WO2022195751A1 - アプリケーションサーバ、基地局、ダイナミックマップ配信システム、制御回路、記憶媒体、および情報配信方法 - Google Patents

アプリケーションサーバ、基地局、ダイナミックマップ配信システム、制御回路、記憶媒体、および情報配信方法 Download PDF

Info

Publication number
WO2022195751A1
WO2022195751A1 PCT/JP2021/010758 JP2021010758W WO2022195751A1 WO 2022195751 A1 WO2022195751 A1 WO 2022195751A1 JP 2021010758 W JP2021010758 W JP 2021010758W WO 2022195751 A1 WO2022195751 A1 WO 2022195751A1
Authority
WO
WIPO (PCT)
Prior art keywords
dynamic map
base station
map information
mobile
information
Prior art date
Application number
PCT/JP2021/010758
Other languages
English (en)
French (fr)
Inventor
周作 梅田
明▲徳▼ 平
麻里 落合
雄 末廣
照子 藤井
隆 淺原
政明 武安
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to CN202180095492.5A priority Critical patent/CN116964654A/zh
Priority to KR1020237030260A priority patent/KR20230142771A/ko
Priority to PCT/JP2021/010758 priority patent/WO2022195751A1/ja
Priority to JP2023506472A priority patent/JP7378664B2/ja
Priority to EP21931503.3A priority patent/EP4310813A4/en
Publication of WO2022195751A1 publication Critical patent/WO2022195751A1/ja
Priority to US18/234,131 priority patent/US20230388867A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/38Electronic maps specially adapted for navigation; Updating thereof
    • G01C21/3885Transmission of map data to client devices; Reception of map data by client devices
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/09Arrangements for giving variable traffic instructions
    • G08G1/0962Arrangements for giving variable traffic instructions having an indicator mounted inside the vehicle, e.g. giving voice messages
    • G08G1/0968Systems involving transmission of navigation instructions to the vehicle
    • G08G1/0969Systems involving transmission of navigation instructions to the vehicle having a display in the form of a map
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0011Control or signalling for completing the hand-off for data sessions of end-to-end connection
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W60/00Drive control systems specially adapted for autonomous road vehicles
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/09Arrangements for giving variable traffic instructions
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/09Arrangements for giving variable traffic instructions
    • G08G1/0962Arrangements for giving variable traffic instructions having an indicator mounted inside the vehicle, e.g. giving voice messages
    • G08G1/0967Systems involving transmission of highway information, e.g. weather, speed limits
    • G08G1/096766Systems involving transmission of highway information, e.g. weather, speed limits where the system is characterised by the origin of the information transmission
    • G08G1/096775Systems involving transmission of highway information, e.g. weather, speed limits where the system is characterised by the origin of the information transmission where the origin of the information is a central station
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
    • H04W4/44Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P] for communication between vehicles and infrastructures, e.g. vehicle-to-cloud [V2C] or vehicle-to-home [V2H]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/02Buffering or recovering information during reselection ; Modification of the traffic flow during hand-off
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/24Reselection being triggered by specific parameters
    • H04W36/32Reselection being triggered by specific parameters by location or mobility data, e.g. speed data

