WO2022196174A1 - 建設機械 - Google Patents
建設機械 Download PDFInfo
- Publication number
- WO2022196174A1 WO2022196174A1 PCT/JP2022/004541 JP2022004541W WO2022196174A1 WO 2022196174 A1 WO2022196174 A1 WO 2022196174A1 JP 2022004541 W JP2022004541 W JP 2022004541W WO 2022196174 A1 WO2022196174 A1 WO 2022196174A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- battery
- power supply
- supply system
- power
- construction machine
- Prior art date
Links
- 238000010276 construction Methods 0.000 title claims description 32
- 238000006243 chemical reaction Methods 0.000 claims description 16
- 238000004891 communication Methods 0.000 claims description 14
- 238000001514 detection method Methods 0.000 claims description 7
- 238000003745 diagnosis Methods 0.000 claims description 4
- 239000007858 starting material Substances 0.000 abstract description 8
- 230000000694 effects Effects 0.000 description 6
- 238000010586 diagram Methods 0.000 description 5
- 238000000034 method Methods 0.000 description 5
- 238000012545 processing Methods 0.000 description 5
- 230000008569 process Effects 0.000 description 4
- 230000004913 activation Effects 0.000 description 2
- 238000009412 basement excavation Methods 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 230000009471 action Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 230000007257 malfunction Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60R—VEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
- B60R16/00—Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for
- B60R16/02—Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements
- B60R16/03—Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements for supply of electrical power to vehicle subsystems or for
- B60R16/033—Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements for supply of electrical power to vehicle subsystems or for characterised by the use of electrical cells or batteries
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02F—DREDGING; SOIL-SHIFTING
- E02F9/00—Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
Definitions
- the present invention relates to construction machinery.
- Electrical devices connected to low-voltage batteries include devices that require power supply when the vehicle starts.
- the power supply voltage becomes unstable if the voltage of the low-voltage battery drops when the vehicle is started due to natural discharge caused by leaving the vehicle for a long period of time, continuous use of the headlights while the engine is stopped, etc. cause malfunction. Therefore, when the voltage of the low-voltage battery is low, it is necessary to take measures such as prohibiting the starting of the vehicle body.
- hydraulic excavators have a large engine and a large drag torque of the main pump, so the required starting torque is large.
- hydraulic excavators need to maintain a sufficient low-voltage battery voltage, and the impact of a drop in battery voltage is large.
- Japanese Unexamined Patent Application Publication No. 2002-200000 describes a vehicle that uses high-voltage electrical energy including a high-voltage battery, and includes a control device that controls travel of the vehicle, and a low-voltage electrical energy including a low-voltage battery.
- a low-voltage power supply circuit for supplying a control device, battery voltage detection means for detecting the voltage of the low-voltage battery, and converter means for converting the electrical energy of the high-voltage system to a low voltage and charging the low-voltage battery.
- the converter means when there is a request to start the vehicle, if the detected voltage of the low-voltage battery is lower than a predetermined minimum reference voltage, the converter means is activated prior to permitting the operation of the control device. and recovery means for recovering the voltage of the low voltage battery to the lowest reference voltage by using the vehicle.
- the low-voltage battery when it is determined that the voltage of the low-voltage battery is lower than the specified voltage when there is a request to start the vehicle, the low-voltage battery is charged from the high-voltage side battery to a voltage higher than the specified voltage through the converter. ing.
- a hydraulic excavator uses a low-voltage battery to start the engine with a starter, so a sufficient power supply is required, and it takes a long time to charge the battery.
- the present invention has been made in view of the above problems, and can keep the voltage of a low-voltage battery constant even when the vehicle body is left for a long period of time.
- An object of the present invention is to provide a construction machine capable of reducing restrictions on electrical equipment that must operate.
- the present application includes a plurality of means for solving the above problems.
- it has a first power supply system and a second power supply system, and power is supplied from the first power supply system.
- the first battery is connected to the first power supply system to which the first battery is connected, and the first power supply system is connected to the first battery.
- An electric/electronic device operated by electric power supplied from one battery through the first power supply system, a second battery having a higher rated voltage than the first battery, and the second battery are connected.
- a voltage conversion device that converts voltage between a first power supply system and the second power supply system, converts the voltage of the power supplied from the second power supply system, and supplies the power to the first power supply system.
- the electrical equipment is driven by power supply from the second power supply system, and the electrical/electronic equipment has a function of starting the construction machine by power supply from the first power supply system.
- the electrical and electronic equipment stores electric power stored in the first battery in a predetermined amount according to electric power necessary for starting the construction machine when the construction machine is stopped without being started.
- the voltage conversion device converts the power of the second power supply system to convert the power of the first power supply system. Assume that the first battery is to be charged.
- the voltage of the low-voltage battery can be kept constant even when the vehicle body is left for a long period of time. Constraints can be reduced.
- FIG. 1 is a diagram schematically showing extracted main parts of a power supply circuit system and a hydraulic circuit system according to a first embodiment
- 4 is a flowchart showing details of processing of the power supply circuit system
- FIG. 6 is a diagram schematically showing extracted main parts of a power supply circuit system and a hydraulic circuit system according to a second embodiment
- FIG. 1 A first embodiment of the present invention will be described with reference to FIGS. 1 to 3.
- FIG. 1 A first embodiment of the present invention will be described with reference to FIGS. 1 to 3.
- FIG. 1 A first embodiment of the present invention will be described with reference to FIGS. 1 to 3.
- FIG. 1 A first embodiment of the present invention will be described with reference to FIGS. 1 to 3.
- FIG. 1 A first embodiment of the present invention will be described with reference to FIGS. 1 to 3.
- FIG. 1 is a diagram showing a hydraulic excavator as an example of construction machinery according to the present embodiment.
- FIG. 2 is a diagram schematically showing the essential parts of the power supply circuit system and the hydraulic circuit system according to the present embodiment.
- a hydraulic excavator 100 is a multi-joint front device (front device) configured by connecting a plurality of driven members (a boom 111, an arm 112, and a bucket (working tool) 113) that rotate in the vertical direction. 110, and an upper revolving body 120 and a lower traveling body 130 that constitute a vehicle body.
- the upper revolving body 120 is configured by arranging each member on a revolving frame 121 serving as a base, and the revolving frame 121 constituting the upper revolving body 120 can revolve with respect to the lower traveling body 130 .
- the base end of the boom 111 of the front device 110 is supported by the front part of the upper rotating body 120 so as to be vertically rotatable.
