WO2022196161A1 - デバイスチップの移載機構及び移載方法 - Google Patents

デバイスチップの移載機構及び移載方法 Download PDF

Info

Publication number
WO2022196161A1
WO2022196161A1 PCT/JP2022/004348 JP2022004348W WO2022196161A1 WO 2022196161 A1 WO2022196161 A1 WO 2022196161A1 JP 2022004348 W JP2022004348 W JP 2022004348W WO 2022196161 A1 WO2022196161 A1 WO 2022196161A1
Authority
WO
WIPO (PCT)
Prior art keywords
transfer
adhesive layer
device chip
substrate
irradiation
Prior art date
Application number
PCT/JP2022/004348
Other languages
English (en)
French (fr)
Inventor
北澤裕之
Original Assignee
株式会社写真化学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社写真化学 filed Critical 株式会社写真化学
Publication of WO2022196161A1 publication Critical patent/WO2022196161A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/60Attaching or detaching leads or other conductive members, to be used for carrying current to or from the device in operation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations

Definitions

  • the present disclosure provides a transfer mechanism provided in an electronic device manufacturing apparatus for transferring a device chip for configuring the electronic device, and a device chip for configuring the electronic device in the manufacturing process of the electronic device. It relates to a transfer method for transferring.
  • a display device using LEDs as light-emitting elements a plurality of three-color (RGB) LEDs constituting each pixel are arranged on a display screen substrate, each pixel emits light according to an image signal, and an image is displayed on the entire display screen. display.
  • RGB three-color
  • Such a display device manufacturing apparatus has a mechanism for transferring, for example, an LED separately manufactured on a compound semiconductor substrate to a display screen substrate via a relay substrate.
  • Patent Document 1 in order to transfer the LED from the first substrate 9 of the transfer source to the second substrate 10 of the transfer destination, between the first substrate 9 and the second substrate 10, A first drum 11 and a second drum 12, which are transfer mechanisms, are provided in this order.
  • the first substrate 9, the first drum 11, the second drum 12 and the second substrate 10 are each provided with an adhesive layer to adhere the LEDs.
  • symbol in description of the said background art are based on patent document 1.
  • the first adhesive layer of the first substrate 9 (adhesive force of the third transfer adhesive layer 14a of the first drum 11) ⁇ (adhesive force of the selective adhesive region of the third transfer adhesive layer 14a of the first drum 11) ⁇ (adhesive force of the fourth transfer adhesive layer 14b of the second drum 12) ⁇ (Adhesive strength of the second adhesive layer of the second substrate 10) is configured to increase in order of adhesive strength.
  • the difference in adhesive force between the first adhesive layer and the selective adhesive region of the third transfer adhesive layer 14a, the selective adhesive region of the third transfer adhesive layer 14a and the fourth transfer adhesive layer 14b, and the difference in adhesive strength between the selective adhesive region of the fourth transfer adhesive layer 14b and the second adhesive layer for example, acrylic adhesive, rubber adhesive, vinyl alkyl It is necessary to adjust by appropriately managing the composition of the adhesive selected from ether-based adhesives and the like.
  • the present disclosure provides a transfer mechanism provided in an electronic device manufacturing apparatus for transferring a device chip for configuring the electronic device, and a device chip for configuring the electronic device in the manufacturing process of the electronic device. It is an object of the present invention to provide a transfer method for transferring the
  • a transfer mechanism is a transfer mechanism that is provided in an electronic device manufacturing apparatus and transfers a device chip for configuring the electronic device, wherein the device chip is transferred from A first substrate having a first adhesive layer to which the device chip is attached, a second substrate to which the device chip is transferred and having a second adhesive layer to which the device chip is attached, and the device chip to be attached.
  • a transfer drum that receives the device chip from the first substrate and transfers the device chip to the second substrate, and the transfer adhesive layer to which the device chip is adhered is irradiated with ultraviolet rays.
  • the transfer adhesive layer is composed of an ultraviolet modified material whose transfer adhesive strength is reduced by irradiation with ultraviolet rays compared to before irradiation with ultraviolet rays, and the transfer adhesive strength of the ultraviolet modified material is , the adhesive strength is higher than the first adhesive strength of the first adhesive layer before the irradiation with ultraviolet rays, and is lower than the second adhesive strength of the second adhesive layer after the irradiation with ultraviolet rays.
  • the transfer adhesive strength of the transfer adhesive layer of the transfer drum is lowered by the irradiation of the ultraviolet rays compared to before the irradiation of the ultraviolet rays. At that time, the transfer adhesive strength is higher than the first adhesive strength of the first adhesive layer before the irradiation of ultraviolet rays by the irradiation mechanism, and lower than the second adhesive strength of the second adhesive layer after the irradiation of the ultraviolet rays.
  • the transfer adhesive strength of the transfer adhesive layer can be lowered before and after the irradiation with ultraviolet rays, the second adhesive strength of the second substrate can be set low. Therefore, the hardness of the second substrate can be increased, and the device chip can be transferred from the first substrate to the second substrate in such a manner that the device chip is less likely to be misaligned when transferred.
  • the transfer adhesive layer preferably has a thickness ranging from about 0.1 times to about 5 times the thickness of the device chip.
  • the thickness of the transfer adhesive layer By setting the thickness of the transfer adhesive layer to about 0.1 times or more or about 1 ⁇ m or more with respect to the thickness of the device chip, the device chip can be easily adhered. Further, by making the thickness of the transfer adhesive layer about five times or less the thickness of the device chip, the stability of the posture of the adhered device chip can be enhanced. For example, when the device chip has a thickness of about 6 ⁇ m, the transfer adhesive layer has a thickness ranging from about 1 ⁇ m to about 30 ⁇ m.
  • the UV-modifying material is preferably selected to have excellent shape stability before and after UV irradiation.
  • the transfer adhesive strength refers to the force with which the transfer adhesive layer adheres the device chip.
  • the first adhesive strength is the force with which the first adhesive layer adheres the device chip.
  • the second adhesive force is the force with which the second adhesive layer adheres the device chip.
  • the transfer adhesive layer may be configured to be replaceable each time the device chip is received from the first substrate and transferred to the second substrate.
  • the next transfer of the device chip can be carried out by replacing only the transfer adhesive layer of the transfer drum, which is economically preferable.
  • the first adhesive layer may be made of the same material as the ultraviolet denaturing material constituting the transfer adhesive layer, and may be made of a material obtained by irradiating the ultraviolet denaturing material with ultraviolet rays.
  • the transfer adhesive layer and the first adhesive layer are made of the same material, which is superior in terms of management and cost compared to when they are made of different materials.
  • a transfer mechanism is a transfer mechanism provided in an electronic device manufacturing apparatus for transferring a device chip for configuring the electronic device, wherein the device chip is transferred A first substrate having a first adhesive layer to which the device chip is attached, a second substrate to which the device chip is transferred and having a second adhesive layer to which the device chip is attached, and the device chip.
  • a first transfer drum having a first transfer adhesive layer to be adhered the first transfer drum receiving the device chip from the first substrate and transferring it to the second transfer drum, and the device chip
  • a second transfer drum having a second transfer adhesive layer to be adhered wherein the second transfer drum receives the device chip from the first transfer drum and transfers it to the second substrate, and the device chip is and an irradiation mechanism for irradiating ultraviolet rays to each of the first transfer adhesive layer and the second transfer adhesive layer in an adhered state, wherein the first transfer adhesive layer is transferred by ultraviolet irradiation.
  • It is composed of an ultraviolet modified material whose mounting adhesive strength is lower than before irradiation with ultraviolet rays, and the first transfer adhesive strength of the ultraviolet modified material is greater than the first adhesive strength of the first adhesive layer before irradiation with ultraviolet rays. is also high, and the adhesive strength after irradiation with ultraviolet rays is lower than the second transfer adhesive strength of the second transfer adhesive layer before irradiation with ultraviolet rays, and the second transfer adhesive layer is transferred by irradiation with ultraviolet rays.
  • the second transfer adhesive strength of the ultraviolet-modified material before irradiation with ultraviolet rays is the first transfer adhesive strength after irradiation with ultraviolet rays. and is lower than the second adhesive strength of the second adhesive layer after irradiation with ultraviolet rays.
  • the first transfer adhesive strength of the first transfer adhesive layer of the first transfer drum is reduced by the irradiation of the ultraviolet rays compared to before the irradiation of the ultraviolet rays.
  • the first transfer adhesive strength is higher than the first adhesive strength of the first adhesive layer before the ultraviolet irradiation by the irradiation mechanism, and after the ultraviolet irradiation, the second transfer adhesive layer before the ultraviolet irradiation. lower than the second transfer adhesive strength of
  • the second transfer adhesive strength of the second transfer adhesive layer of the second transfer drum is reduced by the irradiation of the ultraviolet rays compared to before the irradiation of the ultraviolet rays.
  • the second transfer adhesive strength is higher than the first transfer adhesive strength of the first transfer adhesive layer after irradiation with ultraviolet rays before irradiation with ultraviolet rays by the irradiation mechanism, and after irradiation with ultraviolet rays. Lower than the second adhesive strength of the two adhesive layers.
  • the first transfer adhesive strength of the first transfer adhesive layer and the second transfer adhesive strength of the second transfer adhesive layer can be reduced before and after the irradiation of ultraviolet rays, respectively, the second substrate The second adhesive strength can be set low. Therefore, the hardness of the second substrate can be increased, and the device chip is transferred from the first substrate to the second substrate while being turned upside down in such a manner that positional deviation is unlikely to occur when the device chip is transferred. be able to.
  • the thickness of the first transfer adhesive layer and the second transfer adhesive layer is preferably in the range of about 0.1 to about 5 times the thickness of the device chip.
  • the thickness of the first transfer adhesive layer or the second transfer adhesive layer is set to about 0.1 times or more or about 1 ⁇ m or more with respect to the thickness of the device chip.
  • the thickness of the first transfer adhesive layer and the second transfer adhesive layer is made about five times or less the thickness of the device chip, the stability of the posture of the adhered device chip can be enhanced.
  • the transfer adhesive layer has a thickness ranging from about 1 ⁇ m to about 30 ⁇ m.
  • the UV-modifying material is preferably selected to have excellent shape stability before and after UV irradiation.
  • first transfer adhesive strength refers to the force with which the first transfer adhesive layer adheres the device chip.
  • second transfer adhesive strength is the force with which the second transfer adhesive layer adheres the device chip.
  • the first adhesive strength is the force with which the first adhesive layer adheres the device chip.
  • the second adhesive force is the force with which the second adhesive layer adheres the device chip.
  • the first transfer adhesive layer and the second transfer adhesive layer may be configured to be replaceable each time the device chip is received from the first substrate and transferred to the second substrate.
  • the next transfer of the device chip can be performed.
  • the first adhesive layer is the same material as the ultraviolet denaturing material constituting the first transfer adhesive layer and the second transfer adhesive layer, and is composed of a material obtained by irradiating the ultraviolet denaturing material with ultraviolet rays.
  • the second adhesive layer may be made of a thermosetting resin.
  • the second adhesive layer of the second substrate to which the device chip is transferred is made of a thermosetting resin. It can be fixed to the substrate.
  • a transfer method is a transfer method for transferring a device chip for configuring the electronic device in a manufacturing process of the electronic device, wherein the adhesive strength is increased by irradiating with ultraviolet rays.
