WO2022196386A1 - ガス供給装置および半導体製造装置 - Google Patents

ガス供給装置および半導体製造装置 Download PDF

Info

Publication number
WO2022196386A1
WO2022196386A1 PCT/JP2022/009314 JP2022009314W WO2022196386A1 WO 2022196386 A1 WO2022196386 A1 WO 2022196386A1 JP 2022009314 W JP2022009314 W JP 2022009314W WO 2022196386 A1 WO2022196386 A1 WO 2022196386A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow path
fluid control
gas
control units
gas supply
Prior art date
Application number
PCT/JP2022/009314
Other languages
English (en)
French (fr)
Inventor
潤 廣瀬
淳 澤地
隆博 松田
一誠 渡辺
耕平 執行
泰輝 星子
Original Assignee
東京エレクトロン株式会社
株式会社フジキン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東京エレクトロン株式会社, 株式会社フジキン filed Critical 東京エレクトロン株式会社
Priority to CN202280021823.5A priority Critical patent/CN116997993A/zh
Priority to JP2023506965A priority patent/JPWO2022196386A1/ja
Priority to KR1020237029126A priority patent/KR20230135655A/ko
Publication of WO2022196386A1 publication Critical patent/WO2022196386A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45561Gas plumbing upstream of the reaction chamber
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a gas supply device and a semiconductor manufacturing device used in semiconductor manufacturing devices and the like.
  • a gas supply device called a gas box, which houses a fluid control device in a box, is used to supply a process chamber with a mixture of a plurality of accurately measured process gases.
  • a fluid control unit is configured for each gas, and these fluid control units are arranged in parallel (see Patent Document 3, etc.).
  • Each fluid control unit is provided with various fluid control devices such as on-off valves, regulators, and mass flow controllers.
  • the outlet-side channel of each fluid control unit is connected to a manifold block, multiple process gases are merged at this manifold block, and the mixed gas is led out from one end of the manifold block and supplied to the process chamber.
  • JP 2018-98387 A Japanese Patent Application Laid-Open No. 2018-88336 JP 2019-152234 A U.S. Pat. No. 10,022,689 Patent No. 5037510
  • Patent Documents 4 and 5 propose a technology in which a plurality of fluid control units are arranged radially to equalize the length of the flow paths of the fluid control units to the process chamber.
  • the installation space for the control equipment is large, making it difficult to save space.
  • the present invention has been made in view of the above-mentioned problems, and provides a gas supply apparatus and a semiconductor manufacturing apparatus capable of supplying a mixed gas of stable concentration components to a processing chamber in a short time from the gas supply apparatus, which can save space. intended to provide
  • a gas supply apparatus includes a flow path through which gas flows from upstream to downstream, and a fluid control device provided in the middle of the flow path for controlling the flow of gas flowing through the flow path.
  • a plurality of fluid control units each including a confluence flow path including a plurality of connection portions fluidly connected to the plurality of fluid control units; and a single gas lead-out portion for leading gas introduced through the plurality of connection portions;
  • the plurality of connection portions are arranged symmetrically with respect to the gas lead-out portion in the flow direction of the combined flow path, and each of the plurality of connection portions includes two or more fluid control units. It is connected.
  • the plurality of connection portions are provided in the same number on one side and the other side of the gas lead-out portion in the flow direction of the combined flow passage.
  • the confluence channel has opening/closing valves provided in the vicinity of both sides of the gas lead-out portion, respectively, and is configured such that the upstream side of each opening/closing valve can be blocked from other portions.
  • a gas supply apparatus includes a flow path through which gas flows from upstream to downstream, and a fluid control device provided in the middle of the flow path for controlling the flow of gas flowing through the flow path.
  • a plurality of fluid control units each including A gas supply device having a tournament-like connection flow path fluidly connected to the plurality of fluid control units, introducing gases discharged from the plurality of fluid control units, merging them in a tournament-like manner, and discharging them to the outside,
  • the tournament-like connection flow path is 2 N first-stage partial flow paths (N is an integer equal to or greater than 2) each having an inlet port connectable to the fluid control unit; a k-th stage partial flow path formed by joining two k-th stage partial flow paths (k is an integer from 2 to N), and one (N+1)-th stage partial flow path formed by merging the N-th stage partial flow paths and having an outlet for discharging the gas to the outside;
  • a tournament-shaped channel having N+1 stages of partial channels, The channel lengths or
  • one or a plurality of the fluid control units are connected directly, or a plurality of the fluid control units are provided with confluence pipes that fluidly connect the downstream sides of the fluid control units to each other. 6.
  • the tournament-like connection flow path has an opening/closing valve provided in the vicinity of the upstream side of the merging portion, and is configured so that the upstream side of each of the opening/closing valves can be blocked from other portions.
  • the semiconductor manufacturing apparatus of the present invention uses the gas supply apparatus described above to control the supply of the process gas in a semiconductor device manufacturing process that requires a process step using a process gas in a closed process chamber.
  • connecting portions between a confluence flow path for merging a plurality of gases and a plurality of fluid control units are arranged symmetrically with respect to the arrangement position of the gas lead-out portion in the direction of the flow path of the confluence flow path. and two or more of the fluid control units are fluidly connected to each of the plurality of connecting portions.
  • the flow paths can be made equal in length, space can be saved, and a mixed gas with stable concentration components can be supplied to the processing chamber in a short period of time.
  • the flow path length or the internal volume from each inlet to the outlet is equal or substantially equal to each other, and is led out from a plurality of fluid control units Since the gas is introduced, merged like a tournament, and led out to the outside, the length of the flow path from a plurality of fluid control units to the process chamber can be made equal, and space can be saved. , it becomes possible to supply a mixed gas of stable concentration components to the processing chamber in a short period of time.
  • FIG. 1 is a schematic configuration diagram of a gas supply device according to a first embodiment of the present invention
  • FIG. FIG. 2 is a chart for explaining the relationship between the flow path lengths of the fluid control units of the gas supply apparatus of FIG. 1 and the process chambers
  • FIG. FIG. 2 is a schematic configuration diagram of a gas supply device according to a second embodiment of the present invention
  • FIG. 4 is a chart for explaining the relationship between the flow path lengths of the fluid control units of the gas supply device of FIG. 3 and the process chambers
  • FIG. The schematic block diagram of the gas supply apparatus which concerns on the 3rd Embodiment of this invention.
  • FIG. 10A is a schematic diagram showing an example of channel switching of another gas supply device according to a third embodiment of the present invention, in which (a) shows a configuration example at the development stage, and (b) shows a configuration example at the mass production stage; .
