turned off later than the third transistor Q3. Implement delayed turn-on and turn-off at the hardware level. It should be noted that the delay in conduction of the electronic switch tube 30 is equivalent to being short-circuited by the relay 20 , so as to avoid a large current impacting the electronic switch tube 30 .
  • the reverse charging induction circuit 51 includes a fourth resistor R4 and a second freewheeling diode D2, one end of the first resistor R1 is connected to the output end of the relay 20, and the first resistor R1 The other end is connected to one end of the fourth resistor R4, the other end of the fourth resistor R4 is connected to the anode of the second freewheeling diode D2, and the cathode of the second freewheeling diode D2 is connected to the input end of the relay 20, so that the reverse The current flowing through the series circuit of the first resistor R1 and the fourth resistor R4 will form a voltage at the first resistor R1 which is matched to turn on the first transistor Q1 .
  • the second freewheeling diode D2 is used to prevent the consumption of the fourth resistor R4 and the first resistor R1 by the starting power battery.
  • the fourth resistor R4 is used to configure the first resistor R1 to turn on the potential of the first transistor Q1 when the reverse current is present, specifically, the forward voltage from the emitter to the base of the first transistor Q1 to be turned on. Pass.
  • the reverse charge feedback circuit 52 includes a first resistor R1, a first transistor Q1, a second resistor R2 and a second transistor Q2; both ends of the first resistor R1 are connected in parallel between the input end and the output end of the relay 20, and the first transistor
  • the emitter and base of Q1 are respectively connected to both ends of the first resistor R1, the collector of the first transistor Q1 is connected to the base of the second transistor Q2, and the base of the first transistor Q1 is connected to the collector of the second transistor Q2 Electrode, the base and emitter of the second transistor Q2 are respectively connected to the two ends of the second resistor R2, the emitter of the second transistor Q2 is connected to the control terminal of the electronic switch tube 30, the first resistor R1 flows reverse current and A turn-on voltage is applied between the emitter and the base of the first transistor Q1, the turn-on of the first transistor Q1 makes the second resistor R2 flow current and the turn-on voltage is applied to the base and the emitter of the second transistor Q2,
  • the current will pass through the second resistor R2, and the base and emitter of the second transistor Q2 will have a forward direction that can be turned on. Voltage. Therefore, it is equivalent to the voltage and current of the first transistor Q1 being limited by the emitter and the base of the first resistor R1 all the way through, and the second transistor Q2 being turned on to the control terminal of the electronic switch tube 30 .
  • the second resistor R2 is limited by the voltage and current of the base and the emitter of the second transistor Q2, and is turned on to the control terminal of the electronic switch tube 30 through the first transistor Q1, and one end of the third switch tube is connected to the first transistor Q1.
  • the second port 12 is in a high voltage state. Then, a reverse potential from the drain to the gate of the electronic switch tube 30 is formed, and then the electronic switch tube 30 is turned off.
  • the first resistor R1 is connected in parallel with the second capacitor C2, so that the control circuit controls the relay 20 to turn off before the electronic switch tube 30 after detecting the large reverse charging current. Arc quenching has been achieved.
  • each relay 20 in the embodiment can be two, and each relay 20 is controlledly connected to the master control port 43 through its second driving circuit 42 to improve the withstand voltage performance of the power supply line 10 .
  • those skilled in the art can configure the emergency power relay arc extinguishing control system in the emergency start power supply device of the vehicle, and achieve significant advantages such as safety, low cost and durability.
  • first, second, etc. are used for descriptive purposes only, and should not be construed as indicating or implying relative importance or implying the number of indicated technical features. Thus, a feature delimited with “first”, “second” may expressly or implicitly include at least one of that feature.
  • plural means at least two, such as two, three, etc., unless otherwise expressly and specifically defined.

Landscapes

  • Direct Current Feeding And Distribution (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

本发明公开了一种应急电源继电器灭弧控制系统及方法,涉及到电源领域。其继电器作为控制应急电源的主开关电路,并通过电子开关管并接在继电器的两端,而快速承载继电器关断时的电压突变,避免继电器产生电弧火花,解决现有继电器常见的电弧损伤及内阻变大等的问题,实现利用成本更低、电流承受能力更高和无需额外增加散热器的继电器作为通断控制的器件,使车辆的应急启动电源更好的安全性、耐用程度和市场效益;同时,在面临车辆启动后,出现的大电流反充现象时,利用反充感应电路和反充反馈电路,使在发生来自负载对蓄电池的反充时,直接将反充电流反馈到电子开关管的控制端,实现快速关断电子开关管。