  • a process is provided.
  • the transfer adhesive strength is reduced compared to before irradiation with ultraviolet rays.
  • the transfer adhesive strength is higher than the first adhesive strength of the first adhesive layer before irradiation with ultraviolet rays, and is lower than the second adhesive strength of the second adhesive layer after irradiation with ultraviolet rays.
  • the transfer adhesive strength of the transfer adhesive layer can be lowered before and after the irradiation with ultraviolet rays, the second adhesive strength of the second substrate can be set low. Therefore, the hardness of the second substrate can be increased, and the device chip can be transferred from the first substrate to the second substrate in such a manner that the device chip is less likely to be misaligned when transferred.
  • a transfer method is a transfer method for transferring a device chip for configuring the electronic device in a manufacturing process of the electronic device, wherein the adhesive strength is increased by irradiating ultraviolet rays.
  • the device chip is received from the first substrate from which the device chip is transferred by a first transfer drum having a first transfer adhesive layer made of an ultraviolet denaturing material that lowers compared to before irradiation with ultraviolet rays.
  • a first irradiation step of irradiating the first transfer adhesive layer with ultraviolet rays is provided between the step and the relay step, and the second transfer adhesive layer is irradiated between the relay step and the delivery step.
  • a second irradiation step is provided for irradiating the substrate with ultraviolet rays.
  • the first transfer adhesive layer is irradiated with ultraviolet rays in the first irradiation step provided between the receiving step and the relay step, and the first transfer adhesive strength is measured before irradiation with ultraviolet rays.
  • the first transfer adhesive strength is higher than the first adhesive strength of the first adhesive layer before irradiation with ultraviolet rays, and the second adhesive strength of the second adhesive layer before irradiation with ultraviolet rays after irradiation with ultraviolet rays. less than adhesive strength.
  • the second transfer adhesive layer is irradiated with ultraviolet rays, and the second transfer adhesive strength is reduced compared to before irradiation with ultraviolet rays.
  • the second transfer adhesive strength is higher than the first adhesive strength of the first transfer adhesive layer after ultraviolet irradiation before irradiation with ultraviolet rays, and the second adhesive layer after irradiation with ultraviolet rays. Lower than the second adhesive strength.
  • the first transfer adhesive strength of the first transfer adhesive layer and the second transfer adhesive strength of the second transfer adhesive layer can be reduced before and after the irradiation of ultraviolet rays, respectively, the second substrate The second adhesive strength can be set low. Therefore, the hardness of the second substrate can be increased, and the device chip is transferred from the first substrate to the second substrate while being turned upside down in such a manner that positional deviation is unlikely to occur when the device chip is transferred. be able to.
  • the present disclosure is not limited to the example of transferring a light emitting element such as an LED as a device chip, for example, a light receiving element, a piezoelectric element, an acceleration sensor, a micro device chip using NEMS or MEMS It can also be used to transfer various electronic device chips such as storage elements by other methods such as MRAM, FeRaM, PCM, switching elements, arithmetic processing device chips such as microcomputers, etc. in order to align and arrange them on a substrate. .
  • the present disclosure does not need to include a temperature raising step in the process, even for a flexible substrate or a substrate with relatively low heat resistance (80 ° C. or less) as the substrate on the transfer side, can be used effectively.
  • the electronic device in the present disclosure may be part or all of the product (final product), and intermediate products (things) or by-products used in the manufacturing process of the product to manufacture the final product may be part or all of
  • FIG. 4 is an explanatory diagram of a transfer mechanism showing a state before device chips are received by a transfer drum;
  • FIG. 4 is an explanatory diagram of a transfer mechanism showing how a transfer drum receives a device chip;
  • FIG. 4 is an explanatory diagram of a transfer mechanism showing a state of irradiating a transfer drum with ultraviolet light;
  • FIG. 4 is an explanatory diagram of a transfer mechanism showing a state before device chips are transferred by a transfer drum;
  • FIG. 4 is an explanatory diagram of a transfer mechanism showing a state after a device chip has been transferred by a transfer drum;
  • FIG. 9 is an explanatory diagram of a transfer mechanism according to another embodiment;
  • (First embodiment) 1 to 5 show a manufacturing apparatus having a transfer mechanism 20 according to the first embodiment of the present disclosure.
  • a travel guide 2 composed of, for example, a plurality of parallel rails. Furthermore, on the traveling guide 2, a first conveying table 3 (see FIGS. 1 and 2) and a second conveying table 4 (see FIGS. 3, 4 and 5) are mounted. 5. It can be moved along the travel guide 2 by the second travel device 6 .
  • the first transfer table 3 has a first alignment device 7 on the first traveling device 5. As shown in FIGS. The first alignment device 7 has a traversing device (not shown) and moves together with the movement of the first transfer table 3 .
  • the traversing device moves the first substrate 9, which is the transfer source of the device chip 11, in the longitudinal direction (horizontal direction in FIGS. 1 to 5) and vertical direction (front and depth direction in FIGS. 1 to 5) of the traveling guide 2. can move.
  • the traversing device has a first substrate support (not shown) on which the first substrate 9 can be placed and gripped.
  • the first substrate support prevents the position of the first substrate 9 of the first substrate support from shifting due to the movement of the first transfer table 3 along the traveling guide 2 or the movement by the traversing device.
  • the first substrate support base may grip the first substrate 9 by mechanically pressing the side surface or the top surface of the first substrate 9, or may grip the first substrate 9 by sucking from the back surface. do not have. Any device that can fix the position of the first substrate 9 may be used.
  • a gripping method may be selected according to the shape and properties of the first substrate 9 .
  • the first substrate 9 has a first adhesive layer 9a, and a plurality of electronic device chips (hereinafter referred to as device chips) 11 are adhered onto the first adhesive layer 9a.
  • the first substrate 9 is composed of a flat substrate manufactured using a substrate such as a silicon wafer, a compound semiconductor wafer, a glass substrate, or a metal oxide such as sapphire.
  • a substrate such as a silicon wafer, a compound semiconductor wafer, a glass substrate, or a metal oxide such as sapphire.
  • the shape of the substrate is, for example, a 2-inch to 8-inch circular shape, but is not limited to this.
  • the first adhesive layer 9a is composed of an ultraviolet denaturing material.
  • the ultraviolet modifying material may be different from or the same as the ultraviolet modifying material forming the transfer adhesive layer 21a of the transfer drum 21 described below. However, the ultraviolet modifying material is used after being irradiated with ultraviolet rays.
  • the first substrate 9 is, for example, a relay substrate for receiving the device chip 11 from the growth substrate and transferring it to the transfer drum 21 . This first substrate 9 receives the device chip 11 from the growth substrate before the first adhesive layer 9a is irradiated with ultraviolet rays when the first adhesive layer 9a is an ultraviolet-modified material. After that, the first adhesive layer 9a is irradiated with ultraviolet rays.
  • the first adhesive layer 9a is not limited to the ultraviolet denaturing material, and may be another resin.
  • the first substrate 9 itself has adhesiveness and may also serve as the first adhesive layer 9a.
  • the device chip 11 is, for example, a light-emitting element such as an LED including a micro-LED, a light-receiving element, a piezoelectric element, an acceleration sensor, a micro-device chip using NEMS, MEMS, or the like, a charge storage method, or another method such as MRAM, FeRaM, or PCM.
  • a light-emitting element such as an LED including a micro-LED, a light-receiving element, a piezoelectric element, an acceleration sensor, a micro-device chip using NEMS, MEMS, or the like, a charge storage method, or another method such as MRAM, FeRaM, or PCM.
  • Device chips such as memory elements, switching elements, and arithmetic processing device chips such as microcomputers are exemplified, but are not limited to these.
  • the second transport table 4 has a second alignment device 8 on the second traveling device 6.
  • the second alignment device 8 has a second substrate support table (not shown) on which a second substrate 10 (workpiece) to which the device chip 11 is to be transferred can be placed and held.
  • the first alignment device 7 can detect the reference position of the transfer drum 21 and perform alignment between the first substrate 9 and the transfer drum 21 .
  • the second alignment device 8 detects the reference position of the transfer drum 21, detects the reference positions of the second substrate 10 and the transfer drum 21, and executes alignment between the second substrate 10 and the transfer drum 21. can be done. Note that the first alignment device 7 and the second alignment device 8 have the same alignment accuracy.
  • the second substrate support prevents displacement of the second substrate 10 on the second substrate support due to longitudinal movement of the travel guide 2 of the second transfer table 4 .
  • the second substrate support base may hold the second substrate 10 by mechanically pressing the side surface or the upper surface of the second substrate 10, or may hold the second substrate 10 by sucking from the back surface. do not have. Any device that can fix the position of the second substrate 10 may be used.
  • a gripping method may be selected according to the shape and properties of the second substrate 10 .
  • the second substrate 10 has a second adhesive layer 10a, and the device chip 11 can be adhered onto the second adhesive layer 10a.
  • the second substrate 10 is not only a hard substrate such as glass, but also a flexible substrate, or a substrate having poor resistance to processes such as heat treatment, chemical treatment, and plasma treatment in the manufacturing process of the device chip 11. may
  • the second substrate 10 may be a display screen substrate having a larger area than the first substrate 9 .
  • the second substrate 10 is not limited to a substrate for a display screen, but is an object on which the device chip 11 is placed. Configured.
  • a transfer mechanism 20 is provided above the first transfer table 3 and the second transfer table 4 .
  • the transfer mechanism 20 has a cylindrical transfer drum 21 .
  • the transfer drum 21 has a rotating shaft 22 that is horizontal and perpendicular to the longitudinal direction of the travel guide 2 and has a rotating device (not shown) to rotate around the rotating shaft 22 .
  • Elevating devices are provided at both ends of the rotating shaft 22 to move the transfer drum 21 . And it is adjustable so that the surface of the second substrate 10 and the rotation shaft 22 are parallel to each other.
  • the lifting device can lower the transfer drum 21 to a position where the transfer adhesive layer 21 a of the transfer drum 21 contacts the device chip 11 on the first substrate 9 . Also, the device chip 11 adhered to the transfer adhesive layer 21 a of the transfer drum 21 can be lowered to a position where it can contact the second adhesive layer 10 a of the second substrate 10 .
  • the lifting device is not limited to the configuration for lifting and lowering the transfer drum 21, and may be configured to lift and lower the first substrate 9 and the second substrate 10, respectively.
  • the transfer drum 21 is provided with a support shaft extending vertically with one end of the rotation shaft 22 of the transfer drum 21 as a reference, and capable of turning the other end of the rotation shaft 22 in the horizontal direction about the support shaft. , the intersection angle (inclination) between the longitudinal direction of the traveling guide 2 and the rotating shaft 22 can be adjusted. This adjustment may be manual or linear.
  • the transfer drum 21 moves up and down from a reference position that is parallel to the surfaces of the first transfer table 3 and the second transfer table 4.
  • the orthogonality accuracy of the traveling axes of the second transfer table 4 is ensured by reference adjustment.
  • the rotation of the transfer drum 21 around the rotary shaft 22 is driven by a combination of a direct drive motor directly connected to the rotary shaft 22 and an encoder that detects the rotary position with high resolution accuracy above a certain level, and the rotation angle is also detected. .
  • the first transport table 3, with the first substrate 9 placed thereon, is moved by the first travel device 5 on the travel guide 2 while maintaining the horizontal level of the surface of the first substrate support table.
  • the transfer drum 21 rotates in synchronization with the movement of the first travel device 5 by the rotation device while the position of the rotation axis is fixed.
  • the device chips 11 can be received at a pitch that is the same as or different from the pitch of the device chips 11 on the first substrate 9 .