- a bucket 113 is supported at the other end of the arm 112 so as to be vertically rotatable.
- the boom 111, the arm 112, the bucket 113, the upper rotating body 120, and the lower traveling body 130 are hydraulic actuators such as the boom cylinder 6, the arm cylinder 7, the bucket cylinder 8, the swing motor 9, and the left and right traveling motors 10 (however, (only one travel motor is shown).
- a control valve 5 for controlling the flow rate and direction of pressure oil supplied from the main pump 4 to each hydraulic actuator 6, 7, 8, 9, 10, and a pilot pressure are generated.
- a hydraulic circuit system such as a pilot pump 30 (see FIG. 2) is mounted.
- a driver's cab (cab) 122 is provided in front of the upper revolving body 120 for an operator to board.
- a plurality of operating devices for outputting operation signals for operating the hydraulic actuators 6, 7, 8, 9, 10, starting and stopping of the engine 2 (in other words, hydraulic excavator
- a start/stop device (not shown) for starting and stopping the engine 100 is arranged.
- the start/stop device is, for example, a key switch, and an operator operates the key switch to issue a request to start or stop the engine 2 .
- the power supply circuit system has a first power supply system 14 and a second power supply system 19 .
- Information can be exchanged between a plurality of devices that constitute the electrical devices (electrical/electronic devices) connected to the first power supply system 14 and the second power supply system 19 via CAN (Controller Area Network) or the like.
- CAN Controller Area Network
- illustration of such a communication network is omitted.
- first battery 12 Connected to the first power supply system 14 are a first battery 12 as a power storage device and an electric/electronic device that operates on power supplied from the first battery 12 via the first power supply system 14 .
- the electrical and electronic devices connected to the first power supply system 14 include a vehicle body controller 13 that monitors and controls the state of the vehicle body of the hydraulic excavator 100 and communicates with each device, and an engine controller that monitors and controls the state of the engine 2 .
- a unit 22 (ECU: Engine Control Unit), a starter motor 11 that starts the engine 2, a communication device 17 that transmits information such as the state of the vehicle body to the outside, and are attached to the hydraulic excavator 100 like a headlight and various sensors.
- the electric device 16 also includes a key switch or the like for the operator to request start or stop of the hydraulic excavator 100 .
- the starter motor 11 starts the engine 2 using power supplied from the first battery 12 via the first power supply system 14 in response to a start request from the operator.
- the second power supply system 19 includes a second battery 18, which is a power storage device having a higher rated voltage than the first battery 12, and electric power supplied from the second battery 18 via the second power supply system 19. It is connected to an electrical device operated by
- Electric devices connected to the second power supply system 19 include an assist motor 3 that drives the main pump 4 together with the engine 2, a generator 20 that receives power from the engine 2 to generate electricity, and an engine that cools the radiator of the engine 2. There are a fan 21, a pilot pump motor 23 that drives a pilot pump 30 that generates pilot pressure, and the like.
- the second battery 18 is provided with a battery management unit 15 (BMU: Battery Management Unit).
- the battery management unit 15 has a function of controlling the state of the second battery 18 and a function of a battery state detection device that detects the state of the second battery 18 .
- the assist motor 3 uses electric power supplied from the second battery 18 via the second power supply system 19 to assist the driving of the engine 2 and drives the main pump 4 together with the engine 2 .
- the first power supply system 14 and the second power supply system 19 are configured with different rated voltages (DC voltages). Therefore, between the first power supply system 14 and the second power supply system 19, voltage conversion is performed between the first power supply system 14 and the second power supply system 19, and the voltage from the second power supply system 19 is A DC-DC converter 24, which is a voltage conversion device that converts the voltage of the power to be supplied and supplies it to the first power supply system 14, is connected. That is, the power generated by the generator 20 can be charged to the second battery 18 via the second power supply system 19, converted by the DC-DC converter 24, and passed through the first power supply system 14. The first battery 12 can also be charged.
- the hydraulic excavator 100 is a hybrid hydraulic excavator in which the main pump 4 is driven by the engine 2 and the assist motor 3. As soon as it is started, the assist motor 3 is driven by the supply of power from the second power supply system 19 to drive the main pump 4 and perform work operations at the construction site including excavation, turning, traveling, and the like. .
- FIG. 3 is a flowchart showing the details of the processing of the power supply circuit system.
- step S100 when a stop request is made by the operator operating the key switch and the operation of the engine 2 is stopped (step S100), the vehicle body controller 13 keeps the first battery even if there is no start request from the operator. 12, and determines whether or not it is necessary to start up the electrical/electronic equipment connected to the first power supply system 14 (step S110).
- step S110 it is necessary to start the device when a certain period of time or condition is satisfied, such as when the time has elapsed since the engine 2 was last started, or when a specified time has come. Determine that there is.
- the communication device 17 is an electrical/electronic device to be determined as to whether or not activation is necessary. Even when the excavator 100 is stopped (that is, when the engine 2 is stopped), the communication device 17 is periodically activated and transmits information regarding the state of the vehicle body to the outside.
- the electrical equipment 16 may also include equipment that requires regular startup.
- step S110 If the determination result in step S110 is NO, the determination in step S110 is repeated until the determination result becomes YES.
- step S110 the vehicle body controller 13 starts the electric/electronic device determined to need to be started in step S110, and measures the voltage of the first battery 12. , whether or not the voltage of the first battery 12 is lower than a predetermined voltage (minimum reference voltage), that is, whether or not the first battery 12 needs to be charged (step S120).
- a predetermined voltage minimum reference voltage
- Various voltages can be considered as the minimum reference voltage (storage reference voltage) used to determine whether the charging of the first battery 12 is necessary.
- a minimum reference voltage is set according to the power required to drive and start the engine 2 (construction machine 100), for example, once, and when the voltage falls below the minimum reference voltage, the first battery 12 needs to be charged. It is conceivable to judge that If the voltage detected by the vehicle body controller 13 fluctuates due to the current consumption of the activated electrical/electronic equipment, the voltage is measured at the timing when the operation of the electrical/electronic equipment stabilizes.
- step S120 If the determination result in step S120 is YES, the vehicle body controller 13 activates the DC-DC converter 24 and controls the BMU 15 to activate the second battery to supply electric power to the DC-DC converter 24. is started, and the first battery 12 is charged with the electric power voltage-converted by the DC-DC converter 24 (step S130).