Description

应急电源继电器灭弧控制系统及方法 技术领域
本发明涉及电源技术领域,特别是涉及可应用车辆应急启动电源的应急电源继电器灭弧控制系统及方法。
背景技术
车辆的启动时利用车载蓄电池提供启动电源,驱使启动电机运行,继而驱动发动机进行点火启动。同时,在车辆的发动机未启动时,该蓄电池可用于其他车载用电设备的供电。在一些场合,车载蓄电池可能因其损坏或电力消耗殆尽而没有办法启动车辆。譬如,蓄电池因停车后车灯为关闭而点亮消耗殆尽,需要利用车辆应急启动电源可替代车载蓄电池为发动机的启动供电。
目前,车辆的应急电源主要包括电池组、开关电路、控制模块和电池夹。其中,电池组通过相应的供电线路电力输出地连接至电池夹,并在供电线路中设置开关电路,利用控制模块控制连接在开关电路,以实现应急电源的启动供电。在实际使用时,将电池夹连接到车载蓄电池,进行相关操作可触发启动电机的运行。当印记电源启动成功后,启动电机将作为汽车发动机开始发电,并为车载蓄电池充电,以及也将为启动电源反向充电。该电压远高于应急电源内部蓄电池能够承受的电压,并形成较大的反充电流,进而损坏应急电源。如果没有立即断开电池夹,甚至可能产生火灾。因此,应急电源的控制模块需要配置相应的检测电路,并在检测到启动成功后驱使开关电路,快速关断启动电源的输出。即使如此,肯定仍存在大电流反充现象。
现有技术中,如公开号为CN104979857B的中国发明专利,公开了一种12V汽车应急启动电源,其主要利用继电器作为主控开关,并利用旁路发热电路消耗大电流反充。该公开文献中,继电器本身能承受较大的电流,不需要额外增加散热器,但作为物理接触的机械开关,带载开启和关断将会产生电弧,并损伤继电器的触点,导致继电器吸合后接触内阻变大,最终影响到应急电源的使用。又如,公开号为CN204794038U的中国发明专利,公开了一种汽车应急启动电源的保护电路,其利用MOS型的电子开关管作为主控开关,其具备较快的导通和关断速度,但能够承受大电流的时间短,需额外增加散热器;并利用在供电线路上串联的单 向二极管,防止大电流反充。此种情况下,对电子开关管和单项二极管的品质和数量要求较高,因而成本较高。
发明内容
为解决现有技术存在的缺陷,本发明的主要目的在于提供一种应急电源继电器灭弧控制系统及方法,可实现利用成本更低、电流承受能力更高和无需额外增加散热器的继电器作为通断控制的器件,并利用电子开关管的快速响应特性在微妙级别延迟于继电器的导通和关断,使得由电子开关管承受继电器断开前的电压突变,使继电器不产生电弧。
为了实现上述目的,本发明采用如下的技术方案:
本发明在第一方面提供了一种应急电源继电器灭弧控制系统,包括:
供电线路,其一侧设置有用于连接蓄电池的第一端口,以及其另一侧设置有用于连接负载的第二端口;
继电器,以其输入端连接于第一端口,以其输出端连接于第二端口,用于导通和断开所述供电线路;
电子开关管,其并联连接于继电器的输入端和输出端之间;以及,
控制模块,用于分别控制连接于所述继电器的控制端和电子开关管的控制端,以使电子开关管承受继电器关断的电压变化;
上述控制系统,可选的,还包括:
反充感应电路,用于感应从继电器从输出端施加至输入端的反向电压,
反充反馈电路,用于将感应到的反向电压经降压反馈至电子开关管的控制端,以使在反向电流发生时控制电子开关管关断。
上述控制系统,可选的,所述反充反馈电路包括第一电阻、第一晶体管、第二电阻和第二晶体管;所述第一电阻的两端并联连接于继电器的输入端和输出端之间,所述第一晶体管的发射极和基极分别连接于第一电阻的两端,所述第一晶体管的集电极连接于第二晶体管的基极,所述第一晶体管的基极连接于第二晶体管的集电极,所述第二晶体管的基极和发射级分别连接于第二电阻的两端,所述第二晶体管的发射级连接于所述电子开关管的控制端,所述第一电阻在流通反向电流而对第一晶体管的发射极和基极间施加导通电压,所述第一晶体管的导通使第二电阻流通电流而对第二晶体管的基极和发射极施加导通电压,以使所述电子 开关管切换为关断。