  • FIG. 1 shows a schematic configuration of a gas supply device 1 according to a first embodiment of the present invention.
  • the gas supply device 1 includes a plurality of fluid control units A1 to H2, a plurality of confluence flow paths MHC1 and MHC2, a single main flow path M, and a plurality of connection flow paths P1 and P2.
  • a semiconductor manufacturing apparatus according to one embodiment of the present invention is constructed.
  • Each of the fluid control units A1-H2 includes a channel CH, an on-off valve V1, a flow controller FC, an on-off valve V2, a channel Cp, and an on-off valve Vp.
  • the on-off valve V1, the flow rate controller FC, and the on-off valve V2 are provided in the middle of the flow path CH, the on-off valve Vp is provided in the middle of the flow path Cp for the purge gas PG, and the flow path Cp is connected to the on-off valve V1. and flow controller FC.
  • a process gas G is supplied to each channel CH from the upstream, and a purge gas PG is supplied to the channel Cp from the upstream.
  • the types of process gas G supplied to the fluid control units A1-H2 may be different or the same.
  • the channel CH and the channel Cp can be formed by pipes or blocks.
  • the on-off valves V1 and V2 open and close the channel CH, and the on-off valve Vp opens and closes the channel Cp.
  • the flow rate controller FC is composed of, for example, a mass flow controller or the like, and controls the flow rate of the gas flowing through the channel CH from upstream to downstream.
  • the on-off valve V1, the flow rate controller FC, the on-off valve V2, and the on-off valve Vp described above are examples of the fluid control device of the present invention.
  • Equipment used for the control includes, but is not limited to, on-off valves (2-way valves), regulators, pressure gauges, on-off valves (3-way valves), mass flow controllers, and the like.
  • each of the fluid control units A1 to H2 has the same configuration, but the configuration is not limited to this. Instruments may also be included in each fluid control unit A1-H2. Further, the components of each fluid control unit A1-H2 are preferably arranged in a row from upstream to downstream, and the fluid control units A1-H2 are preferably arranged in parallel.
  • the fluid control units A1 to H2 are preferably arranged in a direction orthogonal to the confluence channels MHC1 and MHC2. With such an arrangement, the space required for arranging the plurality of fluid control units A1 to H2 can be minimized.
  • the confluence channels MHC1 and MHC2 are channels with both ends closed, and are formed of pipes, manifold blocks, etc., and preferably have the same structure and dimensions.
  • the confluence flow paths MHC1 and MHC2 include a plurality of connection portions LC1 to RC2 to which the downstream ends of the flow paths CH of the plurality of fluid control units A1 to H2 are fluidly connected, and the mixed gas that merges in the confluence flow path MHC1. and a single gas lead-out portion K1 for leading out the .
  • the gas lead-out portions K1 of the combined flow paths MHC1 and MHC2 are arranged at the central position in the flow direction of the combined flow paths MHC1 and MHC2.
  • the confluence channels MHC1 and MHC2 can be formed linearly, but they may be curved as long as they are symmetrical about the central position.
  • a plurality of connecting portions LC1 to RC2 of the confluence channels MHC1 and MHC2 are arranged at symmetrical positions with respect to the central position in the channel direction. That is, the plurality of connecting portions LC1 to RC2 are arranged symmetrically with respect to the gas lead-out portion K1.
  • the connection portions LC1, RC1 and the connection portions LC2, RC2 are arranged at symmetrical positions.
  • the plurality of connecting portions LC1 to RC2 are provided in the same number on one side and the other side of the gas lead-out portion K1 in the flow direction of the confluence flow paths MHC1 and MHC2.
  • the portions from the gas lead-out portion K1 of the confluence flow paths MHC1 and MHC2 to the connection portions LC1 and RC1 on both sides are also called the first stage partial flow paths T1, and the portions on both sides thereof are also called merge pipes J, respectively.
  • the fluid control units A1 and C1 are fluidly connected to the connecting portion LC1 of the merged flow path MHC1, the fluid control units A2 and C2 are fluidly connected to the connecting portion LC2 of the merged flow path MHC1, and the connecting portion RC1 of the merged flow path MHC1. are fluidly connected to the fluid control units B1 and D1, and the fluid control units B2 and D2 are fluidly connected to the connection portion RC2 of the confluence channel MHC1.
  • the fluid control units E1 and G1 are connected to the connecting portion LC1 of the merged flow path MHC2, the fluid control units E2 and G2 are connected to the connecting portion LC2 of the merged flow path MHC1, and the connecting portion of the merged flow path MHC2 is connected.
  • Fluid control units F1 and H1 are connected to RC1, and fluid control units F2 and H2 are connected to the connecting portion RC2 of the confluence channel MHC2.
  • the two channels CH connected to each of the connecting portions LC1 to RC2 may be connected so as to face each other, or may be connected so as to face different directions.
  • the case where two fluid control units are connected to each of the connection portions LC1 to RC2 of the confluence flow paths MHC1 and MHC2 was exemplified, but the present invention is not limited to this, and each connection portion LC1 It is also possible to fluidly connect more than two fluid control units to ⁇ RC2.
  • Each gas lead-out portion K1 of the confluence flow paths MHC1 and MHC2 is fluidly connected to the confluence portion R of the main flow path M by connection flow paths P1 and P2, respectively.
  • the connecting flow paths P1 and P2 are preferably formed by piping or the like having the same structure and dimensions.
  • the main flow path M is a flow path for supplying a mixed gas of a plurality of process gases G or supplying a purge gas PG to the process chamber 100, and is formed by piping or the like.
  • the confluence channels MHC1 and MHC2 are arranged symmetrically with respect to the confluence portion R of the main channel M.
  • the symmetrical arrangement of the confluence channels MHC1 and MHC2 includes left-right symmetrical arrangement, vertical symmetrical arrangement, plane-symmetrical arrangement, and line-symmetrical arrangement with respect to the confluence portion R. If it is Moreover, it may be symmetrical with respect to the center point of the confluence R.
  • two confluence channels MHC1 and MHC2 are exemplified, but three or more confluence channels may be provided. are placed symmetrically.
  • connection portion LC1 to RC2 By arranging the plurality of connection portions LC1 to RC2 symmetrically with respect to the gas outlet portion K1, the length of the flow path from the connection portion LC1 to the gas outlet portion K1 and the length of the flow path from the connection portion RC1 to the gas outlet portion K1 are reduced.
  • the channel length can be made equal, and the channel length from the connection portion LC2 to the gas lead-out portion K1 can be made equal to the channel length from the connection portion RC2 to the gas lead-out portion K1.
  • the confluence passages MHC1 and MHC2 symmetrically with respect to the confluence portion R of the main flow passage M, the flow from the gas discharge portion K1 of the confluence passage MHC1 to the confluence portion R of the main flow passage M is reduced.
  • the path length can be made equal to the flow path length from the gas lead-out portion K1 of the confluence flow path MHC2 to the confluence portion R of the main flow path M.