- step S130 When the process of step S130 is completed, or when the determination result of step S120 is NO, the vehicle body controller 13 subsequently receives the failure diagnosis information and position information of the devices connected to the first power supply system 14. Information and deterioration information are acquired and transmitted to the outside by the communication device 17 (step S140).
- the administrator of the vehicle body (hydraulic excavator 100) receives the failure diagnosis information, position information, and the like transmitted from the communication device 17, so that a maintenance plan can be drawn up remotely without directly checking the vehicle body. .
- the vehicle body controller 13 measures the remaining capacity of the second battery 18 and determines whether the capacity of the second battery 18 is sufficient to charge the first battery 12 (step S150).
- the second battery 18 is It has a larger capacity than the first battery 12 and has a capacity (maximum capacity) that allows the first battery 12 to be charged multiple times when the second battery 18 is fully charged. There is However, even the second battery 18 with a relatively large capacity consumes power each time the first battery 12 is charged. It is determined by the processing of
- step S150 If the determination result in step S150 is YES, the process returns to step S110.
- the second battery 18 has a built-in BMU 15 inside, which can measure the temperature, voltage, capacity, etc. inside the battery to monitor, control, and protect the battery.
- the BMU 15 measures the remaining amount of the second battery 18 and determines that there is sufficient remaining amount to charge the first battery 12 (that is, when the determination result in step S150 is YES).
- the electrical and electronic equipment connected to the first power supply system 14 is shut down.
- step S150 voltage conversion by the DC-DC converter 24, that is, charging from the second battery 18 to the first battery 12 is prohibited, and the first battery 12 and the first battery 12 are prohibited from being charged. 2, to the administrator via the communication device 17 (step S160).
- step S170 the electrical and electronic devices connected to the first power supply system 14 are restricted to allow only a minimum amount of operation. This is because the electric power of the first battery 12 is consumed by the electrical and electronic equipment in a state in which charging from the second battery 18 to the first battery 12 is prohibited, so that the electric power of the first battery 12 is used by the engine. It is a process to prevent falling below sufficient power to start 2.
- a first power supply system 14 and a second power supply system 19 are provided. is connected to a first battery 12 and a first power supply system 14 to which the first battery 12 is connected.
- Electric and electronic equipment (starter motor 11, vehicle body controller 13, electric equipment 16, communication device 17, ECU 22) operated by electric power supplied via power supply system 14; is connected to a second power supply system 19 to which the second battery 18 is connected, and operated by power supplied from the second battery 18 through the second power supply system 19; Voltage conversion is performed between the electric devices (assist motor 3, engine fan 21, pilot pump motor 23) driven at a voltage higher than the first power supply system 14 and the second power supply system 19, and the second A voltage conversion device (DC-DC converter 24) that converts the voltage of the power supplied from the power supply system 19 and supplies it to the first power supply system 14, and the electric device (vehicle body controller 13) is the second power supply
- the electric and electronic equipment includes a function (starter motor 11) for starting the construction machine (hydraulic excavator 100) by electric power supply from the
- the voltage conversion device converts the power of the second power supply system 19. Since the first battery 12 of the first power supply system 14 is charged by conversion, the voltage of the low voltage battery can be kept constant even if the vehicle body is left for a long period of time, and immediately when the vehicle body is requested to start. In addition to being able to start the vehicle, it is possible to reduce restrictions on electrical equipment that must be operated while the vehicle is stopped.
- the main pump is driven by the engine and the assist motor, but in the present embodiment, the main pump is driven by the main pump driving motor.
- FIG. 4 is a diagram schematically showing the essential parts of the power circuit system and the hydraulic circuit system according to the present embodiment.
- the same reference numerals are given to the same members as in the first embodiment, and the description thereof is omitted.
- the power supply circuit system has a first power supply system 14 and a second power supply system 29 .
- Information can be exchanged between a plurality of devices that constitute the electric devices (electrical/electronic devices) connected to the first power supply system 14 and the second power supply system 29 via CAN (Controller Area Network) or the like.
- CAN Controller Area Network
- illustration of such a communication network is omitted.
- first battery 12 Connected to the first power supply system 14 are a first battery 12 as a power storage device and an electric/electronic device that operates on power supplied from the first battery 12 via the first power supply system 14 .
- the electric and electronic devices connected to the first power supply system 14 include a vehicle body controller 13 that monitors and controls the state of the vehicle body of the hydraulic excavator 100, communicates with each device, and transmits information such as the state of the vehicle body to the outside.
- a communication device 17 There are a communication device 17, a plurality of electric devices 16 attached to the hydraulic excavator 100 such as a headlight and various sensors, an inverter 26 for driving a main pump drive motor 25, and the like.
- the electrical equipment 16 also includes a key cylinder and the like, through which the operator issues a request to start or stop the hydraulic excavator 100 .
- the second power supply system 29 includes a second battery 18, which is a power storage device having a higher rated voltage than the first battery 12, and electric power supplied from the second battery 18 via the second power supply system 29. , and an on-vehicle charger 28 and a three-phase connector 27 for supplying electric power from an external power supply to the second power supply system 29 are connected.
- Electric devices connected to the second power supply system 29 include a main pump drive motor 25 that drives the main pump 4 using power supplied from the second battery 18 via the second power supply system 19 .
- the second battery 18 is provided with a battery management unit 15 (BMU: Battery Management Unit).
- the battery management unit 15 has a function of controlling the state of the second battery 18 and a function of a battery state detection device that detects the state of the second battery 18 .
- AC power supplied to the hydraulic excavator 100 from an external three-phase power supply is input to the on-board charger 28 via the three-phase connector 27, converted to DC power by the on-board charger 28, and supplied to the second power supply system 19. supplied.
- the second battery 18 is charged with electric power supplied from the outside via an on-board charger 28 and supplies drive power for the main pump drive motor 25 .
- the first power supply system 14 and the second power supply system 29 are configured with different rated voltages (DC voltages). Therefore, between the first power supply system 14 and the second power supply system 29, voltage conversion is performed between the first power supply system 14 and the second power supply system 29, and the voltage from the second power supply system 29 is A DC-DC converter 24, which is a voltage conversion device that converts the voltage of the power to be supplied and supplies it to the first power supply system 14, is connected. That is, the power generated by the generator 20 can be charged to the second battery 18 via the second power supply system 29, converted by the DC-DC converter 24, and passed through the first power supply system 14. The first battery 12 can also be charged.
- the hydraulic excavator 100 is an electric hydraulic excavator in which the main pump 4 is driven by the main pump drive motor 25, and is started by driving the inverter 26 with electric power supplied from the first power supply system 14.