上述控制系统,可选的,所述反充感应电路包括第四电阻和第二续流二极管,所述第一电阻的一端连接于继电器的输出端,所述第一电阻的另一端连接于第四电阻的一端,所述第四电阻的另一端连接于第二续流二极管的阳极,所述第二续流二极管的阴极连接于继电器的输入端,以使反向电流流经第一电阻和第四电阻的串联电路将在第一电阻形成配合导通第一晶体管的电压。
上述控制系统,可选的,还包括第一续流二极管和第三电阻,所述电子开关管为场效应管,其漏极连接于继电器的输出端,其源极连接于第一续流二极管的阳极,其栅极连接于第二晶体管的发射极,所述电子开关管的漏极和栅极分别连接第三电阻的两端;所述第二晶体管发射极和继电器输出端在第三电阻形成致使反充时电子开关管关断;所述第一续流二极管的阴极连接于继电器的输入端。
上述控制系统,可选的,所述反充反馈电路设置有第二储能件,以使反向电压在驱使电子开关管关断前具有为第二储能件充电的导通时间。
上述控制系统,可选的,所述控制模块,其以第一控制信号连接于继电器的控制端,并以延迟于第一控制信号的第二控制信号连接于电子开关管的控制端。
上述控制系统,可选的,所述控制模块包括第一驱动电路、第二驱动电路、第一储能件和总控端口,所述总控端口以第一控制信号连接于第一驱动电路的控制端,所述第一驱动电路驱动连接于继电器的控制端,所述总控端口以第一控制信号借助第一储能件变换的第二控制信号连接于第二驱动电路的控制端,所述第二驱动电路驱动连接于电子开关管的控制端,以使总控端口对电子开关管的导通控制延迟于所述控制模块对继电器的导通控制,总控端口对电子开关管的关断控制延迟于所述控制模块对继电器的关断控制。
上述控制系统,可选的,所述第一驱动电路包括第三晶体管和在第三晶体管形成导通压降的第五电阻,所述第三晶体管的基极连接于总控端口,所述第三晶体管集电极连接于继电器电磁铁的一端,所述继电器的电磁铁的另一端连接于第一端口,所述第三晶体管的发射极连接于共地端;所述第二驱动电路包括第四晶体管、及在第四晶体管形成导通压降的第六电阻、及在电子开关管形成导通压降的第七电阻,所述第四晶体管的基极连接于总控端口,所述第四晶体管的发射极连接于共地端,所述第七电阻的一端连接于第四晶体管的集电极,所述第七电阻的另一端连接于电子开关管的控制端,所述第六电阻并接有作为第一储能件的第 二电容,以使总控端口输出的指示导通的第一控制信号经对第二电容的充电延迟后,控制电子开关管导通,并使总控端口输出指示关断的第一控制信号经第二电容的放电延迟后,控制电子开关管关断。
本发明的第二方面还提供了一种应急电源防反充可继电器灭弧控制方法,应用于上述的应急电源防反充可继电器灭弧控制系统,该控制方法名包括步骤:
使用第一控制信号控制继电器的导通,并以延迟于第一控制信号的第二控制信号控制电子开关管的导通;
使用第一信号控制继电器的关断,并以延迟于第一控制信号的第二控制信号控制电子开关管的关断;
当应急电源的第二端口的电压高于应急电源的第一端口的电压,将第二端口对第一端口施加反向电压反馈于电子开关管的控制端,以提前于第二控制信号地控制电子开关管的关断。
与现有技术相比,本发明有益效果如下:
(1)本发明利用物理接触的继电器作为控制应急电源的主开关电路,并通过电子开关管并接在继电器的两端,而快速响应地承载继电器关断时的电压突变,避免继电器在关断过程中产生电弧火花,解决现有继电器常见的电弧损伤及内阻变大等的问题,实现利用成本更低、电流承受能力更高和无需额外增加散热器的继电器作为通断控制的器件,使车辆的应急启动电源更好的安全性、耐用程度和市场效益。
(2)本发明在面临车辆启动后,出现的大电流反充现象时,利用反充感应电路和反充反馈电路,使在发生来自负载对蓄电池的反充时,直接将反充电流反馈到电子开关管的控制端,实现快速关断电子开关管,保护应急启动电源供电的安全性和耐用性。
(3)本发明进一步通过设置第一储能件,使得电子开关管以毫秒级别的响应速度相对于继电器延迟地导通或延迟地关断,以硬件结构的实现方式,确保控制的准确性,使电子开关管在合理的大电流承载时间内,提高电子开关管的耐用程度。
