WO2022196149A1 - 磁石配列方法及びロータの製造方法 - Google Patents

磁石配列方法及びロータの製造方法 Download PDF

Info

Publication number
WO2022196149A1
WO2022196149A1 PCT/JP2022/003942 JP2022003942W WO2022196149A1 WO 2022196149 A1 WO2022196149 A1 WO 2022196149A1 JP 2022003942 W JP2022003942 W JP 2022003942W WO 2022196149 A1 WO2022196149 A1 WO 2022196149A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetized
magnet
arranging
jig
arrangement
Prior art date
Application number
PCT/JP2022/003942
Other languages
English (en)
French (fr)
Inventor
雄志 竹内
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to CN202280021808.0A priority Critical patent/CN116998096A/zh
Priority to US18/548,247 priority patent/US20240235340A9/en
Priority to JP2023506839A priority patent/JP7505638B2/ja
Publication of WO2022196149A1 publication Critical patent/WO2022196149A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/02Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies
    • H02K15/03Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies having permanent magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2786Outer rotors
    • H02K1/2787Outer rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/2789Outer rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2791Surface mounted magnets; Inset magnets
    • H02K1/2792Surface mounted magnets; Inset magnets with magnets arranged in Halbach arrays

Definitions

  • the present disclosure relates to a method of arranging magnets and a method of manufacturing a rotor, for example, a method of arranging a plurality of magnetized magnets in a Halbach arrangement and a method of manufacturing a rotor having the plurality of magnetized magnets.
  • rotors with magnets arranged in a Halbach array have been put to practical use.
  • a rotor is manufactured by winding a magnet unit, in which a plurality of magnets are arranged in a Halbach arrangement on a plate made of a thin strip of iron and fixed with epoxy resin, around a rotor core.
  • the unevenness of the back yoke is used to manufacture the main magnetic pole permanent magnets and the auxiliary magnetic pole permanent magnets in a Halbach arrangement.
  • Halbach-arrayed magnets must be pre-magnetized, which makes it difficult to precisely align the magnets at predetermined positions.
  • the present disclosure has been made in view of such problems, and realizes a magnet arrangement method and a rotor manufacturing method capable of arranging magnetized magnets in a Halbach arrangement at precisely determined positions. do.
  • a magnet arrangement method is a method for arranging a plurality of magnetized magnets in Halbach arrangement, An arranging step of arranging the plurality of magnetized magnets on an arranging jig made of a magnetic material, In the arranging step, the contact area between the arranging jig and a preset magnetized magnet is made different from the contact area between the arranging jig and other magnetized magnets.
  • a concave portion is formed in a contact surface of the arranging jig with the magnetized magnet.
  • a concave portion is formed in a contact surface of the magnetized magnet with the arranging jig.
  • the attraction force of one of the magnetized magnets to the arrangement jig and the attraction force of the other magnetized magnet The contact area between the one magnetized magnet and the arranging jig is changed to the contact area between the other magnetized magnet and the arranging jig so that the difference between the attraction force to the arranging jig is reduced. It is preferable to make it smaller than that.
  • a rotor manufacturing method includes the magnet arrangement method described above.
  • FIG. 7 is a diagram showing how a plurality of magnetized magnets are arranged on the surface of the arrangement jig on the +Z-axis side in the magnet arrangement method of the embodiment; It is an enlarged view which shows the II part of FIG.
  • FIG. 4 is an enlarged cross-sectional view showing how a plurality of magnetized magnets are arranged on the surface of the arrangement jig on the +Z-axis side;
  • FIG. 4 is a diagram for explaining a magnetic flux loop;
  • FIG. 4 is a perspective view showing how a plurality of magnetized magnets are arranged on the outer peripheral surface of the arrangement jig; It is a figure which shows the manufactured outer rotor.
  • FIG. 4 is a cross-sectional view showing a magnetized magnet having a concave portion;
  • the magnet arrangement method of this embodiment will be described.
  • a three-dimensional (XYZ) coordinate system is used for clarity of description.
  • the magnet arrangement method of the present embodiment is suitable for Halbach arrangement of magnetized magnets.
  • FIG. 1 is a diagram showing how a plurality of magnetized magnets are arranged on the Z-axis + side surface of an arrangement jig in the magnet arrangement method of the present embodiment.
  • FIG. 2 is an enlarged view showing part II of FIG.
  • FIG. 3 is an enlarged cross-sectional view showing how a plurality of magnetized magnets are arranged on the Z-axis + side surface of the arrangement jig.
  • the magnetized magnets 1 are Halbach-arranged on the surface of the arrangement jig 2 on the +Z-axis side.
  • the magnetized magnet 1 has, for example, a rectangular prism shape elongated in the X-axis direction, and has an N pole portion and an S pole portion arranged so as to generate a predetermined magnetic flux.