- the main pump 4 is driven by driving the main pump driving motor 25 by supplying electric power from the second power supply system 29 or an external power supply, and the work at the construction site including excavation operation, turning operation, traveling operation, etc. take action.
- the vehicle body controller 13 controls the power supply circuit system by the processing described with reference to FIG. It may be configured to perform the same processing as the controller 13 .
- the specific condition for starting the electrical equipment is set to the elapsed time from the previous startup time or the prescribed time.
- the state of the electrical and electronic equipment connected to the first power supply system 14, the reception of the activation request signal of the electrical equipment, the voltage and remaining battery level of the first battery 12, the deterioration state, etc. The determination may be made according to the conditions of .
- the present invention is not limited to those having all the configurations described in the above embodiments, and includes those with some of the configurations omitted.
- each of the above configurations, functions, etc. may be realized by designing a part or all of them, for example, with an integrated circuit.
- each of the above configurations, functions, etc. may be realized by software by a processor interpreting and executing a program for realizing each function.
Landscapes
- Engineering & Computer Science (AREA)
- Mining & Mineral Resources (AREA)
- Civil Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Structural Engineering (AREA)
- Power Engineering (AREA)
- Mechanical Engineering (AREA)
- Operation Control Of Excavators (AREA)
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
Abstract
第2の電源系(19)からの電力の供給により駆動することで作業を行う電気機器と、第1の電源系(14)からの電力の供給により油圧ショベル(100)を始動するスタータモータ(11)とを有し、車体コントローラ(13)は、油圧ショベル(100)が始動せずに停止している場合において、第1の電池(12)に蓄えられた電力が油圧ショベル(100)のエンジン(2)の始動に必要な電力に応じて予め定めた蓄電基準値を下回った場合には、第1の電池(12)への充電が必要であると判定し、DC-DCコンバータ(24)によって第2の電源系(19)の電力を変換して第1の電源系(14)の第1の電池(12)に充電する。これにより、車体の長期放置においても、低電圧の電池の電圧を一定に保つことができ、車体始動要求時に直ちに始動することができるとともに、車体停止中に動作が必要な電気機器の制約を低減することができる。
Description
本発明は、建設機械に関する。
近年、環境への配慮や燃費の向上を目的として、油圧ショベルの電動化が進められている。このような油圧ショベルでは、例えば、油圧系の動力源などにおいて電動化された部分へ電力供給する高電圧の電池と、各種コントローラや油圧系のセンサなど、電動化以前から油圧ショベルに搭載されている電気機器へ電力供給する低電圧の電池との2系統の電池を有している。
低電圧の電池に接続される電気機器には、車体始動時に電力供給が必要な機器も含まれている。長期間に渡る放置による自然放電や、エンジンの停止状態での前照灯の連続使用駆動などにより、車体の始動時に低電圧の電池の電圧が低下していると、電源電圧が不安定になって誤動作を引き起こしてしまう。したがって、低電圧の電池の電圧が低下している場合には、車体の始動を禁止する等の処置を講じる必要が生じてしまう。
ハイブリッドシステムを有する自動車では、高電圧の電池でモータを駆動してエンジンを始動するため従来のスタータモータを持たず、低電圧の電池をエンジン始動に使わない構成が主流である。
一方で、油圧ショベルではエンジンが大きいこと、メインポンプの引きずりトルクが大きいことから、必要な始動トルクが大きいため、低電圧系の電池から電力供給する従来のスタータモータで始動する構成が多い。
したがって、ハイブリットシステムを有する自動車と比較し、油圧ショベルでは低電圧の電池の電圧を十分に保つ必要があり、電池の電圧が低下することに対する影響も大きい。
自動車の低電圧の電池の電圧の低下に係る問題を解決する従来技術としては、例えば、特許文献1に記載のものが知られている。特許文献1には、高電圧バッテリを含む高電圧系の電気エネルギを利用する車両であって、車両の走行に関する制御を行なう制御装置と、低電圧バッテリを含む低電圧系の電気エネルギを、前記制御装置に供給する低電圧電源回路と、前記低電圧バッテリの電圧を検出するバッテリ電圧検出手段と、前記高電圧系の電気エネルギを低電圧に変換して該低電圧バッテリの充電を行なうコンバータ手段と、車両の始動要求があったとき、前記検出された低電圧バッテリの電圧が、予め定めた最低基準電圧よりも低い場合には、前記制御装置の動作の許可に先立って、前記コンバータ手段を用いることにより前記低電圧バッテリの電圧を前記最低基準電圧にまで回復させる回復手段とを備える車両に関する技術が開示されている。
車体の長期間放置による低電圧の電池の電圧が低下することによる弊害としては、車体を始動するときの始動性への影響、及び、車体停止中に動作が必要となる機器類への影響が考えられる。
上記従来技術においては、車体の始動要求があったときに、低電圧の電池が規定電圧以下と判定すると、高電圧側の電池からコンバータを介して低電圧の電池を規定以上の電圧まで充電している。
