WO2022195660A1 - 冷凍冷蔵庫 - Google Patents

冷凍冷蔵庫 Download PDF

Info

Publication number
WO2022195660A1
WO2022195660A1 PCT/JP2021/010338 JP2021010338W WO2022195660A1 WO 2022195660 A1 WO2022195660 A1 WO 2022195660A1 JP 2021010338 W JP2021010338 W JP 2021010338W WO 2022195660 A1 WO2022195660 A1 WO 2022195660A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
damper
freezer
refrigerator
cooler
Prior art date
Application number
PCT/JP2021/010338
Other languages
English (en)
French (fr)
Inventor
弘文 松田
哲史 中津
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2023506387A priority Critical patent/JP7438451B2/ja
Priority to PCT/JP2021/010338 priority patent/WO2022195660A1/ja
Publication of WO2022195660A1 publication Critical patent/WO2022195660A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D21/00Defrosting; Preventing frosting; Removing condensed or defrost water
    • F25D21/06Removing frost
    • F25D21/08Removing frost by electric heating

Definitions

  • This disclosure relates to refrigerators and freezers.
  • defrosting operations are performed periodically in order to prevent performance deterioration due to frost formation on the cooler.
  • a mechanism is generally used in which heat is applied by heating with a heater in order to completely melt the frost on the cooler.
  • warm air leaks from the cooler chamber to other internal chambers, causing temperature rise, which is not preferable in terms of food quality.
  • Patent Document 1 discloses a freezer/refrigerator in which a damper is installed in each room and the damper is closed during heater heating to prevent warm air from leaking to each room.
  • a damper for each room of the freezer/refrigerator disclosed in Patent Document 1 is generally installed at the entrance (air outlet) of each room to prevent hot air from blowing out.
  • each room of the freezer-refrigerator of Patent Document 1 is provided with an air suction port from each room to the cooler chamber, and has a structure in which cool air circulates, but the suction port has a damper. often not installed. Therefore, in the freezer-refrigerator of Patent Document 1, warm air leaks from the suction port to each room because the suction port is open when the heater is defrosted.
  • Patent Document 2 discloses a freezer-refrigerator in which a damper is attached to the suction port in order to prevent warm air from leaking from the suction port.
  • a damper is attached to the suction port in order to prevent warm air from leaking from the suction port.
  • providing the damper at the suction port is costly, and the damper in the return air passage freezes because moist air passes through, which causes problems during operation.
  • the object of the present disclosure is to suppress temperature rise in the vicinity of the suction port due to warm air leakage from the cooler chamber during defrosting operation in a configuration in which a damper is not provided at the suction port. There is no refrigerator/freezer provided.
  • a refrigerator-freezer disclosed herein includes a freezer compartment, a cooler that cools air blown to the freezer compartment, a cooler room in which the cooler is arranged, a heater that removes frost adhering to the cooler, and a cooler room. and the freezer compartment, a second airway that communicates between the freezer compartment and the cooler compartment, and the temperature of the air blown from the first airway to the outlet provided in the freezer compartment is detected.
  • the temperature rise in the vicinity of the suction port due to leakage of warm air from the cooler chamber during defrosting operation is suppressed, while the temperature distribution in the freezer compartment is uneven. can be prevented.
  • FIG. 1 is a diagram for explaining the configuration of a refrigerator-freezer according to Embodiment 1.
  • FIG. 2 is a diagram for explaining an air outlet and an air inlet of the freezer-refrigerator according to Embodiment 1;
  • FIG. 5 is a diagram showing the relationship between the outlet temperature and the inlet temperature when the damper is normally closed;
  • FIG. 10 is a flow chart during defrosting operation in Embodiment 2.
  • FIG. 1 is a diagram for explaining the configuration of a refrigerator-freezer according to Embodiment 1.
  • FIG. 2 is a diagram for explaining an air outlet and an air inlet of the freezer-refrigerator according to Embodiment 1;
  • FIG. 5 is a diagram showing the relationship between the outlet temperature and the inlet temperature when the damper is normally
  • FIG. 1 is a diagram showing the configuration of a refrigerant circuit 10 of a refrigerator-freezer 1 according to Embodiment 1. As shown in FIG. The freezer-refrigerator 1 cools the interior of the freezer-refrigerator 1 to a target temperature through the refrigerant circuit 10 .