  • the shape of the magnetized magnet 1 is not limited to a square pole shape, and may be a cylindrical shape or other polygonal shape, and the shape of the magnetized magnet 1 is not limited.
  • the arranging jig 2 is made of a magnetic material, and has a basic shape of a plate, for example, as shown in FIGS. 1 to 3 .
  • the arranging jig 2 used in this embodiment was conceived in order to solve the following problems when arranging the magnetized magnets 1 .
  • FIG. 4 is a diagram for explaining the magnetic flux loop.
  • the three magnetized magnets 1 are arranged so that one magnetic flux loop R is formed by using the three magnetized magnets 1 as one set of magnet group 11.
  • one set of magnet group 11 includes three magnetized magnets 1, a first magnetized magnet 1a arranged on the Y-axis - side and a second magnetized magnet 1b arranged on the Y-axis + side. , and a third magnetized magnet 1c arranged in the center.
  • a fourth magnetized magnet 1 d is arranged between the adjacent magnet groups 11 as the magnetized magnet 1 for reducing the magnetic flux between the adjacent magnet groups 11 .
  • the magnetized magnets 1 arranged in this manner are arranged on the flat surface of the magnetic body 100 on the Z-axis + side toward the Y-axis + side, a set of magnet groups 11 is formed as shown in FIG.
  • the magnetic flux on the second magnetized magnet 1b side becomes larger than the magnetic flux on the first magnetized magnet 1a side.
  • the attracting force A2 of the second magnetized magnet 1b to the magnetic body 100 becomes larger than the attracting force A1 of the first magnetized magnet 1a to the magnetic body 100, and the first magnetized magnets 1a are arranged.
  • the second magnetized magnets 1b it becomes difficult to control the position of the second magnetized magnets 1b as compared with the case where the second magnetized magnets 1b are arranged.
  • the surface of the second magnetized magnets 1b on the negative side of the Z axis strongly rubs against the flat surface on the positive side of the Z axis of the magnetic body 100, causing the second magnetization.
  • the Z-axis-side surface of the magnet 1b may be damaged.
  • the magnetized magnet 1 newly arranged on the Y-axis + side is affected by the adjacent magnetized magnet 1 on the Y-axis - side, and the position control of the magnetized magnet 1 newly arranged on the Y-axis + side is performed. becomes difficult.
  • the adjacent magnetized magnets 1 may generate an attractive force or may be attracted to each other.
  • repulsive force is generated between adjacent magnetized magnets 1 . Therefore, it becomes difficult to control the position of the magnetized magnet 1 .
  • the arrangement jig 2 of the present embodiment has a Z-axis, which is a plane on which the magnetized magnets 1 are arranged in the arrangement jig 2, as shown in FIGS.
  • a concave portion 21 is formed on the + side surface.
  • the recess 21 includes a first recess 21a and a second recess 21b.
  • the first concave portion 21a is formed at a position of the arrangement jig 2 where the second magnetized magnet 1b is arranged.
  • the first concave portions 21a are substantially circular dimples when viewed from the Z-axis direction, and are arranged in an S shape with intervals in the X-axis direction. .
  • first concave portions 21a may be arranged linearly with intervals in the X-axis direction, or may be arranged randomly in the X-axis direction. Also.
  • the first recessed portion 21a is not limited to a substantially circular dimple, and may be a polygonal or elliptical dimple, or may be groove-shaped.
  • the first concave portion 21a has a shape and arrangement such that the attractive force of the second magnetized magnet 1b to the arrangement jig 2 is smaller than the attractive force of the second magnetized magnet 1b to the magnetic body 100. If it is At this time, the second magnetization is performed so that the difference between the attraction force of the second magnetized magnet 1b to the arrangement jig 2 and the attraction force of the first magnetized magnet 1a to the arrangement jig 2 is reduced.
  • the contact area between the magnet 1b and the arranging jig 2 should be smaller than the contact area between the first magnetized magnet 1a and the arranging jig 2 .
  • the second concave portion 21b is formed at a position where the adjacent magnetic pole straddles the second concave portion 21b when the magnetized magnets 1 are arranged on the arranging jig 2 .
  • the second concave portion 21b is arranged, for example, not only at the boundary portion between the N-pole portion and the S-pole portion of the magnetized magnet 1, but also at the boundary portion between the magnetized magnets 1 adjacent in the Y-axis direction. should also be placed.
  • the arrangement of the second concave portion 21b shown in FIG. 1 and the like is an example, and can be changed as appropriate according to the arrangement of the N pole portion and the S pole portion of the magnetized magnet 1 and the like.
  • the second concave portion 21b is a groove portion extending in the X-axis direction and has a length equal to or longer than the length of the magnetized magnet 1 in the X-axis direction. This can reduce the magnetic flux generated between different magnetic poles.
  • the second recessed portion 21b is designed to resist the attraction force or the repulsion force between the adjacent magnetized magnets 1.