(4)本发明进一步通过设置反充反馈电路,利用第一晶体管和第二晶体管的连接方式,实现反馈电流的锁定,使输出到电子开关管控制端的电流在安全的范 围以内。
(5)本发明进一步通过单向导通地将电子开关管并联于继电器,应急启动电源对负载供电的大电流将不通过电子开关管;同样地,对于反充感应电路也通过单向导通的设置方式,而在正常运行时,其中的元件不消耗电能;而导通的继电器相当于将电子开关管和反向感应电路短接。
下面结合附图对本发明作进一步的说明。
附图说明
图1为本发明实施例的应急电源继电器灭弧控制系统原理示意图;
图2为本发明实施例的应急电源继电器灭弧控制系统的电路结构示意图。
附图标记为:
10、供电线路;11、第一端口;12、第二端口;20、继电器;30、电子开关管;40、控制模块;41、第一驱动电路;42、第二驱动电路;43、总控端口;51、反充感应电路;52、反充反馈电路;R1、第一电阻;R2、第二电阻;R3、第三电阻;R4、第四电阻;R5、第五电阻;R6、第六电阻;R7、第七电阻;C1、第一电容;C2、第二电容;D1、第一续流二极管;D2、第二续流二极管;D3、第三二极管;D4、第四二极管;Q1、第一晶体管;Q2、第二晶体管;Q3、第三晶体管;Q4、第四晶体管。
具体实施方式
为更好的说明本发明的目的、技术方案和优点,下面结合附图和实施例对本发明的具体实施方式作进一步详细描述。以下实施例用于说明本发明,但不作为限制本发明的范围。
如图1所示,根据本发明的实施例的一种应急电源继电器灭弧控制系统,包括供电线路10、继电器20、电子开关管30、控制模块40,反充感应电路51和反充反馈电路52。供电线路10为设置于应急电源中,包括用于连通蓄电池的第一端口11和用于连通负载的线路的第二端口12,图1和图2中展示了供电线路10的正极线路,实际还包括形成电流回路的负极线路,其均在第一端口11和第二端口12的表述范围之内。继电器20串联连接于供电线路10上。具体是,继电器20的用于开关的衔铁部件的输入端连接于第一端口11,也即连接于应急电源的蓄电池; 衔铁部件的输出端连接于第二端口12,也即通过电池夹连接到汽车的启动电机或车载蓄电池上。电子开关管30为可控的半导体开关器件,具体为能够抵抗较大电流冲击的MOS场效应管。可以理解的是,其他实施例中,电子开关管30也可以是其他类型的全控半导体开关器件,该MOS场效应管的源极和漏极分别连接到继电器20的输入端和输出端,也即使衔铁部件的两端。控制模块40一方面用于控制连接于继电器20的控制端,也即继电器20的电磁线圈,并用于为电磁线圈供电或停止对电池线圈的供电,而调整继电器20相应的导通和断开状态。控制模块40另一方面也用于控制连电子开关管30的导通和关断,也即是在MOS场效应管的漏极设置高电平电压或低电平电压,而调整MOS场效应管运行在导通和断开的状态。
由此可见,若供电线路10运行由较大的电流,当继电器20的衔铁部件突然的关断,势必在衔铁部件分离的瞬间形成较大的电弧,而由于继电器20并联的连接有电子开关管30,通过在继电器20衔铁部件分离的过程中,与之并联的电子开关管30保持导通的状态,可将其导通的瞬时大电流加载到电子开关管30中,而继电器20产生电弧的过程往往是衔铁部件分离的瞬间,仅需要在控制继电器20关断后,继续控制电子开关管30保持毫秒级别的导通状态,即可消除电弧产生的因素,使继电器20免于电弧的损伤,以及电弧的火灾危害。
仍参考图1,本实施例的应急电源继电器灭弧控制系统,配备了反充感应电路51和反充反馈电路52,其中反充是指应急启动电源在为启动电机充电成功后,启动电机的运行将作为发电机反向,也即从第二端口12朝向第一端口11流通的大电流,即反向于正常状态中应急电源蓄电池对负载供电的方向。具体的,反充感应电路51是并接在应急电源蓄电池和负载之间,并通过传感器,以至于串接的感测电阻,而获取反向电压或反向电流,以至于还包括仅用于判断是否具有设置的反向电压或反向电流。而反充反馈电路52,则是直接利用感应到的反向电流,经过电力转换的方式形成直接连接到电子开关管30,并使其在反向大电流产生的情况下,越过控制模块40的用时较长的方式,快速关断电子开关件。