  • the lengths (or internal volumes) of the flow paths from the on-off valve V2, which is a fluid control device, to the process chamber 100 can be made equal to each other.
  • the channel lengths (or internal volumes) of the channels from the on-off valve V2, which is a fluid control device arranged on the most downstream side of the channel CH of G2 and H2, to the process chamber 100 can be made equal. If all the fluid control units A1 to H2 were arranged in parallel, the length of the flow path from each open/close valve V2 to the process chamber 100 would be different. It is possible to equalize the flow path length from each opening/closing valve V2 of the control unit to the process chamber 100.
  • the space of the gas supply device 1 can be reduced, and the mixed gas with stable concentration components can be supplied from the gas supply device 1 to the process chamber 100 in a short period of time.
  • the present embodiment compared to the case where all the fluid control units A1 to H2 are arranged in parallel, it is possible to shorten the length of the flow path from each of the fluid control units A1 to H2 to the process chamber 100. .
  • FIG. 3 is a schematic configuration diagram of a gas supply device 10 according to a second embodiment of the invention.
  • This embodiment uses a tournament-like connection channel T whose channel length or internal volume from each inlet TC to the outlet TO is equal or substantially equal to each other, and is derived from a plurality of fluid control units A1 to H6. It is a form in which gas is introduced, merged in a tournament-like manner, and discharged to the outside.
  • the gas supply device 10 of this embodiment is composed of fluid control units A1 to H6, a tournament-like connection flow path T, and a confluence pipe J. As shown in FIG.
  • Each of the fluid control units A1 to H6 is the same as the fluid control units A1 to H2 of the first embodiment, and includes a channel CH, an opening/closing valve V1 (see FIG. 1 for all), a flow controller FC, an opening/closing valve V2, It is a unit that includes an open/close valve Vp (see FIG. 1), opens and closes the channel CH, and controls the flow rate of the gas flowing through the channel CH from upstream to downstream.
  • Vp open/close valve
  • FIG. 3 for simplification, illustration of the channel CH, the opening/closing valve V1, and the opening/closing valve Vp is omitted, and the flow controller FC and the opening/closing valve V2 are illustrated only for the fluid control unit A1.
  • the tournament-like connection channel T is 2 N first-stage partial flow paths T1 (N is an integer of 2 or more) each having an inlet TC connectable to each of the fluid control units A1 to H6; a k-th stage partial flow channel Tk formed by joining two k-1-th stage partial flow channels Tk-1 (where k is an integer from 2 to N), and one (N+1)-th stage partial flow path TN+1 formed by merging the N-th stage partial flow paths TN and having an outlet TO for discharging gas to the outside, It is a tournament-like channel having N+1 stages of partial channels. Further, the channel length (or internal volume) from each inlet TC to the outlet TO of the tournament-like connection channel T is (substantially) equal to each other.
  • This configuration can be realized, for example, by (substantially) equalizing the channel lengths of all partial channels Tk (k is an integer from 1 to N) for each stage and forming the channels with the same inner diameter.
  • the confluence of the two third-stage partial flow paths T3 includes one fourth partial flow path T4 formed by merging at U3.
  • Each partial channel T1 to T4 may be formed by a pipe, or may be configured by a manifold or a channel block.
  • it is preferable that the channel diameters of all the partial channels are equal for each stage.
  • the inlet TC is provided at the upstream end of each first stage partial flow channel T1, and one or a plurality of fluid control units A1 to H6 can be connected to each inlet TC directly or via a confluence pipe J. It is configured.
  • the confluence pipe J is a pipe that fluidly connects the downstream sides of a plurality of fluid control units to each other, and corresponds to the outer portion of the connection portions LC1 and RC1 of the confluence flow path MHC1 or MHC2 in the first embodiment.
  • fluid control units A1-H6 are shown divided into groups A-H connected to respective inlets TC.
  • group A the fluid control units A2 and A3 are directly connected to the inlet TC, and the fluid control units A1 and A4 are connected to the inlet TC via a joint pipe J.
  • group H the fluid control units H3 and H4 are directly connected to the inlet TC, and the fluid control units H1, H2, H5 and H6 are connected to the inlet TC via a joint pipe J.
  • group B fluid control units B1 and B2 are directly connected to inlet TC, and in groups C, D, F, and G, similarly two fluid control units are directly connected to inlet TC.
  • group E one fluid control unit E1 is directly connected to inlet TC.
  • FIG. 4 is a chart for explaining the relationship of flow path lengths from each of the fluid control units A1 to H6 of the gas supply apparatus of FIG. 3 to the process chamber 100 (outlet TO).
  • FIG. 5 is a schematic configuration diagram of a gas supply device 20 according to a third embodiment of the invention.
  • an on-off valve VS is provided in the vicinity of the upstream side of each confluence portion U1, U2, U3 of the tournament-like connection flow path T, and the upstream side of each on-off valve VS is It is a form that can be cut off from other parts.
  • the on-off valves VS are provided in the vicinity of the upstream sides of the junctions U1, U2, and U3, respectively, by closing the on-off valves VS on the upstream side of the junctions U1, U2, and U3 downstream of the groups that are not used, , the piping system upstream of its on-off valve VS can be isolated from other parts, thereby preventing the formation of a cecal tube.
  • These open/close valves VS (also referred to as gate valves) may be automatic valves, but may be manual valves if the opening/closing frequency is low.
  • these open/close valves VS are arranged as close as possible to the junctions U1, U2, and U3 in order to prevent the occurrence of cecal piping.
  • FIG. 6A and 6B are schematic diagrams showing an example of channel switching of another gas supply device 30 of the present embodiment, in which FIG. 6A shows a configuration example at the development stage, and FIG. 6B shows a configuration example at the mass production stage.
  • development stage and “mass production stage” refer to the development stage and mass production stage of the process equipment employing the gas supply device.
  • the device at the stage of development shown in FIG. The fluid control units C1-D2 of D are deleted. In this case, if the development stage piping system is diverted to the mass production stage apparatus, the portion (indicated by the dashed line) connected to groups C and D becomes the cecum piping.
  • the on-off valve provided near the upstream side of the junction U2 where the flow paths from the groups C and D join the flow paths from the groups A and B.
  • the portion (indicated by the dashed line) connected to the groups C and D can be separated from the other portions, thus preventing the occurrence of cecal tubing.
  • the gas supply device 30 of the present embodiment is adopted in a process device, even if part of the fluid control unit included in the development stage is deleted in the mass production stage, the problem of the caecum piping can be prevented. Since the piping system of the gas supply device 30 can be used as it is in the mass-production stage, development costs such as design changes of the piping system can be reduced.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Feeding, Discharge, Calcimining, Fusing, And Gas-Generation Devices (AREA)
  • Pipeline Systems (AREA)
  • Chemical Vapour Deposition (AREA)
  • Valve Housings (AREA)