したがって、前者の車体を始動するときの始動性への影響に対しては、車体の始動前に充電を行うことで対策が可能である。しかしながら、車体の始動要求が入ってから充電を開始するとエンジンが始動し車体が動作するまでに時間を要することになる。特に、油圧ショベルでは、低電圧の電池を用いてスタータによりエンジンを始動させるため十分な電力供給が必要であり、充電に要する時間も長くなる。
また、後者の車体停止中に動作が必要となる機器類への影響に対しては、車体の停止中に車体内部機器の診断情報や位置情報を外部に送信することが油圧ショベルでは要求されおり、低圧側の電池の電圧が低下すると診断機能が正確に実施できなくなったり、診断や外部機器への送信時の消費電力の影響で始動時に必要な電力が確保できなくなったりすることから、診断や外部送信可能な期間を短くする必要が生じるなど、運用上大きな制約が生じてしまう。
本発明は上記に鑑みてなされたものであり、車体の長期放置においても、低電圧の電池の電圧を一定に保つことができ、車体始動要求時に直ちに始動することができるとともに、車体停止中に動作が必要な電気機器の制約を低減することができる建設機械を提供することを目的とする。
本願は上記課題を解決する手段を複数含んでいるが、その一例を挙げるならば、第1の電源系と第2の電源系とを有し、前記第1の電源系からの電力の供給により始動するとともに、前記第2の電源系からの電力の供給により作業を行う建設機械において、第1の電池と、前記第1の電池が接続される前記第1の電源系に接続され、前記第1の電池から前記第1の電源系を介して供給される電力により動作する電気電子機器と、前記第1の電池よりも定格電圧の高い第2の電池と、前記第2の電池が接続される前記第2の電源系に接続され、前記第2の電池から前記第2の電源系を介して供給される電力により動作し、前記電気電子機器よりも高い電圧で駆動する電気機器と、前記第1の電源系と前記第2の電源系との間で電圧変換を行い、前記第2の電源系から供給される電力の電圧変換を行って前記第1の電源系へ供給する電圧変換装置とを備え、前記電気機器は、前記第2の電源系からの電力の供給により駆動し、前記電気電子機器は、前記第1の電源系からの電力の供給により前記建設機械を始動する機能を含み、前記電気電子機器は、前記建設機械が始動せずに停止している場合において、前記第1の電池に蓄えられた電力が前記建設機械の始動に必要な電力に応じて予め定めた蓄電基準値を下回った場合には、前記第1の電池への充電が必要であると判定し、前記電圧変換装置によって前記第2の電源系の電力を変換して前記第1の電源系の前記第1の電池に充電するものとする。
本発明によれば、車体の長期放置においても、低電圧の電池の電圧を一定に保つことができ、車体始動要求時に直ちに始動することができるとともに、車体停止中に動作が必要な電気機器の制約を低減することができる。
以下、本発明の実施の形態を図面を参照しつつ説明する。なお、本実施の形態では、建設機械の一例として油圧ショベルを例示して説明するが、これに限られず、電動化が施されていれば他の建設機械においても本発明を適用することが可能である。
<第1の実施の形態>
本発明の第1の実施の形態を図1~図3を参照しつつ説明する。
本発明の第1の実施の形態を図1~図3を参照しつつ説明する。
図1は、本実施の形態に係る建設機械の一例として油圧ショベルを示す図である。また、図2は、本実施の形態に係る電源回路システムおよび油圧回路システムの要部を抜き出して模式的に示す図である。
図1において、油圧ショベル100は、垂直方向にそれぞれ回動する複数の被駆動部材(ブーム111、アーム112、バケット(作業具)113)を連結して構成された多関節型のフロント装置(フロント作業機)110と、車体を構成する上部旋回体120及び下部走行体130とを備えており、上部旋回体120は下部走行体130に対して旋回可能に設けられている。
上部旋回体120は、基部となる旋回フレーム121上に各部材を配置して構成されており、上部旋回体120を構成する旋回フレーム121が下部走行体130に対して旋回可能となっている。
フロント装置110のブーム111の基端は上部旋回体120の前部に垂直方向に回動可能に支持されており、アーム112の一端はブーム111の基端とは異なる端部(先端)に垂直方向に回動可能に支持されており、アーム112の他端にはバケット113が垂直方向に回動可能に支持されている。
ブーム111、アーム112、バケット113、上部旋回体120、及び下部走行体130は、油圧アクチュエータであるブームシリンダ6、アームシリンダ7、バケットシリンダ8、旋回モータ9、及び左右の走行モータ10(ただし、一方の走行モータのみ図示)によりそれぞれ駆動される。
上部旋回体120を構成する旋回フレーム121上には、原動機であるエンジン2とともに、エンジン2の駆動を補助するアシストモータ3などの電気機器に電力を供給する電源回路システムのほかに、エンジン2及びアシストモータ3によって駆動されるメインポンプ4や、メインポンプ4から各油圧アクチュエータ6,7,8,9,10に供給される圧油の流量および方向を制御するコントロールバルブ5、パイロット圧を生成するパイロットポンプ30(図2参照)などの油圧回路システムが搭載されている。
上部旋回体120の前方には、オペレータが搭乗する運転室(キャブ)122が設けられている。運転室122には、油圧アクチュエータ6,7,8,9,10を操作するための操作信号を出力する複数の操作装置(図示せず)や、エンジン2の始動や停止(言い換えると、油圧ショベル100の始動や停止)の操作を行うための始動停止装置(図示せず)などが配置されている。始動停止装置は、例えば、キースイッチであり、オペレータがキースイッチを操作することによって、エンジン2への始動要求や停止要求がなされる。
図2において、電源回路システムは、第1の電源系14と第2の電源系19とを有している。なお、第1の電源系14及び第2の電源系19に接続される電気機器(電気電子機器)を構成する複数の機器間では、CAN(Controller Area Network)などを介して情報の授受が可能であるが、このような通信網については図示を省略する。
第1の電源系14には、蓄電装置である第1の電池12と、第1の電池12から第1の電源系14を介して供給される電力により動作する電気電子機器とが接続されている。
第1の電源系14に接続される電気電子機器としては、油圧ショベル100における車体の状態の監視や制御、各機器との通信を行う車体コントローラ13、エンジン2の状態監視や制御を行うエンジンコントロールユニット22(ECU:Engine Control Unit)、エンジン2の始動を行うスタータモータ11、車体の状態などの情報を外部へ送信する通信装置17、前照灯や各種センサなどのように油圧ショベル100に取り付けられる複数の電気機器16などがある。なお、電気機器16には、オペレータが油圧ショベル100の始動要求や停止要求を行うキースイッチ等も含まれている。
スタータモータ11は、オペレータからの始動要求に応じ、第1の電池12から第1の電源系14を介して供給される電力を用いてエンジン2の始動を行う。
第2の電源系19には、第1の電池12よりも定格電圧の高い蓄電装置である第2の電池18と、第2の電池18から第2の電源系19を介して供給される電力により動作する電気機器とが接続されている。
第2の電源系19に接続される電気機器としては、エンジン2とともにメインポンプ4を駆動するアシストモータ3、エンジン2から動力供給を受けて発電する発電機20、エンジン2のラジエータを冷却するエンジンファン21、パイロット圧を生成するパイロットポンプ30を駆動するパイロットポンプモータ23などがある。また、第2の電池18には、バッテリマネジメントユニット15(BMU:Buttery Management Unit)が設けられている。バッテリマネジメントユニット15は、第2の電池18の状態を制御する機能とともに、第2の電池18の状態を検出する電池状態検出装置としての機能を有している。