由此可见,继电器20本身具有抵抗大电流能力,而且无需额外散热,在面临反充的大电流,可利用控制模块40快速关断继电器20,在短暂的延时后,直接利用反向电流控制电子开关管30的断开。进一步在继电器20灭弧的基础上,以比较无反充电流状态下更快的速度关断并保护电子开关管30。
可以理解的,除应急电源继电器灭弧控制系统外,根据本发明的实施例还体 现为应急电源继电器灭弧控制方法。该方法包括:
在继电器20和电子开关管30并联于供电线路10的基础系统中,
——在需导通供电线路10的情况下,在先地导通继电器20,在后地导通电子开关管30。(由于电子开关管30具有一定的阻抗,而继电器20的阻抗较低,因而更为安全);
——在无大电流防反充而启动充电结束,响应于控制模块40的指令,在先地关断继电器20,延时较多地在后地关断电子开关管30(让继电器20的衔铁部件充分分离);
——在有大电流防反充而启动充电结束,即第二端口12的电压高于第一端口11的电压,或电路中具有自第二端口12流向第一端口11的电流,其均由反充感应电路51所感应和判断,而驱使反充反馈电路52将反充的电流参量经过电力转换后,输出并控制电子开关管30的关断(现有技术中有相应的对大电流反充的检测方案,继而控制继电器20在先地作出关断反应)。
值得说明的是,上述方法可体现在,可在本发明的方案下,以控制逻辑和逻辑程序来实现车辆应急启动电源的灭弧和放反充的效果,而本实施例则具体单纯通过电路硬件的方式,而实现不仅具有灭弧和放反充的效果,还兼具低成本、安全性好和耐用的特点。
参考图2,实施例的一种应急电源继电器灭弧控制系统的具体电路结构。关于电子开关管30具体有,第一续流二极管D1和电子开关管30串联后并联在继电器20的两端。具体是,第一续流二极管D1的阴极接在继电器20的输入端,也即第一端口11侧,第一续流二极管D1的阳极接在电子开关管30的源极,电子开关管30的漏极连接在继电器20的输出端。若电子开关管30的关断,则形成漏极朝源极的正向电压的截至,若电子开关管30管的导通,则形成电路的连通。电子开关管30的栅极即是电子开关管30的控制端,电子开关管30的栅极和漏极之间并联设置有第三电阻R3,其用于配置电子开关管30的导通电压。当具有栅极到漏极的正向电压,则电子开关管30导通,当栅极和漏极电压不足或为反向电压,则电子开关关断。如图1中电子开关管30的箭头所示。第一续流二极管D1用于截至应急电源的蓄电池的朝向第二端口12的正向电流,同时可用于继电器20的分流。
仍参考图2,控制模块40包括用于控制继电器20的第一驱动电路41,用于控制电子开关管30的第二驱动电路42,用于形成控制信号的延迟的第一储能件, 和用于下达关断指令的总控端口43。第一驱动电路41和第二驱动电路42为根据一个总控端口43的指令,而可相应的控制端输出符合指令的控制信号,如关断控制信号或导通控制信号。由于设置第一储能件,同一时间发送的控制号,经过设有第一储能件的第一驱动电路41的,将延迟于未设有储能件的第二驱动电路42。一般该延时为毫秒级别,满足电子开关管30延迟通断能够承受的电流范围。
具体有,总控端口43经过串接用于隔离供电线路10的第三二极管D3,和经过用于降压限流的电阻,连接于第三晶体管Q3的基极,第三晶体管Q3集电极连接于继电器20电磁铁的一端,继电器20的电磁铁的另一端连接于第一端口11,第三晶体管Q3的发射极连接于共地端,第三晶体管Q3的发射极连接于共地端,第七电阻R7的一端连接于第三晶体管Q3的集电极,第七电阻R7的另一端连接于电子开关管30的栅极,第五电阻R5并接有作为第一储能件的第二电容C2。当第三晶体管Q3为导通状态,供电端、第七电阻R7、第三电阻R3和第二端口12间形成连接回路,并使电子开关管30具有导通电压。