  • a refrigerant circuit 10 of a refrigerator/freezer 1 includes a compressor 2, a condenser 3, a condenser pipe 4, a cabinet pipe 5, a three-way valve 6, a capillary tube 7, and a cooler 8. are connected and configured.
  • refrigerant flows through the compressor 2, the condenser 3, the condenser pipe 4, the cabinet pipe 5, the three-way valve 6, the capillary tube 7, and the cooler 8 in this order.
  • the compressor 2 compresses the refrigerant circulating in the refrigerant circuit 10 into a high-temperature, high-pressure refrigerant.
  • the compressor 2 discharges the high-temperature, high-pressure refrigerant to the condenser 3 .
  • the operation of the compressor 2 is controlled according to the conditions inside the refrigerator.
  • the condenser 3 condenses the refrigerant through heat exchange with air.
  • the refrigerant passing through the condenser 3 undergoes heat exchange with air due to forced convection generated by a fan provided in the refrigerator/freezer 1 and is condensed.
  • the condenser pipes 4 are arranged on the rear and side surfaces of the refrigerator-freezer 1 and condense the refrigerant by exchanging heat with the air.
  • the cabinet pipe 5 is arranged in front of the refrigerator/freezer 1 and condenses the refrigerant by exchanging heat with the air.
  • the high-temperature and high-pressure refrigerant flows through the condenser 3, the condenser pipe 4, and the cabinet pipe 5 in this order and is gradually cooled.
  • the three-way valve 6 switches the coolant flow path after passing through the cabinet pipe 5 .
  • the capillary tube 7 is connected in parallel with the cabinet pipe 5 cooler 8 .
  • the capillary tube 7 is composed of a tube having a small diameter, and by reducing the pressure of the refrigerant, the refrigerant condensed by the condenser 3, the condenser pipe 4, and the cabinet pipe 5 is changed to a low temperature and low pressure state.
  • the refrigerants that have passed through each of the capillary tubes 7 connected in parallel flow into the cooler 8 after joining.
  • a cooler 8 is connected between the capillary tube 7 and the compressor 2 .
  • the cooler 8 is provided in a cooler chamber formed inside the freezer-refrigerator 1 .
  • the cooler 8 exchanges heat between the low-temperature, low-pressure refrigerant and the air around the cooler 8 to evaporate the refrigerant. Thereby, the cooler 8 cools the air around the cooler 8 .
  • a fan is provided near the cooler 8, and the air cooled by the cooler 8 circulates inside the refrigerator/freezer 1 by this fan. Thereby, the air in the refrigerator-freezer 1 is cooled.
  • the refrigerant evaporated by the cooler 8 returns to the compressor 2 , is compressed again by the compressor 2 , is discharged to the condenser 3 , and circulates through the refrigerant circuit 10 .
  • FIG. 2 is a diagram for explaining the configuration of refrigerator-freezer 1 according to Embodiment 1.
  • FIG. 3 is a diagram for explaining outlets 134a and 134b and inlet 134c of refrigerator-freezer 1 according to the first embodiment.
  • the front-rear direction is the Y-axis direction
  • the left-right direction is the X-axis direction
  • the vertical direction is the Z-axis direction.
  • the freezer-refrigerator 1 includes a rectangular parallelepiped heat insulating box 1a and doors 121, 122, 123, 124, and 125 attached to five openings provided in front of the heat insulating box 1a.
  • the heat-insulating box 1a is enclosed between a rectangular outer box made of metal, resin, or the like, an inner box smaller than the outer size, made of metal or resin, and the outer box and the inner box. and a heat insulating member.
  • Inside the heat insulating box 1a are, for example, a refrigerating chamber 131 for refrigerating food, an ice making chamber 132 for accommodating an ice maker, and a switching chamber 133 for switching between a temperature at which ice can be made and a temperature other than that.
  • FIG. 2 shows the switching chamber 133 and the door 123 among the ice making chamber 132 and the door 122 and the switching chamber 133 and the door 123 on the left and right in the X-axis direction.
  • the refrigerator/freezer 1 includes a cooler room 16 , a machine room 18 connected to the cooler room 16 via a drain pipe 17 , and a control device 100 .
  • Cooler compartment 16 is connected to refrigerating compartment 131, ice making compartment 132, switching compartment 133, freezing compartment 134 and vegetable compartment 135 via air ducts 15A and 15B, respectively.
  • Cooler chamber 16 accommodates cooler 8 , fan 161 , heater 35 , and cooler thermistor 30 .