Abstract

【課題】省スペース化が可能で、かつ、短時間で安定した濃度成分の混合ガスを処理チャンバに供給可能なガス供給装置を提供する。 【解決手段】ガスGが流通する流路CHと、当該流路CHの中途に設けられ当該流路を流通するガスGの流れを制御する流体制御機器V1,FC,V2とをそれぞれ含む複数の流体制御ユニットA1~D2と、複数の流体制御ユニットA1~D2と流体接続される複数の接続部LC1,LC2、RC1,RC2と、複数の接続部LC1,LC2、RC1,RC2を通じて導入されたガスを導出する単一のガス導出部K1と、を含む合流流路MCH1と、を有し、複数の接続部LC1,LC2、RC1,RC2は、合流流路MCH1の流路方向においてガス導出部K1に対して対称的に配置され、かつ、複数の接続部LC1,LC2、RC1,RC2の各々には、2以上の流体制御ユニットが流体接続される。

Description

ガス供給装置および半導体製造装置
 本発明は、半導体製造装置等に使用されるガス供給装置および半導体製造装置に関する。
 半導体製造プロセス等の各種製造プロセスにおいては、正確に計量した複数のプロセスガスを混合したガスをプロセスチャンバに供給するために、流体制御装置をボックスに収容したガスボックスと呼ばれるガス供給装置が用いられている(例えば、特許文献1、2等参照)。
 従来の流体制御装置は、ガス毎に流体制御ユニットが構成され、これら流体制御ユニットが並列に配置されている(特許文献3等参照)。各流体制御ユニットには、開閉バルブ、レギュレータ、マスフローコントローラ等の各種の流体制御機器が設けられている。各流体制御ユニットの出口側流路は、マニホールドブロックに接続され、複数のプロセスガスをこのマニホールドブロックで合流させ、当該マニホールドブロックの一端部から混合ガスを導出してプロセスチャンバに供給している。
特開2018-98387号公報 特開2018-88336号公報 特開2019-152234号公報 米国特許10,022,689号公報 特許第5037510号公報
 半導体製造装置では、ガス供給装置から短時間で安定した濃度成分の混合ガスを処理チャンバに供給することが要求されている。
 しかしながら、上記した従来構造の流体制御装置では、複数の流体制御ユニットを並列に配置して出口側流路をマニホールドブロックに接続しているため、各流体制御ユニットからプロセスチャンバへの流路の流路長が異なるため、ガス供給装置から短時間で安定した濃度成分の混合ガスを処理チャンバに供給することが難しい。
 特許文献4および5は、上記の課題を解決するために、複数の流体制御ユニットを放射状に配置して流体制御ユニットのプロセスチャンバまでの流路長を等しくする技術を提案しているが、流体制御機器の設置空間が大きく省スペース化が困難である。
 本発明は、上記課題に鑑みてなされたものであって、省スペース化が可能でガス供給装置から短時間で安定した濃度成分の混合ガスを処理チャンバに供給可能なガス供給装置および半導体製造装置を提供することを目的とする。
 本発明の第1の観点に係るガス供給装置は、上流から下流へ向かうガスが流通する流路と、当該流路の中途に設けられ当該流路を流通するガスの流れを制御する流体制御機器とをそれぞれ含む複数の流体制御ユニットと、
 前記複数の流体制御ユニットと流体接続される複数の接続部と、前記複数の接続部を通じて導入されたガスを導出する単一のガス導出部と、を含む合流流路と、を有し、
 前記複数の接続部は、前記合流流路の流路方向において前記ガス導出部に対して対称的に配置され、かつ、前記複数の接続部の各々には、2以上の前記流体制御ユニットが流体接続されている。
 好適には、前記複数の接続部は、前記合流流路の流路方向において、前記ガス導出部の一方側および他方側にそれぞれ複数かつ同数設けられている。
好適には、前記合流流路は、前記ガス導出部の両側近傍にそれぞれ設けられた開閉バルブを有し、各当該開閉バルブの上流側を他の部分から遮断できるように構成されている。
 本発明の第2の観点に係るガス供給装置は、上流から下流へ向かうガスが流通する流路と、当該流路の中途に設けられ当該流路を流通するガスの流れを制御する流体制御機器とをそれぞれ含む複数の流体制御ユニットと、
前記複数の流体制御ユニットと流体接続され、当該複数の流体制御ユニットから導出されるガスを導入し、トーナメント状に合流させて外部へ導出するトーナメント状接続流路とを有するガス供給装置であって、
前記トーナメント状接続流路は、
 前記流体制御ユニットにそれぞれ接続可能な導入口を有する2本の第1段部分流路(Nは2以上の整数)と、
 第k―1段部分流路が(kは2からNまでの整数)、2本ずつ合流して形成される第k段部分流路と、
 第N段部分流路が合流して形成され、前記ガスを外部へ導出する導出口を有する1本の第N+1段部分流路と、を含む、
 N+1段の部分流路を有するトーナメント状の流路であり、
前記トーナメント状接続流路の各前記導入口から前記導出口までの流路長又は内容積が互いに等しい又は実質的に等しいものである。
 前記トーナメント状接続流路の各ガス導入口には、一又は複数の前記流体制御ユニットが直接に、又は、複数の前記流体制御ユニットが当該流体制御ユニットの下流側を互いに流体接続する合流配管を介して接続されている、請求項5に記載のガス供給装置。
 好適には、前記トーナメント状接続流路は、前記合流する箇所の上流側近傍にそれぞれ設けられた開閉バルブを有し、各前記開閉バルブの上流側を他の部分から遮断できるように構成されている。
 本発明の半導体製造装置は、密閉されたプロセスチャンバ内においてプロセスガスによる処理工程を要する半導体装置の製造プロセスにおいて、前記プロセスガスの供給制御に上記したガス供給装置を用いている。
 本発明の第1の観点によれば、複数のガスを合流させる合流流路と複数の流体制御ユニットとの接続部を、当該合流流路の流路方向においてガス導出部の配置位置に関して対称に配置し、かつ、複数の接続部の各々には、2以上の前記流体制御ユニットを流体接続する構成としたので、対称的な配置の接続部に接続される複数の流体制御ユニットのプロセスチャンバまでの流路の流路長を等しくすることができ、省スペース化が可能で、かつ、短時間で安定した濃度成分の混合ガスを処理チャンバに供給可能となる。