Definitions

  • the present disclosure relates to application servers, base stations, dynamic map distribution systems, control circuits, storage media, and information distribution methods that distribute dynamic maps.
  • the data distribution system distributes a dynamic map as a V2X application to vehicles that achieve automated driving (autonomous driving level 2) under specific conditions, enabling fully automated driving (automatic driving level 4) under specific conditions. ) is available.
  • a dynamic map is a digital map in which dynamic information such as movement of people and quasi-static information such as construction information are overlaid on static information such as a three-dimensional map including lanes and structures.
  • the level of automated driving can be raised by distributing a dynamic map to the vehicle, which is important for determining driving policy.
  • the bottleneck in maintaining Level 4 autonomous driving performance is the communication quality between the vehicle to which the dynamic map is distributed and the network, or the communication between the vehicle to which the dynamic map is distributed and the roadside unit. in quality. Therefore, in 5G (5th Generation, 5th generation mobile communication system), the standard stipulates that redundant sessions are always formed to avoid situations where communication quality deteriorates.
  • the standard also considers situations in which a redundant session cannot be set up due to the influence of the communication environment, the number of vehicles accommodated, etc. Degradation operation is to be implemented. If the dynamic map distribution to the vehicle continues when the base station is switched by handover in the environment of communication interruption or degraded operation, the distribution information will be missing, which will have a significant impact on the performance of autonomous driving. give.
  • the vehicle communication device calculates the handover timing for switching base stations based on the level of the signal received from the base station. Then, the control device of the vehicle lowers the service level of the driving support control based on the handover timing.
  • the present disclosure has been made in view of the above, and aims to obtain an application server that can switch base stations by handover without lowering the level of automatic operation even under degraded operation.
  • the present disclosure provides a first movement that receives dynamic map information, which is dynamic map information used when fully automated driving is performed under specific conditions.
  • an application server for distributing dynamic map information to a mobile entity, wherein a first mobile entity is capable of transmitting dynamic map information within a second region from a first base station capable of transmitting dynamic map information within a first region;
  • a second base station capable of transmitting information, if the first mobile is in degenerate operation in which communication with both the first base station and the second base station is not possible, Dynamic map information is distributed to the first mobile object via a first base station and a communication device capable of receiving dynamic map information from the first base station.
  • the application server according to the present disclosure has the effect of being able to switch base stations by handover without lowering the level of automated driving even under degraded operation.
  • FIG. 1 is a diagram showing the configuration of a dynamic map distribution system according to a first embodiment
  • FIG. FIG. 2 is a sequence diagram showing a dynamic map information distribution processing procedure by the dynamic map distribution system according to the first embodiment
  • FIG. 11 is a sequence diagram showing a dynamic map information distribution processing procedure by the dynamic map distribution system according to the third embodiment
  • FIG. 11 is a sequence diagram showing a dynamic map information distribution processing procedure by the dynamic map distribution system according to the fourth embodiment
  • FIG. 10 is a diagram showing the configuration of a dynamic map distribution system according to a fifth embodiment
  • FIG. 11 is a sequence diagram showing a dynamic map information distribution processing procedure by the dynamic map distribution system according to the fifth embodiment
  • FIG. 4 is a diagram showing a configuration example of a processing circuit provided in the application server according to the first to fifth embodiments when the processing circuit is realized by a processor and a memory;
  • FIG. 4 is a diagram showing an example of a processing circuit in the case where the processing circuit included in the application server according to the first to fifth embodiments is configured with dedicated hardware;
  • FIG. 1 is a diagram showing the configuration of a dynamic map distribution system according to a first embodiment.
  • the dynamic map distribution system 1 includes an application server 10, base stations 20a and 20b, and mobile units 30x and 30y.
  • An example of the mobile bodies 30x and 30y is a communication terminal mounted on a vehicle or the like, that is, a mobile communication device.
  • the application server 10 is a server that stores application data including dynamic map information, which is dynamic map information.
  • the dynamic map information is information provided to the moving bodies 30x and 30y.
  • the application server 10 distributes the dynamic map information to the mobile object 30x via the base station 20a or the base station 20b.
  • Dynamic map information includes static information that is 3D map information such as road surface position, lane position, and building position.
  • the dynamic map information also includes semi-static information such as traffic control schedules, road construction schedules, and weather information.
  • the dynamic map information also includes semi-dynamic information such as accident information, traffic jam information, and traffic control information.
  • the dynamic map information includes dynamic information such as movement of people.
  • the application server 10 stores dynamic map information in which these static information, semi-static information, semi-dynamic information, and dynamic information are combined.
  • the application server 10 distributes the dynamic map information to the mobile units 30x and 30y at the timing when the mobile units 30x and 30y update the dynamic map information.
  • the arrangement form of the application server 10 in the dynamic map distribution system 1 is arbitrary.
  • the application server 10 may be placed ahead of a communication core network, or may be placed directly under the base stations 20a and 20b.
  • the application servers 10 may be installed at different locations according to the update frequency of distribution data such as dynamic map information.
  • the base stations 20a and 20b are communication base stations that distribute distribution data such as dynamic map information to users designated by the application server 10 (mobile units 30x and 30y in the first embodiment).
  • the base station 20a can transmit dynamic map information to the moving objects 30x and 30y within the first area.
  • the base station 20b is capable of transmitting dynamic map information to mobile units 30x and 30y within the second area.
  • the base station 20a is the first base station and the base station 20b is the second base station.
  • the first area and the second area partially overlap, and handover can be executed in the overlapping area.
  • Only one of the base stations 20a and 20b can connect to the mobile object 30x at a specific timing and provide the service of distributing distribution data such as dynamic map information.
  • both base stations 20a and 20b are not simultaneously connected to the mobile unit 30x.
  • communication with the mobile unit 30x is interrupted momentarily when the mobile unit 30x performs handover during degenerate operation.
  • only one of the base stations 20a and 20b can connect to the mobile unit 30y at a specific timing and provide the service of distributing distribution data such as dynamic map information.
  • both base stations 20a and 20b are not simultaneously connected to the mobile unit 30y.
  • communication with the mobile unit 30y is interrupted momentarily when the mobile unit 30y undergoes handover during degenerate operation.
  • the mobile unit 30x has a mobile communication unit 300x capable of communicating with the base stations 20a and 20b.
  • the moving body 30x includes a sidelink communication unit 301x capable of executing sidelink communication with a surrounding moving body (here, the moving body 30y) or a roadside machine (not shown).
  • a case will be described in which the sidelink communication unit 301x of the moving body 30x executes communication processing with the moving body 30y.
  • the mobile communication unit 300x acquires dynamic map information from the application server 10 via either of the base stations 20a and 20b.
  • FIG. 1 shows a situation in which the mobile communication unit 300x is connected to the base station 20a and is about to hand over to the base station 20b.
  • the mobile communication unit 300x of the mobile unit 30x cannot be connected to multiple base stations at the same time during degenerate operation.
  • the degeneracy operation here is an operation in which the moving object 30x continues operation processing while limiting the processing speed, limiting some functions, and the like.
  • the mobile communication unit 300x has a moment when it is not connected to either of the base stations 20a and 20b when performing handover during degenerate operation.
  • the sidelink communication unit 301y which will be described later, transmits dynamic map information to the mobile unit 30x.
  • the sidelink communication unit 301x acquires the dynamic map information via the mobile object 30y, and the mobile object 30x executes automatic driving level 4.
  • the mobile unit 30x acquires dynamic map information from the application server 10 via the mobile unit 30y during handover.
  • Dynamic map information may be acquired from the application server 10 .
  • the mobile object 30x may acquire dynamic map information from the application server 10 via a roadside device having the same functions as the mobile object 30y.
  • the moving body 30y has the same functions as the moving body 30x.
  • the mobile unit 30y has a mobile communication unit 300y capable of communicating with the base stations 20a and 20b.
  • the moving body 30y includes a sidelink communication unit 301y capable of performing sidelink communication with a surrounding moving body (here, the moving body 30x) or a roadside machine (not shown).
  • a case will be described in which the sidelink communication unit 301y of the moving body 30y executes communication processing with the moving body 30x.
  • the mobile communication unit 300y acquires the dynamic map information from the application server 10 via one of the base stations 20a and 20b.
  • FIG. 1 shows a situation in which the mobile communication unit 300y is connected to the base station 20a and can receive dynamic map information from the application server 10.
  • the mobile communication unit 300y of the mobile object 30y cannot be connected to multiple base stations at the same time during degenerate operation. Therefore, there is a moment when the mobile communication unit 300y is not connected to any of the base stations 20a and 20b when performing handover during degenerate operation.
  • the sidelink communication unit 301x transmits dynamic map information to the mobile unit 30y.
  • the side link communication unit 301y acquires the dynamic map information via the moving body 30x, and the moving body 30y executes automatic driving level 4.
  • the mobile 30x is the first mobile, and the mobile 30y is the communication device.
  • the communication device is a second mobile or roadside unit. In the first embodiment, it is assumed that the mobile unit 30y does not disconnect from the base station 20a until the mobile unit 30x completes handover.
  • FIG. 2 is a sequence diagram of a dynamic map information delivery processing procedure performed by the dynamic map delivery system according to the first embodiment.
  • FIG. 2 shows an operation flow of data transmission/reception processing executed between the application server 10, the base stations 20a and 20b, and the mobile units 30x and 30y.
  • the moving object 30x moves from an area in which communication with the base station 20a is possible to an area in which communication is possible with the base station 20b.
  • FIG. 2 there are places where the moving body 30x is illustrated as “30x” and the moving body 30y is illustrated as "30y".
  • ⁇ destination: 30x> indicates that the destination is the mobile unit 30x
  • ⁇ destination: 30y> indicates that the destination is the mobile unit 30y
  • ⁇ change destination: 30 y> indicates a case where the change destination of the destination is the mobile unit 30y.
  • the application server 10 transmits to the base station 20a the dynamic map information with the mobile unit 30x as the destination (S10).
  • the base station 20a receives the dynamic map information and transmits it to the moving object 30x (S20).
  • the moving object 30x receives the dynamic map information and uses the dynamic map information to perform fully automated driving (automatic driving level 4) of the vehicle under specific conditions.
  • the mobile unit 30x may move from an area where communication with the base station 20a is possible to an area where communication with the base station 20b is possible.
  • the base station 20a notifies the mobile unit 30x to hand over to the base station 20b before communication with the mobile unit 30x becomes impossible.
  • the base station 20a can confirm that the mobile unit 30x is in degraded operation, it also notifies the mobile unit 30x of the handover timing. In this way, the base station 20a notifies the mobile unit 30x of the handover destination and handover timing when the mobile unit 30x is in degraded operation (S30).
  • the base station 20a may determine whether the mobile unit 30x is in degraded operation based on whether or not the mobile unit 30x satisfies the conditions for degraded operation, or whether the mobile unit 30x is in degraded operation. You may inquire whether or not
  • the base station 20a sets the timing at which the lack of dynamic map information by the moving object 30x is limited to information with a high update frequency as the handover timing.
  • Information with a high update frequency is information that is updated in a period shorter than the specific period.
  • An example of frequently updated information is dynamic information included in dynamic map information.
  • the application server 10 continues to transmit the dynamic map information with the destination as the mobile object 30x to the base station 20a until the change of the destination of the dynamic map information is received from the base station 20a (S40). Thereby, the base station 20a receives the dynamic map information and transmits it to the moving object 30x (S50).
  • the base station 20a After notifying the mobile object 30x of the handover destination and the handover timing, the base station 20a selects the mobile object 30y around the mobile object 30x, and establishes a sidelink connection between the mobile object 30x and the mobile object 30y. Ask the mobile 30x.
  • the communication device selected by the base station 20a is a device (here, the mobile device 30y) capable of sidelink connection with the mobile device 30x.
  • the sidelink connection is a sidelink connection for direct communication between vehicles, that is, between the moving bodies 30x and 30y.
  • the moving body 30x After receiving the request, the moving body 30x requests the moving body 30y to establish a sidelink connection with the moving body 30y. As a result, the mobile unit 30y accepts the sidelink connection, and the mobile units 30x and 30y become ready for communication through the sidelink connection.
  • the base station 20a may request the mobile 30y to establish a sidelink connection with the mobiles 30x and 30y.
  • the mobile unit 30y requests the mobile unit 30x to establish a sidelink connection with the mobile unit 30x. Then, the mobile unit 30x accepts the sidelink connection, and the mobile units 30x and 30y become ready for communication through the sidelink connection.
  • the base station 20a transmits a request to change the destination to the application server 10 (S60). Specifically, the base station 20a requests the application server 10 to specify the destination of the dynamic map information to be distributed to the mobile unit 30x to the mobile unit 30y and to distribute the dynamic map information to the mobile unit 30x. This request specifies that the timing of designating the destination as the mobile unit 30y is the timing of the handover of the mobile unit 30x from the base station 20a to the base station 20b. That is, the base station 20a transmits to the application server 10 a request to change the destination to the mobile unit 30y at the handover timing of the mobile unit 30x. Also, the base station 20a transmits the handover timing of the mobile unit 30x to the application server 10. FIG.
  • the application server 10 sends the dynamic map information for the mobile unit 30x to the base station 20a with the destination as the mobile unit 30y.
  • the base station 20a transmits the dynamic information of the dynamic map information for the mobile object 30x to the mobile object 30y (S80).
  • the base station 20a adds flag information indicating relaying to a packet of dynamic map information (dynamic information in the first embodiment) and transmits the packet to the moving object 30y.
  • the mobile unit 30y utilizes the communication established by the sidelink connection to relay the dynamic information of the dynamic map information for the mobile unit 30x received from the base station 20a to the mobile unit 30x (S90). In this case, the mobile unit 30y determines whether flag information indicating relaying is added to the dynamic information packet. If the flag information is added, the mobile 30y relays the dynamic information to the sidelink-connected mobile 30x.
  • the mobile unit 30y relays the dynamic map information for the mobile unit 30x received from the base station 20a to the mobile unit 30x when the mobile unit 30x is handed over from the base station 20a to the base station 20b. do.
  • the destination change is not limited to the case where the base station 20a requests the application server 10 to change the destination and the application server 10 changes the destination of the dynamic information.
  • the base station 20a that receives the dynamic information addressed to the mobile unit 30x from the application server 10 may change the destination to the mobile unit 30y.
  • the mobile 30x dissolves the communication session between the mobiles 30x and 30y. Thereafter, the application server 10 transmits the dynamic map information for the mobile 30x to the base station 20b (S100), and the base station 20b transmits the dynamic map information to the mobile 30x (S110). The mobile unit 30x then receives the dynamic map information from the base station 20b.
  • the moving object 30y relays to the moving object 30x the dynamic map information that could have been missing in the moving object 30x. can be obtained without As a result, the dynamic map distribution system 1 can execute automatic driving level 4.
  • another device instead of the moving object 30y may relay the dynamic map information and send it to the moving object 30x.
  • the device that relays the dynamic map information to the mobile 30x is a roadside unit, the roadside units around the point where the mobile 30x is handed over relay the dynamic map information to the mobile 30x.
  • Embodiment 1 when the mobile unit 30x performs handover, the mobile unit 30y relays the dynamic map information for the mobile unit 30x received from the base station 20a to the mobile unit 30x. .
  • the dynamic map distribution system 1 can switch to the base station 20b by handover without lowering the level of automatic operation even when the moving object 30x is under degenerate operation. Therefore, the dynamic map distribution system 1 can execute automatic driving level 4 even at handover timing during degenerate operation.
  • Embodiment 2 Next, Embodiment 2 will be described.
  • the mobile unit 30x determines the handover timing and notifies it to the base station 20a, and the base station 20a transmits the missing dynamic map information at the handover timing to the mobile unit 30y.
  • the dynamic map distribution system 1 of the second embodiment has the same configuration as the dynamic map distribution system 1 of the first embodiment.
  • the information relayed by the moving object 30y is only dynamic information, and is limited to the minimum amount of data.
  • the mobile unit 30x autonomously determines the handover timing and notifies the determined handover timing to the base station 20a.
  • the base station 20a causes the mobile 30y to relay dynamic map information missing at the handover timing determined by the mobile 30x, and transmits the dynamic map information to the mobile 30x.
  • the mobile unit 30x determines the handover timing.
  • the dynamic map distribution system 1 determines the handover timing at the moving body 30x, and even if the moving body 30x is under degenerate operation as in the first embodiment, the automatic driving level is not lowered. A switch to base station 20b can be performed. Therefore, the dynamic map distribution system 1 can execute automatic driving level 4 even at handover timing during degenerate operation, as in the first embodiment.
  • Embodiment 3 Next, Embodiment 3 will be described with reference to FIGS. 3 and 4.
  • FIG. 1 and 2 the mobile body 30x, which is different from the mobile body 30x, relays dynamic information to the mobile body 30x, thereby maintaining the automated driving level 4 of the mobile body 30x.
  • the base station 20a interpolates the dynamic information by predicting the dynamic information, and distributes the predicted dynamic information to the moving object 30x in advance.
  • FIG. 3 is a diagram showing the configuration of the dynamic map distribution system according to the third embodiment. Among the constituent elements shown in FIG. 3, those constituent elements that achieve the same functions as those of the dynamic map distribution system 1 of the first embodiment shown in FIG.
  • the dynamic map distribution system 2 includes an application server 10, base stations 20a and 20b, and a mobile object 30x.
  • Embodiment 3 a case will be described in which the mobile unit 30x is handed over from the base station 20a to the base station 20b during degeneration operation. During the degenerate operation, the mobile unit 30x cannot connect to a plurality of base stations at the same time, and there is a moment when the mobile unit 30x is not connected to any of the base stations 20a and 20b.