  • the second transport table 4, with the second substrate 10 placed thereon, is moved by the second travel device 6 on the travel guide 2 while maintaining the horizontal level of the surface of the second substrate support table.
  • the transfer drum 21 rotates in synchronization with the movement of the second travel device 6 by the rotation device while the position of the rotation axis is fixed.
  • the device chips 11 can be transferred at the same pitch as or different from the pitch of the device chips 11 on the transfer drum 21 .
  • the diameter of the transfer drum 21 for example, 100 to 500 mm can be suitably used from the viewpoint of processing accuracy, but it is not limited to this range. It is configured appropriately according to the configuration of the first substrate 9 and the second substrate 10 and the type of electronic device to be manufactured and the type of device chip 11 .
  • a transfer adhesive layer 21a is provided on the surface of the transfer drum 21 in a detachable manner.
  • the transfer adhesive layer 21a is made of an ultraviolet denaturing material.
  • the UV-modifying material is made by applying an adhesive with a uniform thickness to a substrate made of polyolefin and integrating them.
  • the acrylic adhesive constituting the UV-modified material is polymerized to increase the hardness, and the transfer adhesive strength of the transfer adhesive layer 21a becomes second to that of the second adhesive layer 10a. lower than adhesive strength.
  • the substrate may be made of a resin such as polyethylene terephthalate, polyethylene naphthalate, polyetheretherketone, polyimide, or the like.
  • the thickness of the transfer adhesive layer 21a is, for example, 1 to 30 ⁇ m, but is not limited to this.
  • the thickness is appropriately configured according to the type of electronic device to be manufactured and the type of device chip 11 .
  • the adhesive strength of the transfer adhesive layer 21a can be controlled by changing the compounding of the adhesive material of the ultraviolet-ray modified material that constitutes the transfer adhesive layer 21a.
  • the material of the adhesive is not particularly limited, but for example, known adhesives include acrylic adhesives, rubber adhesives, vinyl alkyl ether adhesives, silicone adhesives, polyester adhesives, and polyamide adhesives. It is possible to select a combination of at least one or more selected from adhesives, urethane-based adhesives, fluorine-based adhesives, epoxy-based adhesives, polyether-based adhesives, and the like.
  • the material of the pressure-sensitive adhesive if necessary, viscosity and peeling degree adjusters, tackifiers, plasticizers, softeners, glass fibers, glass beads, metal powders, other inorganic powders, etc.
  • One or more additives selected from fillers, colorants such as pigments and dyes, additives such as pH adjusters, antioxidants, and UV absorbers can be added as appropriate.
  • the transfer adhesive strength of the transfer adhesive layer 21a is higher than the first adhesive strength of the first adhesive layer 9a before irradiation with ultraviolet rays, and after irradiation with ultraviolet rays,
  • the transfer adhesive force of the transfer adhesive layer 21a is configured to change so as to satisfy the relationship that the transfer adhesive force is lower than the second adhesive force of the second adhesive layer 10a.
  • the transfer adhesive strength of the ultraviolet ray modifying material is such that the change value of the adhesive strength to glass is about 0.9 to 12.0 N / 25 mm before irradiation with ultraviolet rays, and after irradiation with ultraviolet rays About 0.1N/25mm is used. Since the transfer adhesive strength is greatly reduced by irradiation with ultraviolet rays, it is less likely to cause resistance when transferring the device chip 11 to the second substrate 10 .
  • the UV-modified material is used before being irradiated with UV rays, and after the device chip 11 is transferred, the UV-modified material is replaced with a new one on the transfer drum 21. be done.
  • the transfer mechanism 20 has an irradiation mechanism 23 that irradiates the transfer adhesive layer 21a to which the device chip 11 is adhered with ultraviolet rays.
  • the irradiation mechanism 23 appropriately controls the irradiation amount of ultraviolet rays, that is, the intensity and duration of the irradiated ultraviolet rays, according to the structure of the transfer adhesive layer 21a.
  • the transfer drum 21 is moved to the second position. Positioned on one substrate 9 .
  • the transfer drum 21 is lowered to bring the device chip 11 adhered to the first adhesive layer 9a of the first substrate 9 into contact with the transfer adhesive layer 21a.
  • the transfer adhesive layer 21a and the device chip 11 do not necessarily need to come into contact with each other at the time of descent, and the two do not come into contact with each other at the time of descent. Accordingly, the transfer adhesive layer 21a and the device chip 11 may come into contact with each other.
  • the direction of rotation of the transfer drum 21 is determined by the relationship with the direction of movement of the first substrate 9 .
  • the device chip 11 on the first adhesive layer 9a of the first substrate 9 and the transfer adhesive layer 21a are in contact with each other, the device chip is transferred by rotating the transfer drum 21 while moving the first conveying table 3. 11 is continuously peeled off from the first adhesive layer 9a of the first substrate 9 and adhered to the transfer adhesive layer 21a of the transfer drum 21 by the transfer adhesive force of the transfer adhesive layer 21a of the transfer drum 21. done on purpose.
  • the transfer drum 21 receives the device chip 11 from the first substrate 9 (receiving step).
  • the receiving process is made possible by the fact that the transfer adhesive strength of the transfer adhesive layer 21a before irradiation with ultraviolet rays is stronger than the first adhesive strength of the first adhesive layer 9a.
  • the first adhesive strength of the first adhesive layer 9a is the adhesive strength of the ultraviolet-modified material after irradiation with ultraviolet rays.
  • the irradiation mechanism 23 irradiates the transfer adhesive layer 21a with the device chip 11 adhered thereto with ultraviolet rays (irradiation step).
  • the UV-modified material forming the transfer adhesive layer 21a is polymerized, the hardness is increased, and the transfer adhesive strength is reduced.
  • the transfer drum 21 is positioned on the second substrate 10 . Then, the transfer drum 21 is lowered to bring the device chip 11 adhered to the transfer adhesive layer 21a and the second adhesive layer 10a of the second substrate 10 into contact with each other.
  • the device chip 11 and the second adhesive layer 10a do not necessarily need to come into contact with each other at the time of descent.
  • the device chip 11 and the second adhesive layer 10a may come into contact with each other.
  • the direction of rotation of the transfer drum 21 is determined by the relationship with the direction of movement of the second substrate 10 .
  • the transfer drum 21 With the device chip 11 on the transfer adhesive layer 21a of the transfer drum 21 and the second adhesive layer 10a in contact with each other, the transfer drum 21 is rotated while the second transfer table 4 is moved, thereby transferring the device chip. 11 is peeled off from the transfer adhesive layer 21a of the transfer drum 21 by the transfer adhesive force of the second adhesive layer 10a of the second substrate 10, and is continuously adhered to the second adhesive layer 10a of the second substrate 10. done on purpose. In this manner, the transfer drum 21 delivers the device chip 11 to the second substrate 10 (delivery step).
  • the device chip 11 can be transferred from the first substrate 9 to the second substrate 10 by the transfer drum 21 .
  • the dimensions and shapes of the first substrate 9 and the second substrate 10 may be the same or different.
  • the transfer mechanism 20 repeats receiving the device chip 11 from the first substrate 9 in a region not receiving the device chip 11 over the width of the transfer drum 21, and then irradiates the device chip 11 with the irradiation mechanism 23. After that, by transferring the device chip 11 to the second substrate 10, even if the width of the second substrate 10 is larger than that of the first substrate 9, the device chip 11 can be transferred. .
  • the transfer mechanism 20 is configured to transfer the device chip 11 from the first substrate 9 to the second substrate 10 only by the transfer drum 21, so the device chip 11 is transferred to the first substrate 9.
  • the side adhered to the first adhesive layer 9a is transferred to the second substrate 10 in such a manner that it adheres to the second adhesive layer 10a.
  • FIG. 6 shows a manufacturing apparatus having a transfer mechanism 20 according to the second embodiment of the present disclosure.
  • the transfer mechanism 20 includes, in addition to the first transfer drum 21 as the transfer drum 21 , a second transfer drum that relays delivery of the device chip 11 from the first transfer drum 21 to the second substrate 10 .
  • a second transfer drum 24 may be provided.
  • the above description can be used for the same configuration as that of the first embodiment, and the description will be omitted.
  • the second transfer drum 24 can be configured in the same manner as the first transfer drum 21, that is, the transfer drum 21 described above. That is, the second transfer drum 24 is also provided with the second transfer adhesive layer 24a made of the ultraviolet-modified material before irradiation with ultraviolet rays.
  • the ultraviolet denaturing material constituting the second transfer adhesive layer 24a may be different from or the same as the ultraviolet denaturing material constituting the transfer adhesive layer 21a and/or the first adhesive layer 9a. good.
  • the rotating direction of the second transfer drum 24 is opposite to the rotating direction of the first transfer drum 21 . It should be noted that the first transfer drum 21 and the second transfer drum 24 may have different configurations such as different radii.
  • irradiation is performed.
  • the mechanism 23 irradiates the first transfer adhesive layer 21a with ultraviolet rays (first irradiation step) to reduce the first transfer adhesive strength of the first transfer adhesive layer 21a compared to before the ultraviolet irradiation.
  • the second transfer adhesive strength is stronger than the first transfer adhesive strength.
  • At least one of the first transfer drum 21 and the second transfer drum 24 is moved closer to each other, and the first transfer drum 21 and the second transfer drum 24 are rotated in opposite directions to transfer the device. Movement of the chip 11 is performed.
  • the transfer of the device chip 11 from the second transfer drum 24 to the second substrate 10 is performed by irradiating ultraviolet rays by the ultraviolet mechanism ( Second irradiation step), which is performed after the second transfer adhesive strength of the second transfer adhesive layer 24a is reduced compared to before irradiation with ultraviolet rays.
  • the device chip 11 is transferred to the second substrate 10. (delivery step), the device chip 11 can be transferred in such a manner that the back surface of the side of the first substrate 9 that is adhered to the first adhesive layer 9a is adhered to the second adhesive layer 10a of the second substrate 10. .
  • the direction of movement of the second substrate 10 may be reversed, or the direction of movement of the second substrate 10 may remain unchanged. , the rotation of the second transfer drum 24 may be reversed.
  • first transfer drum 21 and the second transfer drum 24 are selectively used, and the transfer using only the first transfer drum 21 and the transfer using the first transfer drum 21 and the second transfer drum 24 are performed. By combining them, it is possible to selectively collectively form an arrangement in which the front and back surfaces of the device chips 11 are mixed.
  • the irradiation of ultraviolet rays to the first transfer drum 21 and the irradiation of ultraviolet rays to the second transfer drum 24 may be performed by one irradiation mechanism 23, or may be performed by two irradiation mechanisms 23 corresponding to each. good.
  • the first transfer drum 21 is rotated while the first transfer table 3 is moved, and the first transfer drum 21 or the second transfer drum 24 is rotated while the second transfer table 4 is moved.
  • the device chip 11 was moved from the first substrate 9 to the second substrate 10 by moving.
  • a driving device for moving the first transfer drum 21 and/or the second transfer drum 24 in a direction perpendicular to the rotating shaft 22 and parallel to the first transfer table 3 is provided. And/or the device chip 11 may be moved by rotating the second transfer drum 24 while being moved by the driving device.
  • the present disclosure provides a transfer mechanism provided in an electronic device manufacturing apparatus for transferring a device chip for configuring the electronic device, and a device chip for configuring the electronic device in the manufacturing process of the electronic device. can be used as a transfer method for transferring the
  • Reference Signs List 1 Device base 2: Travel guide 3: First transfer table 4: Second transfer table 5: First travel device 6: Second travel device 7: First alignment device 8: Second alignment device 9: First substrate 9a : First adhesive layer 10 : Second substrate 10a : Second adhesive layer 11 : Device chip 20 : Transfer mechanism 21 : Transfer drum (first transfer drum) 21a: transfer adhesive layer (first transfer adhesive layer) 22: Rotating shaft 23: Irradiation mechanism 24: Second transfer drum 24a: Second transfer adhesive layer