具体有,第二驱动电路42包括第四晶体管Q4、第六电阻R6总控端口43经过用于降压限流的电阻连接第四晶体管Q4的基极,并在第六电阻R6处形成用于导通第四晶体管Q4的压降,第四晶体管Q4集电极连接于继电器20电磁铁的一端,继电器20的电磁铁的另一端连接于第一端口11,第四晶体管Q4的发射极连接于共地端。当第四晶体管Q4的导通,将形成第一端口11、继电器20的电磁铁芯(控制端)、第四晶体管Q4和供电端的导通,并形成继电器20的导通。
可以理解的是,基于相同的总控端口43,该控制信号需要先为第一电容C1充电,然后才能为第五电阻R5配置压降,并导通第三晶体管Q3,而该控制信号可直接为第六电阻R6配置压降,并导通第四晶体管Q4。Q4同理,第四晶体管Q4较第三晶体管Q3晚关断。在硬件层面实现延迟导通和关断。需要说明的,电子开关管30延迟导通,相当于被继电器20被短接,而避免大电流冲击电子开关管30。
仍参考图12,关于反充感应电路51具体有,反充感应电路51包括第四电阻R4和第二续流二极管D2,第一电阻R1的一端连接于继电器20的输出端,第一电阻R1的另一端连接于第四电阻R4的一端,第四电阻R4的另一端连接于第二续流二极管D2的阳极,第二续流二极管D2的阴极连接于继电器20的输入端,以使反向电流流经第一电阻R1和第四电阻R4的串联电路将在第一电阻R1形成配合导通第一晶体管Q1的电压。第二续流二极管D2用于防止启动电源蓄电池对第四电阻 R4和第一电阻R1的消耗。第四电阻R4用于在反向电流是将第一电阻R1配置为可导通第一晶体管Q1的电势,具体是,从第一晶体管Q1发射极到基极的正向电压,使其被导通。
关于反充反馈电路52具体有。反充反馈电路52包括第一电阻R1、第一晶体管Q1、第二电阻R2和第二晶体管Q2;第一电阻R1的两端并联连接于继电器20的输入端和输出端之间,第一晶体管Q1的发射极和基极分别连接于第一电阻R1的两端,第一晶体管Q1的集电极连接于第二晶体管Q2的基极,第一晶体管Q1的基极连接于第二晶体管Q2的集电极,第二晶体管Q2的基极和发射级分别连接于第二电阻R2的两端,第二晶体管Q2的发射级连接于电子开关管30的控制端,第一电阻R1在流通反向电流而对第一晶体管Q1的发射极和基极间施加导通电压,第一晶体管Q1的导通使第二电阻R2流通电流而对第二晶体管Q2的基极和发射极施加导通电压,以使电子开关管30切换为关断。
需要说明的是,在大电流反充下,而第一晶体管Q1被导通,则电流将经过第二电阻R2,并使第二晶体管Q2的基极和发射极间具有能够导通的正向电压。由此相当于一路经过第一电阻R1受到第一晶体管Q1发射极和基极的电压电流限制,并通过第二晶体管Q2导通到电子开关管30的控制端。同样的,第二电阻R2经过第二晶体管Q2的基极和发射极的电压电流限制,并通过第一晶体管Q1导通到电子开关管30的控制端,而第三开关管的一端连接到第二端口12,为高电压状态。继而形成在电子开关管30的从漏极到栅极的反向电势,继而关断电子开关管30。
可以理解的,基于和第一控制模块40相近的原理,第一电阻R1并联有第二电容C2,使控制电路在检测反充大电流后控制继电器20在先于电子开关管30地关断,已实现灭弧。
可以理解的是,实施例里中的继电器20的数量可以是两个,各继电器20通过其第二驱动电路42而受控地连接于总控端口43,并提升供电线路10的耐压性能。
根据本发明的实施例,本领域技术人员可以将该应急电源继电器灭弧控制系统配置在车辆的应急启动电源装置当中,并达到显著的安全性、低成本和耐久性等的优势。
此外,术语“第一”、“第二”等仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第 二”的特征可以明示或者隐含地包括至少一个该特征。在本发明的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。以上实施例主要描述了本发明的基本原理、主要特征和优点。本行业的技术人员应该了解,本发明不受上述实施例的限制,上述实施例和说明书中描述的只是说明本发明的原理,在不脱离本发明精神和范围的前提下,本发明还会有各种变化和改进,这些变化和改进都落入要求保护的本发明范围内。