  • the width dimension in the Y-axis direction and the depth in the Z-axis direction of the second recess 21b are set so that the force of attraction to the tool 2 is increased.
  • the first magnetized magnet 1a ⁇ the third magnetized magnet 1c ⁇ the second magnetized magnet 1b are arranged on the surface of the arrangement jig 2 on the positive side of the Z-axis toward the positive side of the Y-axis as described above.
  • the magnetized magnets 1 can be arranged in a Halbach arrangement.
  • the contact area between the second magnetized magnet 1b and the arranging jig 2 is different from the contact area between the first magnetized magnet 1a and the arranging jig 2.
  • the first concave portion 21a is formed so that the attraction force of the second magnetized magnet 1b to the arrangement jig 2 is smaller than the attraction force of the second magnetized magnet 1b to the magnetic body 100.
  • the second magnetized magnets 1b when arranging the second magnetized magnets 1b, it becomes easier to control the position of the second magnetized magnets 1b. Moreover, when the first concave portion 21a has a dimple shape, the shape is different from that of the second concave portion 21b, so that the position where the second magnetized magnet 1b is arranged can be easily confirmed visually.
  • the second magnetization is performed so that the difference between the attraction force of the second magnetized magnet 1b to the arrangement jig 2 and the attraction force of the first magnetized magnet 1a to the arrangement jig 2 is reduced. If the contact area between the magnet 1b and the arranging jig 2 is made smaller than the contact area between the first magnetized magnet 1a and the arranging jig 2, all the magnetized magnets 1a, 1b, 1c, and 1d are aligned. The adsorption force to the tool 2 can be substantially leveled. Therefore, the position control of each magnetized magnet 1 can be stabilized.
  • the second concave portion 21b is arranged at the boundary portion between different magnetic poles when the magnetized magnets 1 are arranged on the arranging jig 2, the magnetic flux generated between the different magnetic poles can be reduced. . Therefore, the position control of the magnetized magnet 1 newly arranged on the + side of the Y axis is facilitated.
  • the second recessed portion 21 b resists the attractive force or the repulsive force between the adjacent magnetized magnets 1 . It is formed so that the adsorption force to 2 becomes large. Therefore, a new magnetized magnet 1 can be arranged on the + side of the Y axis so as to overcome the attractive force or repulsive force between adjacent magnetized magnets 1 .
  • the magnet arrangement method of the present embodiment can accurately arrange the magnetized magnets 1 at predetermined positions. Moreover, since the attractive force of the second magnetized magnet 1b to the arrangement jig 2 can be reduced, the surface of the second magnetized magnet 1b on the Z-axis minus side and the arrangement jig 2 do not strongly rub against each other. can be suppressed, and damage to the Z-axis-side surface of the second magnetized magnet 1b can be suppressed.
  • the second concave portion 21b is formed in the arranging jig 2 so as to be arranged at the boundary portion of the adjacent magnetized magnets 1, when arranging the magnetized magnets 1, the second concave portion 21b
  • the magnetized magnets 1 may be arranged using as a mark. This makes it possible to easily arrange the magnetized magnets 1 at predetermined positions.
  • FIG. 5 is a perspective view showing how a plurality of magnetized magnets are arranged on the outer peripheral surface of the arrangement jig.
  • FIG. 6 is a diagram showing the manufactured outer rotor.
  • the arrangement jig 2 is simply shown by omitting the concave portion 21 formed on the outer peripheral surface of the arrangement jig 2 .
  • the above-described arrangement jig 2 is formed into a cylindrical shape, and when the magnetized magnets 1 are arranged on the outer peripheral surface of the arrangement jig 2 and joined together, the magnetized magnets 1 are formed into a cylindrical shape. can be arranged in
  • the magnetized magnets 1 arranged in a cylindrical shape are inserted into the interior of the cylindrical rotor core 3, and the inner peripheral surface of the rotor core 3 and the outer peripheral surface of the magnetized magnets 1 are brought into contact with each other.
  • the outer rotor 4 can be manufactured by joining and attaching a rotating shaft (not shown).
  • the inner rotor may be manufactured by fixing the cylindrically arranged magnetized magnets 1 to the outer peripheral surface of the rotor core.
  • three magnetized magnets 1 form one magnetic flux loop R, but the number of magnetized magnets 1 and the arrangement of magnetic poles for forming the magnetic flux loop R are not limited. .
  • the arrangement jig 2 is formed with the concave portion 21, but the magnetized magnet 1 may be formed with the concave portion 1e as shown in FIG.
  • the magnetized magnet 1 or the array is arranged so that the attractive force of one of the magnetized magnets 1 forming a magnetic flux loop can be reduced, or the magnetic flux generated between different adjacent magnetic poles can be reduced. It is sufficient that at least one of the jigs 2 is formed with a recess.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Abstract