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Wire Bonding (AREA)
  • Die Bonding (AREA)

Abstract

デバイスチップの移載機構を提供する。 デバイスチップ11の移載元でありデバイスチップ11を粘着させる第一粘着層を有する第一基板と、デバイスチップ11の移載先でありデバイスチップ11を粘着させる第二粘着層10aを有する第二基板10と、デバイスチップ11を粘着させる移載粘着層21aを有しデバイスチップ11を第一基板から受け取り第二基板10へ受け渡す移載ドラム21と、デバイスチップ11が粘着された状態の移載粘着層21aに対して紫外線を照射する照射機構23と、を有し、移載粘着層21aは紫外線の照射によって移載粘着力が紫外線の照射前と比べて低下する紫外線変性材により構成され、紫外線変性材の移載粘着力は、紫外線の照射前においては第一粘着層の第一粘着力よりも高く、紫外線の照射後においては第二粘着層10aの第二粘着力よりも低い粘着力である。

Description

デバイスチップの移載機構及び移載方法
 本開示は、電子デバイスの製造装置に設けられ、当該電子デバイスを構成するためのデバイスチップを移載する移載機構、及び、電子デバイスの製造工程において、当該電子デバイスを構成するためのデバイスチップを移載する移載方法に関する。
 発光素子であるLEDを用いた表示装置においては、各画素を構成する3色(RGB)のLEDが表示画面用基板上に複数配置され、各画素が画像信号に従い発光し、表示画面全体として画像を表示する。
 このような表示装置の製造装置は、例えば化合物半導体基板上で別途製造されたLEDを、中継基板を介して表示画面用基板に移載する機構を有している。
 特許文献1には、LEDを移載元の第1の基板9から移載先の第2の基板10へ移載するために、第1の基板9と第2の基板10との間に、移載機構である第1のドラム11及び第2のドラム12がこの順に備えられている。第1の基板9、第1のドラム11、第2のドラム12及び第2の基板10はLEDを粘着させるために、それぞれ粘着層が設けられている。なお、当該背景技術の説明における各構成や各符号は特許文献1によるものである。
特許第6312270号公報
 LEDを第1の基板9から、第1のドラム11及び第2のドラム12を介して、第2の基板10へと移載させるためには、(第1の基板9の第1の粘着層の粘着力)<(第1のドラム11の第3の移載粘着層14aの選択的粘着領域の粘着力)<(第2のドラム12の第4の移載粘着層14bの粘着力)<(第2の基板10の第2の粘着層の粘着力)の順に粘着力が大きくなるように構成されている。
 その際、第1の粘着層と第3の移載粘着層14aの選択的粘着領域との粘着力の差、第3の移載粘着層14aの選択的粘着領域と第4の移載粘着層14bとの粘着力の差、及び、第4の移載粘着層14bの選択的粘着領域と第2の粘着層との粘着力の差を、例えばアクリル系粘着剤、ゴム系粘着剤、ビニルアルキルエーテル系粘着剤などから選択される粘着剤の配合を適切に管理することにより、調整する必要がある。
 また、第1の基板9から、第1のドラム11及び第2のドラム12を介して、第2の基板10へと確実に移載させるためには各粘着力の差を十分に確保する必要があるため、第2の基板10の第2の粘着層の粘着力は大きくならざるを得ない。一般的に粘着力が高い材料は硬度が低くなる傾向がある。そのため、第2の基板10へのLEDの転写時に位置ずれが生じないように適切に精度調整する必要がある。なお、これらは、第2のドラム12が設けられていない移載機構においても生じる。
 本開示は、電子デバイスの製造装置に設けられ、当該電子デバイスを構成するためのデバイスチップを移載する移載機構、及び、電子デバイスの製造工程において、当該電子デバイスを構成するためのデバイスチップを移載する移載方法を提供することを目的とする。
 本開示の一実施形態に係る移載機構は、電子デバイスの製造装置に設けられ、当該電子デバイスを構成するためのデバイスチップを移載する移載機構であって、前記デバイスチップの移載元であり前記デバイスチップを粘着させる第一粘着層を有する第一基板と、前記デバイスチップの移載先であり前記デバイスチップを粘着させる第二粘着層を有する第二基板と、前記デバイスチップを粘着させる移載粘着層を有し前記デバイスチップを前記第一基板から受け取り前記第二基板へ受け渡す移載ドラムと、前記デバイスチップが粘着された状態の前記移載粘着層に対して紫外線を照射する照射機構と、を有し、前記移載粘着層は紫外線の照射によって移載粘着力が紫外線の照射前と比べて低下する紫外線変性材により構成され、当該紫外線変性材の移載粘着力は、紫外線の照射前においては前記第一粘着層の第一粘着力よりも高く、紫外線の照射後においては前記第二粘着層の第二粘着力よりも低い粘着力である。
 上記構成によれば、移載ドラムの移載粘着層は、紫外線の照射によって移載粘着力が紫外線の照射前と比べて低下する。その際、移載粘着力は、照射機構による紫外線の照射前においては第一粘着層の第一粘着力よりも高く、紫外線の照射後においては第二粘着層の第二粘着力よりも低い。
 これにより、第一基板からデバイスチップを受け取り第二基板へと受け渡すために移載粘着層の粘着力を調整することが容易となる。また、移載粘着層の移載粘着力を紫外線の照射の前後において低下させることができるため、第二基板の第二粘着力を低く設定することができる。したがって、第二基板の硬度を高めることができ、デバイスチップを移載した際の位置ずれが生じにくい態様で、デバイスチップを第一基板から第二基板へと移載することができる。
 移載粘着層は、前記デバイスチップの厚みの約0.1倍から約5倍までの範囲の厚みであることが好ましい。デバイスチップの厚みに対して移載粘着層の厚みを約0.1倍以上又は約1μm以上とすることにより、デバイスチップを粘着させやすくすることができる。また、デバイスチップの厚みに対して移載粘着層の厚みを約5倍以下とすることにより、粘着させたデバイスチップの姿勢の安定性を高めることができる。例えば、デバイスチップが6μm程度の厚みであるとき、移載粘着層は約1μmから約30μmまでの範囲の厚みとなる。
 紫外線変性材は、好ましくは、紫外線の照射の前後において形状安定性に優れたものが選択される。
 なお、移載粘着力とは、移載粘着層がデバイスチップを粘着させる力をいう。第一粘着力とは、第一粘着層がデバイスチップを粘着させる力をいう。第二粘着力とは、第二粘着層がデバイスチップを粘着させる力をいう。
 前記移載粘着層は、前記デバイスチップを前記第一基板から受け取り前記第二基板へ受け渡すごとに取り換え可能に構成されてもよい。
 上記構成によれば、移載ドラムについて、移載粘着層のみの取り換えによって、デバイスチップの次の移載をすることができるため経済的に好ましい。
 前記第一粘着層は、前記移載粘着層を構成する紫外線変性材と同じ材料であり、かつ、当該紫外線変性材に紫外線が照射された材料により構成されてもよい。
 上記構成によれば、移載粘着層と第一粘着層とを同じ材料により構成することによって、それぞれ別の材料により構成するときよりも、管理やコストの点において優れる。
 本開示の他の実施形態に係る移載機構は、電子デバイスの製造装置に設けられ、当該電子デバイスを構成するためのデバイスチップを移載する移載機構であって、前記デバイスチップの移載元であり前記デバイスチップを粘着させる第一粘着層を有する第一基板と、前記デバイスチップの移載先であり前記デバイスチップを粘着させる第二粘着層を有する第二基板と、前記デバイスチップを粘着させる第一移載粘着層を有する第一移載ドラムであって、前記デバイスチップを前記第一基板から受け取り第二移載ドラムへ受け渡す当該第一移載ドラム、及び、前記デバイスチップを粘着させる第二移載粘着層を有する第二移載ドラムであって、前記デバイスチップを前記第一移載ドラムから受け取り前記第二基板へ受け渡す当該第二移載ドラムと、前記デバイスチップが粘着された状態の前記第一移載粘着層及び前記第二移載粘着層のそれぞれに対して紫外線を照射する照射機構と、を有し、前記第一移載粘着層は紫外線の照射によって移載粘着力が紫外線の照射前と比べて低下する紫外線変性材により構成され、当該紫外線変性材の第一移載粘着力は、紫外線の照射前においては前記第一粘着層の第一粘着力よりも高く、紫外線の照射後においては紫外線の照射前の前記第二移載粘着層の第二移載粘着力よりも低い粘着力であり、前記第二移載粘着層は紫外線の照射によって移載粘着力が紫外線の照射前と比べて低下する紫外線変性材により構成され、当該紫外線変性材の第二移載粘着力は、紫外線の照射前においては紫外線の照射後の前記第一移載粘着力よりも高く、紫外線の照射後においては前記第二粘着層の第二粘着力よりも低い粘着力である。
 上記構成によれば、第一移載ドラムの第一移載粘着層は、紫外線の照射によって第一移載粘着力が紫外線の照射前と比べて低下する。その際、第一移載粘着力は、照射機構による紫外線の照射前においては第一粘着層の第一粘着力よりも高く、紫外線の照射後においては紫外線の照射前の第二移載粘着層の第二移載粘着力よりも低い。同様に、第二移載ドラムの第二移載粘着層は紫外線の照射によって第二移載粘着力が紫外線の照射前と比べて低下する。その際、第二移載粘着力は、照射機構による紫外線の照射前においては紫外線の照射後の第一移載粘着層の第一移載粘着力よりも高く、紫外線の照射後においては前記第二粘着層の第二粘着力よりも低い。