  • the base stations 20a and 20b of Embodiment 3 are provided with data servers 200a and 200b, respectively.
  • the data server 200a is a server that stores the dynamic map information distributed from the application server 10 to the moving body 30x.
  • the data server 200b is a server that stores the dynamic map information distributed from the application server 10 to the moving body 30x.
  • FIG. 4 is a sequence diagram of a dynamic map information delivery processing procedure performed by the dynamic map delivery system according to the third embodiment. It should be noted that descriptions of the same processes as those described in the first and second embodiments will be omitted.
  • FIG. 4 shows the operation flow of data transmission/reception processing executed between the application server 10, the base stations 20a and 20b, and the mobile object 30x.
  • the moving object 30x moves from an area in which communication with the base station 20a is possible to an area in which communication is possible with the base station 20b.
  • the moving body 30x is indicated as "30x" in some places.
  • ⁇ 20a ⁇ 20b> indicates that the distribution route is changed from the base station 20a to the base station 20b.
  • the processes of S210 and S220 shown in FIG. 4 are the same processes as S10 and S20 described in FIG. That is, the application server 10 transmits to the base station 20a the dynamic map information whose destination is the mobile unit 30x (S210). The base station 20a receives the dynamic map information and transmits it to the moving object 30x (S220). As a result, the moving object 30x receives the dynamic map information and uses the dynamic map information to perform fully automated driving (automatic driving level 4) of the vehicle under specific conditions.
  • the mobile unit 30x may move from an area where communication with the base station 20a is possible to an area where communication with the base station 20b is possible.
  • the base station 20a notifies the mobile unit 30x of the handover destination and the handover instruction, which is an instruction to perform the handover, before communication with the mobile unit 30x cannot be executed (S230).
  • the base station 20a notifies the mobile unit 30x of the handover destination and the handover instruction when the timing for handover of the mobile unit 30x to the base station 20b comes.
  • the base station 20a confirms the dynamic map information accumulated in the data server 200a if it can confirm that the mobile unit 30x will be in degraded operation.
  • the base station 20a extracts the dynamic map information transmitted to the moving object 30x from the dynamic map information accumulated in the data server 200a, and extracts future dynamic map information for the time required for handover from the extracted dynamic map information. Predict. That is, the base station 20a predicts the dynamic map information during the period when the mobile 30x performs handover.
  • the future dynamic map information predicted by the base station 20a is predictive dynamic information, which is predicted dynamic information.
  • the time required for handover may be a time directly set in advance or a time estimated by the base station 20a.
  • the future dynamic map information predicted by the base station 20a may include semi-dynamic information, semi-static information, static information, and the like.
  • the base station 20a may notify the mobile object 30x of the handover destination and the handover timing as the processing of S230.
  • the application server 10 transmits to the base station 20a dynamic map information with the destination as the mobile unit 30x (S240). Thereby, the base station 20a receives the dynamic map information.
  • the base station 20a adds predictive dynamic information, which is predicted future information, to the received dynamic map information and transmits the result to the moving object 30x (S250). That is, after the base station 20a notifies the mobile unit 30x of the handover, and receives dynamic map information from the application server 10, the base station 20a transmits predictive dynamic information to the mobile unit 30x. In other words, the base station 20a starts transmitting predictive dynamic information to the mobile 30x at the timing of notifying the mobile 30x of handover.
  • the application server 10 continues the process of transmitting the dynamic map information with the destination as the mobile unit 30x to the base station 20a (S260).
  • the base station 20a receives dynamic map information.
  • the base station 20a continues the process of adding the predicted dynamic information, which is predicted future information, to the received dynamic map information and transmitting it to the moving object 30x (S270).
  • the application server 10 continues the process of transmitting the dynamic map information with the destination as the mobile unit 30x to the base station 20a until the base station 20a requests to change the wiring route (S280).
  • the base station 20a continues the process of adding the predicted dynamic information to the received dynamic map information and transmitting it to the mobile 30x until the timing when the mobile 30x starts handover.
  • the base station 20a stops the process of transmitting the dynamic map information with the mobile unit 30x as the destination to the mobile unit 30x.
  • the mobile object 30x executes fully automated driving (automatic driving level 4) of the vehicle under specific conditions.
  • the base station 20a requests the application server 10 to change the distribution route (S290). That is, the base station 20a requests the application server 10 to change the destination of the dynamic map information for the mobile unit 30x from the base station 20a to the base station 20b.
  • the application server 10 changes the destination of the dynamic map information for the mobile unit 30x from the base station 20a to the base station 20b. That is, the application server 10 transmits the dynamic map information whose destination is the mobile unit 30x to the base station 20b (S300).
  • the base station 20b receives the dynamic map information and transmits it to the mobile unit 30x (S310).
  • the moving object 30x receives the dynamic map information and uses the dynamic map information to perform fully automated driving (automatic driving level 4) of the vehicle under specific conditions.
  • the mobile unit 30x starts handover immediately after S250, the processes from S260 to S280 are not executed. Also, handover may be started after the processes of S260 and S270 are performed a plurality of times.
  • the second and third embodiments may be combined. That is, in the dynamic map distribution system 2, the mobile unit 30x determines the handover timing and notifies it to the base station 20a. 30y.
  • the base station 20a predicts future dynamic information at the time of handover and transmits it to the moving object 30x as predicted dynamic information.
  • the dynamic map distribution system 2 can switch to the base station 20b by handover without lowering the level of automatic driving even under degenerate operation. Therefore, the dynamic map distribution system 2 can execute automatic driving level 4 even at handover timing during degenerate operation, as in the first embodiment.
  • Embodiment 4 Next, Embodiment 4 will be described with reference to FIG.
  • the base station 20a of the fourth embodiment reduces the frequency of transmission of predictive dynamic information to the mobile object 30x compared to the base station 20a of the third embodiment.
  • the dynamic map distribution system 2 of Embodiment 4 has the same configuration as the dynamic map distribution system 2 of Embodiment 3.
  • FIG. 5 is a sequence diagram showing the dynamic map information distribution processing procedure by the dynamic map distribution system according to the fourth embodiment. It should be noted that descriptions of the same processes as those described in the first to third embodiments will be omitted. As in FIG. 3, FIG. 4 shows an operation flow of data transmission/reception processing executed between the application server 10, the base stations 20a and 20b, and the moving object 30x.
  • the base station 20a transmits the predictive dynamic information to the mobile 30x from the timing of notifying the mobile 30x of handover.
  • the base station 20a notifies the mobile 30x of the handover timing and transmits the predicted dynamic information to the mobile 30x just before the handover timing.
  • S410 to S450 shown in FIG. 5 is the same processing as S10 to S50 described in FIG.
  • the base station 20a notifies the mobile unit 30x of the handover destination and handover timing before communication with the base station 20a becomes impossible.
  • the dynamic map distribution system 2 executes the processes from S460 to S510, which are the same processes as from S260 to S310.
  • the base station 20a adds predictive dynamic information, which is predicted future information, to the received dynamic map information and transmits the dynamic map information to the moving object 30x. That is, the base station 20a transmits the dynamic map information received from the application server 10 and the predicted dynamic information predicted using the data server 200a to the moving object 30x immediately before the specified handover timing.
  • the mobile unit 30x executes handover from the base station 20a to the base station 20b, and the application server 10 executes change of distribution route.
  • Embodiments 2 and 4 may be combined. That is, in the dynamic map distribution system 2, the mobile unit 30x determines the handover timing and notifies it to the base station 20a. 30y.
  • the base station 20a transmits the predicted dynamic information to the mobile object 30x just before the handover timing.
  • the dynamic map distribution system 2 can execute automatic driving level 4 as in the first embodiment with a smaller amount of information transmission than in the third embodiment.
  • Embodiment 5 Next, Embodiment 5 will be described with reference to FIGS. 6 and 7.
  • FIG. 5 dynamic information of dynamic map information is relayed when a plurality of mobile units undergo handover.
  • FIG. 6 is a diagram showing the configuration of a dynamic map distribution system according to the fifth embodiment.
  • the constituent elements in FIG. 6 that achieve the same functions as those of the dynamic map distribution system 1 of the first embodiment shown in FIG.
  • the dynamic map distribution system 3 has the same components as the dynamic map distribution system 1. Specifically, the dynamic map distribution system 3 includes an application server 10, base stations 20a and 20b, and mobile units 30x and 30y.
  • both mobile units 30x and 30y are connected to the base station 20a, and each of the mobile units 30x and 30y performs handover to the base station 20b under degraded operation.
  • mobile 30x will hand over first and mobile 30y will hand over later.
  • the moving object 30x starts moving from an area where communication with the base station 20a is possible to an area where communication is possible between the base station 20b before the moving object 30y.
  • FIG. 7 is a sequence diagram showing the dynamic map information distribution processing procedure by the dynamic map distribution system according to the fifth embodiment. It should be noted that descriptions of the same processes as those described in Embodiments 1 to 4 will be omitted.
  • FIG. 7 shows the operation flow of data transmission/reception processing executed between the application server 10, the base stations 20a and 20b, and the mobile units 30x and 30y.
  • the mobile units 30x and 30y may move from an area where they can communicate with the base station 20a to an area where they can communicate with the base station 20b.
  • the base station 20a notifies the mobile units 30x and 30y that the mobile units 30x and 30y will handover to the base station 20b before communication with the mobile unit 30x cannot be executed.
  • the base station 20a can confirm that the mobile units 30x and 30y are in degraded operation, it also notifies the mobile units 30x and 30y of the handover timing.
  • the base station 20a notifies the mobile unit 30x of the handover destination and the handover timing (S610), and notifies the mobile unit 30y of the handover destination and the handover timing (S620).
  • the base station 20a When the base station 20a notifies the mobile units 30x and 30y of the handover destination and the handover timing, the base station 20a establishes a communication session between the mobile units 30x and 30y and sets the handover order to the mobile units 30x and 30y. direct to. Mobile units 30x and 30y form a communication session according to this instruction.
  • the dynamic map distribution system 2 executes the processing from S630 to S700, which is the same processing as from S40 to S110. As a result, at the timing when the mobile unit 30x is handed over from the base station 20a to the base station 20b, the mobile unit 30y transmits the dynamic information included in the dynamic map information for the mobile unit 30x received from the base station 20a to the mobile unit 30x. relay.
  • the mobile unit 30x in Embodiment 5 does not cancel the communication session between the mobile units 30x and 30y even after the handover to the base station 20b is completed.
  • mobile 30y performs handover from base station 20a to base station 20b.
  • the application server 10 transmits to the base station 20a the dynamic map information whose destination is the moving body 30y until the change of the destination of the dynamic map information is received from the base station 20a (S710).
  • the base station 20a transmits a request to change the destination to the application server 10 (S720). Specifically, the base station 20a requests the application server 10 to specify the destination of the dynamic information of the dynamic map to be distributed to the mobile unit 30y to the mobile unit 30x. In this request, it is specified that the timing at which the destination is specified and delivered to the mobile unit 30x is the timing at which the mobile unit 30y hands over from the base station 20a to the base station 20b. That is, the base station 20a transmits to the application server 10 a request to change the destination to the mobile unit 30x at the handover timing of the mobile unit 30y. Also, the base station 20a transmits the handover timing of the mobile unit 30y to the application server 10. FIG.
  • the application server 10 sends the dynamic map information for the mobile unit 30y to the base station 20b with the destination as the mobile unit 30x.
  • Distribute (S730) the application server 10 sends the dynamic map information for the mobile unit 30y to the base station 20b with the destination as the mobile unit 30x.
  • the base station 20b transmits the dynamic information of the dynamic map information for the mobile object 30y to the mobile object 30x (S740). In this case, the base station 20b adds flag information indicating relaying to the dynamic information packet and transmits it to the moving object 30x.
  • the mobile unit 30x utilizes the communication established by the sidelink connection to relay the dynamic information of the dynamic map information for the mobile unit 30y received from the base station 20b to the mobile unit 30y (S750). In this case, the mobile unit 30x determines whether flag information indicating relaying is added to the dynamic information packet. If the flag information is added, the mobile 30x relays the dynamic information to the sidelink-connected mobile 30y.
  • the mobile unit 30x relays the dynamic map information for the mobile unit 30y received from the base station 20b to the mobile unit 30y when the mobile unit 30y performs handover from the base station 20a to the base station 20b. do.
  • the dynamic map distribution system 3 can distribute the dynamic map information to a plurality of mobile units 30x and 30y under degenerate operation at the handover timing without any omission.
  • the base station 20a is not limited to the case where the base station 20a requests the application server 10 to change the destination and changes the destination of the dynamic information.
  • the destination may be changed to the mobile unit 30x.
  • the mobile 30y cancels the communication session between the mobiles 30x and 30y. Thereafter, the application server 10 transmits the dynamic map information to the base station 20b, and the base station 20b transmits the dynamic map information to the mobile object 30y. The mobile unit 30y then receives the dynamic map information from the base station 20b.
  • Embodiments 2 and 5 may be combined. That is, in the dynamic map distribution system 2, the moving object 30x may determine the handover timing and notify it to the base station 20a, and the base station 20a may transmit the missing dynamic map information at the handover timing to the moving object 30y. Further, in the dynamic map distribution system 2, the moving object 30y may determine the handover timing and notify the base station 20a, and the base station 20a may transmit dynamic map information missing at the handover timing to the moving object 30x.
  • Embodiments 3 and 5 may be combined. That is, in the dynamic map distribution system 3, the base station 20a may transmit predicted dynamic information to the moving bodies 30x and 30y.
  • Embodiments 4 and 5 may be combined. That is, in the dynamic map distribution system 3, the base station 20a may transmit the predicted dynamic information to the mobile 30x just before the handover timing of the mobile 30x. Also, in the dynamic map distribution system 2, the base station 20a may transmit the predicted dynamic information to the mobile 30y immediately before the handover timing of the mobile 30y.
  • Embodiments 2 and 5 may be combined. That is, in the dynamic map distribution system 3, the mobile units 30x and 30y determine handover timing and notify the base station 20a, and the base station 20a adds predictive dynamic information missing at the handover timing to the dynamic map information. It may be transmitted to mobile units 30x and 30y.
  • the mobile unit 30y when the mobile unit 30x performs handover, the mobile unit 30y relays the dynamic map information for the mobile unit 30x received from the base station 20a to the mobile unit 30x. . Further, when the mobile unit 30y performs handover, the mobile unit 30x relays dynamic information of dynamic map information for the mobile unit 30y received from the base station 20b to the mobile unit 30y.
  • the dynamic map distribution system 3 can switch to the base station 20b by handover without lowering the autonomous driving level even when the plurality of moving bodies 30x and 30y are under degraded operation. Therefore, the dynamic map distribution system 3 can execute automatic driving level 4 even at the timing of handover during degenerate operation, as in the first embodiment.
  • the application server 10 is implemented by a processing circuit.
  • the processing circuitry may be a processor and memory executing programs stored in the memory, or may be dedicated hardware. Processing circuitry is also called control circuitry.
  • FIG. 8 is a diagram showing a configuration example of a processing circuit provided in the application server according to Embodiments 1 to 5 when the processing circuit is realized by a processor and a memory.
  • a processing circuit 90 shown in FIG. 8 is a control circuit and includes a processor 91 and a memory 92 .
  • each function of the processing circuit 90 is implemented by software, firmware, or a combination of software and firmware.
  • Software or firmware is written as a program and stored in memory 92 .
  • each function is realized by the processor 91 reading and executing the program stored in the memory 92.
  • FIG. 8 is a diagram showing a configuration example of a processing circuit provided in the application server according to Embodiments 1 to 5 when the processing circuit is realized by a processor and a memory.
  • a processing circuit 90 shown in FIG. 8 is a control circuit and includes a processor 91 and a memory 92 .
  • each function of the processing circuit 90 is implemented by software, firmware, or a combination of software and firmware.
  • Software or firmware
  • the processing circuitry 90 includes a memory 92 for storing programs that result in the processing of the application server 10 being executed.
  • This program can also be said to be a program for causing the application server 10 to execute each function realized by the processing circuit 90 .
  • This program may be provided by a storage medium storing the program, or may be provided by other means such as a communication medium.
  • the above program can also be said to be a program that causes the application server 10 to execute the process of distributing the dynamic map information to the mobile units 30x and 30y via the base station 20a or the base station 20b.
  • the processor 91 is, for example, a CPU (Central Processing Unit), a processing device, an arithmetic device, a microprocessor, a microcomputer, or a DSP (Digital Signal Processor).
  • the memory 92 is a non-volatile or volatile memory such as RAM (Random Access Memory), ROM (Read Only Memory), flash memory, EPROM (Erasable Programmable ROM), EEPROM (registered trademark) (Electrically EPROM), etc.
  • RAM Random Access Memory
  • ROM Read Only Memory
  • flash memory EPROM (Erasable Programmable ROM), EEPROM (registered trademark) (Electrically EPROM), etc.
  • a semiconductor memory, a magnetic disk, a flexible disk, an optical disk, a compact disk, a mini disk, or a DVD (Digital Versatile Disc) is applicable.
  • FIG. 9 is a diagram showing an example of a processing circuit when the processing circuit included in the application server according to Embodiments 1 to 5 is configured with dedicated hardware.
  • the processing circuit 93 shown in FIG. 9 is, for example, a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, an ASIC (Application Specific Integrated Circuit), an FPGA (Field Programmable Gate Array), or a combination of these thing applies.
  • the processing circuit 93 may be partially realized by dedicated hardware and partially realized by software or firmware.
  • the processing circuitry 93 can implement each of the functions described above by dedicated hardware, software, firmware, or a combination thereof.
  • 1 to 3 dynamic map distribution system 10 application server, 20a, 20b base station, 30x, 30y mobile, 90, 93 processing circuit, 91 processor, 92 memory, 200a, 200b data server, 300x, 300y mobile communication unit, 301x , 301y side link communication unit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Automation & Control Theory (AREA)
  • Human Computer Interaction (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Atmospheric Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