  • the machine room 18 accommodates a compressor 2 that compresses the refrigerant flowing from the cooler 8 .
  • the control device 100 includes a CPU (Central Processing Unit) 51, a memory 52 (ROM (Read Only Memory) and RAM (Random Access Memory)), and an input/output device (not shown) for inputting various signals. be done.
  • the CPU 51 develops a program stored in the ROM into the RAM or the like and executes it.
  • the program stored in the ROM is a program in which processing procedures of the control device 100 are described.
  • the control device 100 controls each device according to these programs. This control is not limited to processing by software, and processing by dedicated hardware (electronic circuit) is also possible.
  • the control device 100 controls, for example, the opening/closing state of a damper, which will be described later.
  • the refrigerant By evaporating part of the refrigerant, the refrigerant is brought into a two-phase state of gas and liquid.
  • the cooler 8 cools the air around the cooler 8 in the cooler chamber 16 by utilizing the heat absorbing action when the liquid state refrigerant of the two-phase state refrigerant flowing from the decompression section evaporates.
  • a suction pipe (not shown) heats the refrigerant flowing from the cooler 8 to its condensation temperature by exchanging heat with the capillary tube 7 .
  • the heater 35 melts and removes frost adhering to the cooler 8 by raising the temperature of the cooler 8 .
  • Cooler thermistor 30 detects the temperature of cooler 8 .
  • air cooled in the cooler chamber 16 flows through the air passage duct 15A into the refrigerator compartment 131, the ice making compartment 132, the switching compartment 133, the freezer compartment 134 and the vegetable compartment 135, respectively. (see arrow AR10).
  • Cold air supplied to refrigerator compartment 131, switch compartment 133, freezer compartment 134, and vegetable compartment 135 is blown inward from outlets 131a, 133a, 134a, 134b, and 135a provided in each compartment.
  • the cold air supplied toward ice making chamber 132 is similarly blown inward from an outlet (not shown) provided in ice making chamber 132 .
  • food items placed inside each of refrigerator compartment 131, ice making compartment 132, switching compartment 133, freezer compartment 134 and vegetable compartment 135 are cooled.
  • Air warmed by objects to be stored in refrigerator compartment 131, switching compartment 133, freezer compartment 134, and vegetable compartment 135 is returned to suction ports 131b, 133b, 134bc, and 135b provided in each compartment, and It flows into the cooler chamber 16 through the air passage duct 15B provided in the chamber.
  • the air existing in the ice making chamber 132 similarly flows into the cooler chamber 16 through the air passage duct 15B from a suction port (not shown) provided in the ice making chamber 132 . In this way, cold air circulates between cooler compartment 16 and refrigerator compartment 131, ice making compartment 132, switching compartment 133, freezer compartment 134 and vegetable compartment 135 through air ducts 15A and 15B.
  • a damper (for example, dampers 1511, 1513, 1514, 1515) is provided at each connection portion of the air passage duct 15A with the refrigerator compartment 131, the ice making compartment 132, the switching compartment 133, the freezing compartment 134, and the vegetable compartment 135.
  • Each damper opens and closes independently. When the damper is open, cold air flows into refrigerator compartment 131, ice making compartment 132, switching compartment 133, freezer compartment 134, or vegetable compartment 135 corresponding to the damper. For example, when damper 1514 is open, cool air flows into freezer compartment 134 corresponding to damper 1514 .
  • damper 1514 when the damper is closed, cold air is blocked from entering refrigerator compartment 131, ice making compartment 132, switching compartment 133, freezer compartment 134, or vegetable compartment 135 corresponding to the damper.
  • damper 1514 when damper 1514 is closed, cold air is blocked from entering freezer compartment 134 corresponding to damper 1514 .
  • the freezer compartment 134 is provided with two outlets 134a and 134b for blowing cold air to the upper and lower areas of the inside, respectively, and an inlet 134c for sucking warmed air inside.
  • An upper case 21 is arranged inside the freezer compartment 134
  • a lower case 22 is arranged below the freezer compartment 134 .
  • the cool air blown out from the blowout port 134a flows into the upper case 21.
  • the cool air that has flowed into the upper case 21 enters the freezer compartment 134 through the wall of the heat insulating box 1a from the heat stored in the storage object arranged in the upper case 21 and the air existing outside the refrigerator/freezer 1. It is warmed by the heat generated.
  • the air inside the upper case 21 is discharged from a return port 21 a provided in the upper case 21 and flows out of the upper case 21 .