 これにより、第一基板からデバイスチップを受け取り第二基板へと受け渡すために、第一移載粘着層の第一移載粘着力や第二移載粘着層の第二移載粘着力を調整することが容易となる。また、第一移載粘着層の第一移載粘着力、及び、第二移載粘着層の第二移載粘着力をそれぞれ紫外線の照射の前後において低下させることができるため、第二基板の第二粘着力を低く設定することができる。したがって、第二基板の硬度を高めることができ、デバイスチップを移載した際の位置ずれが生じにくい態様で、デバイスチップを第一基板から第二基板へと表裏関係を逆転しつつ移載することができる。
 第一移載粘着層及び第二移載粘着層は、前記デバイスチップの厚みの約0.1倍から約5倍までの範囲の厚みであることが好ましい。デバイスチップの厚みに対して第一移載粘着層や第二移載粘着層の厚みを約0.1倍以上又は約1μm以上とすることにより、デバイスチップを粘着させやすくすることができる。また、デバイスチップの厚みに対して第一移載粘着層や第二移載粘着層の厚みを約5倍以下とすることにより、粘着させたデバイスチップの姿勢の安定性を高めることができる。例えば、デバイスチップが6μm程度の厚みであるとき、移載粘着層は約1μmから約30μmまでの範囲の厚みとなる。
 紫外線変性材は、好ましくは、紫外線の照射の前後において形状安定性に優れたものが選択される。
 なお、第一移載粘着力とは、第一移載粘着層がデバイスチップを粘着させる力をいう。
第二移載粘着力とは、第二移載粘着層がデバイスチップを粘着させる力をいう。第一粘着力とは、第一粘着層がデバイスチップを粘着させる力をいう。第二粘着力とは、第二粘着層がデバイスチップを粘着させる力をいう。
 前記第一移載粘着層及び前記第二移載粘着層は、前記デバイスチップを前記第一基板から受け取り前記第二基板へ受け渡すごとに取り換え可能に構成されてもよい。
 上記構成によれば、第一移載ドラム及び第二移載ドラムについて、第一移載粘着層及び第二移載粘着層を取り換えることによって、デバイスチップの次の移載をすることができる。
 前記第一粘着層は、前記第一移載粘着層及び前記第二移載粘着層を構成する紫外線変性材と同じ材料であり、かつ、当該紫外線変性材に紫外線が照射された材料により構成されてもよい。
 上記構成によれば、第一移載粘着層と、第二移載粘着層と、第一粘着層とを同じ材料により構成することによって、それぞれ別の材料により構成するときよりも、管理やコストの点において優れる。
 前記第二粘着層は、熱硬化性樹脂により構成されてもよい。
 上記構成によれば、デバイスチップが受け渡される第二基板の第二粘着層が熱硬化性樹脂により構成されていることから、デバイスチップを粘着させた後に熱処理することによって、デバイスチップを第二基板に固定させることができる。
 本開示の一実施形態に係る移載方法は、電子デバイスの製造工程において、当該電子デバイスを構成するためのデバイスチップを移載する移載方法であって、紫外線を照射することにより粘着力が紫外線の照射前に比べて低下する紫外線変性材により構成された移載粘着層を有する移載ドラムによって、前記デバイスチップの移載元である第一基板から前記デバイスチップを受け取る受取工程と、前記デバイスチップの移載先である第二基板に前記デバイスチップを受け渡す受渡工程と、を有し、前記受取工程と前記受渡工程との間に前記移載粘着層に対して紫外線を照射する照射工程が設けられている。
 上記構成によれば、受取工程と受渡工程との間に設けられている照射工程において移載粘着層に対して紫外線を照射することによって、その移載粘着力を紫外線の照射前に比べて低下させることができる。具体的には、移載粘着力は、紫外線の照射前においては第一粘着層の第一粘着力よりも高く、紫外線の照射後においては第二粘着層の第二粘着力よりも低下する。
 これにより、第一基板からデバイスチップを受け取り第二基板へと受け渡すために、移載粘着層の粘着力を調整することが容易となる。また、移載粘着層の移載粘着力を紫外線の照射の前後において低下させることができるため、第二基板の第二粘着力を低く設定することができる。したがって、第二基板の硬度を高めることができ、デバイスチップを移載した際の位置ずれが生じにくい態様で、デバイスチップを第一基板から第二基板へと移載することができる。
 本開示の他の実施形態に係る移載方法は、電子デバイスの製造工程において、当該電子デバイスを構成するためのデバイスチップを移載する移載方法であって、紫外線を照射することにより粘着力が紫外線の照射前に比べて低下する紫外線変性材により構成された第一移載粘着層を有する第一移載ドラムによって、前記デバイスチップの移載元である第一基板から前記デバイスチップを受け取る受取工程と、前記デバイスチップの中継先であり、紫外線を照射することにより粘着力が紫外線の照射前に比べて低下する紫外線変性材により構成された第二移載粘着層を有する第二移載ドラムに前記デバイスチップを中継させる中継工程と、前記第二移載ドラムによって、前記デバイスチップの移載先である第二基板に、前記デバイスチップを受け渡す受渡工程と、を有し、前記受取工程と前記中継工程との間に前記第一移載粘着層に対して紫外線を照射する第一照射工程が設けられ、前記中継工程と前記受渡工程との間に前記第二移載粘着層に対して紫外線を照射する第二照射工程が設けられている。
 上記構成によれば、受取工程と中継工程との間に設けられている第一照射工程において第一移載粘着層に対して紫外線を照射し、その第一移載粘着力を紫外線の照射前に比べて低下させることができる。具体的には、第一移載粘着力は、紫外線の照射前においては第一粘着層の第一粘着力よりも高く、紫外線の照射後においては紫外線の照射前の第二粘着層の第二粘着力よりも低い。また、中継工程と受渡工程との間に設けられている第二照射工程において第二移載粘着層に対して紫外線を照射し、その第二移載粘着力を紫外線の照射前に比べて低下させることができる。具体的には、第二移載粘着力は、紫外線の照射前においては紫外線の照射後の第一移載粘着層の第一粘着力よりも高く、紫外線の照射後においては第二粘着層の第二粘着力よりも低い。
 これにより、第一基板からデバイスチップを受け取り第二基板へと受け渡すために、第一移載粘着層の第一移載粘着力や第二移載粘着層の第二移載粘着力を調整することが容易となる。また、第一移載粘着層の第一移載粘着力、及び、第二移載粘着層の第二移載粘着力をそれぞれ紫外線の照射の前後において低下させることができるため、第二基板の第二粘着力を低く設定することができる。したがって、第二基板の硬度を高めることができ、デバイスチップを移載した際の位置ずれが生じにくい態様で、デバイスチップを第一基板から第二基板へと表裏関係を逆転しつつ移載することができる。
 なお、本開示は、デバイスチップとしてLEDのような発光素子を移載する例に限定されず、例えば受光素子、圧電素子、加速度センサー、NEMSやMEMS等を用いたマイクロデバイスチップ、電荷蓄積方式又はMRAM、FeRaM、PCM等の他の方式による記憶素子、スイッチング素子、マイコン等の演算処理デバイスチップなどの各種電子デバイスチップを、基板上に整列して配置するために移載する場合にも使用できる。
 また、本開示は、プロセス中に昇温工程を含まなくてよいため、移載する側の基板として、フレキシブルな基板や、耐熱性が比較的低温(80℃以下)の基板に対しても、効果的に利用することができる。
 また、本開示における電子デバイスとは、製品(最終製品)の一部もしくは全部である場合もあり得、最終製品を製造するため製品の製造工程で使用される中間製品(物)もしくは副生成物の一部もしくは全部である場合もあり得る。
移載ドラムによってデバイスチップを受け取る前の様子が示された移載機構の説明図である。 移載ドラムによってデバイスチップを受け取る様子が示された移載機構の説明図である。 移載ドラムに対して紫外線を照射する様子が示された移載機構の説明図である。 移載ドラムによってデバイスチップを受け渡す前の様子が示された移載機構の説明図である。 移載ドラムによってデバイスチップを受け渡した後の様子が示された移載機構の説明図である。 別実施形態に係る移載機構の説明図である。
 以下に、電子デバイスの製造装置に設けられ、当該電子デバイスを構成するためのデバイスチップを移載する移載機構、及び、電子デバイスの製造工程において、当該電子デバイスを構成するためのデバイスチップを移載する移載方法について説明する。
(第一実施形態)
 図1から図5には、本開示の第一実施形態にかかる移載機構20を有する製造装置が示されている。
 図1から図5に示すように、装置ベース1上には、例えば複数の平行なレールにより構成される走行ガイド2が設けられている。さらに、走行ガイド2上には、第一搬送テーブル3(図1、図2参照)及び第二搬送テーブル4(図3、図4、図5参照)が搭載されており、それぞれ第一走行装置5、第二走行装置6によって、走行ガイド2に沿って移動することができる。
 図1及び図2に示すように、第一搬送テーブル3は、第一走行装置5上に第一アライメント装置7を有している。第一アライメント装置7は、横行装置(図示しない)を有しており、第一搬送テーブル3の移動とともに移動する。
 当該横行装置は、デバイスチップ11の移載元である第一基板9を走行ガイド2の長手方向(図1から図5における左右方向)と垂直方向(図1から図5における手前奥行方向)に移動することができる。前記横行装置は、第一基板9を、載置し把持することができる第一基板支持台(図示しない)を有している。