特定条件下での完全自動運転が実行される際に用いられるダイナミックマップの情報であるダイナミックマップ情報を受信する移動体(30x)に、ダイナミックマップ情報を配信するアプリケーションサーバ(10)であって、移動体(30x)が、第1の領域内でダイナミックマップ情報を送信可能な基地局(20a)から、第2の領域内でダイナミックマップ情報を送信可能な基地局(20b)にハンドオーバを実行する際に、移動体(30x)が、基地局(20a,20b)の両方とは通信できない縮退運用をしている場合、基地局(20a)と、基地局(20a)からダイナミックマップ情報を受信可能な移動体(30y)とを介して、ダイナミックマップ情報を移動体(30x)に配信する。

Description

アプリケーションサーバ、基地局、ダイナミックマップ配信システム、制御回路、記憶媒体、および情報配信方法
 本開示は、ダイナミックマップを配信するアプリケーションサーバ、基地局、ダイナミックマップ配信システム、制御回路、記憶媒体、および情報配信方法に関する。
 データの配信システムが、特定条件下での自動運転(自動運転レベル2)を実現する車両に対し、V2Xアプリケーションとしてダイナミックマップを配信することで、特定条件下での完全自動運転(自動運転レベル4)を実現するシステムがある。ダイナミックマップは、人の動きなどの動的情報、工事情報などの準静的情報を、車線、構造物などを含んだ3次元地図等の静的情報にオーバーレイさせたデジタル地図である。自動運転レベルは、運転方針を決定づけるうえで重要となるダイナミックマップが車両に配信されることで引き上げることが可能となる。
 自動運転において自動運転レベル4の性能を維持する際のボトルネックは、ダイナミックマップが配信される車両とネットワークとの間の通信品質、またはダイナミックマップが配信される車両と路側機との間の通信品質にある。そのため、5G(5th Generation、第5世代移動通信システム)では、常に冗長セッションを組むことで、通信品質が低下する状況を回避することが規格として定められている。
 また、5Gでは、通信環境、車両の収容数などの影響で冗長セッションが組めないような状況が発生した場合についても規格として考慮されており、冗長セッションが組めないような状況では、通信断または縮退運用が実施されることになっている。車両が、通信断または縮退運用の環境下でハンドオーバによる基地局の切り替えを行う際に車両へのダイナミックマップの配信が継続されると、配信情報に欠落が生じるので自動運転の性能に大きな影響を与える。
 このため、特許文献1の通信制御システムでは、車両の通信装置が、基地局から受信した信号のレベルに基づいて基地局を切り替えるハンドオーバタイミングを算出している。そして、車両の制御装置が、ハンドオーバタイミングに基づいて、走行支援制御のサービスレベルを低下させている。
特開2014-044639号公報
 しかしながら、上記特許文献1の技術では、ハンドオーバタイミングを推定することはできても、ハンドオーバタイミングでは、車両がダイナミックマップを受信することができない。このため、車両は、縮退運用下ではダイナミックマップを更新することができず、自動運転レベルを下げざるを得ないという問題があった。
 本開示は、上記に鑑みてなされたものであって、縮退運用下においても自動運転レベルを下げることなく、ハンドオーバによる基地局の切り替えを実行できるアプリケーションサーバを得ることを目的とする。
 上述した課題を解決し、目的を達成するために、本開示は、特定条件下での完全自動運転が実行される際に用いられるダイナミックマップの情報であるダイナミックマップ情報を受信する第1の移動体に、ダイナミックマップ情報を配信するアプリケーションサーバであって、第1の移動体が、第1の領域内でダイナミックマップ情報を送信可能な第1の基地局から、第2の領域内でダイナミックマップ情報を送信可能な第2の基地局にハンドオーバを実行する際に、第1の移動体が、第1の基地局および第2の基地局の両方とは通信できない縮退運用をしている場合、第1の基地局と、第1の基地局からダイナミックマップ情報を受信可能な通信装置とを介して、ダイナミックマップ情報を第1の移動体に配信する。
 本開示にかかるアプリケーションサーバは、縮退運用下においても自動運転レベルを下げることなく、ハンドオーバによる基地局の切り替えを実行できるという効果を奏する。
実施の形態1にかかるダイナミックマップ配信システムの構成を示す図 実施の形態1にかかるダイナミックマップ配信システムによるダイナミックマップ情報の配信処理手順を示すシーケンス図 実施の形態3にかかるダイナミックマップ配信システムの構成を示す図 実施の形態3にかかるダイナミックマップ配信システムによるダイナミックマップ情報の配信処理手順を示すシーケンス図 実施の形態4にかかるダイナミックマップ配信システムによるダイナミックマップ情報の配信処理手順を示すシーケンス図 実施の形態5にかかるダイナミックマップ配信システムの構成を示す図 実施の形態5にかかるダイナミックマップ配信システムによるダイナミックマップ情報の配信処理手順を示すシーケンス図 実施の形態1から5にかかるアプリケーションサーバが備える処理回路をプロセッサおよびメモリで実現する場合の処理回路の構成例を示す図 実施の形態1から5にかかるアプリケーションサーバが備える処理回路を専用のハードウェアで構成する場合の処理回路の例を示す図
 以下に、本開示の実施の形態にかかるアプリケーションサーバ、基地局、ダイナミックマップ配信システム、制御回路、記憶媒体、および情報配信方法を図面に基づいて詳細に説明する。
実施の形態1.
 図1は、実施の形態1にかかるダイナミックマップ配信システムの構成を示す図である。ダイナミックマップ配信システム1は、アプリケーションサーバ10と、基地局20a,20bと、移動体30x,30yとを備えている。移動体30x,30yの例は、車両などに搭載される通信端末、すなわち移動体通信装置である。
・アプリケーションサーバ10
 アプリケーションサーバ10は、ダイナミックマップの情報であるダイナミックマップ情報を含んだ、アプリケーションデータを格納するサーバである。ダイナミックマップ情報は、移動体30x,30yへ提供される情報である。アプリケーションサーバ10は、基地局20aまたは基地局20bを介して、ダイナミックマップ情報を移動体30xに配信する。
 ダイナミックマップ情報には、路面の位置、車線の位置、建物の位置といった3次元地図の情報である静的情報が含まれている。また、ダイナミックマップ情報には、交通規制の予定、道路工事の予定、天気の情報といった準静的情報が含まれている。また、ダイナミックマップ情報には、事故の情報、渋滞の情報、交通規制の情報といった準動的情報が含まれている。また、ダイナミックマップ情報には、人の動きなどの動的情報が含まれている。アプリケーションサーバ10は、これらの静的情報、準静的情報、準動的情報、および動的情報が組み合わされたダイナミックマップ情報を格納している。
 アプリケーションサーバ10は、移動体30x,30yがダイナミックマップ情報を更新するタイミングに合わせてダイナミックマップ情報を移動体30x,30yに配信する。ダイナミックマップ配信システム1におけるアプリケーションサーバ10の配置形態は任意である。例えば、アプリケーションサーバ10は、通信のコアネットワークの先に配置されていてもよいし、基地局20a,20bの直下に配置されていてもよい。また、アプリケーションサーバ10は、ダイナミックマップ情報などの配信データの更新頻度に応じて設置位置が分散されていてもよい。
・基地局20a,20b
 基地局20a,20bは、アプリケーションサーバ10が指定したユーザ(実施の形態1では移動体30x,30y)に対して、ダイナミックマップ情報などの配信データを配信する通信基地局である。
 基地局20aは、第1の領域内で移動体30x,30yにダイナミックマップ情報を送信可能となっている。基地局20bは、第2の領域内で移動体30x,30yにダイナミックマップ情報を送信可能となっている。基地局20aが第1の基地局であり、基地局20bが第2の基地局である。第1の領域と第2の領域とは、一部が重なっており、重なっている領域でハンドオーバが実行可能となっている。
 特定のタイミングにおいて移動体30xと接続してダイナミックマップ情報などの配信データを配信するサービスを提供できるのは、基地局20a,20bのうちの何れか一方である。移動体30xの縮退運用時には、基地局20a,20bの両方が移動体30xに同時接続することはない。基地局20a,20bは、縮退運用時の移動体30xがハンドオーバする際には、移動体30xとの間の通信が瞬断する。
 同様に、特定のタイミングにおいて移動体30yと接続してダイナミックマップ情報などの配信データを配信するサービスを提供できるのは、基地局20a,20bのうちの何れか一方である。移動体30yの縮退運用時には、基地局20a,20bの両方が移動体30yに同時接続することはない。基地局20a,20bは、縮退運用時の移動体30yがハンドオーバする際には、移動体30yとの間の通信が瞬断する。
・移動体30x
 移動体30xは、基地局20a,20bとの間で通信を実行可能な移動通信部300xを備えている。また、移動体30xは、周囲の移動体(ここでは移動体30y)、または路側機(図示せず)との間でサイドリンク通信を実行可能なサイドリンク通信部301xを備えている。なお、以下の説明では、移動体30xのサイドリンク通信部301xが、移動体30yとの間で通信処理を実行する場合について説明する。
 移動体30xでは、移動通信部300xが、基地局20a,20bの何れかを介して、アプリケーションサーバ10からダイナミックマップ情報を取得する。図1では、移動通信部300xが、基地局20aと接続しており、基地局20bへハンドオーバしようとしている状況を示している。
 移動体30xの移動通信部300xは、縮退運用時には複数の基地局と同時には接続できない。ここでの縮退運用は、移動体30xが、処理速度の制限、一部機能の制限などを実行しながら、動作処理を継続する運用である。
 移動通信部300xは、縮退運用時にハンドオーバする場合には、基地局20a,20bの何れとも接続しない瞬間がある。移動体30xが縮退運用時にハンドオーバする場合には、後述するサイドリンク通信部301yがダイナミックマップ情報を移動体30xに送信する。これにより、サイドリンク通信部301xが移動体30yを介してダイナミックマップ情報を取得し、移動体30xが自動運転レベル4を実行する。
 実施の形態1では、移動体30xが、ハンドオーバの際に移動体30yを介して、アプリケーションサーバ10からダイナミックマップ情報を取得する場合について説明するが、移動体30xは、他の通信装置を介してアプリケーションサーバ10からダイナミックマップ情報を取得してもよい。例えば、移動体30xは、移動体30yと同様の機能を有した路側機を介してアプリケーションサーバ10からダイナミックマップ情報を取得してもよい。
・移動体30y
 移動体30yは、移動体30xと同様の機能を有している。移動体30yは、基地局20a,20bとの間で通信を実行可能な移動通信部300yを備えている。また、移動体30yは、周囲の移動体(ここでは移動体30x)、または路側機(図示せず)との間でサイドリンク通信を実行可能なサイドリンク通信部301yを備えている。なお、以下の説明では、移動体30yのサイドリンク通信部301yが、移動体30xとの間で通信処理を実行する場合について説明する。
 移動体30yでは、移動通信部300yが、基地局20a,20bの何れかを介して、アプリケーションサーバ10からダイナミックマップ情報を取得する。図1では、移動通信部300yが、基地局20aと接続しており、アプリケーションサーバ10からダイナミックマップ情報を受信可能な状況を示している。
 移動体30yの移動通信部300yは、縮退運用時には、複数の基地局と同時には接続できない。したがって、移動通信部300yは、縮退運用時にハンドオーバする場合には、基地局20a,20bの何れとも接続しない瞬間がある。移動体30yが縮退運用時にハンドオーバする場合には、サイドリンク通信部301xがダイナミックマップ情報を移動体30yに送信する。これにより、サイドリンク通信部301yが移動体30xを介してダイナミックマップ情報を取得し、移動体30yが自動運転レベル4を実行する。
 移動体30xが第1の移動体であり、移動体30yが通信装置である。通信装置は、第2の移動体または路側機である。なお、実施の形態1では、移動体30yは、移動体30xがハンドオーバを完了するまでの間、基地局20aとの接続が切れるタイミングはないものとする。
 つぎに、ダイナミックマップ配信システム1におけるダイナミックマップ情報の配信処理について説明する。図2は、実施の形態1にかかるダイナミックマップ配信システムによるダイナミックマップ情報の配信処理手順を示すシーケンス図である。
 図2では、アプリケーションサーバ10と、基地局20a,20bと、移動体30x,30yとの間で実行されるデータの送受信処理の動作フローを示している。ここでは、移動体30xが、基地局20aとの間で通信が可能な領域から、基地局20bとの間で通信が可能な領域に移動する場合について説明する。
 なお、図2では、移動体30xを「30x」と図示し、移動体30yを「30y」と図示している箇所がある。例えば、宛先が移動体30xである場合を<宛先:30x>のように図示し、宛先が移動体30yである場合を<宛先:30y>のように図示している。また、宛先の変更先が移動体30yである場合を<変更先:30y>のように図示している。
 アプリケーションサーバ10は、宛先を移動体30xとしたダイナミックマップ情報を、基地局20aに送信する(S10)。基地局20aは、ダイナミックマップ情報を受信して移動体30xに送信する(S20)。これにより、移動体30xは、ダイナミックマップ情報を受信し、ダイナミックマップ情報を用いて、特定条件下での車両の完全自動運転(自動運転レベル4)を実行する。
 移動体30xが、基地局20aとの間の通信を行える領域から、基地局20bとの間の通信を行える領域に移動する場合がある。この場合、基地局20aは、移動体30xとの間の通信が実行できなくなる前に、移動体30xに対して基地局20bへハンドオーバすることを通達する。この通達の際、基地局20aは、移動体30xが縮退運用となることを確認できた場合には、ハンドオーバするタイミングであるハンドオーバタイミングも移動体30xに通達する。このように、基地局20aは、移動体30xが縮退運用している場合には、移動体30xに対してハンドオーバ先とハンドオーバタイミングとを通達する(S30)。
 基地局20aは、例えば、移動体30xが縮退運用となる条件を満たすか否かに基づいて移動体30xが縮退運用となるかを判定してもよいし、移動体30xに縮退運用となるか否かを問い合わせてもよい。
 移動体30xは、縮退運用のままハンドオーバを実行するとダイナミックマップ情報の受信に欠落が生じる。基地局20aは、移動体30xによるダイナミックマップ情報の欠落が、更新頻度の高い情報のみとなるタイミングをハンドオーバするタイミングに設定する。更新頻度の高い情報は、特定期間よりも短い期間で更新が行われる情報である。更新頻度の高い情報の例は、ダイナミックマップ情報に含まれる動的情報である。