  • the amount of heat entering freezer compartment 134 from the air existing outside freezer/refrigerator 1 can be regarded as constant as long as the temperature inside freezer compartment 134 does not change significantly. Therefore, the greater the heat stored in the object to be stored, the higher the temperature of the air discharged from the return port 21a.
  • the freezer compartment 134 is provided with a door open/close detector 19 that detects the open/close state of the door 124 .
  • the cool air blown out from the blowout port 134b flows into the lower case 212 and heat-exchanges with the object to be stored arranged in the lower case 22 to warm it.
  • the air inside the lower case 22 is discharged from a return port 22 a provided in the lower case 22 and flows out of the lower case 22 .
  • the air discharged from the return port 21a of the upper case 21 and the return port 22a of the lower case 22 is returned to the suction port 134c of the freezer compartment 134 and flows into the cooler compartment 16 through the air passage duct 15B.
  • a freezing compartment 134 is provided below the ice making compartment 132 and switching compartment 133 .
  • the freezer compartment 134 includes an outlet thermistor 31 as a first temperature sensor for detecting the temperature of the air blown out from the outlets 134a and 134b, a return port 21a of the upper case 21 and a return port 22a of the lower case 22.
  • a suction port thermistor 32 is provided as a second temperature sensor for detecting the temperature of the air discharged from and returned to the suction port 134c.
  • the outlet thermistor 31 is provided closer to the outlets 134 a and 134 b than the inlet thermistor 32 .
  • the inlet thermistor 32 is provided closer to the inlet 134c than the outlet thermistor 31 is.
  • the temperature detected by the outlet thermistor 31 is also referred to as the outlet temperature Te
  • the temperature detected by the inlet thermistor 32 is also referred to as the inlet temperature Tr.
  • the freezer-refrigerator 1 is operated so that the temperature rises due to heat intrusion from outside, and the internal temperature is kept constant by the balance with the cooling mechanism of the refrigerating cycle.
  • the refrigerator/freezer 1 has upper and lower temperature limits set by a setting dial.
  • the control device 100 controls the temperature of each internal room by opening and closing a damper provided at a connection portion between each room and the air passage duct 15A.
  • the control device 100 adjusts the flow rate of cold air blown by the fan 161 with a damper based on the temperature detected by the thermistor installed in each room.
  • the damper opens and cools down.
  • the damper closes and the temperature rises due to heat intrusion from outside.
  • the internal temperature rises and falls repeatedly, and the average temperature is kept constant.
  • a defrosting operation of the cooler 8 will be described. Inside the freezer/refrigerator 1 , the air passing through the cooler 8 is circulated by the fan 161 . The air in the freezer-refrigerator 1 is moistened by water vapor from food and intrusion of outside air by opening and closing the door. Since the cooler 8 is in a subfreezing temperature zone, when air containing a lot of moisture passes through the cooler 8, the moisture in the air freezes on the surface of the cooler 8 to form frost. Frost adhering to the cooler 8 increases as the operation continues for a long time. Frost adhering to the cooler 8 impedes heat transfer, so that the cooling capacity of the refrigerator-freezer 1 is reduced. Therefore, in the refrigerator-freezer 1, a defrosting operation is periodically performed.
  • a mechanism is generally used in which heat is applied by heater heating in order to completely melt the frost on the cooler 8 .
  • the heater 35 provided below the cooler 8 melts the frost by applying heat to the frost.
  • the defrosting operation is started when the accumulated operating time of the refrigerator-freezer 1 reaches a predetermined time.
  • the defrosting operation ends when the output of the heater 35 is turned off when the cooler thermistor 30 attached to the cooler 8 reaches the set temperature. This series of defrosting operations is performed periodically during the operation of the refrigerator/freezer 1 to suppress deterioration in performance.
  • the control device 100 closes the dampers in order to suppress warm air from leaking into each room.
  • dampers are generally installed only at the outlet of each room, not at the suction port, due to reasons such as high cost and damper freezing.
  • An increase in air temperature causes an increase in pressure, but under a situation where the blowout port is closed and the suction port is open, air flow from the suction port occurs.
  • hot air leakage from the blowout port can be suppressed by closing the damper, but warm air leaks through the suction port. This can suppress the temperature rise of the food near the air outlet inside the refrigerator, but the temperature of the food near the suction port rises, and the temperature distribution is uneven depending on the position in the refrigerator. Getting worse.