 前記第一基板支持台は、第一搬送テーブル3の走行ガイド2に沿った移動や、前記横行装置による移動により、当該第一基板支持台の第一基板9の位置がずれることを防止する。前記第一基板支持台は、機械的に第一基板9の側面又は上面を押圧し把持しても、裏面から吸引し第一基板9を把持してもよく、またこれらに限定されることはない。第一基板9の位置を固定することができる装置であればよい。第一基板9の形状、性状により把持方法を選択すればよい。
 第一基板9は、第一粘着層9aを有し、第一粘着層9a上に複数の電子デバイスチップ(以下、デバイスチップという)11を粘着させている。
 第一基板9は、例えばシリコンウェハ、化合物半導体ウェハ、ガラス基板、サファイア等の金属酸化物などの基板を利用して製造された平坦な基板により構成されている。当該基板の形状は、例えば、2インチから8インチの円形であるが、これに限定されるものではない。
 第一粘着層9aは、紫外線変性材により構成されている。当該紫外線変性材は、下記の移載ドラム21の移載粘着層21aを構成する紫外線変性材と異なるものであってもよいし、同じものであってもよい。ただし、当該紫外線変性材は、紫外線の照射後のものが用いられる。第一基板9は、例えば、成長基板からデバイスチップ11を受け取って移載ドラム21に受け渡すための中継基板である。この第一基板9は、第一粘着層9aが紫外線変性材である場合、第一粘着層9aが紫外線で照射される前に成長基板からデバイスチップ11を受け取る。その後、第一粘着層9aに紫外線が照射される。第一粘着層9aは、紫外線変性材に限らず、他の樹脂であってもよい。第一基板9自体が、粘着性を有し、第一粘着層9aを兼ねてもよい。
 デバイスチップ11は、例えばマイクロLEDを含むLED等の発光素子、受光素子、圧電素子、加速度センサー、NEMSやMEMS等を用いたマイクロデバイスチップ、電荷蓄積方式又はMRAM、FeRaM、PCM等の他の方式による記憶素子、スイッチング素子、マイコン等の演算処理デバイスチップなどのデバイスチップが例示されるが、これらに限定されるものではない。
 図3から図5に示すように、第二搬送テーブル4は、第二走行装置6上に第二アライメント装置8を有している。第二アライメント装置8は、デバイスチップ11の移載先である第二基板10(ワーク)を、載置し把持することができる第二基板支持台(図示しない)を有している。
 第一アライメント装置7は、移載ドラム21の基準位置を検知し、第一基板9と移載ドラム21とのアライメントを実行することができる。第二アライメント装置8は、移載ドラム21の基準位置を検知し、第二基板10と移載ドラム21の基準位置を検知し、第二基板10と移載ドラム21とのアライメントを実行することができる。なお、第一アライメント装置7及び第二アライメント装置8はそれぞれ同等のアライメント精度を有している。
 前記第二基板支持台は、第二搬送テーブル4の走行ガイド2の長手方向の移動により、当該第二基板支持台上の第二基板10の位置がずれることを防止する。
 前記第二基板支持台は、機械的に第二基板10の側面又は上面を押圧し把持しても、裏面から吸引し第二基板10を把持してもよく、またこれらに限定されることはない。第二基板10の位置を固定することができる装置であればよい。第二基板10の形状、性状により把持方法を選択すればよい。
 第二基板10は、第二粘着層10aを有し、第二粘着層10a上にデバイスチップ11を粘着させることができる。
 第二基板10は、ガラス等の硬質な基板だけでなく、可撓性のあるフレキシブルな基板や、デバイスチップ11の製造工程における熱処理、薬品処理、プラズマ処理などの工程に対する耐性に乏しい基板であってもよい。
 例えば、デバイスチップ11がLEDであり、電子デバイスが大画面の表示装置である場合、第二基板10は、第一基板9より大面積の表示画面用基板であり得る。また、第二基板10は、表示画面用の基板に限定されるものではなく、デバイスチップ11を載置する対象物であり、製造する電子デバイスの種類やデバイスチップ11の種類に応じて適切に構成される。
 図1に示すように、第一搬送テーブル3及び第二搬送テーブル4より上方に移載機構20が設けられている。
 移載機構20は、円柱形状の移載ドラム21を有している。移載ドラム21は、水平かつ走行ガイド2の長手方向と垂直な回転軸22を有し、回転軸22の周りに回転するよう回転装置(図示せず)を有している。回転軸22の両端には、移載ドラム21を移動させるため、それぞれ昇降装置(図示せず)が設けられており、それぞれ鉛直方向に独立に駆動することで傾きを制御し、第一基板9及び第二基板10の表面と回転軸22とが平行になるように調整可能となっている。
 前記昇降装置は、移載ドラム21の移載粘着層21aが第一基板9上のデバイスチップ11に接する位置まで移載ドラム21を降下させることができる。また、移載ドラム21の移載粘着層21aに粘着されたデバイスチップ11が第二基板10の第二粘着層10aに接触できる位置まで降下させることができる。なお、前記昇降装置は、移載ドラム21を昇降させる構成に限らず、第一基板9及び第二基板10をそれぞれ昇降できる構成であってもよい。
 移載ドラム21の回転軸22の一端を基準とし、鉛直方向に延びる支持軸を備え、支持軸を回転中心として水平方向に回転軸22の他端を旋回可能とする機構を、移載ドラム21に備えることにより、走行ガイド2の長手方向と回転軸22との交差角(傾き)を調整することができる。この調整は手動であっても直動軌道であってもよい。
 移載ドラム21は、第一搬送テーブル3及び第二搬送テーブル4の表面に対し平行となる基準位置からの昇降動作を行い、移載ドラム21の回転中心軸と、第一搬送テーブル3及び第二搬送テーブル4の走行軸は基準調整により直交精度を確保されている。
 移載ドラム21の回転軸22周りの回転は、回転軸22に直結したダイレクトドライブモータ及び一定以上の高い分解精度を有する回転位置を検出するエンコーダの組み合わせにより駆動し、また回転角の検出を行う。
 第一搬送テーブル3は、第一基板9を載せたまま第一走行装置5によって、走行ガイド2上を、第一基板支持台の表面の水平レベルを維持しながら移動する。その際、移載ドラム21は、回転軸心の位置が固定されたまま、回転装置により、第一走行装置5の移動と同期して回転する。その際、回転装置による回転速度を調節することによって、第一基板9上のデバイスチップ11のピッチと同じピッチ又は異なるピッチで、デバイスチップ11を受け取ることができる。
 第二搬送テーブル4は、第二基板10を載せたまま第二走行装置6によって、走行ガイド2上を、第二基板支持台の表面の水平レベルを維持しながら移動する。その際、移載ドラム21は、回転軸心の位置が固定されたまま、回転装置により、第二走行装置6の移動と同期して回転する。その際、回転装置による回転速度を調節することによって、移載ドラム21上のデバイスチップ11のピッチと同じピッチ又は異なるピッチで、デバイスチップ11を受け渡すことができる。
 移載ドラム21の直径としては、例えば100~500mmが、加工精度の観点で好適に使用し得るが、この範囲に限るものではない。第一基板9や第二基板10の構成、及び、製造する電子デバイスの種類やデバイスチップ11の種類に応じて適切に構成される。
 移載ドラム21の表面には、移載粘着層21aが着脱自在な態様で設けられている。移載粘着層21aは、紫外線変性材により構成されている。
 当該紫外線変性材は、ポリオレフィンからなる基板に粘着剤が均一の厚みで塗布され一体化させたものである。当該紫外線変性材は、紫外線を照射することにより、紫外線変性材を構成するアクリル系接着剤が重合して硬度が高まり、移載粘着層21aの移載粘着力が第二粘着層10aの第二粘着力より低下する。なお、上記基板はポリエチレンテレフタレート、ポリエチレンナフタレート、ポリエーテルエーテルケトン、ポリイミド等の樹脂により構成されていてもよい。紫外線変性材は、使用環境的に酸素阻害を受けるが、上記材料により構成されることによって耐酸素阻害性能が向上する。
 デバイスチップ11が6μm程度の厚みであるとき、移載粘着層21aの厚みは、例えば1~30μmであるが、これに限定されるものでは無い。当該厚みは、製造する電子デバイスの種類やデバイスチップ11の種類に応じて適切に構成される。
 移載粘着層21aの粘着力は、当該移載粘着層21aを構成する紫外線変性材の粘着剤の材料の配合を変えることで、制御することが可能である。粘着剤の材料としては、特に限定されないが、例えば、公知の粘着剤として、アクリル系粘着剤、ゴム系粘着剤、ビニルアルキルエーテル系粘着剤、シリコーン系粘着剤、ポリエステル系粘着剤、ポリアミド系粘着剤、ウレタン系粘着剤、フッ素系粘着剤、エポキシ系粘着剤、ポリエーテル系粘着剤などから選択される少なくとも1種以上の組み合わせを選択することが可能である。
 また、前記粘着剤の材料には、必要に応じて、粘度、および、剥離度の調整剤、粘着付与剤、可塑剤、軟化剤や、ガラス繊維、ガラスビーズ、金属粉、その他無機粉末等からなる充填剤、顔料、染料などの着色剤、pH調整剤、酸化防止剤、紫外線吸収剤等の添加剤などから選択される1以上の添加物を含有させることも適宜可能である。
 いずれにせよ、移載粘着層21aは、紫外線の照射前においては、移載粘着層21aの移載粘着力は第一粘着層9aの第一粘着力よりも高く、紫外線の照射後においては、移載粘着層21aの移載粘着力は第二粘着層10aの第二粘着力よりも低い関係を満たすように変性するように構成されている。
 本実施形態においては、紫外線変性材の移載粘着力は、ガラスに対する粘着力の変化値が、紫外線の照射前においては0.9~12.0N/25mm程度であり、紫外線の照射後においては0.1N/25mm程度のものが用いられる。紫外線の照射により移載粘着力は大幅に低下するため、デバイスチップ11を第二基板10へ受け渡す際の抵抗となりにくくなっている。