 この後も、アプリケーションサーバ10は、基地局20aからダイナミックマップ情報の宛先変更を受け付けるまでは、宛先を移動体30xとしたダイナミックマップ情報を、基地局20aに送信する(S40)。これにより、基地局20aは、ダイナミックマップ情報を受信して移動体30xに送信する(S50)。
 基地局20aは、ハンドオーバ先およびハンドオーバタイミングを移動体30xに通達した後、移動体30xの周囲にいる移動体30yを選択し、移動体30xと移動体30yとの間でサイドリンク接続することを移動体30xに依頼する。基地局20aが選択する通信装置は、移動体30xとの間でサイドリンク接続可能な装置(ここでは、移動体30y)である。サイドリンク接続は、車両同士、すなわち移動体30x,30y間で直接通信を行うサイドリンク方式の接続である。
 移動体30xは、依頼を受けた後、移動体30yとの間のサイドリンク接続を移動体30yに依頼する。これにより、移動体30yがサイドリンク接続を承諾し、移動体30x,30y間でサイドリンク接続による通信が可能な状態となる。
 なお、基地局20aは、移動体30x,30yとの間でサイドリンク接続することを移動体30yに依頼してもよい。この場合、移動体30yは、移動体30xとの間のサイドリンク接続を移動体30xに依頼する。そして、移動体30xがサイドリンク接続を承諾し、移動体30x,30y間でサイドリンク接続による通信が可能な状態となる。
 サイドリンク接続が完了した後、基地局20aは、宛先変更の依頼をアプリケーションサーバ10に送信する(S60)。具体的には、基地局20aは、移動体30xへ配信するダイナミックマップ情報の動的情報の宛先を移動体30yに指定して配信することを、アプリケーションサーバ10に依頼する。この依頼では、宛先を移動体30yに指定してするタイミングが、移動体30xが基地局20aから基地局20bへハンドオーバするタイミングであることが規定されている。すなわち、基地局20aは、移動体30xのハンドオーバタイミングで宛先を移動体30yに変更する依頼を、アプリケーションサーバ10に送信する。また、基地局20aは、移動体30xのハンドオーバタイミングをアプリケーションサーバ10に送信する。
 これにより、アプリケーションサーバ10は、移動体30xが基地局20aから基地局20bへハンドオーバするタイミングになると、移動体30x向けのダイナミックマップ情報の動的情報を、宛先を移動体30yとして基地局20aに配信する(S70)。
 基地局20aは、移動体30x向けのダイナミックマップ情報の動的情報を、移動体30yに送信する(S80)。この場合において、基地局20aは、リレーを行うことを示すフラグ情報を、ダイナミックマップ情報(実施の形態1では、動的情報)のパケットに付加して移動体30yに送信する。
 移動体30yは、サイドリンク接続によって通信セッションを確立した通信を活用して、基地局20aから受信した移動体30x向けのダイナミックマップ情報の動的情報を移動体30xへリレーする(S90)。この場合において、移動体30yは、動的情報のパケットにリレーを行うことを示すフラグ情報が付加されているか否かを判定する。フラグ情報が付加されている場合、移動体30yは、サイドリンク接続した移動体30xに動的情報をリレーする。
 このように、移動体30yは、移動体30xが基地局20aから基地局20bへハンドオーバする際に、基地局20aから受信した移動体30x向けのダイナミックマップ情報の動的情報を移動体30xへリレーする。
 なお、宛先の変更は、基地局20aがアプリケーションサーバ10に宛先変更の依頼をしてアプリケーションサーバ10が動的情報の宛先を変更する場合に限らない。例えば、アプリケーションサーバ10から移動体30x宛ての動的情報を受信した基地局20aが宛先を移動体30yに変更してもよい。
 移動体30xは、基地局20bへのハンドオーバが完了した後、移動体30x,30y間の通信セッションを解消する。この後、アプリケーションサーバ10は、移動体30x向けのダイナミックマップ情報を基地局20bに送信し(S100)、基地局20bは、ダイナミックマップ情報を移動体30xに送信する(S110)。そして、移動体30xは、基地局20bからダイナミックマップ情報を受信する。
 以上のように、ダイナミックマップ配信システム1では、移動体30xで欠落する可能性があったダイナミックマップ情報を、移動体30yが移動体30xにリレーするので、移動体30xはダイナミックマップ情報を欠落することなく取得できる。これにより、ダイナミックマップ配信システム1は、自動運転レベル4を実行できる。
 なお、ハンドオーバの際には、移動体30yの代わりの他の装置(例えば、路側機)が、ダイナミックマップ情報をリレーして移動体30xに送ってもよい。ダイナミックマップ情報をリレーして移動体30xに送る装置が路側機である場合、移動体30xがハンドオーバする地点の周囲にいる路側機がダイナミックマップ情報を移動体30xにリレーする。
 このように実施の形態1では、移動体30xがハンドオーバする際に、移動体30yが、基地局20aから受信した移動体30x向けのダイナミックマップ情報の動的情報を移動体30xへリレーしている。これにより、ダイナミックマップ配信システム1は、移動体30xが縮退運用下となっていても、自動運転レベルを下げることなく、ハンドオーバによる基地局20bへの切り替えを実行できる。したがって、ダイナミックマップ配信システム1は、縮退運用時のハンドオーバタイミングであっても自動運転レベル4を実行できる。
実施の形態2.
 つぎに、実施の形態2について説明する。実施の形態2では、移動体30xがハンドオーバタイミングを決定して基地局20aに通知し、基地局20aが、ハンドオーバタイミングで欠落するダイナミックマップ情報を移動体30yに送信する。
 実施の形態2のダイナミックマップ配信システム1は、実施の形態1のダイナミックマップ配信システム1と同様の構成を有している。実施の形態1では、移動体30yがリレーする情報が動的情報のみであり、最小限のデータ量になるように限定した。実施の形態2では、移動体30xが、ハンドオーバタイミングを自律的に決定し、決定したハンドオーバタイミングを基地局20aに通達する。基地局20aは、移動体30xが決定したハンドオーバタイミングで欠落するダイナミックマップ情報を移動体30yにリレーさせて移動体30xに送信する。
 このように実施の形態2では、移動体30xがハンドオーバタイミングを決めている。これにより、ダイナミックマップ配信システム1は、移動体30xでハンドオーバタイミングを決めつつ、実施の形態1と同様に移動体30xが縮退運用下となっていても、自動運転レベルを下げることなく、ハンドオーバによる基地局20bへの切り替えを実行できる。したがって、ダイナミックマップ配信システム1は、実施の形態1と同様に縮退運用時のハンドオーバタイミングであっても自動運転レベル4を実行できる。
実施の形態3.
 つぎに、図3および図4を用いて実施の形態3について説明する。実施の形態1,2では、移動体30xとは異なる他の移動体30yが動的情報を移動体30xにリレーすることによって移動体30xの自動運転レベル4を維持した。実施の形態3では、基地局20aが、動的情報を予測することで動的情報を補間し、予測した動的情報を事前に移動体30xに配信しておく。
 図3は、実施の形態3にかかるダイナミックマップ配信システムの構成を示す図である。図3の各構成要素のうち図1に示す実施の形態1のダイナミックマップ配信システム1と同一機能を達成する構成要素については同一符号を付しており、重複する説明は省略する。
 ダイナミックマップ配信システム2は、アプリケーションサーバ10と、基地局20a,20bと、移動体30xとを備えている。実施の形態3では、移動体30xが、縮退運用時に基地局20aから基地局20bへハンドオーバする場合について説明する。移動体30xは、縮退運用時には、複数の基地局とは同時に接続できず、基地局20a,20bの何れとも接続しない瞬間がある。
 実施の形態3の基地局20a,20bは、それぞれデータサーバ200a,200bを備えている。データサーバ200aは、アプリケーションサーバ10から移動体30xに配信されたダイナミックマップ情報を格納しておくサーバである。データサーバ200bは、アプリケーションサーバ10から移動体30xに配信されるダイナミックマップ情報を格納しておくサーバである。
 つぎに、ダイナミックマップ配信システム2におけるダイナミックマップ情報の配信処理について説明する。図4は、実施の形態3にかかるダイナミックマップ配信システムによるダイナミックマップ情報の配信処理手順を示すシーケンス図である。なお、実施の形態1,2で説明した処理と同様の処理については、その説明を省略する。
 図4では、アプリケーションサーバ10と、基地局20a,20bと、移動体30xとの間で実行されるデータの送受信処理の動作フローを示している。ここでは、移動体30xが、基地局20aとの間で通信が可能な領域から、基地局20bとの間で通信が可能な領域に移動する場合について説明する。
 なお、図4では、図2と同様に、移動体30xを「30x」と図示している箇所がある。例えば、配信経路を基地局20aから基地局20bへ変更することを<20a→20b>のように図示している。
 図4に示すS210,S220の処理は、図2で説明したS10,S20と同様の処理である。すなわち、アプリケーションサーバ10は、宛先を移動体30xとしたダイナミックマップ情報を、基地局20aに送信する(S210)。基地局20aは、ダイナミックマップ情報を受信して移動体30xに送信する(S220)。これにより、移動体30xは、ダイナミックマップ情報を受信し、ダイナミックマップ情報を用いて、特定条件下での車両の完全自動運転(自動運転レベル4)を実行する。
 移動体30xが、基地局20aとの間の通信を行える領域から、基地局20bとの間の通信を行える領域に移動する場合がある。この場合、基地局20aは、移動体30xとの間の通信が実行できなくなる前に、移動体30xに対してハンドオーバ先と、ハンドオーバさせる指示であるハンドオーバ指示とを通達する(S230)。
 具体的には、基地局20aは、移動体30xが基地局20bにハンドオーバするタイミングが来た際に、ハンドオーバ先とハンドオーバ指示とを移動体30xに通達する。この通達の際、基地局20aは、移動体30xが縮退運用となることを確認できた場合には、データサーバ200aに蓄積されたダイナミックマップ情報を確認する。基地局20aは、データサーバ200aに蓄積されたダイナミックマップ情報のうち、移動体30xに送信したダイナミックマップ情報を抽出し、抽出したダイナミックマップ情報から、ハンドオーバに要する時間分の未来のダイナミックマップ情報を予測する。すなわち、基地局20aは、移動体30xがハンドオーバを実行する期間におけるダイナミックマップ情報を予測する。
 基地局20aが予測する未来のダイナミックマップ情報は、予測した動的情報である予測動的情報である。ハンドオーバに要する時間は、予め直値で設定された時間であってもよいし、基地局20aが推定した時間であってもよい。なお、基地局20aが予測する未来のダイナミックマップ情報には、準動的情報、準静的情報、静的情報などが含まれていてもよい。
 なお、基地局20aは、S230の処理として、移動体30xに、ハンドオーバ先とハンドオーバタイミングとを通達してもよい。
 アプリケーションサーバ10は、宛先を移動体30xとしたダイナミックマップ情報を、基地局20aに送信する(S240)。これにより、基地局20aは、ダイナミックマップ情報を受信する。基地局20aは、受信したダイナミックマップ情報に、予測した未来の情報である予測動的情報を付加して移動体30xに送信する(S250)。すなわち、基地局20aは、移動体30xへハンドオーバすることを通達した後、アプリケーションサーバ10からダイナミックマップ情報をすると、予測動的情報を移動体30xに送信する。換言すると、基地局20aは、移動体30xへハンドオーバすることを通達したタイミングで、予測動的情報の移動体30xへの送信を開始する。
 アプリケーションサーバ10は、宛先を移動体30xとしたダイナミックマップ情報を、基地局20aに送信する処理を継続する(S260)。基地局20aは、ダイナミックマップ情報を受信する。基地局20aは、受信したダイナミックマップ情報に、予測した未来の情報である予測動的情報を付加して移動体30xに送信する処理を継続する(S270)。
 アプリケーションサーバ10は、基地局20aから配線経路変更の依頼があるまで、宛先を移動体30xとしたダイナミックマップ情報を、基地局20aに送信する処理を継続する(S280)。
 基地局20aは、移動体30xがハンドオーバを開始するタイミングまで、受信したダイナミックマップ情報に予測動的情報を付加して移動体30xに送信する処理を継続する。基地局20aは、移動体30xがハンドオーバを開始すると、宛先を移動体30xとしたダイナミックマップ情報を、移動体30xに送信する処理を停止する。移動体30xは、基地局20aから受信したダイナミックマップ情報および予測動的情報に基づいて、特定条件下での車両の完全自動運転(自動運転レベル4)を実行する。
 基地局20aは、移動体30xがハンドオーバを開始すると、アプリケーションサーバ10に、配信経路の変更を依頼する(S290)。すなわち、基地局20aは、移動体30xへのダイナミックマップ情報の宛先を、基地局20aから基地局20bに変更することをアプリケーションサーバ10に依頼する。
 これにより、アプリケーションサーバ10は、移動体30xへのダイナミックマップ情報の宛先を、基地局20aから基地局20bに変更する。すなわち、アプリケーションサーバ10は、宛先を移動体30xとしたダイナミックマップ情報を、基地局20bに送信する(S300)。基地局20bは、ダイナミックマップ情報を受信して移動体30xに送信する(S310)。これにより、移動体30xは、ダイナミックマップ情報を受信し、ダイナミックマップ情報を用いて、特定条件下での車両の完全自動運転(自動運転レベル4)を実行する。
 なお、S250の後、直ちに移動体30xがハンドオーバを開始すると、S260からS280の処理は実行されない。また、S260,S270の処理が複数回行われた後に、ハンドオーバが開始される場合もある。
 実施の形態2,3を組み合わせてもよい。すなわち、ダイナミックマップ配信システム2において、移動体30xがハンドオーバタイミングを決定して基地局20aに通知し、基地局20aが、ハンドオーバタイミングで欠落する予測動的情報をダイナミックマップ情報に付加して移動体30yに送信してもよい。
 このように実施の形態3では、基地局20aが、ハンドオーバの際の未来の動的情報を予測し、予測動的情報として移動体30xに送信している。これにより、ダイナミックマップ配信システム2は、縮退運用下となっていても、自動運転レベルを下げることなく、ハンドオーバによる基地局20bへの切り替えを実行できる。したがって、ダイナミックマップ配信システム2は、実施の形態1と同様に縮退運用時のハンドオーバタイミングであっても自動運転レベル4を実行できる。
実施の形態4.
 つぎに、図5を用いて実施の形態4について説明する。実施の形態4の基地局20aは、実施の形態3での基地局20aよりも移動体30xへの予測動的情報の送信頻度を減らす。