ハルバッハ配列される着磁磁石を精度良く定められた位置に配列することが可能な磁石配列方法を実現する。本開示の一形態に係る磁石配列方法は、ハルバッハ配列される複数の着磁磁石を配列する方法であって、磁性体から成る配列治具(2)に複数の着磁磁石(1)を配列する配列工程を備え、配列工程では、配列治具(2)と予め設定された着磁磁石との接触面積を、配列治具(2)と他の着磁磁石との接触面積に比べて異ならせる。

Description

磁石配列方法及びロータの製造方法
 本開示は、磁石配列方法及びロータの製造方法に関し、例えば、ハルバッハ配列される複数の着磁磁石の配列方法及び当該複数の着磁磁石を有するロータの製造方法に関する。
 近年、ハルバッハ配列された磁石を有するロータなどが実用化されている。このようなロータは、例えば、特許文献1に開示されているように、鉄製の帯状薄板から成るプレートに複数の磁石をハルバッハ配列してエポキシ樹脂で固定した磁石ユニットを、ロータコアに巻き付けることで製造したり、特許文献2に開示されているように、バックヨークの凹凸を利用して主磁極永久磁石と副磁極永久磁石とをハルバッハ配列して製造したり、している。
特開2018-107929号公報 特開2007-110822号公報
 本出願人は、以下の課題を見出した。ハルバッハ配列される磁石は、予め着磁されている必要があるが、それ故に、当該磁石を精度良く定められた位置に配列することが困難である。
 本開示は、このような問題点に鑑みてなされたものであり、ハルバッハ配列される着磁磁石を精度良く定められた位置に配列することが可能な、磁石配列方法及びロータの製造方法を実現する。
 本開示の一態様に係る磁石配列方法は、ハルバッハ配列される複数の着磁磁石を配列する方法であって、
 磁性体から成る配列治具に前記複数の着磁磁石を配列する配列工程を備え、
 前記配列工程では、前記配列治具と予め設定された着磁磁石との接触面積を、前記配列治具と他の着磁磁石との接触面積に比べて異ならせる。
 上述の磁石配列方法において、前記配列治具における前記着磁磁石との接触面に凹部が形成されていることが好ましい。
 上述の磁石配列方法において、前記着磁磁石における前記配列治具との接触面に凹部が形成されていることが好ましい。
 上述の磁石配列方法において、前記凹部である溝を跨ぐように、異なる磁極を配置することが好ましい。
 上述の磁石配列方法において、前記複数の着磁磁石を配列した際に磁束ループを形成する両側の着磁磁石における一方の着磁磁石の前記配列治具への吸着力と他方の着磁磁石の前記配列治具への吸着力との差が減少するように、前記一方の着磁磁石と前記配列治具との接触面積を、前記他方の着磁磁石と前記配列治具との接触面積に比べて小さくすることが好ましい。
 本開示の一態様に係るロータの製造方法は、上述の磁石配列方法を備える。
 本開示によれば、ハルバッハ配列される着磁磁石を精度良く定められた位置に配列することが可能な、磁石配列方法及びロータの製造方法を実現することができる。
実施の形態の磁石配列方法において、配列治具のZ軸+側の面に複数の着磁磁石が配列された様子を示す図である。 図1のII部分を示す拡大図である。 配列治具のZ軸+側の面に複数の着磁磁石が配列された様子を示す拡大断面図である。 磁束ループを説明するための図である。 配列治具の外周面に複数の着磁磁石が配列された様子を示す斜視図である。 製造されたアウターロータを示す図である。 凹部が形成された着磁磁石を示す断面図である。
 以下、本開示を適用した具体的な実施の形態について、図面を参照しながら詳細に説明する。但し、本開示が以下の実施の形態に限定される訳ではない。また、説明を明確にするため、以下の記載及び図面は、適宜、簡略化されている。
 先ず、本実施の形態の磁石配列方法を説明する。なお、以下の説明では、説明を明確にするために、三次元(XYZ)座標系を用いて説明する。本実施の形態の磁石配列方法は、着磁磁石をハルバッハ配列する際に好適である。
 図1は、本実施の形態の磁石配列方法において、配列治具のZ軸+側の面に複数の着磁磁石が配列された様子を示す図である。図2は、図1のII部分を示す拡大図である。図3は、配列治具のZ軸+側の面に複数の着磁磁石が配列された様子を示す拡大断面図である。
 本実施の形態では、例えば、図1乃至図3に示すように、着磁磁石1を配列治具2のZ軸+側の面にハルバッハ配列する。着磁磁石1は、例えば、X軸方向に長い四角柱形状であり、所定の磁束が発生するようにN極部分とS極部分とが配置されている。但し、着磁磁石1は、四角柱形状に限定されず、円柱形状や他の多角柱形状でもよく、着磁磁石1の形状は、限定されない。