  • the warm air flow rate at the outlets 134a and 134b and the suction port 134c is controlled by opening and closing the dampers 1514 provided at the outlets 134a and 134b during the defrosting operation.
  • the temperature rise in the refrigerator during the defrosting operation is made uniform, and the food preservability is improved.
  • FIG. 4 is a diagram showing the relationship between the outlet temperature Te and the inlet temperature Tr when the damper is normally closed.
  • FIG. 5 is a diagram showing the relationship between the outlet temperature Te and the inlet temperature Tr when opening/closing control of the damper 1514 is executed.
  • FIG. 6 is a flowchart during defrosting operation in Embodiment 1.
  • the control device 100 switches the state of the damper 1514 during the period in which the heater 35 is overheated during the defrosting operation. As shown in FIG. 5, the control device 100 closes the damper 1514 from the start of overheating of the heater 35 until partway through, and switches the damper 1514 to the open condition from the middle. As a result, in the refrigerator-freezer 1 of Embodiment 1, during the defrosting operation, the temperature rise of the outlet temperature Te is suppressed during the period when the damper 1514 is closed, and the suction temperature is reduced during the period when the damper 1514 is opened. A temperature rise of the mouth temperature Tr can be suppressed.
  • outlet temperature Te > inlet temperature Tr, but the outlet temperature Te is still lower than the inlet temperature Tr when the damper is always closed. Therefore, it is possible to lower the maximum temperature inside the refrigerator at the end of defrosting.
  • the control device 100 starts the defrosting operation of the cooler 8 when the cumulative operating time of the refrigerator/freezer 1 reaches a predetermined time (step S1).
  • the controller 100 closes the damper 1514 that is provided between the freezer compartment 134 and the air duct 15A and opens and closes the air duct 15A at the timing of starting the defrosting operation (step S2).
  • the control device 100 determines whether or not the cooler thermistor 30 has reached a preset temperature at which the cooler 8 can be defrosted (step S3).
  • step S3 When the control device 100 determines in step S3 that the cooler thermistor 30 has reached the set temperature (YES in step S3), the damper 1514 is opened to end the defrosting operation (step S4), and the process is continued as shown in FIG. return to the main routine from the subroutine shown in .
  • step S3 When the controller 100 determines in step S3 that the cooler thermistor 30 has not reached the set temperature (NO in step S3), the process proceeds to step S5.
  • the freezer-refrigerator 1 In the freezer-refrigerator 1, by opening the damper 1514, leakage of hot air from the suction port 134c is prevented.
  • the refrigerator/freezer 1 In the refrigerator/freezer 1, by opening the outlets 134a and 134b, leakage of hot air from the outlets 134a and 134b and the suction port 134c is dispersed, so that the air from the suction port 134c is released relative to the outlets 134a and 134b. Minimizes hot air leakage. Thereby, in the refrigerator-freezer 1, the temperature rise in the vicinity of the suction port 134c can be reduced when the damper 1514 is open.
  • control device 100 proceeds to step S6 and keeps damper 1514 open.
  • the control device 100 in the refrigerator/freezer 1 repeatedly executes opening/closing control of the damper 1514 during the defrosting operation.
  • the control device 100 opens the damper 1514 on the condition that the cooler thermistor 30 reaches the preset temperature, and ends the defrosting operation.
  • the freezer-refrigerator 1 can suppress the temperature rise in the vicinity of the suction port 134c as compared with the case where the damper 1514 is maintained in the closed state during the defrosting operation.
  • the freezer-refrigerator 1 can reduce the temperature difference between the outlet temperature Te and the inlet temperature Tr by controlling the opening and closing of the damper 1514 during the defrosting operation, compared to when the damper is normally closed or when the damper is open. Thereby, the freezer-refrigerator 1 can equalize the indoor temperature distribution of the freezer compartment 134, and can improve the storage quality of food.
  • FIG. 7 is a flow chart during defrosting operation in the second embodiment.
  • the control device 100 of Embodiment 2 can change the degree of opening of the damper during the defrosting operation.
  • the control device 100 starts the defrosting operation of the cooler 8 when the cumulative operating time of the refrigerator/freezer 1 reaches a predetermined time (step S11).
  • the control device 100 sets the opening degree of the damper 1514, which is provided between the freezer compartment 134 and the air passage duct 15A at the timing of starting the defrosting operation and opens and closes the air passage duct 15A, to a certain opening degree Xi (step S12).