 実施の形態4のダイナミックマップ配信システム2は、実施の形態3のダイナミックマップ配信システム2と同様の構成を有している。
 図5は、実施の形態4にかかるダイナミックマップ配信システムによるダイナミックマップ情報の配信処理手順を示すシーケンス図である。なお、実施の形態1から3で説明した処理と同様の処理については、その説明を省略する。図4では、図3と同様に、アプリケーションサーバ10と、基地局20a,20bと、移動体30xとの間で実行されるデータの送受信処理の動作フローを示している。
 実施の形態3では、基地局20aが、移動体30xへハンドオーバすることを通達したタイミングから予測動的情報を移動体30xに送信した。実施の形態4では、基地局20aが、移動体30xにハンドオーバタイミングを通達し、ハンドオーバタイミングの直前に予測動的情報を移動体30xに送信する。
 図5に示すS410~S450の処理は、図2で説明したS10~S50と同様の処理である。例えば、S430では、S30と同様に、基地局20aが、基地局20aとの間の通信が実行できなくなる前に、移動体30xに対してハンドオーバ先と、ハンドオーバタイミングとを通達する。
 この後、ダイナミックマップ配信システム2は、S260からS310と同様の処理である、S460からS510の処理を実行する。例えば、S470では、S270と同様に、基地局20aが、受信したダイナミックマップ情報に、予測した未来の情報である予測動的情報を付加して移動体30xに送信する。すなわち、基地局20aは、指定したハンドオーバタイミングの直前に、アプリケーションサーバ10から受信したダイナミックマップ情報と、データサーバ200aを用いて予測した予測動的情報とを移動体30xに送信する。この後、移動体30xが、基地局20aから基地局20bへのハンドオーバを実行し、アプリケーションサーバ10が配信経路の変更を実行する。
 実施の形態2,4を組み合わせてもよい。すなわち、ダイナミックマップ配信システム2において、移動体30xがハンドオーバタイミングを決定して基地局20aに通知し、基地局20aが、ハンドオーバタイミングで欠落する予測動的情報をダイナミックマップ情報に付加して移動体30yに送信してもよい。
 このように実施の形態4では、基地局20aが、ハンドオーバタイミングの直前に予測動的情報を移動体30xに送信している。これにより、ダイナミックマップ配信システム2は、実施の形態3と比較して少量の情報送信で実施の形態1と同様の自動運転レベル4を実行できる。
実施の形態5.
 つぎに、図6および図7を用いて実施の形態5について説明する。実施の形態5では、複数の移動体がハンドオーバする際に、ダイナミックマップ情報の動的情報をリレーする。
 図6は、実施の形態5にかかるダイナミックマップ配信システムの構成を示す図である。図6の各構成要素のうち図1に示す実施の形態1のダイナミックマップ配信システム1と同一機能を達成する構成要素については同一符号を付しており、重複する説明は省略する。
 ダイナミックマップ配信システム3は、ダイナミックマップ配信システム1と同様の構成要素を有している。すなわち、ダイナミックマップ配信システム3は、アプリケーションサーバ10と、基地局20a,20bと、移動体30x,30yとを備えている。
 実施の形態5では、移動体30x,30yの双方が、基地局20aに接続しており、移動体30x,30yのそれぞれが縮退運用下で基地局20bにハンドオーバする。この場合において、移動体30xが先にハンドオーバし、移動体30yが後にハンドオーバする。例えば、移動体30xが、基地局20aとの間で通信が可能な領域から、基地局20bとの間で通信が可能な領域への移動を、移動体30yよりも先に開始する。
 図7は、実施の形態5にかかるダイナミックマップ配信システムによるダイナミックマップ情報の配信処理手順を示すシーケンス図である。なお、実施の形態1から4で説明した処理と同様の処理については、その説明を省略する。
 図7では、アプリケーションサーバ10と、基地局20a,20bと、移動体30x,30yとの間で実行されるデータの送受信処理の動作フローを示している。
 移動体30x,30yが、基地局20aとの間の通信を行える領域から、基地局20bとの間の通信を行える領域に移動する場合がある。この場合、基地局20aは、移動体30xとの間の通信が実行できなくなる前に、移動体30x,30yに対して移動体30x,30yが基地局20bへハンドオーバすることを通達する。この通達の際、基地局20aは、移動体30x,30yが縮退運用となることを確認できた場合には、ハンドオーバするタイミングも移動体30x,30yに通達する。このように、基地局20aは、移動体30xに対してハンドオーバ先と、ハンドオーバタイミングとを通達し(S610)、移動体30yに対してハンドオーバ先と、ハンドオーバタイミングとを通達する(S620)。
 基地局20aは、移動体30x,30yに対してハンドオーバ先と、ハンドオーバタイミングとを通達する際に、移動体30x,30y間で通信セッションを組むことと、ハンドオーバする順番とを移動体30x,30yに指示する。移動体30x,30yは、この指示に従って通信セッションを組む。
 ダイナミックマップ配信システム2は、S40からS110と同様の処理である、S630からS700の処理を実行する。これにより、移動体30xが基地局20aから基地局20bにハンドオーバするタイミングで、移動体30yが、基地局20aから受信した移動体30x向けのダイナミックマップ情報に含まれる動的情報を移動体30xへリレーする。
 なお、実施の形態5の移動体30xは、基地局20bへのハンドオーバが完了しても、移動体30x,30y間の通信セッションを解消しない。移動体30xが基地局20bへのハンドオーバを完了した後、移動体30yが基地局20aから基地局20bへのハンドオーバを実行する。具体的には、アプリケーションサーバ10は、基地局20aからダイナミックマップ情報の宛先変更を受け付けるまでは、宛先を移動体30yとしたダイナミックマップ情報を、基地局20aに送信する(S710)。
 基地局20aは、移動体30xが基地局20bへのハンドオーバを完了すると、宛先変更の依頼をアプリケーションサーバ10に送信する(S720)。具体的には、基地局20aは、移動体30yへ配信するダイナミックマップの動的情報の宛先を移動体30xに指定して配信することを、アプリケーションサーバ10に依頼する。この依頼では、宛先を移動体30xに指定して配信するタイミングが、移動体30yが基地局20aから基地局20bへハンドオーバするタイミングであることが規定されている。すなわち、基地局20aは、移動体30yのハンドオーバタイミングで宛先を移動体30xに変更する依頼を、アプリケーションサーバ10に送信する。また、基地局20aは、移動体30yのハンドオーバタイミングをアプリケーションサーバ10に送信する。
 これにより、アプリケーションサーバ10は、移動体30yが基地局20aから基地局20bへハンドオーバするタイミングになると、移動体30y向けのダイナミックマップ情報の動的情報を、宛先を移動体30xとして基地局20bに配信する(S730)。
 基地局20bは、移動体30y向けのダイナミックマップ情報の動的情報を、移動体30xに送信する(S740)。この場合において、基地局20bは、リレーを行うことを示すフラグ情報を、動的情報のパケットに付加して移動体30xに送信する。
 移動体30xは、サイドリンク接続によって通信セッションを確立した通信を活用して、基地局20bから受信した移動体30y向けのダイナミックマップ情報の動的情報を移動体30yへリレーする(S750)。この場合において、移動体30xは、動的情報のパケットにリレーを行うことを示すフラグ情報が付加されているか否かを判定する。フラグ情報が付加されている場合、移動体30xは、サイドリンク接続した移動体30yに動的情報をリレーする。
 このように、移動体30xは、移動体30yが基地局20aから基地局20bへハンドオーバする際に、基地局20bから受信した移動体30y向けのダイナミックマップ情報の動的情報を移動体30yへリレーする。これにより、ダイナミックマップ配信システム3は、複数の縮退運用下の移動体30x,30yに対し、ハンドオーバタイミングでダイナミックマップ情報を欠落することなく配信することができる。
 なお、基地局20aが、アプリケーションサーバ10に宛先変更の依頼をして動的情報の宛先を変更する場合に限らず、アプリケーションサーバ10から移動体30y宛ての動的情報を受信した基地局20aが宛先を移動体30xに変更してもよい。
 移動体30yは、基地局20bへのハンドオーバが完了した後、移動体30x,30y間の通信セッションを解消する。この後、アプリケーションサーバ10は、ダイナミックマップ情報を基地局20bに送信し、基地局20bは、ダイナミックマップ情報を移動体30yに送信する。そして、移動体30yが、基地局20bからダイナミックマップ情報を受信する。
 実施の形態2,5を組み合わせてもよい。すなわち、ダイナミックマップ配信システム2において、移動体30xがハンドオーバタイミングを決定して基地局20aに通知し、基地局20aが、ハンドオーバタイミングで欠落するダイナミックマップ情報を移動体30yに送信してもよい。また、ダイナミックマップ配信システム2において、移動体30yがハンドオーバタイミングを決定して基地局20aに通知し、基地局20aが、ハンドオーバタイミングで欠落するダイナミックマップ情報を移動体30xに送信してもよい。
 また、実施の形態3,5を組み合わせてもよい。すなわち、ダイナミックマップ配信システム3において、基地局20aが予測動的情報を、移動体30x,30yに送信してもよい。
 また、実施の形態4,5を組み合わせてもよい。すなわち、ダイナミックマップ配信システム3において、基地局20aが、移動体30xのハンドオーバタイミングの直前に予測動的情報を移動体30xに送信してもよい。また、ダイナミックマップ配信システム2において、基地局20aが、移動体30yのハンドオーバタイミングの直前に予測動的情報を移動体30yに送信してもよい。
 また、実施の形態2,5を組み合わせてもよい。すなわち、ダイナミックマップ配信システム3において、移動体30x,30yがハンドオーバタイミングを決定して基地局20aに通知し、基地局20aが、ハンドオーバタイミングで欠落する予測動的情報をダイナミックマップ情報に付加して移動体30x,30yに送信してもよい。
 このように実施の形態5では、移動体30xがハンドオーバする際に、移動体30yが、基地局20aから受信した移動体30x向けのダイナミックマップ情報の動的情報を移動体30xへリレーしている。また、移動体30yがハンドオーバする際に、移動体30xが、基地局20bから受信した移動体30y向けのダイナミックマップ情報の動的情報を移動体30yへリレーしている。
 これにより、ダイナミックマップ配信システム3は、複数の移動体30x,30yが縮退運用下となっていても、自動運転レベルを下げることなく、ハンドオーバによる基地局20bへの切り替えを実行できる。したがって、ダイナミックマップ配信システム3は、実施の形態1と同様に縮退運用時のハンドオーバタイミングであっても自動運転レベル4を実行できる。
 つづいて、アプリケーションサーバ10のハードウェア構成について説明する。アプリケーションサーバ10は、処理回路により実現される。処理回路は、メモリに格納されるプログラムを実行するプロセッサおよびメモリであってもよいし、専用のハードウェアであってもよい。処理回路は制御回路とも呼ばれる。
 図8は、実施の形態1から5にかかるアプリケーションサーバが備える処理回路をプロセッサおよびメモリで実現する場合の処理回路の構成例を示す図である。図8に示す処理回路90は制御回路であり、プロセッサ91およびメモリ92を備える。処理回路90がプロセッサ91およびメモリ92で構成される場合、処理回路90の各機能は、ソフトウェア、ファームウェア、またはソフトウェアとファームウェアとの組み合わせにより実現される。ソフトウェアまたはファームウェアはプログラムとして記述され、メモリ92に格納される。処理回路90では、メモリ92に記憶されたプログラムをプロセッサ91が読み出して実行することにより、各機能を実現する。すなわち、処理回路90は、アプリケーションサーバ10の処理が結果的に実行されることになるプログラムを格納するためのメモリ92を備える。このプログラムは、処理回路90により実現される各機能をアプリケーションサーバ10に実行させるためのプログラムであるともいえる。このプログラムは、プログラムが記憶された記憶媒体により提供されてもよいし、通信媒体など他の手段により提供されてもよい。
 上記プログラムは、基地局20aまたは基地局20bを介して、ダイナミックマップ情報を移動体30x,30yに配信する処理をアプリケーションサーバ10に実行させるプログラムであるとも言える。
 ここで、プロセッサ91は、例えば、CPU(Central Processing Unit)、処理装置、演算装置、マイクロプロセッサ、マイクロコンピュータ、またはDSP(Digital Signal Processor)などである。また、メモリ92は、例えば、RAM(Random Access Memory)、ROM(Read Only Memory)、フラッシュメモリ、EPROM(Erasable Programmable ROM)、EEPROM(登録商標)(Electrically EPROM)などの、不揮発性または揮発性の半導体メモリ、磁気ディスク、フレキシブルディスク、光ディスク、コンパクトディスク、ミニディスク、またはDVD(Digital Versatile Disc)などが該当する。
 図9は、実施の形態1から5にかかるアプリケーションサーバが備える処理回路を専用のハードウェアで構成する場合の処理回路の例を示す図である。図9に示す処理回路93は、例えば、単一回路、複合回路、プログラム化したプロセッサ、並列プログラム化したプロセッサ、ASIC(Application Specific Integrated Circuit)、FPGA(Field Programmable Gate Array)、またはこれらを組み合わせたものが該当する。処理回路93については、一部を専用のハードウェアで実現し、一部をソフトウェアまたはファームウェアで実現するようにしてもよい。このように、処理回路93は、専用のハードウェア、ソフトウェア、ファームウェア、またはこれらの組み合わせによって、上述の各機能を実現することができる。
 以上の実施の形態に示した構成は、一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、実施の形態同士を組み合わせることも可能であるし、要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。
 1~3 ダイナミックマップ配信システム、10 アプリケーションサーバ、20a,20b 基地局、30x,30y 移動体、90,93 処理回路、91 プロセッサ、92 メモリ、200a,200b データサーバ、300x,300y 移動通信部、301x,301y サイドリンク通信部。