 配列治具2は、磁性体から成り、例えば、図1乃至図3に示すように、板形状を基本形態としている。ここで、本実施の形態で用いる配列治具2は、着磁磁石1を配列する際の以下の課題を解決するために想到した。
 図4は、磁束ループを説明するための図である。例えば、図4に示すように、3個の着磁磁石1を1組の磁石群11として用いて1つの磁束ループRが形成されるように、当該3個の着磁磁石1を配列するものとする。
 つまり、1組の磁石群11は、3個の着磁磁石1として、Y軸-側に配置される第1の着磁磁石1a、Y軸+側に配置される第2の着磁磁石1b、及び中央に配置される第3の着磁磁石1cを備えている。そして、隣接する磁石群11の間には、隣接する磁石群11の間の磁束を減少させるための着磁磁石1として、第4の着磁磁石1dを配置するものとする。
 このように配列される着磁磁石1を、例えば、磁性体100のZ軸+側の平坦面にY軸+側に向かって配列する場合、図4に示すように、1組の磁石群11が形成する磁束ループRにおいて、第2の着磁磁石1bの側の磁束が第1の着磁磁石1aの側の磁束に対して大きくなる。
 そのため、第2の着磁磁石1bの磁性体100への吸着力A2が第1の着磁磁石1aの磁性体100への吸着力A1に対して大きくなり、第1の着磁磁石1aを配列する場合に比べて、第2の着磁磁石1bを配列する際に当該第2の着磁磁石1bの位置制御が困難になる。また、第2の着磁磁石1bを配列する際に、第2の着磁磁石1bのZ軸-側の面が磁性体100のZ軸+側の平坦面に強く擦れて、第2の着磁磁石1bのZ軸-側の面が損傷する可能性がある。
 しかも、着磁磁石1を配列する際にY軸方向で隣接する磁極が異なる場合、異なる磁極の間で磁束が発生する。そのため、Y軸+側に新たに配置される着磁磁石1がY軸-側で隣接する着磁磁石1の影響を受け、Y軸+側に新たに配置される着磁磁石1の位置制御が困難になる。
 また、着磁磁石1を配列する際にY軸方向で隣接する着磁磁石1における対向する部分が異なる磁極である場合、隣接する着磁磁石1同士に吸着力が発生したり、隣接する着磁磁石1における対向する部分が等しい磁極である場合、隣接する着磁磁石1同士に反発力が発生したり、する。そのため、着磁磁石1の位置制御が困難になる。
 そこで、これらの課題を解消するために、本実施の形態の配列治具2は、図1乃至図3に示すように、配列治具2における着磁磁石1が配列される面であるZ軸+側の面に凹部21が形成されている。本実施の形態では、凹部21として、第1の凹部21a及び第2の凹部21bを備えている。
 第1の凹部21aは、配列治具2における第2の着磁磁石1bが配置される位置に形成されている。第1の凹部21aは、例えば、図1乃至図3に示すように、Z軸方向から見て、略円形状のディンプルであり、X軸方向に間隔を開けてS字状に並べられている。
 但し、第1の凹部21aは、X軸方向に間隔を開けて直線状に並べられたり、X軸方向にランダムに並べられたり、してもよい。また。第1の凹部21aは、略円形状のディンプルに限らず、多角形状若しくは楕円形状のディンプルでもよく、又は、溝形状でもよい。
 要するに、第1の凹部21aは、第2の着磁磁石1bの配列治具2への吸着力が、第2の着磁磁石1bの磁性体100への吸着力に対して減少する形状及び配置であればよい。このとき、第2の着磁磁石1bの配列治具2への吸着力と第1の着磁磁石1aの配列治具2への吸着力との差が減少するように、第2の着磁磁石1bと配列治具2との接触面積を、第1の着磁磁石1aと配列治具2との接触面積に比べて小さくするとよい。
 第2の凹部21bは、配列治具2に着磁磁石1が配列された際に、隣接する磁極が第2の凹部21bを跨ぐ位置に形成されている。このとき、第2の凹部21bは、例えば、着磁磁石1のN極部分とS極部分との境界部分に配置されるだけではなく、Y軸方向で隣接する着磁磁石1の境界部分にも配置されるとよい。なお、図1などで示す第2の凹部21bの配置は、一例であり、着磁磁石1のN極部分とS極部分との配置などに応じて、適宜、変更することができる。
 第2の凹部21bは、X軸方向に延在する溝部であり、着磁磁石1のX軸方向の長さ以上の長さを有する。これにより、異なる磁極の間に発生する磁束を減少させることができる。このとき、第2の凹部21bは、配列治具2に着磁磁石1が配列された際に、隣接する着磁磁石1同士の吸着力又は反発力に対して、着磁磁石1の配列治具2への吸着力が大きくなるように、第2の凹部21bのY軸方向の幅寸法及びZ軸方向の深さが設定されている。