本発明の第2の観点によれば、各導入口から導出口までの流路長又は内容積を互いに等しい又は実質的に等しいトーナメント状接続流路を用い、複数の流体制御ユニットから導出されるガスを導入しトーナメント状に合流させて外部へ導出させる構成としたので、複数の流体制御ユニットからプロセスチャンバまでの流路の流路長を等しくすることができ、省スペース化が可能で、かつ、短時間で安定した濃度成分の混合ガスを処理チャンバに供給可能となる。
本発明の第1の実施形態に係るガス供給装置の概略構成図。 図1のガス供給装置の各流体制御ユニットのプロセスチャンバまでの流路長の関係を説明するための図表。 本発明の第2の実施形態に係るガス供給装置の概略構成図。 図3のガス供給装置の各流体制御ユニットのプロセスチャンバまでの流路長の関係を説明するための図表。 本発明の第3の実施形態に係るガス供給装置の概略構成図。 本発明の第3の実施形態に係る他のガス供給装置の流路切替えの例を示す概略図で、(a)は開発段階での構成例、(b)は量産段階での構成例を示す。
 以下、本開示の実施形態について図面を参照して説明する。
(第1の実施形態)
 図1に本発明の第1の実施形態に係るガス供給装置1の概略構成を示す。
 ガス供給装置1は、複数の流体制御ユニットA1~H2と、複数の合流流路MHC1,MHC2と、単一のメイン流路Mと、複数の接続流路P1,P2とを含む。このガス供給装置1をプロセスチャンバ100に適用することにより、本発明の一実施形態に係る半導体製造装置が構成される。
 流体制御ユニットA1~H2の各々は、流路CH、開閉バルブV1、流量制御器FC、開閉バルブV2、流路Cp、開閉バルブVpを含む。開閉バルブV1、流量制御器FCおよび開閉バルブV2は、流路CHの途中に設けられており、開閉バルブVpは、パージガスPG用の流路Cpの途中に設けられ、流路Cpは開閉バルブV1と流量制御器FCとの間の流路CHに流体接続されている。
 各流路CHには上流からプロセスガスGが供給され、流路Cpには上流からパージガスPGが供給される。流体制御ユニットA1~H2に供給されるプロセスガスGの種類は、互いに異なる場合も互いに同じ場合もある。流路CHや流路Cpは、配管やブロックで形成することができる。
 開閉バルブV1,V2は、流路CHを開閉し、開閉バルブVpは流路Cpを開閉する。
 流量制御器FCは、例えば、マスフローコントローラなどで構成され、流路CHを上流から下流に向けて流れるガスの流量をコントロールする。
 上記した開閉バルブV1、流量制御器FC、開閉バルブV2、開閉バルブVpは、本発明の流体制御機器の一例であり、本発明の「流体制御機器」とは、ガスの流れを制御する流体制御に使用される機器であり、開閉弁(2方弁)、レギュレータ、プレッシャーゲージ、開閉弁(3方弁)、マスフローコントローラ等が含まれるが、これらに限定されるわけではない。また、本実施形態では、各流体制御ユニットA1~H2の構成を同様の構成としたが、これに限定されるわけではなく、互いに異なる構成でもよく、また、圧力計等の流体を制御しない流体機器も各流体制御ユニットA1~H2に含めることができる。
 また、各流体制御ユニットA1~H2の構成要素は、上流から下流に向けて一列に配置されることが好ましく、また、流体制御ユニットA1~H2は並列配置されることが好ましい。さらに、流体制御ユニットA1~H2は、合流流路MHC1,MHC2に対して直交する向きに配置されることが好ましい。このような配置とすることで、複数の流体制御ユニットA1~H2の配置に要するスペースを最小化することができる。
 合流流路MHC1,MHC2は、両端部が閉塞した流路であり、配管やマニホールドブロック等で形成され、これらは互いに同一の構造および寸法を有することが好ましい。
 合流流路MHC1,MHC2は、複数の流体制御ユニットA1~H2の各流路CHの下流端部が流体接続される複数の接続部LC1~RC2と、当該合流流路MHC1内で合流した混合ガスを導出する単一のガス導出部K1とをそれぞれ有する。
 合流流路MHC1,MHC2のガス導出部K1は、合流流路MHC1,MHC2の流路方向において中央位置に配置されている。合流流路MHC1,MHC2は、直線状に形成することができるが、中央位置に関して対称性を有していれば、湾曲していてもよい。
 合流流路MHC1,MHC2の複数の接続部LC1~RC2は、流路方向の中央位置に関して左右対称な位置に配置されている。すなわち、複数の接続部LC1~RC2は、ガス導出部K1に対して対称的に配置される。接続部LC1,RC1と接続部LC2,RC2とがそれぞれ左右対称な位置に配置されている。すなわち、複数の接続部LC1~RC2は、合流流路MHC1,MHC2の流路方向において、ガス導出部K1の一方側および他方側にそれぞれ複数かつ同数設けられている。
(尚、合流流路MHC1,MHC2のガス導出部K1から両側の接続部LC1,RC1までの部分をそれぞれ第1段部分流路T1とも呼び、それらの両側の部分をそれぞれ合流配管Jとも呼ぶ。)
 合流流路MHC1の接続部LC1には流体制御ユニットA1,C1が流体接続され、合流流路MHC1の接続部LC2には流体制御ユニットA2,C2が流体接続され、合流流路MHC1の接続部RC1には流体制御ユニットB1,D1が流体接続され、合流流路MHC1の接続部RC2には流体制御ユニットB2,D2が流体接続されている。
 同様に、合流流路MHC2の接続部LC1には流体制御ユニットE1,G1が接続され、合流流路MHC1の接続部LC2には流体制御ユニットE2,G2が接続され、合流流路MHC2の接続部RC1には流体制御ユニットF1,H1が接続され、合流流路MHC2の接続部RC2には流体制御ユニットF2,H2が接続されている。
 各接続部LC1~RC2にそれぞれ接続される2つの流路CHは、対向するように接続されていてもよいし、異なる方向を向くように接続されていてもよい。なお、本実施形態では、合流流路MHC1,MHC2の各接続部LC1~RC2に2つの流体制御ユニットを接続する場合を例に挙げたが、これに限定されるわけではなく、各接続部LC1~RC2に3つ以上の流体制御ユニットを流体接続することも可能である。
 合流流路MHC1,MHC2の各ガス導出部K1は、それぞれ接続流路P1,P2によって、メイン流路Mの合流部Rと流体接続されている。接続流路P1,P2は、同一の構造および寸法の配管等で形成されるのが好ましい。
 メイン流路Mは、プロセスチャンバ100に、複数のプロセスガスGの混合ガスを供給する、またはパージガスPGを供給するための流路であり、配管等で形成される。