 当該紫外線変性材は、デバイスチップ11を移載する前においては、紫外線の照射前のものが用いられ、デバイスチップ11を移載した後においては、移載ドラム21に対して新たなものと取り換えられる。
 さらに、移載機構20は、デバイスチップ11を粘着させた状態の移載粘着層21aに対して、紫外線を照射する照射機構23を有している。
 照射機構23は、紫外線の照射量、すなわち照射される紫外線の強度及び時間が、移載粘着層21aの構成に応じて、適切に制御される。
(デバイスチップの移載方法)
 以上のように構成された移載機構20によって、本開示に係るデバイスチップの移載方法が好適に実現される。
 第一基板9を第一搬送テーブル3の第一基板支持台に載置し、第一アライメント装置7により第一基板9と移載ドラム21とのアライメントを行った後に、移載ドラム21を第一基板9上に位置させる。
 その後、移載ドラム21を降下し、第一基板9の第一粘着層9aに粘着されたデバイスチップ11と移載粘着層21aとを接触させる。
 なお、降下した時点で移載粘着層21aとデバイスチップ11とが必ずしも接触する必要はなく、降下時点では両者は接触せず、その後、移載ドラム21を回転させながら第一基板9を移動させることによって移載粘着層21aとデバイスチップ11とが接触してもよい。移載ドラム21の回転方向は、第一基板9の移動方向との関係により定まる。
 第一基板9の第一粘着層9a上のデバイスチップ11と、移載粘着層21aとが接触した状態で、第一搬送テーブル3を移動させながら移載ドラム21を回転させることにより、デバイスチップ11は移載ドラム21の移載粘着層21aの移載粘着力によって、第一基板9の第一粘着層9aから剥離され、移載ドラム21の移載粘着層21aに粘着されることが連続的に行われる。このようにして、移載ドラム21は第一基板9からデバイスチップ11を受け取る(受取工程)。
 当該受取工程は、紫外線の照射前の移載粘着層21aの移載粘着力が、第一粘着層9aの第一粘着力よりも強いことにより可能となる。なお、第一粘着層9aの第一粘着力は、紫外線の照射後の紫外線変性材の粘着力である。
 移載ドラム21がデバイスチップ11を受け取った後に、照射機構23によって、デバイスチップ11を粘着させた状態の移載粘着層21aに対して紫外線を照射する(照射工程)。
 これにより、移載粘着層21aを構成する紫外線変性材が重合して硬度が高まり、移載粘着力が低下する。
 その後、移載ドラム21を第二基板10上に位置させる。そして、移載ドラム21を降下し、移載粘着層21aに粘着されたデバイスチップ11と、第二基板10の第二粘着層10aとを接触させる。
 なお、降下した時点でデバイスチップ11と第二粘着層10aが必ずしも接触する必要はなく、降下時点では両者は接触せず、その後、移載ドラム21を回転させながら第二基板10を移動させることによってデバイスチップ11と第二粘着層10aとが接触してもよい。移載ドラム21の回転方向は、第二基板10の移動方向との関係により定まる。
 移載ドラム21の移載粘着層21a上のデバイスチップ11と、第二粘着層10aとが接触した状態で、第二搬送テーブル4を移動させながら移載ドラム21を回転させることにより、デバイスチップ11は第二基板10の第二粘着層10aの移載粘着力によって、移載ドラム21の移載粘着層21aから剥離され、第二基板10の第二粘着層10aに粘着されることが連続的に行われる。このようにして、移載ドラム21は第二基板10へデバイスチップ11を受け渡す(受渡工程)。
 以上のように、移載ドラム21により第一基板9から第二基板10へとデバイスチップ11を移載させることができる。
 なお、第一基板9と第二基板10との寸法や形状は同じであってもよいし、異なっていてもよい。移載機構20は、例えば、移載ドラム21の幅に亘り、デバイスチップ11を受け取っていない領域において第一基板9からデバイスチップ11を受け取ることを繰り返した後に、照射機構23により紫外線を照射し、その後、デバイスチップ11を第二基板10へ受け渡すことによって、第一基板9に対して第二基板10の幅が大きいような場合であっても、デバイスチップ11を移載することができる。
 上記の実施形態においては、移載機構20が、移載ドラム21のみにより第一基板9から第二基板10へデバイスチップ11を移載する構成であるため、デバイスチップ11は第一基板9において第一粘着層9aに粘着した側が、第二基板10において第二粘着層10aに粘着する態様で移載される。
(第二実施形態)
 図6には、本開示の第二実施形態にかかる移載機構20を有する製造装置が示されている。図6に示すように、移載機構20が、移載ドラム21としての第一移載ドラム21に加えて、第一移載ドラム21から第二基板10へデバイスチップ11の受け渡しを中継する第二移載ドラム24を備えてもよい。なお、当該第二実施形態の説明において、上記の第一実施形態と同じ構成については上述の説明が援用でき、説明を省略する。
 第二移載ドラム24は、第一移載ドラム21、すなわち上記の移載ドラム21と同様に構成することができる。すなわち、第二移載ドラム24にも、紫外線の照射前の紫外線変性材により構成された第二移載粘着層24aが設けられている。第二移載粘着層24aを構成する紫外線変性材は、移載粘着層21a及び/又は第一粘着層9aを構成する紫外線変性材と異なるものであってもよいし、同じものであってもよい。但し、第二移載ドラム24の回転方向は、第一移載ドラム21の回転方向とは逆となっている。なお、第一移載ドラム21と第二移載ドラム24の半径を異ならせるなど、異なる構成であってもよい。
 第一移載ドラム21から第二移載ドラム24へのデバイスチップ11の移動にあたっては、例えば、第一移載ドラム21の第一移載粘着層21aにデバイスチップ11を粘着させた後に、照射機構23によって当該第一移載粘着層21aに紫外線を照射して(第一照射工程)、当該第一移載粘着層21aの第一移載粘着力を紫外線の照射前に比べて低下させる。これにより、第一移載粘着力より第二移載粘着力が強い状態となる。少なくとも第一移載ドラム21又は第二移載ドラム24の一方を互いが近接するように移動させ、第一移載ドラム21と第二移載ドラム24とを互いに逆方向に回転させることによってデバイスチップ11の移動が行われる。
 第二移載ドラム24から第二基板10へのデバイスチップ11の受け渡しは、上記の移載ドラム21から第二基板10へのデバイスチップ11の受け渡しと同様に、紫外線機構により紫外線を照射し(第二照射工程)、第二移載粘着層24aの第二移載粘着力を紫外線の照射前に比べて低下させた後に行われる。
 このように、第一移載ドラム21が受け取ったデバイスチップ11を、第二移載ドラム24の第二移載粘着層24aに粘着させた後に(中継工程)、第二基板10へ受け渡すことにより(受渡工程)、デバイスチップ11は第一基板9において第一粘着層9aに粘着された側の裏面を、第二基板10において第二粘着層10aに粘着させる態様で移載させることができる。
 また、第二移載ドラム24から第二基板10へのデバイスチップ11の受け渡しに際して、第二基板10の移動方向を上述とは逆にしてもよいし、第二基板10の移動方向はそのままに、第二移載ドラム24の回転を逆転させてもよい。
 なお、第一移載ドラム21と第二移載ドラム24を使い分け、第一移載ドラム21のみの移載と、第一移載ドラム21及び第二移載ドラム24とを用いた移載を組み合わせることでデバイスチップ11の表裏面を混在させた配置を選択的に一括形成することも可能である。
 第一移載ドラム21に対する紫外線の照射と、第二移載ドラム24に対する紫外線の照射は一つの照射機構23によって行われてもよいし、それぞれに対応する二つの照射機構23によって行われてもよい。
 上述した実施形態においては、第一搬送テーブル3を移動させながら第一移載ドラム21を回転させ、第二搬送テーブル4を移動させながら第一移載ドラム21又は第二移載ドラム24を回転させることにより、第一基板9から第二基板10にデバイスチップ11を移動させた。これに代えて、回転軸22に垂直かつ第一搬送テーブル3に水平な方向に第一移載ドラム21及び/又は第二移載ドラム24を移動させる駆動装置を設け、第一移載ドラム21及び/又は第二移載ドラム24を当該駆動装置によって移動させながら回転させることにより、デバイスチップ11を移動させてもよい。
 上記実施形態(別実施形態を含む、以下同じ)で開示される構成は、矛盾が生じない限り、他の実施形態で開示される構成と組み合わせて適用でき、また、本明細書において開示された実施形態は例示であって、本開示の実施形態はこれに限定されず、本開示の目的を逸脱しない範囲内で適宜改変することが可能である。
 本開示は、電子デバイスの製造装置に設けられ、当該電子デバイスを構成するためのデバイスチップを移載する移載機構、及び、電子デバイスの製造工程において、当該電子デバイスを構成するためのデバイスチップを移載する移載方法に利用することができる。
1   :装置ベース
2   :走行ガイド
3   :第一搬送テーブル
4   :第二搬送テーブル
5   :第一走行装置
6   :第二走行装置
7   :第一アライメント装置
8   :第二アライメント装置
9   :第一基板
9a  :第一粘着層
10  :第二基板
10a :第二粘着層
11  :デバイスチップ
20  :移載機構
21  :移載ドラム(第一移載ドラム)
21a :移載粘着層(第一移載粘着層)
22  :回転軸
23  :照射機構
24  :第二移載ドラム
24a :第二移載粘着層