Claims (10)

  1. 一种应急电源继电器灭弧控制系统,其特征在于包括:
    供电线路(10),其一侧设置有用于连接蓄电池的第一端口(11),以及其另一侧设置有用于连接负载的第二端口(12);
    继电器(20),以其输入端连接于第一端口(11),以其输出端连接于第二端口(12),用于导通和断开所述供电线路(10);
    电子开关管(30),其并联连接于继电器(20)的输入端和输出端之间;以及
    控制模块(40),用于分别控制连接于所述继电器(20)的控制端和电子开关管(30)的控制端以使电子开关管(30)承受继电器(20)关断的电压变化。
  2. 根据权利要求1所述的应急电源继电器灭弧控制系统,其特征在于,还包括:
    反充感应电路(51),用于感应从继电器(20)从输出端施加至输入端的反向电压,
    反充反馈电路(52),用于将感应到的反向电压经降压反馈至电子开关管(30)的控制端,以使在反向电流发生时控制电子开关管(30)关断。
  3. 根据权利要求2所述的应急电源继电器灭弧控制系统,其特征在于,所述反充反馈电路(52)包括第一电阻(R1)、第一晶体管(Q1)、第二电阻(R2)和第二晶体管(Q2);所述第一电阻(R1)的两端并联连接于继电器(20)的输入端和输出端之间,所述第一晶体管(Q1)的发射极和基极分别连接于第一电阻(R1)的两端,所述第一晶体管(Q1)的集电极连接于第二晶体管(Q2)的基极,所述第一晶体管(Q1)的基极连接于第二晶体管(Q2)的集电极,所述第二晶体管(Q2)的基极和发射级分别连接于第二电阻(R2)的两端,所述第二晶体管(Q2)的发射级连接于所述电子开关管(30)的控制端,所述第一电阻(R1)在流通反向电流而对第一晶体管(Q1)的发射极和基极间施加导通电压,所述第一晶体管(Q1)的导通使第二电阻(R2)流通电流而对第二晶体管(Q2)的基极和发射极施加导通电压,以使所述电子开关管(30)切换为关断。
  4. 根据权利要求3所述的应急电源继电器灭弧控制系统,其特征在于,所述反充感应电路(51)包括第四电阻(R4)和第二续流二极管(D2),所述第一电阻(R1)的一端连接于继电器(20)的输出端,所述第一电阻(R1)的另一端连接于第四电阻(R4)的一端,所述第四电阻(R4)的另一端连接于第二续流二极管(D2)的阳极,所述第二续流二极管(D2)的阴极连接于继电器(20)的输入端,以使反向电流流经第 一电阻(R1)和第四电阻(R4)的串联电路将在第一电阻(R1)形成配合导通第一晶体管(Q1)的电压。
  5. 根据权利要求3所述的应急电源继电器灭弧控制系统,其特征在于,还包括第一续流二极管(D1)和第三电阻(R3),所述电子开关管(30)为场效应管,其漏极连接于继电器(20)的输出端,其源极连接于第一续流二极管(D1)的阳极,其栅极连接于第二晶体管(Q2)的发射极,所述电子开关管(30)的漏极和栅极分别连接第三电阻(R3)的两端;所述第二晶体管(Q2)发射极和继电器(20)输出端在第三电阻(R3)形成致使反充时电子开关管(30)关断;所述第一续流二极管(D1)的阴极连接于继电器(20)的输入端。
  6. 根据权利要求3所述的应急电源继电器灭弧控制系统,其特征在于,所述反充反馈电路(52)设置有第二储能件,以使反向电压在驱使电子开关管(30)关断前具有为第二储能件充电的导通时间。
  7. 根据权利要求1所述的应急电源继电器灭弧控制系统,其特征在于,所述控制模块(40),其以第一控制信号连接于继电器(20)的控制端,并以延迟于第一控制信号的第二控制信号连接于电子开关管(30)的控制端,以使电子开关管(30)承受继电器(20)关断的电压变化。
  8. 根据权利要求7所述的应急电源继电器灭弧控制系统,其特征在于,所述控制模块(40)包括第一驱动电路(41)、第二驱动电路(42)、第一储能件和总控端口(43),所述总控端口(43)以第一控制信号连接于第一驱动电路(41)的控制端,所述第一驱动电路(41)驱动连接于继电器(20)的控制端,所述总控端口(43)以第一控制信号借助第一储能件变换的第二控制信号连接于第二驱动电路(42)的控制端,所述第二驱动电路(42)驱动连接于电子开关管(30)的控制端,以使总控端口(43)对电子开关管(30)的导通控制延迟于所述控制模块(40)对继电器(20)的导通控制,总控端口(43)对电子开关管(30)的关断控制延迟于所述控制模块(40)对继电器(20)的关断控制。
  9. 根据权利要求7所述的应急电源继电器灭弧控制系统,其特征在于,所述第二驱动电路(42)包括第四晶体管(Q4)、及在第四晶体管(Q4)形成导通压降的第六电阻(R6),所述第四晶体管(Q4)的基极连接于总控端口(43),所述第四晶体管(Q4)集电极连接于继电器(20)电磁铁的一端,所述继电器(20)的电磁铁的另一端连接于第一端口(11),所述第四晶体管(Q4)的发射极连接于共地端;所述第一驱 动电路(41)包括第三晶体管(Q3)、及在第三晶体管(Q3)形成导通压降的第五电阻(R5)、及在电子开关管(30)形成导通压降的第七电阻(R7),所述第三晶体管(Q3)的基极连接于总控端口(43),所述第三晶体管(Q3)的发射极连接于共地端,所述第七电阻(R7)的一端连接于第三晶体管(Q3)的集电极,所述第七电阻(R7)的另一端连接于电子开关管(30)的控制端,所述第五电阻(R5)并接有作为第一储能件的第二电容(C2),以使总控端口(43)输出的指示导通的第一控制信号经对第二电容(C2)的充电延迟后,控制电子开关管(30)导通,并使总控端口(43)输出指示关断的第一控制信号经第二电容(C2)的放电延迟后,控制电子开关管(30)关断。
  10. 一种应急电源防反充可继电器(20)灭弧控制方法,应用于权利要求1至8任一项所述的应急电源防反充可继电器(20)灭弧控制系统,其特征在于,包括步骤:
    使用第一控制信号控制继电器(20)的导通,并以延迟于第一控制信号的第二控制信号控制电子开关管(30)的导通;
    使用第一信号控制继电器(20)的关断,并以延迟于第一控制信号的第二控制信号控制电子开关管(30)的关断;
    当应急电源的第二端口(12)的电压高于应急电源的第一端口(11)的电压,将第二端口(12)对第一端口(11)施加反向电压反馈于电子开关管(30)的控制端,以提前于第二控制信号地控制电子开关管(30)的关断。
PCT/CN2021/084055 2021-03-26 2021-03-30 应急电源继电器灭弧控制系统及方法 WO2022198694A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP21932312.8A EP4318840A1 (en) 2021-03-26 2021-03-30 Arc extinguishing control system and method for relay of emergency power supply
US18/277,085 US20240128738A1 (en) 2021-03-26 2021-03-30 Arc extinguishing control system and method for relay of emergency power supply