 ここで、合流流路MHC1,MHC2は、メイン流路Mの合流部Rに対して対称的に配置されている。合流流路MHC1,MHC2の対称的な配置には、合流部Rに対して左右対称な配置、上下対称な配置、面対称な配置、線対称な配置であることが含まれ、これらのいずれかであればよい。また、合流部Rの中心点に関して点対称であってもよい。本実施形態では、2つの合流流路MHC1,MHC2を例示したが、3つ以上の合流流路を備えていてもよく、その場合は、合流部Rの中心点に関して3つ以上の合流流路を点対称に配置する。
 複数の接続部LC1~RC2をガス導出部K1に対して対称的に配置することで、接続部LC1からガス導出部K1までの流路長と接続部RC1からガス導出部K1までの流路の流路長を等しくすることができ、また、接続部LC2からガス導出部K1までの流路長と接続部RC2からガス導出部K1までの流路の流路長を等しくすることができる。
 加えて、合流流路MHC1,MHC2をメイン流路Mの合流部Rに対して対称的に配置することで、合流流路MHC1のガス導出部K1からメイン流路Mの合流部Rまでの流路長と、合流流路MHC2のガス導出部K1からメイン流路Mの合流部Rまでの流路長とを等しくすることができる。
 ガス供給装置1を上記構成とすることにより、図2に示すように、複数の流体制御ユニットA1,B1,C1,D1,E1,F1,G1,H1の流路CHの最下流側に配置された流体制御機器である開閉バルブV2からプロセスチャンバ100までの流路の流路長(または内容積)をそれぞれ等しくでき、また、複数の流体制御ユニットA2,B2,C2,D2,E2,F2,G2,H2の流路CHの最下流側に配置された流体制御機器である開閉バルブV2からプロセスチャンバ100までの流路の流路長(または内容積)をそれぞれ等しくできる。
 仮に、全ての流体制御ユニットA1~H2を並列に並べた場合には、各開閉バルブV2からプロセスチャンバ100までの流路長はそれぞれ異なるが、本実施形態では、対称的な配置関係にある流体制御ユニットの各開閉バルブV2からプロセスチャンバ100までの流路長を等しくすることができる。
 この結果、ガス供給装置1の省スペース化が可能で、かつ、ガス供給装置1から短時間で安定した濃度成分の混合ガスをプロセスチャンバ100に供給可能となる。
 また、本実施形態によれば、全ての流体制御ユニットA1~H2を並列に並べた場合と比べて、各流体制御ユニットA1~H2のプロセスチャンバ100までの流路長の短縮化が可能となる。
 上記実施形態では、2つの合流流路MHC1,MHC2を備える場合について説明したが、本発明はこれに限定されるわけではなく、1つの合流流路MHC1のみを使用した場合も本発明の実施形態に含まれる。
(第2の実施形態)
 図3は、本発明の第2の実施形態に係るガス供給装置10の概略構成図である。
本実施形態は、各導入口TCから導出口TOまでの流路長又は内容積を互いに等しい又は実質的に等しいトーナメント状接続流路Tを用い、複数の流体制御ユニットA1~H6から導出されるガスを導入しトーナメント状に合流させて外部へ導出させる形態である。
本実施形態のガス供給装置10は、流体制御ユニットA1~H6と、トーナメント状接続流路Tと、合流配管Jから構成される。
流体制御ユニットA1~H6の各々は、第1の実施形態の流体制御ユニットA1~H2と同様で、流路CH、開閉バルブV1(いずれも図1参照)、流量制御器FC、開閉バルブV2、開閉バルブVp(図1参照)を含み、流路CHを開閉するとともに流路CHを上流から下流に向けて流れるガスの流量をコントロールするユニットである。図3では、簡略化のために、流路CH、開閉バルブV1、開閉バルブVpの図示を省略し、流量制御器FC、開閉バルブV2を流体制御ユニットA1についてのみ図示している。
前記トーナメント状接続流路Tは、
 前記流体制御ユニットA1~H6にそれぞれ接続可能な導入口TCを有する2本の第1段部分流路T1(Nは2以上の整数)と、
 第k―1段部分流路Tk-1が(kは2からNまでの整数)、2本ずつ合流して形成される第k段部分流路Tkと、
 第N段部分流路TNが合流して形成され、ガスを外部へ導出する導出口TOを有する1本の第N+1段部分流路TN+1と、を含む、
 N+1段の部分流路を有するトーナメント状の流路である。
 また、トーナメント状接続流路Tの各導入口TCから導出口TOまでの流路長(又は内容積)が互いに(実質的に)等しく形成されている。
この構成は、例えば、段ごとに全ての部分流路Tk(kは1からNまでの整数)の流路長を(実質的に)等しくし、流路を同一内径で形成することにより実現できる。
本実施形態のトーナメント状接続流路Tは、N=3の例であり、8本の第1段部分流路T1と、この第1段部分流路T1が2本ずつ合流部U1で合流して形成された4本の第2段部分流路T2と、この第2段部分流路T2が2本ずつ合流部U2で合流して形成された2本の第3段部分流路T3と、この2本の第3段部分流路T3合流部がU3で合流して形成された1本の第4部分流路T4とを含む。
各部分流路T1~T4は、配管で形成してもよく、マニホールドや流路ブロックで構成してもよい。また、段ごとに全ての部分流路の流路径が等しいことが好ましい。
 導入口TCは、各第1段部分流路T1の上流側端部に設けられ、各導入口TCに一又は複数の流体制御ユニットA1~H6を直接又は合流配管Jを介して接続できるように構成されている。合流配管Jは、複数の流体制御ユニットの下流側を互いに流体接続する配管で、第1の実施形態の合流流路MHC1又はMHC2の接続部LC1,RC1の外側部分に相当する。
図3では、流体制御ユニットA1~H6は、各導入口TCに接続されるグループA~Hに分けて示している。
グループAでは、流体制御ユニットA2及びA3は導入口TCに直接接続され、流体制御ユニットA1及びA4は導入口TCに合流配管Jを介して接続されている。また、グループHでは、流体制御ユニットH3及びH4は導入口TCに直接接続され、流体制御ユニットH1,H2,H5及びH6は導入口TCに合流配管Jを介して接続されている。
一方、グループBでは、流体制御ユニットB1及びB2は導入口TCに直接接続され、グループC、D、F、Gでも、同様に2つの流体制御ユニットが導入口TCに直接接続されている。また、グループEでは、1つの流体制御ユニットE1が導入口TCに直接接続されている。
上記のように、トーナメント状接続流路Tの各導入口TCから導出口TOまでの流路長(又は内容積)が互いに(実質的に)等しく形成されているので、各導入口TCに直接接続された流体制御ユニットA2,A3,B1,B2,C1,C2,D1,D2,E1,F1,F2,G1,G2,H3及びH4から導出口TOまでの流路長が互いに(実質的に)等しくなる。