 このような配列治具2のZ軸+側の面に、上述のようにY軸+側に向かって第1の着磁磁石1a→第3の着磁磁石1c→第2の着磁磁石1b→第4の着磁磁石1dの順で、配列治具2の第1の凹部21a及び第2の凹部21bを目印にして、これらの着磁磁石1a、1c、1b、1dを配列する工程を繰り返すと、着磁磁石1をハルバッハ配列することができる。
 このとき、第2の着磁磁石1bと配列治具2との接触面積が、第1の着磁磁石1aと配列治具2との接触面積に比べて異なる。そして、第1の凹部21aは、第2の着磁磁石1bの配列治具2への吸着力が当該第2の着磁磁石1bの磁性体100への吸着力に対して減少するように形成されている。
 そのため、第2の着磁磁石1bを配列する際に当該第2の着磁磁石1bの位置制御が容易になる。しかも、第1の凹部21aがディンプル形状の場合、第2の凹部21bと形状が異なるため、第2の着磁磁石1bを配置する位置を目視により確認し易い。
 ここで、第2の着磁磁石1bの配列治具2への吸着力と第1の着磁磁石1aの配列治具2への吸着力との差が減少するように、第2の着磁磁石1bと配列治具2との接触面積を、第1の着磁磁石1aと配列治具2との接触面積に比べて小さくすると、全ての着磁磁石1a、1b、1c、1dの配列治具2への吸着力を略平準化することができる。そのため、各々の着磁磁石1の位置制御を安定させることができる。
 また、第2の凹部21bは、配列治具2に着磁磁石1が配列された際に、異なる磁極の境界部分に配置されるので、異なる磁極の間で発生する磁束を減少させることができる。そのため、Y軸+側に新たに配置される着磁磁石1の位置制御が容易になる。
 さらに、第2の凹部21bは、配列治具2に着磁磁石1が配列された際に、隣接する着磁磁石1同士の吸着力又は反発力に対して、着磁磁石1の配列治具2への吸着力が大きくなるように形成されている。そのため、隣接する着磁磁石1同士の吸着力又は反発力に打ち勝つように、Y軸+側に新たに着磁磁石1を配置することができる。
 以上より、本実施の形態の磁石配列方法は、着磁磁石1を定められた位置に精度良く配列することができる。しかも、第2の着磁磁石1bの配列治具2への吸着力を減少させることができるので、第2の着磁磁石1bのZ軸-側の面と配列治具2とが強く擦れることを抑制でき、第2の着磁磁石1bのZ軸-側の面の損傷を抑制することができる。
 このとき、第2の凹部21bは、隣接する着磁磁石1の境界部分に配置されるように配列治具2に形成されているので、着磁磁石1を配列する際に第2の凹部21bを目印にして着磁磁石1を配列すればよい。これにより、着磁磁石1を定められた位置に簡単に配列することができる。
 次に、ロータの製造方法を説明する。図5は、配列治具の外周面に複数の着磁磁石が配列された様子を示す斜視図である。図6は、製造されたアウターロータを示す図である。なお、図5では、配列治具2の外周面に形成された凹部21を省略して当該配列治具2を簡略化して示している。上述の配列治具2を、例えば、図5に示すように、円筒形状とし、当該配列治具2の外周面に着磁磁石1を配列して相互を接合すると、着磁磁石1を円筒形状に配列することができる。
 そして、図6に示すように、例えば、円筒形状のロータコア3の内部に円筒形状に配列された着磁磁石1を挿入して、ロータコア3の内周面と着磁磁石1の外周面とを接合し、図示を省略した回転軸を取り付けると、アウターロータ4を製造することができる。但し、ロータコアの外周面に円筒形状に配列された着磁磁石1を固定してインナーロータを製造してもよい。
 本開示は上記実施の形態に限られたものではなく、趣旨を逸脱しない範囲で適宜変更することが可能である。
 例えば、上記実施の形態では、3個の着磁磁石1で1つの磁束ループRを形成しているが、磁束ループRを形成するための着磁磁石1の個数や磁極の配置などは限定されない。
 例えば、上記実施の形態では、配列治具2に凹部21を形成しているが、図7に示すように、着磁磁石1に凹部1eを形成してもよい。要するに、磁束ループを形成する一方の着磁磁石1の吸着力を減少させることができ、又は、隣接する異なる磁極の間で発生する磁束を減少させることができるように、着磁磁石1又は配列治具2の少なくとも一方に凹部が形成されていればよい。
 この出願は、2021年3月18日に出願された日本出願特願2021-44582を基礎とする優先権を主張し、その開示の全てをここに取り込む。
1 着磁磁石、1a 第1の着磁磁石、1b 第2の着磁磁石、1c 第3の着磁磁石、1d 第4の着磁磁石、1e 凹部
2 配列治具
3 ロータコア
4 アウターロータ
11 磁石群
21 凹部、21a 第1の凹部、21b 第2の凹部
100 磁性体
A1、A2 吸着力
R 磁束ループ