Claims (9)

  1.  電子デバイスの製造装置に設けられ、当該電子デバイスを構成するためのデバイスチップを移載する移載機構であって、
     前記デバイスチップの移載元であり前記デバイスチップを粘着させる第一粘着層を有する第一基板と、
     前記デバイスチップの移載先であり前記デバイスチップを粘着させる第二粘着層を有する第二基板と、
     前記デバイスチップを粘着させる移載粘着層を有し前記デバイスチップを前記第一基板から受け取り前記第二基板へ受け渡す移載ドラムと、
     前記デバイスチップが粘着された状態の前記移載粘着層に対して紫外線を照射する照射機構と、を有し、
     前記移載粘着層は紫外線の照射によって移載粘着力が紫外線の照射前と比べて低下する紫外線変性材により構成され、当該紫外線変性材の移載粘着力は、紫外線の照射前においては前記第一粘着層の第一粘着力よりも高く、紫外線の照射後においては前記第二粘着層の第二粘着力よりも低い粘着力である移載機構。
  2.  前記移載粘着層は、前記デバイスチップを前記第一基板から受け取り前記第二基板へ受け渡すごとに取り換え可能に構成されている請求項1に記載の移載機構。
  3.  前記第一粘着層は、前記移載粘着層を構成する紫外線変性材と同じ材料であり、かつ、当該紫外線変性材に紫外線が照射された材料により構成されている請求項1又は2に記載の移載機構。
  4.  電子デバイスの製造装置に設けられ、当該電子デバイスを構成するためのデバイスチップを移載する移載機構であって、
     前記デバイスチップの移載元であり前記デバイスチップを粘着させる第一粘着層を有する第一基板と、
     前記デバイスチップの移載先であり前記デバイスチップを粘着させる第二粘着層を有する第二基板と、
     前記デバイスチップを粘着させる第一移載粘着層を有する第一移載ドラムであって、前記デバイスチップを前記第一基板から受け取り第二移載ドラムへ受け渡す当該第一移載ドラム、及び、前記デバイスチップを粘着させる第二移載粘着層を有する第二移載ドラムであって、前記デバイスチップを前記第一移載ドラムから受け取り前記第二基板へ受け渡す当該第二移載ドラムと、
     前記デバイスチップが粘着された状態の前記第一移載粘着層及び前記第二移載粘着層のそれぞれに対して紫外線を照射する照射機構と、を有し、
     前記第一移載粘着層は紫外線の照射によって移載粘着力が紫外線の照射前と比べて低下する紫外線変性材により構成され、当該紫外線変性材の第一移載粘着力は、紫外線の照射前においては前記第一粘着層の第一粘着力よりも高く、紫外線の照射後においては紫外線の照射前の前記第二移載粘着層の第二移載粘着力よりも低い粘着力であり、
     前記第二移載粘着層は紫外線の照射によって移載粘着力が紫外線の照射前と比べて低下する紫外線変性材により構成され、当該紫外線変性材の第二移載粘着力は、紫外線の照射前においては紫外線の照射後の前記第一移載粘着力よりも高く、紫外線の照射後においては前記第二粘着層の第二粘着力よりも低い粘着力である移載機構。
  5.  前記第一移載粘着層及び前記第二移載粘着層は、前記デバイスチップを前記第一基板から受け取り前記第二基板へ受け渡すごとに取り換え可能に構成されている請求項4に記載の移載機構。
  6.  前記第一粘着層は、前記第一移載粘着層及び前記第二移載粘着層を構成する紫外線変性材と同じ材料であり、かつ、当該紫外線変性材に紫外線が照射された材料により構成されている請求項4又は5に記載の移載機構。
  7.  前記第二粘着層は、熱硬化性樹脂により構成されている請求項1から6のいずれか一項に記載の移載機構。
  8.  電子デバイスの製造工程において、当該電子デバイスを構成するためのデバイスチップを移載する移載方法であって、
     紫外線を照射することにより粘着力が紫外線の照射前に比べて低下する紫外線変性材により構成された移載粘着層を有する移載ドラムによって、
     前記デバイスチップの移載元である第一基板から前記デバイスチップを受け取る受取工程と、
     前記デバイスチップの移載先である第二基板に前記デバイスチップを受け渡す受渡工程と、を有し、
     前記受取工程と前記受渡工程との間に前記移載粘着層に対して紫外線を照射する照射工程が設けられている移載方法。
  9.  電子デバイスの製造工程において、当該電子デバイスを構成するためのデバイスチップを移載する移載方法であって、
     紫外線を照射することにより粘着力が紫外線の照射前に比べて低下する紫外線変性材により構成された第一移載粘着層を有する第一移載ドラムによって、
     前記デバイスチップの移載元である第一基板から前記デバイスチップを受け取る受取工程と、
     前記デバイスチップの中継先であり、紫外線を照射することにより粘着力が紫外線の照射前に比べて低下する紫外線変性材により構成された第二移載粘着層を有する第二移載ドラムに前記デバイスチップを中継させる中継工程と、
     前記第二移載ドラムによって、前記デバイスチップの移載先である第二基板に、前記デバイスチップを受け渡す受渡工程と、を有し、
     前記受取工程と前記中継工程との間に前記第一移載粘着層に対して紫外線を照射する第一照射工程が設けられ、
     前記中継工程と前記受渡工程との間に前記第二移載粘着層に対して紫外線を照射する第二照射工程が設けられている移載方法。
PCT/JP2022/004348 2021-03-18 2022-02-04 デバイスチップの移載機構及び移載方法 WO2022196161A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021044672A JP6978129B1 (ja) 2021-03-18 2021-03-18 デバイスチップの移載機構
JP2021-044672 2021-03-18

Publications (1)

Publication Number Publication Date
WO2022196161A1 true WO2022196161A1 (ja) 2022-09-22

Family

ID=78815559

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/004348 WO2022196161A1 (ja) 2021-03-18 2022-02-04 デバイスチップの移載機構及び移載方法

Country Status (3)

Country Link
JP (1) JP6978129B1 (ja)
TW (1) TW202238804A (ja)
WO (1) WO2022196161A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7254394B1 (ja) 2022-12-02 2023-04-10 株式会社写真化学 電子部品移載ロール及び電子部品移載方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7097656B1 (ja) 2022-03-08 2022-07-08 株式会社写真化学 電子部品移載方法、電子機器の製造方法、及び電子機器の製造装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017175087A (ja) * 2016-03-25 2017-09-28 株式会社写真化学 デバイスチップを用いた電子デバイスの製造方法およびその製造装置
US20180294248A1 (en) * 2017-04-06 2018-10-11 Ultra Display Technology Corp. Method of batch transferring micro semiconductor structures
JP2019521530A (ja) * 2016-10-12 2019-07-25 韓国機械研究院Korea Institute Of Machinery & Materials 多層型キャリアフィルムおよびこれを用いた素子の転写方法とこの方法を用いて電子製品を製造する電子製品の製造方法
WO2020059588A1 (ja) * 2018-09-19 2020-03-26 株式会社コムラテック 素子の移載方法およびそれに用いる移載版
JP2020194980A (ja) * 2016-01-15 2020-12-03 ユニカルタ・インコーポレイテッド 超小型又は超薄型ディスクリート部品の配置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4885483B2 (ja) * 2005-06-06 2012-02-29 リンテック株式会社 転写装置とその方法、剥離装置とその方法、貼付装置とその方法
JP4616719B2 (ja) * 2005-07-20 2011-01-19 富士通株式会社 Icチップ実装方法
US9331230B2 (en) * 2012-10-30 2016-05-03 Cbrite Inc. LED die dispersal in displays and light panels with preserving neighboring relationship

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020194980A (ja) * 2016-01-15 2020-12-03 ユニカルタ・インコーポレイテッド 超小型又は超薄型ディスクリート部品の配置
JP2017175087A (ja) * 2016-03-25 2017-09-28 株式会社写真化学 デバイスチップを用いた電子デバイスの製造方法およびその製造装置
JP2019521530A (ja) * 2016-10-12 2019-07-25 韓国機械研究院Korea Institute Of Machinery & Materials 多層型キャリアフィルムおよびこれを用いた素子の転写方法とこの方法を用いて電子製品を製造する電子製品の製造方法
US20180294248A1 (en) * 2017-04-06 2018-10-11 Ultra Display Technology Corp. Method of batch transferring micro semiconductor structures
WO2020059588A1 (ja) * 2018-09-19 2020-03-26 株式会社コムラテック 素子の移載方法およびそれに用いる移載版

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7254394B1 (ja) 2022-12-02 2023-04-10 株式会社写真化学 電子部品移載ロール及び電子部品移載方法
JP2024080352A (ja) * 2022-12-02 2024-06-13 株式会社写真化学 電子部品移載ロール及び電子部品移載方法

Also Published As

Publication number Publication date
TW202238804A (zh) 2022-10-01
JP2022143902A (ja) 2022-10-03
JP6978129B1 (ja) 2021-12-08

Similar Documents

Publication Publication Date Title
WO2022196161A1 (ja) デバイスチップの移載機構及び移載方法
TWI628726B (zh) 使用器件晶片之電子器件的製造方法及其製造裝置
CN108130521B (zh) 对准器结构及对准方法
US20190080954A1 (en) Apparatus for manufacturing semiconductor
JP6364537B2 (ja) デバイスチップを用いた電子デバイスの製造装置
WO2012029110A1 (ja) 表示パネルの製造方法及びその製造システム
US10658327B1 (en) Chip bonding apparatus and bonding method
KR102169271B1 (ko) Led 구조체 전사 장치
CN102285527A (zh) 基板输送装置和基板的倾斜校正方法
JP6034969B2 (ja) パネル取り付け装置
KR102048747B1 (ko) 마이크로 소자 전사방법
WO2023171292A1 (ja) 電子部品移載方法、電子機器の製造方法、及び電子機器の製造装置
WO2018055840A1 (ja) レーザ照射装置、レーザ照射方法、及び半導体装置の製造方法
JP2007187707A (ja) 液晶表示パネルの製造方法、液晶表示パネルの製造装置、液晶表示パネル、電子機器
KR20140000495A (ko) 기판 합착 장치용 라미네이팅 장치 및 방법, 및 이를 구비한 기판 합착 장치 및 방법
KR20150004981A (ko) 표시 패널용 지지 장치 및 이를 이용한 표시 장치의 제조 방법
KR20230081535A (ko) 마이크로 led 칩 전사 장치
KR102237990B1 (ko) 플렉서블 디스플레이 장치 합착 시스템 및 이를 이용한 플렉서블 디스플레이 장치 합착 방법
JP2005266616A (ja) 光学的表示装置及びその製造方法
KR20170113081A (ko) 기판 처리 장치 및 기판 처리 방법
WO2023032241A1 (ja) 電子デバイス、電子デバイスの製造方法、及び、デバイスチップの移載方法
JP7114144B1 (ja) 電子デバイスの製造方法、及び、デバイスチップの移載方法
US20230029555A1 (en) Adhesive layer forming apparatus and display device manufacturing system including the same
TW202130239A (zh) 電子零件的安裝裝置
CN115394702A (zh) 基板保持件、基板保持装置、成膜系统及电子器件的制造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22770921

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22770921

Country of ref document: EP

Kind code of ref document: A1