また、グループAにおける導入口TCから合流配管Jの接続部JCまでの距離をグループHにおける導入口TCから合流配管Jの最初の接続部JCまでの距離を同じにすれば、接続部JCに接続された流体制御ユニットA1,A4,H2及びH5から導出口TOまでの流路長が互いに(実質的に)等しくなる。
 図4は、図3のガス供給装置の各流体制御ユニットA1~H6からプロセスチャンバ100(導出口TO)までの流路長の関係を説明するための図表である。
 このように、本実施形態でも、第1の実施形態と同様に、対称的な配置関係にある流体制御ユニットの各開閉バルブV2からプロセスチャンバ100までの流路長を等しくすることができ、全ての流体制御ユニットA1~H6を並列に並べた場合と比べて、各流体制御ユニットA1~H2のプロセスチャンバ100までの流路長の短縮化が可能となる。その結果、ガス供給装置10の省スペース化が可能で、かつ、ガス供給装置10から短時間で安定した濃度成分の混合ガスをプロセスチャンバ100に供給可能となる。
 上記実施形態では、段数N=3のトーナメント状流路に、21個の流体制御ユニットA1~H6を接続した場合について説明したが、本発明はこれに限定されるわけではない。トーナメント状接続流路Tの段数Nを増やすことにより、プロセスチャンバ100までの流路長を等しく保ちつつ、より多くの流体制御ユニットを接続することができる。
(第1の実施形態と第2の実施形態の関係)
 図1に示す第1の実施形態は、第2の実施形態におけるN=2のトーナメント状接続流路に該当する。すなわち、第1の実施形態の合流流路MHC1,MHC2のガス導出部K1から両側の接続部LC1,RC1までの部分は、それぞれ第1段部分流路T1に相当し、それらの両側の部分は、それぞれ合流配管Jに相当し、接続部LC2,RC2は接続部JCに相当し、接続流路P1,P2は、それぞれ第2段部分流路T2に相当し、メイン流路Mは、第3段部分流路T3に相当する。
(第3の実施形態)
 図5は、本発明の第3の実施形態に係るガス供給装置20の概略構成図である。
 本実施形態は、第2の実施形態において、トーナメント状接続流路Tの各合流部U1,U2,U3の上流側近傍にそれぞれ開閉バルブVSを設けたもので、各開閉バルブVSの上流側を他の部分から遮断できるようにした形態である。
 この開閉バルブVSがないと、例えば、グループA(流体制御ユニットA1~A4)が使用されないとき、グループA下流の合流部U1からこれらの流体制御ユニットA1~A4の各開閉バルブV2までの流路が、いわゆる盲腸配管(Dead Space)になって、そこに存在する残留ガス等のために、プロセスチャンバ100へ供給するプロセスガス種の切替えやパージに時間が掛かるという問題が発生する恐れがある。
 このような流体制御ユニットのグループA~Hいずれかが使用されない場合とは、例えば以下のよう場合がある。
1)ガス供給装置20がグループA~Hごとに異なるプロセスガスを流すように構成されている場合において、処理プロセスの切替えにより、あるプロセスガスが使用されなくなったため、対応するグループが使用されなくなった場合。
2)本ガス供給装置20を含むプロセス装置の開発段階では構成に含まれていたグループを、プロセス装置の量産段階では削除した場合。この場合において、開発段階の配管系を量産段階のプロセス装置に流用すると、削除したグループに接続していた部分が盲腸配管になる。
 本実施形態では、各合流部U1,U2,U3の上流側近傍にそれぞれ開閉バルブVSを設けたので、使用されないグループ下流の合流部U1,U2,U3の上流側の開閉バルブVSを閉じることにより、その開閉バルブVSの上流側の配管系を他の部分から遮断することができ、これにより盲腸配管の形成を防ぐことができる。
 これらの開閉バルブVS(仕切弁ともいう)は、自動バルブでもよいが、開閉頻度が少ない場合は手動バルブでもよい。また、これらの開閉バルブVSは、盲腸配管発生防止のため、合流部U1,U2,U3にできるだけ近づけて配置する。
 図6は、本実施形態の他のガス供給装置30の流路切替えの例を示す概略図で、(a)は開発段階での構成例、(b)は量産段階での構成例を示す。ここで、「開発段階」「量産段階」とは、ガス供給装置を採用するプロセス装置の開発段階、量産段階をいう。
図6(a)に示す開発段階の装置には、グループC、Dの流体制御ユニットC1~D2が構成に含まれていたが、図6(b)に示す量産段階の装置では、グループC、Dの流体制御ユニットC1~D2を削除している。この場合において、量産段階の装置に開発段階の配管系を流用すると、グループC,Dに接続していた部分(破線で示す)が盲腸配管になる。
しかし、本実施形態のガス供給装置30では、グループC,Dからの流路の、当該流路がグループA,Bからの流路と合流する合流部U2の上流側近傍に設けられた開閉バルブVS1を閉じることにより、上記グループC,Dに接続していた部分(破線で示す)を他の部分から切り離すことができ、盲腸配管の発生を防ぐことができる。
このように、本実施形態のガス供給装置30をプロセス装置に採用すれば、開発段階において含まれていた流体制御ユニットの一部を量産段階において削除する場合でも、上記盲腸配管の問題を防ぎつつ、量産段階の装置にガス供給装置30の配管系をそのまま流用することができるため、配管系の設計変更等の開発コストを削減することができる。
 なお、本発明は、上述した実施形態に限定されない。当業者であれば、本発明の範囲内で、種々の追加や変更等を行うことができる。
1,10、20,30 :ガス供給装置
100  :プロセスチャンバ
A1~H6 :流体制御ユニット
CH   :流路
Cp   :流路
FC   :流量制御器
G    :プロセスガス
J    :合流配管 
JC   :(合流配管Jの)接続部
K1   :ガス導出部
LC1,LC2,RC1,RC2 :接続部
M    :メイン流路
MHC1,MHC2 :合流流路
P1,P2 :接続流路
PG   :パージガス
R    :合流部
T    :トーナメント状接続流路
TC   :導入口TC
T1   :第1段部分流路
T2   :第2段部分流路
TO   :導出口
U1,U2,U3:合流部
V1   :開閉バルブ
V2   :開閉バルブ
Vp   :開閉バルブ
VS   :開閉バルブ
 