Claims (18)

  1.  特定条件下での完全自動運転が実行される際に用いられるダイナミックマップの情報であるダイナミックマップ情報を受信する第1の移動体に、前記ダイナミックマップ情報を配信するアプリケーションサーバであって、
     前記第1の移動体が、第1の領域内で前記ダイナミックマップ情報を送信可能な第1の基地局から、第2の領域内で前記ダイナミックマップ情報を送信可能な第2の基地局にハンドオーバを実行する際に、前記第1の移動体が、前記第1の基地局および前記第2の基地局の両方とは通信できない縮退運用をしている場合、前記第1の基地局と、前記第1の基地局から前記ダイナミックマップ情報を受信可能な通信装置とを介して、前記ダイナミックマップ情報を前記第1の移動体に配信する、
     ことを特徴とするアプリケーションサーバ。
  2.  特定条件下での完全自動運転が実行される際に用いられるダイナミックマップの情報であるダイナミックマップ情報を受信する第1の移動体に、第1の領域内で前記ダイナミックマップ情報を送信可能な基地局であって、
     前記第1の移動体が、前記基地局から、第2の領域内で前記ダイナミックマップ情報を送信可能な別の基地局にハンドオーバを実行する際に、前記第1の移動体が、前記基地局および前記別の基地局の両方とは通信できない縮退運用をしている場合、前記ダイナミックマップ情報を配信するアプリケーションサーバから前記ダイナミックマップ情報を受信すると、前記ダイナミックマップ情報を受信可能な通信装置を介して前記ダイナミックマップ情報を前記第1の移動体に送信する、
     ことを特徴とする基地局。
  3.  特定条件下での完全自動運転が実行される際に用いられるダイナミックマップの情報であるダイナミックマップ情報を受信する第1の移動体と、
     第1の領域内で前記ダイナミックマップ情報を送信可能な第1の基地局と、
     第2の領域内で前記ダイナミックマップ情報を送信可能な第2の基地局と、
     前記第1の基地局または前記第2の基地局を介して、前記ダイナミックマップ情報を第1の移動体に配信するアプリケーションサーバと、
     前記第1の基地局から前記ダイナミックマップ情報を受信可能な通信装置と、
     を備え、
     前記第1の移動体が前記第1の基地局から前記第2の基地局にハンドオーバを実行する際に、前記第1の移動体が、前記第1の基地局および前記第2の基地局の両方とは通信できない縮退運用をしている場合、前記通信装置は、前記第1の基地局から前記ダイナミックマップ情報を受信して前記第1の移動体に送信し、前記第1の移動体は、前記通信装置から前記ダイナミックマップ情報を受信する、
     ことを特徴とするダイナミックマップ配信システム。
  4.  前記第1の基地局は、前記第1の移動体が前記ハンドオーバを実行する際に前記縮退運用をしている場合、前記第1の移動体に配信される前記ダイナミックマップ情報の宛先を、前記第1の移動体から前記通信装置に変更する依頼を、前記アプリケーションサーバに送信し、
     前記アプリケーションサーバは、前記依頼を受信すると、前記第1の移動体に配信する前記ダイナミックマップ情報の宛先を、前記第1の移動体から前記通信装置に変更して、前記第1の基地局に送信し、
     前記第1の基地局は、前記宛先が変更された前記ダイナミックマップ情報を前記通信装置に送信し、
     前記通信装置は、前記宛先が変更された前記ダイナミックマップ情報を前記第1の移動体に送信し、
     前記第1の移動体は、前記宛先が変更された前記ダイナミックマップ情報を受信する、
     ことを特徴とする請求項3に記載のダイナミックマップ配信システム。
  5.  前記第1の移動体は、前記通信装置との間でサイドリンク通信を行うことによって、前記通信装置から前記ダイナミックマップ情報を受信する、
     ことを特徴とする請求項3または4に記載のダイナミックマップ配信システム。
  6.  前記第1の基地局は、人の動きの情報を含む動的情報を前記ダイナミックマップ情報として、前記通信装置を介して、前記第1の移動体に送信する、
     ことを特徴とする請求項3から5の何れか1つに記載のダイナミックマップ配信システム。
  7.  前記第1の基地局は、前記第1の移動体が縮退運用のままハンドオーバを実行すると前記第1の移動体において前記動的情報の受信のみに欠落が生じるタイミングを、前記ハンドオーバのタイミングに設定して前記第1の移動体に通達する、
     ことを特徴とする請求項6に記載のダイナミックマップ配信システム。
  8.  前記第1の移動体は、前記ハンドオーバのタイミングを自律的に決定し、決定したハンドオーバタイミングを前記第1の基地局に通達し、
     前記第1の基地局は、前記第1の移動体が決定した前記ハンドオーバタイミングで欠落する前記ダイナミックマップ情報を、前記通信装置を介して前記第1の移動体に送信する、
     ことを特徴とする請求項3から7の何れか1つに記載のダイナミックマップ配信システム。
  9.  前記第1の基地局は、前記ダイナミックマップ情報を前記通信装置が前記第1の移動体に送信することを示すフラグ情報を、前記ダイナミックマップ情報に付加して前記通信装置に送信し、
     前記通信装置は、前記ダイナミックマップ情報に前記フラグ情報が付加されている場合に、前記第1の移動体に前記ダイナミックマップ情報を送信する、
     ことを特徴とする請求項3から8の何れか1つに記載のダイナミックマップ配信システム。
  10.  前記第1の基地局は、前記アプリケーションサーバから前記第1の移動体に配信された前記ダイナミックマップ情報を格納しておくデータサーバを有し、前記データサーバに格納されている前記ダイナミックマップ情報に基づいて、前記第1の移動体が前記ハンドオーバする際の動的情報を予測し、予測した動的情報を予測動的情報として前記第1の移動体に送信し、
     前記ハンドオーバの際には、前記予測動的情報を用いて前記特定条件下での完全自動運転が実行される、
     ことを特徴とする請求項6または7に記載のダイナミックマップ配信システム。
  11.  前記第1の基地局は、前記ハンドオーバのタイミングを前記第1の移動体に通達した後に、前記ダイナミックマップ情報に前記予測動的情報を付加して前記第1の移動体に送信する処理を開始する、
     ことを特徴とする請求項10に記載のダイナミックマップ配信システム。
  12.  前記第1の基地局は、前記第1の移動体が前記ハンドオーバを開始する直前に受信した前記ダイナミックマップ情報に前記予測動的情報を付加して前記第1の移動体に送信する、
     ことを特徴とする請求項10に記載のダイナミックマップ配信システム。
  13.  前記第1の基地局は、前記ハンドオーバに要する時間分の前記ダイナミックマップ情報を予測し、予測した動的情報を予測動的情報として前記第1の移動体に送信する、
     ことを特徴とする請求項10から12の何れか1つに記載のダイナミックマップ配信システム。
  14.  前記第1の移動体および前記通信装置が前記第1の基地局から前記第2の基地局にハンドオーバを実行する際に、前記第1の移動体および前記通信装置が、前記第1の基地局および前記第2の基地局の両方とは通信できない縮退運用をしている場合、前記第1の移動体が、前記第1の基地局および前記通信装置を介して前記ダイナミックマップ情報を受信した後、前記通信装置が、前記第2の基地局および前記第1の移動体を介して前記ダイナミックマップ情報を受信する、
     ことを特徴とする請求項3から13の何れか1つに記載のダイナミックマップ配信システム。
  15.  前記通信装置は、第2の移動体または路側機である、
     ことを特徴とする請求項3から13の何れか1つに記載のダイナミックマップ配信システム。
  16.  特定条件下での完全自動運転が実行される際に用いられるダイナミックマップの情報であるダイナミックマップ情報を受信する第1の移動体に、前記ダイナミックマップ情報を配信するアプリケーションサーバを制御する制御回路であって、
     前記第1の移動体が、第1の領域内で前記ダイナミックマップ情報を送信可能な第1の基地局から、第2の領域内で前記ダイナミックマップ情報を送信可能な第2の基地局にハンドオーバを実行する際に、前記第1の移動体が、前記第1の基地局および前記第2の基地局の両方とは通信できない縮退運用をしている場合、前記第1の基地局と、前記第1の基地局から前記ダイナミックマップ情報を受信可能な通信装置とを介して、前記ダイナミックマップ情報を前記第1の移動体に配信する、
     ことを前記アプリケーションサーバに実行させることを特徴とする制御回路。
  17.  特定条件下での完全自動運転が実行される際に用いられるダイナミックマップの情報であるダイナミックマップ情報を受信する第1の移動体に、前記ダイナミックマップ情報を配信するアプリケーションサーバを制御するプログラムを記憶した記憶媒体であって、
     前記プログラムは、前記第1の移動体が、第1の領域内で前記ダイナミックマップ情報を送信可能な第1の基地局から、第2の領域内で前記ダイナミックマップ情報を送信可能な第2の基地局にハンドオーバを実行する際に、前記第1の移動体が、前記第1の基地局および前記第2の基地局の両方とは通信できない縮退運用をしている場合、前記第1の基地局と、前記第1の基地局から前記ダイナミックマップ情報を受信可能な通信装置とを介して、前記ダイナミックマップ情報を前記第1の移動体に配信する、
     ことを前記アプリケーションサーバに実行させることを特徴とする記憶媒体。
  18.  アプリケーションサーバが、特定条件下での完全自動運転が実行される際に用いられるダイナミックマップの情報であるダイナミックマップ情報を受信する第1の移動体に、前記ダイナミックマップ情報を配信する情報配信方法であって、
     前記第1の移動体が、第1の領域内で前記ダイナミックマップ情報を送信可能な第1の基地局から、第2の領域内で前記ダイナミックマップ情報を送信可能な第2の基地局にハンドオーバを実行する際に、前記第1の移動体が、前記第1の基地局および前記第2の基地局の両方とは通信できない縮退運用をしている場合、前記アプリケーションサーバが、前記第1の基地局と、前記第1の基地局から前記ダイナミックマップ情報を受信可能な通信装置とを介して、前記ダイナミックマップ情報を前記第1の移動体に配信する配信ステップを含む、
     ことを特徴とする情報配信方法。
PCT/JP2021/010758 2021-03-17 2021-03-17 アプリケーションサーバ、基地局、ダイナミックマップ配信システム、制御回路、記憶媒体、および情報配信方法 WO2022195751A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN202180095492.5A CN116964654A (zh) 2021-03-17 2021-03-17 应用服务器、基站、动态地图分发系统、控制电路、存储介质及信息分发方法
KR1020237030260A KR20230142771A (ko) 2021-03-17 2021-03-17 애플리케이션 서버, 기지국, 다이나믹 맵 전달 시스템, 제어 회로, 기억 매체, 및 정보 전달 방법
PCT/JP2021/010758 WO2022195751A1 (ja) 2021-03-17 2021-03-17 アプリケーションサーバ、基地局、ダイナミックマップ配信システム、制御回路、記憶媒体、および情報配信方法
JP2023506472A JP7378664B2 (ja) 2021-03-17 2021-03-17 基地局
EP21931503.3A EP4310813A4 (en) 2021-03-17 2021-03-17 APPLICATION SERVER, BASE STATION, DYNAMIC CARD DISTRIBUTION SYSTEM, CONTROL CIRCUIT, STORAGE MEDIUM AND INFORMATION DISTRIBUTION METHOD
US18/234,131 US20230388867A1 (en) 2021-03-17 2023-08-15 Control circuit, storage medium, and information delivery method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/010758 WO2022195751A1 (ja) 2021-03-17 2021-03-17 アプリケーションサーバ、基地局、ダイナミックマップ配信システム、制御回路、記憶媒体、および情報配信方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/234,131 Continuation US20230388867A1 (en) 2021-03-17 2023-08-15 Control circuit, storage medium, and information delivery method