アシストモータ3は、第2の電池18から第2の電源系19を介して供給される電力を用いてエンジン2の駆動を補助し、エンジン2とともにメインポンプ4を駆動する。
第1の電源系14と第2の電源系19とは、互いに異なる定格電圧(直流電圧)で構成されている。したがって、第1の電源系14と第2の電源系19との間には、第1の電源系14と第2の電源系19との間で電圧変換を行い、第2の電源系19から供給される電力の電圧変換を行って第1の電源系14へ供給する電圧変換装置であるDC-DCコンバータ24が接続されている。すなわち、発電機20が発電した電力は、第2の電源系19を介して第2の電池18に充電可能であるとともに、DC-DCコンバータ24によって変換され、第1の電源系14を介して第1の電池12にも充電可能である。
このように、油圧ショベル100は、エンジン2とアシストモータ3とによってメインポンプ4を駆動するハイブリッド式油圧ショベルであり、第1の電源系14からの電力の供給によりスタータモータ11を駆動することで始動するとともに、第2の電源系19からの電力の供給によりアシストモータ3を駆動することでメインポンプ4を駆動し、掘削動作、旋回動作、走行動作などを含む施工現場での作業動作を行う。
図3は、電源回路システムの処理の内容を示すフローチャートである。
図3において、オペレータによるキースイッチの操作によって停止要求がなされ、エンジン2の動作が停止されると(ステップS100)、車体コントローラ13は、オペレータからの始動要求が無い場合においても、第1の電池12からの電力供給を受けて動作し、第1の電源系14に接続されている電気電子機器を起動する必要があるか否かを判定する(ステップS110)。ステップS110では、例えば、エンジン2の前回の起動からの経過時間が経過した場合や、規定の時刻になった場合などのように一定の期間や条件を満たした場合に、機器を起動する必要があると判定する。起動要否の判定対象となる電気電子機器としては、例えば、通信装置17がある。通信装置17は、油圧ショベル100が停止している状態(すなわち、エンジン2が停止している状態)であっても、定期的に起動して車体の状態に係る情報を外部に送信する。なお、電気機器16にも定期的に起動を必要とするものが含まれている場合がある。
ステップS110での判定結果がNOの場合には、判定結果がYESになるまで、ステップS110の判定を繰り返す。
また、ステップS110での判定結果がYESの場合には、車体コントローラ13は、ステップS110で起動が必要であると判定された電気電子機器を起動させるとともに、第1の電池12の電圧を計測し、第1の電池12の電圧が予め定めた電圧(最低基準電圧)よりも低いか否か、すなわち、第1の電池12の充電が必要であるか否かを判定する(ステップS120)。第1の電池12の充電の要否の判定に用いる最低基準電圧(蓄電基準電圧)としては種々のものが考えられるが、例えば、前記第1の電池12に蓄えられた電力でスタータモータ11を駆動してエンジン2(建設機械100)を例えば1回始動させるのに必要な電力に応じて最低基準電圧を設定し、最低基準電圧を下回った場合に第1の電池12の充電が必要であると判定することが考えられる。なお、車体コントローラ13が検出する電圧が起動した電気電子機器の電流消費により変動する場合は、電気電子機器の動作が安定するタイミングの電圧を測定する。
ステップS120での判定結果がYESの場合には、車体コントローラ13は、DC-DCコンバータ24を起動するとともに、BMU15を制御することで第2の電池を起動してDC-DCコンバータ24への電力の供給を開始し、DC-DCコンバータ24で電圧変換された電力によって第1の電池12の充電を行う(ステップS130)。
ステップS130の処理が終了した場合、又は、ステップS120での判定結果がNOの場合には、続いて、車体コントローラ13は、第1の電源系14に接続されている機器の故障診断情報や位置情報、劣化情報を取得し、通信装置17によって外部へ送信する(ステップS140)。通信装置17から送信された故障診断情報や位置情報などを車体(油圧ショベル100)の管理者が受信することで、車体を直接確認することなく遠隔にてメンテナンス計画を立案することが可能となる。
続いて、車体コントローラ13は、第2の電池18の残容量を測定し、第2の電池18の容量が第1の電池12を充電するのに十分な量であるか否かを判定する(ステップS150)。
第2の電源系19に接続されているアシストモータ3などの電気機器は、第1の電源系14に接続されている電気電子機器より必要とされる電力が大きいため、第2の電池18は第1の電池12より大きな容量を有しており、第2の電池18が満充電の場合には第1の電池12を複数回にわたって充電することが可能な容量(最大容量)を有している。しかしながら、比較的大容量の第2の電池18であっても第1の電池12を充電する度に電力を消費するため、継続的に第1の電池12の充電が可能か否かをステップS150の処理により判断する。
ステップS150での判定結果がYESの場合には、ステップS110の処理に戻る。第2の電池18は、内部にBMU15を内蔵しており、電池内部の温度や電圧、容量などを計測し、電池を監視、制御、保護することが可能である。BMU15により第2の電池18の残量を測定し、第1の電池12を充電するのに十分な残量があると判断した場合(すなわち、ステップS150の判定結果がYESの場合)には、第1の電源系14に接続されている電気電子機器をシャットダウンする。
ステップS150での判定結果がNOの場合には、DC-DCコンバータ24による電圧変換、すなわち、第2の電池18から第1の電池12への充電を禁止するとともに、第1の電池12および第2の電池18の充電が必要な旨の通知を、通信装置17を介して管理者に送信する(ステップS160)。
続いて、オペレータの始動要求が入力されるまで(車体停止中)は、第1の電源系14に接続されている電気電子機器を最低限の動作のみ許容するような制限動作とする(ステップS170)。これは、第2の電池18から第1の電池12への充電が禁止された状態で電気電子機器によって第1の電池12の電力が消費されることにより、第1の電池12の電力がエンジン2を始動するのに十分な電力を下回ることを防止する処理である。
以上のように構成した本実施の形態における作用効果を説明する。
本実施の形態においては、第1の電源系14と第2の電源系19とを有し、第1の電源系14からの電力の供給により始動するとともに、第2の電源系19からの電力の供給により作業を行う建設機械(油圧ショベル100)において、第1の電池12と、第1の電池12が接続される第1の電源系14に接続され、第1の電池12から第1の電源系14を介して供給される電力により動作する電気電子機器(スタータモータ11、車体コントローラ13、電気機器16、通信装置17、ECU22)と、第1の電池12よりも定格電圧の高い第2の電池18と、第2の電池18が接続される第2の電源系19に接続され、第2の電池18から第2の電源系19を介して供給される電力により動作し、電気電子機器よりも高い電圧で駆動する電気機器(アシストモータ3、エンジンファン21、パイロットポンプモータ23)と、第1の電源系14と第2の電源系19との間で電圧変換を行い、第2の電源系19から供給される電力の電圧変換を行って第1の電源系14へ供給する電圧変換装置(DC-DCコンバータ24)とを備え、電気機器(車体コントローラ13)は、第2の電源系19からの電力の供給により駆動し、電気電子機器は、第1の電源系14からの電力の供給により建設機械(油圧ショベル100)を始動する機能(スタータモータ11)を含み、電気電子機器は、建設機械(油圧ショベル100)が始動せずに停止している場合において、第1の電池12に蓄えられた電力が建設機械(油圧ショベル100のエンジン2)の始動に必要な電力に応じて予め定めた蓄電基準値を下回った場合には、第1の電池12への充電が必要であると判定し、電圧変換装置(DC-DCコンバータ24)によって第2の電源系19の電力を変換して第1の電源系14の第1の電池12に充電するように構成したので、車体の長期放置においても、低電圧の電池の電圧を一定に保つことができ、車体始動要求時に直ちに始動することができるとともに、車体停止中に動作が必要な電気機器の制約を低減することができる。