Claims (6)

  1.  ハルバッハ配列される複数の着磁磁石を配列する方法であって、
     磁性体から成る配列治具に前記複数の着磁磁石を配列する配列工程を備え、
     前記配列工程では、前記配列治具と予め設定された着磁磁石との接触面積を、前記配列治具と他の着磁磁石との接触面積に比べて異ならせる、磁石配列方法。
  2.  前記配列治具における前記着磁磁石との接触面に凹部が形成されている、請求項1に記載の磁石配列方法。
  3.  前記着磁磁石における前記配列治具との接触面に凹部が形成されている、請求項1又は2に記載の磁石配列方法。
  4.  前記凹部である溝を跨ぐように、異なる磁極を配置する、請求項2又は3に記載の磁石配列方法。
  5.  前記複数の着磁磁石を配列した際に磁束ループを形成する両側の着磁磁石における一方の着磁磁石の前記配列治具への吸着力と他方の着磁磁石の前記配列治具への吸着力との差が減少するように、前記一方の着磁磁石と前記配列治具との接触面積を、前記他方の着磁磁石と前記配列治具との接触面積に比べて小さくする、請求項1乃至4のいずれか1項に記載の磁石配列方法。
  6.  請求項1乃至5のいずれか1項に記載の磁石配列方法を備える、ロータの製造方法。
PCT/JP2022/003942 2021-03-18 2022-02-02 磁石配列方法及びロータの製造方法 WO2022196149A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202280021808.0A CN116998096A (zh) 2021-03-18 2022-02-02 磁铁排列方法和转子的制造方法
US18/548,247 US20240235340A9 (en) 2021-03-18 2022-02-02 Magnet arrangement method and rotor manufacturing method
JP2023506839A JP7505638B2 (ja) 2021-03-18 2022-02-02 磁石配列方法及びロータの製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-044582 2021-03-17
JP2021044582 2021-03-18