Publications (1)

Publication Number Publication Date
WO2022195751A1 true WO2022195751A1 (ja) 2022-09-22

Family

ID=83320113

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/010758 WO2022195751A1 (ja) 2021-03-17 2021-03-17 アプリケーションサーバ、基地局、ダイナミックマップ配信システム、制御回路、記憶媒体、および情報配信方法

Country Status (6)

Country Link
US (1) US20230388867A1 (ja)
EP (1) EP4310813A4 (ja)
JP (1) JP7378664B2 (ja)
KR (1) KR20230142771A (ja)
CN (1) CN116964654A (ja)
WO (1) WO2022195751A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009135864A (ja) * 2007-10-31 2009-06-18 Kyocera Corp ハンドオーバの制御方法およびそれを利用した制御装置、端末装置
JP2014044639A (ja) 2012-08-28 2014-03-13 Denso Corp 通信制御システム
JP2017033121A (ja) * 2015-07-30 2017-02-09 シャープ株式会社 サーバ装置及び管理方法
JP2018106504A (ja) * 2016-12-27 2018-07-05 株式会社豊田中央研究所 情報管理制御装置、情報管理制御プログラム
JP2019068411A (ja) * 2017-09-28 2019-04-25 株式会社デンソー 車両用通信システム、車両用通信装置および管理装置
JP2019087847A (ja) * 2017-11-06 2019-06-06 Kddi株式会社 サーバ装置及びその制御方法、並びにプログラム

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140044639A (ko) 2012-10-05 2014-04-15 (주)제주사랑농수산 화산석 송이 분말을 이용한 치아 미백용 치약 조성물

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009135864A (ja) * 2007-10-31 2009-06-18 Kyocera Corp ハンドオーバの制御方法およびそれを利用した制御装置、端末装置
JP2014044639A (ja) 2012-08-28 2014-03-13 Denso Corp 通信制御システム
JP2017033121A (ja) * 2015-07-30 2017-02-09 シャープ株式会社 サーバ装置及び管理方法
JP2018106504A (ja) * 2016-12-27 2018-07-05 株式会社豊田中央研究所 情報管理制御装置、情報管理制御プログラム
JP2019068411A (ja) * 2017-09-28 2019-04-25 株式会社デンソー 車両用通信システム、車両用通信装置および管理装置
JP2019087847A (ja) * 2017-11-06 2019-06-06 Kddi株式会社 サーバ装置及びその制御方法、並びにプログラム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4310813A4

Also Published As

Publication number Publication date
KR20230142771A (ko) 2023-10-11
JPWO2022195751A1 (ja) 2022-09-22
EP4310813A1 (en) 2024-01-24
JP7378664B2 (ja) 2023-11-13
US20230388867A1 (en) 2023-11-30
CN116964654A (zh) 2023-10-27
EP4310813A4 (en) 2024-05-01

Similar Documents

Publication Publication Date Title
JP7434363B2 (ja) セルラーネットワークのセルへの条件付きハンドオーバーをサポートするユーザ機器および条件付きハンドオーバーをサポートするセルラーネットワーク
KR102421909B1 (ko) 핸드오버를 향상시키는 무선 통신 처리를 위한 무선 통신 시스템 및 방법
US8249596B2 (en) Location based handoff
CN104902529B (zh) 一种网络切换方法、装置及基站
EP3800936B1 (en) Handover in connected mode between non-terrestrial-network and terrestrial network
EP3354069B1 (en) Telecommunications apparatus and methods for routing of d2d traffic
WO2018019394A1 (en) Method and system for causing a mobile device to travel based on a network condition
US20230135073A1 (en) Signaling efficiency improvements in non-terrestrial networks
WO2017107169A1 (zh) 导航系统中切换路侧导航单元的方法和设备
WO2018036609A1 (en) Traffic control of a vehicle control device
WO2022195751A1 (ja) アプリケーションサーバ、基地局、ダイナミックマップ配信システム、制御回路、記憶媒体、および情報配信方法
CN114786221A (zh) 面向基于非同步卫星的非地面网络切换方法和装置
JP7384773B2 (ja) 通信システム、送信局、移動局、通信方法及びコンピュータプログラム
CN116998216A (zh) 用于在无线通信网络中维持超可靠通信的通信设备和方法
US11218853B2 (en) External communication system for vehicle
JP6890152B2 (ja) サーバ、通信端末装置、移動体、通信システム、情報を提供する方法及びプログラム
US20240251322A1 (en) Satellite Communication Handover Method, Control Apparatus, and Terminal Device
CN113453291A (zh) 一种接入节点切换方法、终端设备及网络设备
JP4821266B2 (ja) 自律分散型無線システム
KR20190112511A (ko) 이동 통신 시스템에서 단말 이동 예측 기반의 핸드오버 방법
JP6957556B2 (ja) 通信端末装置、移動体、通信システム、通信方法及びプログラム
JP2008109262A (ja) 無線通信システム、無線通信方法および移動ノード
WO2022054681A1 (ja) 車両用無線通信装置、通信制御方法
WO2024171342A1 (ja) 無線通信システム、ハンドオーバ制御装置、無線通信方法、およびハンドオーバ制御用プログラム
WO2024161594A1 (ja) 車載端末、基地局、無線通信システム、制御回路、記憶媒体および中継局選択方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21931503

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023506472

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202327050657

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 20237030260

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020237030260

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 202180095492.5

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2021931503

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021931503

Country of ref document: EP

Effective date: 20231017