<第2の実施の形態>
本発明の第2の実施の形態を図4を参照しつつ説明する。
本発明の第2の実施の形態を図4を参照しつつ説明する。
第1の実施の形態では、エンジン及びアシストモータによりメインポンプを駆動したのに対して、本実施の形態においては、メインポンプ駆動用モータによってメインポンプを駆動する場合を示すものである。
図4は、本実施の形態に係る電源回路システムおよび油圧回路システムの要部を抜き出して模式的に示す図である。図中、第1の実施の形態と同様の部材には同じ符号を付し、説明を省略する。
図4において、電源回路システムは、第1の電源系14と第2の電源系29とを有している。なお、第1の電源系14及び第2の電源系29に接続される電気機器(電気電子機器)を構成する複数の機器間では、CAN(Controller Area Network)などを介して情報の授受が可能であるが、このような通信網については図示を省略する。
第1の電源系14には、蓄電装置である第1の電池12と、第1の電池12から第1の電源系14を介して供給される電力により動作する電気電子機器とが接続されている。
第1の電源系14に接続される電気電子機器としては、油圧ショベル100における車体の状態の監視や制御、各機器との通信を行う車体コントローラ13、車体の状態などの情報を外部へ送信する通信装置17、前照灯や各種センサなどのように油圧ショベル100に取り付けられる複数の電気機器16、メインポンプ駆動用モータ25を駆動するインバータ26などがある。なお、電気機器16には、オペレータが油圧ショベル100の始動要求や停止要求を行うキーシリンダ等も含まれている。
第2の電源系29には、第1の電池12よりも定格電圧の高い蓄電装置である第2の電池18と、第2の電池18から第2の電源系29を介して供給される電力により動作する電気機器と、第2の電源系29に外部電源から電力を供給するための車載充電器28や三相コネクタ27などが接続されている。
第2の電源系29に接続される電気機器としては、第2の電池18から第2の電源系19を介して供給される電力を用いてメインポンプ4を駆動するメインポンプ駆動用モータ25などがある。また、第2の電池18には、バッテリマネジメントユニット15(BMU:Buttery Management Unit)が設けられている。バッテリマネジメントユニット15は、第2の電池18の状態を制御する機能とともに、第2の電池18の状態を検出する電池状態検出装置としての機能を有している。
油圧ショベル100に外部の三相電源から供給される交流電力は、三相コネクタ27を介して車載充電器28に入力され、車載充電器28で直流電力に変換されて第2の電源系19に供給される。第2の電池18は、外部から車載充電器28を介して供給される電力により充電され、メインポンプ駆動用モータ25の駆動電力を供給する。
第1の電源系14と第2の電源系29とは、互いに異なる定格電圧(直流電圧)で構成されている。したがって、第1の電源系14と第2の電源系29との間には、第1の電源系14と第2の電源系29との間で電圧変換を行い、第2の電源系29から供給される電力の電圧変換を行って第1の電源系14へ供給する電圧変換装置であるDC-DCコンバータ24が接続されている。すなわち、発電機20が発電した電力は、第2の電源系29を介して第2の電池18に充電可能であるとともに、DC-DCコンバータ24によって変換され、第1の電源系14を介して第1の電池12にも充電可能である。
このように、油圧ショベル100は、メインポンプ駆動用モータ25によってメインポンプ4を駆動する電動油圧ショベルであり、第1の電源系14からの電力の供給によりインバータ26を駆動することで始動するとともに、第2の電源系29や外部電源からの電力の供給によりメインポンプ駆動用モータ25を駆動することでメインポンプ4を駆動し、掘削動作、旋回動作、走行動作などを含む施工現場での作業動作を行う。
その他の構成は第1の実施の形態と同様である。
以上のように構成した本実施の形態においても第1の実施の形態と同様の効果を得ることができる。
<付記>
なお、本発明は上記の実施の形態に限定されるものではなく、その要旨を逸脱しない範囲内の様々な変形例や組み合わせが含まれる。
なお、本発明は上記の実施の形態に限定されるものではなく、その要旨を逸脱しない範囲内の様々な変形例や組み合わせが含まれる。
例えば、第1及び第2の実施の形態においては、車体コントローラ13が図3で説明した処理によって電源回路システムを制御する場合を例示して説明したが、これに限られず、通信装置17が車体コントローラ13と同様の処理を行うように構成してもよい。
また、第1の実施の形態においては、第1の実施の形態の図3のステップS110の処理においては、電気機器を起動する特定の条件を、前回の起動時間からの経過時間や規定の時刻としているが、これに限られず、第1の電源系14に接続されている電気電子機器の状態、電気機器の起動要求信号の受信、第1の電池12の電圧や電池残量、劣化状態などの条件に応じた判定としても良い。
また、本発明は、上記の実施の形態で説明した全ての構成を備えるものに限定されず、その構成の一部を削除したものも含まれる。また、上記の各構成、機能等は、それらの一部又は全部を、例えば集積回路で設計する等により実現してもよい。また、上記の各構成、機能等は、プロセッサがそれぞれの機能を実現するプログラムを解釈し、実行することによりソフトウェアで実現してもよい。
2…エンジン、3…アシストモータ、4…メインポンプ、5…コントロールバルブ、6…ブームシリンダ、7…アームシリンダ、8…バケットシリンダ、9…旋回モータ、10…走行モータ、11…スタータモータ、12…第1の電池、13…車体コントローラ、14…第1の電源系、15…バッテリマネジメントユニット、16…電気機器、17…通信装置、18…第2の電池、19…第2の電源系、20…発電機、21…エンジンファン、22…エンジンコントロールユニット、23…パイロットポンプモータ、24…DC-DCコンバータ、25…メインポンプ駆動用モータ、26…インバータ、27…三相コネクタ、28…車載充電器、30…パイロットポンプ、100…油圧ショベル、110…フロント装置(フロント作業機)、111…ブーム、112…アーム、113…バケット、120…上部旋回体、121…旋回フレーム、122…運転室(キャブ)、130…下部走行体
Claims (4)
- 第1の電源系と第2の電源系とを有し、前記第1の電源系からの電力の供給により始動するとともに、前記第2の電源系からの電力の供給により作業を行う建設機械において、
第1の電池と、
前記第1の電池が接続される前記第1の電源系に接続され、前記第1の電池から前記第1の電源系を介して供給される電力により動作する電気電子機器と、
前記第1の電池よりも定格電圧の高い第2の電池と、
前記第2の電池が接続される前記第2の電源系に接続され、前記第2の電池から前記第2の電源系を介して供給される電力により動作し、前記電気電子機器よりも高い電圧で駆動する電気機器と、
前記第1の電源系と前記第2の電源系との間で電圧変換を行い、前記第2の電源系から供給される電力の電圧変換を行って前記第1の電源系へ供給する電圧変換装置とを備え、