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110327462.4A CN115132519A (zh) 2021-03-26 2021-03-26 应急电源继电器灭弧控制系统及方法
CN202110327462.4 2021-03-26

Publications (1)

Publication Number Publication Date
WO2022198694A1 true WO2022198694A1 (zh) 2022-09-29

Family

ID=83375015

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/084055 WO2022198694A1 (zh) 2021-03-26 2021-03-30 应急电源继电器灭弧控制系统及方法

Country Status (4)

Country Link
US (1) US20240128738A1 (zh)
EP (1) EP4318840A1 (zh)
CN (1) CN115132519A (zh)
WO (1) WO2022198694A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080258556A1 (en) * 2004-07-31 2008-10-23 Ewing Carrel W Transfer Switch With Arc Suppression
CN201584806U (zh) * 2009-11-30 2010-09-15 中国电子科技集团公司第二十八研究所 车载直流供电电源装置
CN104979857A (zh) 2014-04-04 2015-10-14 苏州新逸喆电子科技有限公司 一种12v汽车应急启动电源
CN204794038U (zh) 2015-03-31 2015-11-18 深圳市高斯宝电气技术有限公司 一种汽车应急启动电源的保护电路
CN105680505A (zh) * 2015-12-31 2016-06-15 深圳市华思旭科技有限公司 一种车辆应急启动装置
CN206313482U (zh) * 2016-12-19 2017-07-07 宁波古得电子科技有限公司 一种应急电源启动用的智能夹
CN207834197U (zh) * 2018-02-08 2018-09-07 深圳市海鹏信电子股份有限公司 一种直流继电器的灭弧电路及灭弧直流继电器
CN215267646U (zh) * 2021-03-26 2021-12-21 深圳市格瑞普电池有限公司 防反充可继电器灭弧控制系统及车辆应急启动电源

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080258556A1 (en) * 2004-07-31 2008-10-23 Ewing Carrel W Transfer Switch With Arc Suppression
CN201584806U (zh) * 2009-11-30 2010-09-15 中国电子科技集团公司第二十八研究所 车载直流供电电源装置
CN104979857A (zh) 2014-04-04 2015-10-14 苏州新逸喆电子科技有限公司 一种12v汽车应急启动电源
CN204794038U (zh) 2015-03-31 2015-11-18 深圳市高斯宝电气技术有限公司 一种汽车应急启动电源的保护电路
CN105680505A (zh) * 2015-12-31 2016-06-15 深圳市华思旭科技有限公司 一种车辆应急启动装置
CN206313482U (zh) * 2016-12-19 2017-07-07 宁波古得电子科技有限公司 一种应急电源启动用的智能夹
CN207834197U (zh) * 2018-02-08 2018-09-07 深圳市海鹏信电子股份有限公司 一种直流继电器的灭弧电路及灭弧直流继电器
CN215267646U (zh) * 2021-03-26 2021-12-21 深圳市格瑞普电池有限公司 防反充可继电器灭弧控制系统及车辆应急启动电源

Also Published As

Publication number Publication date
CN115132519A (zh) 2022-09-30
EP4318840A1 (en) 2024-02-07
US20240128738A1 (en) 2024-04-18

Similar Documents

Publication Publication Date Title
JP5627264B2 (ja) 車両用の電源装置及びこの電源装置を搭載する車両
US6995480B2 (en) Power supply equipment for motor vehicle with inverter for controlling motor generator
JP4804994B2 (ja) フォークリフト用電源装置
JP2015217919A (ja) 車両用電源装置、車両用回生システム
JP2011155791A (ja) 車両用電源装置
JP2015209058A (ja) 電源装置
JP2015217920A (ja) 車両用電源装置、車両用回生システム
US10119513B2 (en) Power supply system
JP2020096402A (ja) 車両用電源装置
WO2010021076A1 (ja) 車両の電源装置およびその制御方法
JP2010207061A (ja) 車両用電源システム
JP2016187236A (ja) バッテリシステム制御装置
JP5556560B2 (ja) 車両用電源装置
JP2002320302A (ja) 電源装置
CN215267646U (zh) 防反充可继电器灭弧控制系统及车辆应急启动电源
JP2010088180A (ja) 蓄電装置
WO2022198694A1 (zh) 应急电源继电器灭弧控制系统及方法
KR100559398B1 (ko) 하이브리드 및 연료 전지 차량용 동력 연결 제어장치
CN112019013A (zh) 大功率dcdc防冲击防反接缓启动电路及控制方法
JP6242012B2 (ja) 電源装置
US11702060B2 (en) Power relay assembly and vehicle comprising the same and control method of power relay assembly
JP6079725B2 (ja) 車両用電源制御装置
JP2020058094A (ja) ジャンクションボックス制御装置
CN218243004U (zh) 大电流延时保护电路和车辆
WO2023162200A1 (ja) 車載用遮断電流供給装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21932312

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18277085

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2021932312

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021932312

Country of ref document: EP

Effective date: 20231026