 

Claims (7)

  1.  上流から下流へ向かうガスが流通する流路と、当該流路の中途に設けられ当該流路を流通するガスの流れを制御する流体制御機器とをそれぞれ含む複数の流体制御ユニットと、
     前記複数の流体制御ユニットと流体接続される複数の接続部と、前記複数の接続部を通じて導入されたガスを導出する単一のガス導出部と、を含む合流流路と、を有し、
     前記複数の接続部のうち少なくとも一つの接続部は、前記合流流路の流路方向において前記ガス導出部に対して対称的に配置され、かつ、前記複数の接続部の各々には、2以上の前記流体制御ユニットが流体接続されている、ガス供給装置。
  2.  前記複数の接続部は、前記合流流路の流路方向において、前記ガス導出部の一方側および他方側にそれぞれ複数かつ同数設けられている、請求項1に記載のガス供給装置。
  3.  前記合流流路は、前記ガス導出部の両側近傍にそれぞれ設けられた開閉バルブを有し、各当該開閉バルブの上流側を他の部分から遮断できるように構成されている、請求項1又は2に記載のガス供給装置。
  4.  上流から下流へ向かうガスが流通する流路と、当該流路の中途に設けられ当該流路を流通するガスの流れを制御する流体制御機器とをそれぞれ含む複数の流体制御ユニットと、
    前記複数の流体制御ユニットと流体接続され、当該複数の流体制御ユニットから導出されるガスを導入し、トーナメント状に合流させて外部へ導出するトーナメント状接続流路とを有するガス供給装置であって、
     前記トーナメント状接続流路は、
     前記流体制御ユニットにそれぞれ接続可能な導入口を有する2本の第1段部分流路(Nは2以上の整数)と、
     第k―1段部分流路が(kは2からNまでの整数)、2本ずつ合流して形成される第k段部分流路と、
     第N段部分流路が合流して形成され、前記ガスを外部へ導出する導出口を有する1本の第N+1段部分流路と、を含む、
     N+1段の部分流路を有するトーナメント状の流路であり、
    前記トーナメント状接続流路の各前記導入口から前記導出口までの流路長又は内容積が互いに等しい又は実質的に等しい、ガス供給装置。
  5.  前記トーナメント状接続流路の各ガス導入口には、一又は複数の前記流体制御ユニットが直接に、又は、複数の前記流体制御ユニットが当該流体制御ユニットの下流側を互いに流体接続する合流配管を介して接続されている、請求項4に記載のガス供給装置。
  6.  前記トーナメント状接続流路は、前記第k段部分流路(kは1からNまでの整数)が2本ずつ合流する箇所の上流側近傍にそれぞれ設けられた開閉バルブを有し、各当該開閉バルブの上流側を他の部分から遮断できるように構成されている、請求項4又は5に記載のガス供給装置。
  7.  密閉されたプロセスチャンバ内においてプロセスガスによる処理工程を要する半導体装置の製造プロセスにおいて、前記プロセスガスの供給制御に請求項1ないし6のいずれかに記載のガス供給装置を用いた半導体製造装置。

     
PCT/JP2022/009314 2021-03-19 2022-03-04 ガス供給装置および半導体製造装置 WO2022196386A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202280021823.5A CN116997993A (zh) 2021-03-19 2022-03-04 气体供给装置和半导体制造装置
JP2023506965A JPWO2022196386A1 (ja) 2021-03-19 2022-03-04
KR1020237029126A KR20230135655A (ko) 2021-03-19 2022-03-04 가스 공급 장치 및 반도체 제조 장치

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-045537 2021-03-19
JP2021045537 2021-03-19

Publications (1)

Publication Number Publication Date
WO2022196386A1 true WO2022196386A1 (ja) 2022-09-22

Family

ID=83320337

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/009314 WO2022196386A1 (ja) 2021-03-19 2022-03-04 ガス供給装置および半導体製造装置

Country Status (5)

Country Link
JP (1) JPWO2022196386A1 (ja)
KR (1) KR20230135655A (ja)
CN (1) CN116997993A (ja)
TW (1) TW202242960A (ja)
WO (1) WO2022196386A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1028855A (ja) * 1996-07-12 1998-02-03 Shin Etsu Handotai Co Ltd ガス供給装置及び気相成長用設備
WO2008023711A1 (fr) * 2006-08-23 2008-02-28 Horiba Stec, Co., Ltd. Appareil à tableau de distribution de gaz intégré

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3695611B2 (ja) 1996-07-02 2005-09-14 ソニー株式会社 移載搬送装置及び移載搬送方法
JP2018098387A (ja) 2016-12-14 2018-06-21 東京エレクトロン株式会社 基板処理装置
KR102162072B1 (ko) 2018-07-18 2020-10-06 주식회사 프리티 시술 포트폴리오 중개 시스템 및 방법

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1028855A (ja) * 1996-07-12 1998-02-03 Shin Etsu Handotai Co Ltd ガス供給装置及び気相成長用設備
WO2008023711A1 (fr) * 2006-08-23 2008-02-28 Horiba Stec, Co., Ltd. Appareil à tableau de distribution de gaz intégré

Also Published As

Publication number Publication date
CN116997993A (zh) 2023-11-03
TW202242960A (zh) 2022-11-01
KR20230135655A (ko) 2023-09-25
JPWO2022196386A1 (ja) 2022-09-22

Similar Documents

Publication Publication Date Title
US9556966B2 (en) Gas supplying apparatus
KR101466998B1 (ko) 집적형 가스 패널 장치
JPH10311450A (ja) 流体制御器用継手
KR20010089213A (ko) 유체 제어장치
TWI650499B (zh) 流路方塊及流體供給控制裝置
US9471065B2 (en) Integrated type gas supplying apparatus
TWI610039B (zh) 沖洗線路變更用塊接頭及流體控制裝置
KR20170085969A (ko) 부가적으로 제작된 가스 분배 매니폴드
WO2004036099A1 (ja) ガス集積弁
WO2007032146A1 (ja) 流体制御装置
JP7061808B2 (ja) 継手および流体制御装置
KR20120093384A (ko) 혼합 가스 공급 장치
WO2022196386A1 (ja) ガス供給装置および半導体製造装置
WO2004051125A1 (ja) 流体制御装置
JPS63501144A (ja) 反応容器のガス取入れ装置
KR20210052294A (ko) 밸브 장치 및 유체 제어 장치
JP6486035B2 (ja) マニホールドバルブおよび流体制御装置
JPWO2022196386A5 (ja)
CN216418976U (zh) 均匀分配流量的天然气掺氢装置
CN212430461U (zh) 一种有高度差的等压调整系统
JP3858155B2 (ja) 流体制御装置
JP2017015167A (ja) ブロックバルブ、ブロックバルブを有する流体制御装置、及びブロックバルブを用いたチャンバの洗浄方法
CN114203512A (zh) 一种半导体加工设备及其管路结构

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22771140

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023506965

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20237029126

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020237029126

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 18279712

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 202280021823.5

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22771140

Country of ref document: EP

Kind code of ref document: A1