前記電気機器は、前記第2の電源系からの電力の供給により駆動し、前記電気電子機器は、前記第1の電源系からの電力の供給により前記建設機械を始動する機能を含み、
前記電気電子機器は、前記建設機械が始動せずに停止している場合において、前記第1の電池に蓄えられた電力が前記建設機械の始動に必要な電力に応じて予め定めた蓄電基準値を下回った場合には、前記第1の電池への充電が必要であると判定し、前記電圧変換装置によって前記第2の電源系の電力を変換して前記第1の電源系の前記第1の電池に充電することを特徴とする建設機械。 - 請求項1記載の建設機械において、
前記第1の電源系に接続された前記電気電子機器は、
前記建設機械の外部に情報を送信する通信機器を含み、
前記通信機器は、前記建設機械が始動せずに停止している場合で、かつ、予め定めた条件を満たす場合には、前記建設機械の状態の診断結果である診断情報を外部に送信することを特徴とする建設機械。 - 請求項2記載の建設機械において、
前記第2の電池の充電状態を検出する電池状態検出装置を備え、
前記電池状態検出装置は、第2の電池の充電状態が予め定めた値以下である場合には、前記通信機器によって前記建設機械の始動を要求する情報を外部に送信することを特徴とする建設機械。 - 請求項1記載の建設機械において、
前記第2の電池の充電状態を検出する電池状態検出装置を備え、
前記電池状態検出装置は、オペレータから前記建設機械の始動要求がない状態において、第2の電池の充電状態が予め定めた値以下である場合には、前記電圧変換装置による第2の電源系から前記第1の電源系への電力の変換を禁止することを特徴とする建設機械。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021-042950 | 2021-03-16 | ||
JP2021042950A JP2022142670A (ja) | 2021-03-16 | 2021-03-16 | 建設機械 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022196174A1 true WO2022196174A1 (ja) | 2022-09-22 |
Family
ID=83322233
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/004541 WO2022196174A1 (ja) | 2021-03-16 | 2022-02-04 | 建設機械 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2022142670A (ja) |
WO (1) | WO2022196174A1 (ja) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011169663A (ja) * | 2010-02-17 | 2011-09-01 | Alpine Electronics Inc | 電気自動車の電池残量警報装置 |
JP2017093070A (ja) * | 2015-11-05 | 2017-05-25 | 株式会社デンソー | 車両の電源システム |
JP2019190107A (ja) * | 2018-04-24 | 2019-10-31 | ヤンマー株式会社 | 電動式作業機械 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4556776B2 (ja) * | 2005-06-14 | 2010-10-06 | トヨタ自動車株式会社 | 車載制御装置 |
-
2021
- 2021-03-16 JP JP2021042950A patent/JP2022142670A/ja active Pending
-
2022
- 2022-02-04 WO PCT/JP2022/004541 patent/WO2022196174A1/ja active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011169663A (ja) * | 2010-02-17 | 2011-09-01 | Alpine Electronics Inc | 電気自動車の電池残量警報装置 |
JP2017093070A (ja) * | 2015-11-05 | 2017-05-25 | 株式会社デンソー | 車両の電源システム |
JP2019190107A (ja) * | 2018-04-24 | 2019-10-31 | ヤンマー株式会社 | 電動式作業機械 |
Also Published As
Publication number | Publication date |
---|---|
JP2022142670A (ja) | 2022-09-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5247899B1 (ja) | 蓄電器の充放電制御装置、蓄電器の充放電制御方法、および蓄電器の充放電制御装置を備えたハイブリッド作業機械 | |
EP2479058B1 (en) | Hybrid-type construction machine | |
EP2447119A1 (en) | Hybrid working machine and method of controlling working machine | |
KR101256483B1 (ko) | 하이브리드형 작업기계 | |
KR20190115065A (ko) | 축전 장치 컨트롤러 및 전동 시스템, 및 건설 기계 | |
EP2383880A1 (en) | Hybrid working machine and servo control system | |
CN104294876B (zh) | 混合动力工程机械 | |
US10100493B2 (en) | Shovel | |
JP2004084470A (ja) | 建設機械 | |
JP6259380B2 (ja) | ハイブリッド式建設機械 | |
CN110325688B (zh) | 工程机械 | |
JP6247236B2 (ja) | 建設機械 | |
EP2770120B1 (en) | Shovel and method of controlling shovel | |
JP6267629B2 (ja) | 建設機械の蓄電管理システム | |
WO2022196174A1 (ja) | 建設機械 | |
JP4949457B2 (ja) | ハイブリッド型建設機械 | |
CN103270278A (zh) | 开关磁阻发电机启动策略 | |
JP7177967B2 (ja) | 建設機械 | |
CN111173614B (zh) | 发动机控制系统、方法及车辆 | |
JP2013204384A (ja) | ショベル、ショベル管理システム、及び情報端末 | |
JP5925877B2 (ja) | 掘削機 | |
JP2015101290A (ja) | 産業車両 | |
JP6316623B2 (ja) | ショベル | |
JP5037558B2 (ja) | ハイブリッド型建設機械 | |
JP2014231299A (ja) | ハイブリッド作業機械 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22770934 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 22770934 Country of ref document: EP Kind code of ref document: A1 |