Publications (1)

Publication Number Publication Date
WO2022196149A1 true WO2022196149A1 (ja) 2022-09-22

Family

ID=83320331

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/003942 WO2022196149A1 (ja) 2021-03-18 2022-02-02 磁石配列方法及びロータの製造方法

Country Status (4)

Country Link
US (1) US20240235340A9 (ja)
JP (1) JP7505638B2 (ja)
CN (1) CN116998096A (ja)
WO (1) WO2022196149A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0888957A (ja) * 1994-09-13 1996-04-02 Honda Motor Co Ltd 電動機ロータの製造方法
WO2013008284A1 (ja) * 2011-07-08 2013-01-17 三菱電機株式会社 永久磁石型回転電機およびその製造方法
JP2019033578A (ja) * 2017-08-07 2019-02-28 三菱重工業株式会社 アキシャルギャップモータ及びロータの製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0888957A (ja) * 1994-09-13 1996-04-02 Honda Motor Co Ltd 電動機ロータの製造方法
WO2013008284A1 (ja) * 2011-07-08 2013-01-17 三菱電機株式会社 永久磁石型回転電機およびその製造方法
JP2019033578A (ja) * 2017-08-07 2019-02-28 三菱重工業株式会社 アキシャルギャップモータ及びロータの製造方法

Also Published As

Publication number Publication date
JP7505638B2 (ja) 2024-06-25
CN116998096A (zh) 2023-11-03
US20240235340A9 (en) 2024-07-11
US20240136896A1 (en) 2024-04-25
JPWO2022196149A1 (ja) 2022-09-22

Similar Documents

Publication Publication Date Title
JP5253114B2 (ja) リニアモータ
US10411534B2 (en) Rotor and rotating electric machine
JP2007110822A (ja) 周期磁界発生装置とその製造方法およびこの周期磁界発生装置を用いたリニアモータ
US9106118B2 (en) Rotor having projections for positioning permanent magnets and electric motor including such rotor
JP2016029880A (ja) 磁石ユニット及び磁石ユニットの製造方法
JP6065568B2 (ja) 着磁装置
WO2017017878A1 (ja) ロータの製造方法、及びロータ
EP1605574A1 (en) Rotor for synchronous motor
JP2010193587A (ja) ロータ用磁石着磁装置およびモータ
JP5164062B2 (ja) 多自由度電磁アクチュエータ
JP2010279185A (ja) アキシャルギャップ型回転電機用ロータ
WO2022196149A1 (ja) 磁石配列方法及びロータの製造方法
JP2001112228A (ja) 磁石可動型リニアアクチュエータ
US10199911B2 (en) Orientation magnetization device and magnet-embedded rotor
JPWO2018167970A1 (ja) リニアモータ
JP7405302B2 (ja) 磁石配列方法、ロータの製造方法、磁石配列治具及び磁石誘導装置
JP2003274587A (ja) 永久磁石型モータ
KR20200111971A (ko) 전자기 유도를 이용하는 에너지 하베스팅 장치
JP7576642B2 (ja) 着磁装置
JP6947340B1 (ja) 界磁子および界磁子を備えた電動機
JP2013252044A (ja) ロータの製造方法
WO2002103885A1 (fr) Moteur lineaire
JP5957800B2 (ja) リニア駆動装置
JP2024120365A (ja) 着磁装置
JP2003347121A (ja) 周期磁界発生磁気回路の製造方法および組立治具

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22770910

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023506839

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 18548247

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 202280021808.0

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22770910

Country of ref document: EP

Kind code of ref document: A1