  • the control device 100 determines whether or not the cooler thermistor 30 has reached a preset temperature at which the cooler 8 can be defrosted (step S13).
  • step S13 When the controller 100 determines in step S13 that the cooler thermistor 30 has not reached the set temperature (NO in step S13), the process proceeds to step S15.
  • step S20 control device 100 sets the opening degree of damper 1514 to Xi- ⁇ X (step S19), and proceeds to the process of step S17.
  • the degree of opening of the damper 1514 is reduced from Xi to Xi-.DELTA.X, thereby reducing warm air leakage from the outlets 134a and 134b relative to the inlet 134c.
  • step S17 the control device 100 sets the damper opening degree Xi to the opening degree set in steps S16, S19, and S20.
  • the control device 100 executes the processes after step S12 according to the set degree of opening.
  • Control device 100 in refrigerator-freezer 1 executes the process shown in FIG. 7 for changing the degree of opening of damper 1514 during the defrosting operation.
  • the freezer-refrigerator 1 reduces the temperature difference between the outlet temperature Te and the inlet temperature Tr by controlling the degree of opening of the damper 1514 during the defrosting operation, compared with the state in which the damper is normally closed or the state in which the damper is normally open. can do.
  • the freezer-refrigerator 1 can equalize the indoor temperature distribution of the freezer compartment 134, and can improve the storage quality of food.
  • the present disclosure relates to a refrigerator/freezer 1 .
  • the freezer-refrigerator 1 includes a freezer compartment 134, a cooler 8 that cools the air blown to the freezer compartment 134, a cooler compartment 16 in which the cooler 8 is arranged, and a heater 35 that removes frost adhering to the cooler 8. , an air passage duct 15A that communicates the cooler chamber 16 and the freezer chamber 134, an air passage duct 15B that communicates the freezer chamber 134 and the cooler chamber 16, and outlets 134a and 134b provided in the freezer chamber 134.
  • a damper 1514 that is provided at a connection portion between the chamber 134 and the air duct 15A to open and close the air duct 15A, and a control device 100 that controls the damper 1514 are provided.
  • the control device 100 controls the opening and closing of the damper 1514 based on the temperatures detected by the outlet thermistor 31 and the suction port thermistor 32 when the defrosting operation is performed by driving the heater 35 .
  • the freezer-refrigerator 1 suppresses temperature rise in the vicinity of the suction port 134c due to leakage of warm air from the cooler chamber 16 during the defrosting operation in a configuration in which no damper is provided at the suction port. , the temperature distribution in the freezer compartment 134 can be prevented from being biased.
  • the control device 100 controls the damper 1514 to be either open or closed.
  • Te is the temperature near the outlets 134a and 134b detected by the outlet thermistor 31
  • Tr is the temperature near the inlet 134c detected by the inlet thermistor 32
  • Te is the temperature near the outlets 134a and 134b.
  • the temperature Tr near the suction port 134c is ⁇ T
  • the preset first temperature is ⁇ Ta.
  • the freezer-refrigerator 1 can reduce the temperature difference between the outlet temperature Te and the inlet temperature Tr by controlling the opening and closing of the damper 1514 during the defrosting operation. can be made smaller. Thereby, the freezer-refrigerator 1 can equalize the indoor temperature distribution of the freezer compartment 134, and can improve the storage quality of food.
  • control device 100 controls the degree of opening of damper 1514 so that it can be changed.
  • Te is the temperature near the outlets 134a and 134b detected by the outlet thermistor 31
  • Tr is the temperature near the inlet 134c detected by the inlet thermistor 32
  • Te is the temperature near the outlets 134a and 134b.
  • the temperature Tr near the suction port 134c is ⁇ T
  • the preset first temperature is ⁇ Ta.
  • the freezer-refrigerator 1 is controlled to adjust the opening degree of the damper 1514 during the defrosting operation, so that the outlet temperature Te and the inlet temperature Tr are lower than the damper closed state or the damper open state. can reduce the temperature difference between Thereby, the freezer-refrigerator 1 can equalize the indoor temperature distribution of the freezer compartment 134, and can improve the storage quality of food.
  • a cooler thermistor 30 that detects the temperature of the air in the cooler chamber 16 is further provided.
  • Control device 100 stops the defrosting operation and opens damper 1514 when the temperature detected by cooler thermistor 30 reaches a predetermined set temperature.
  • the freezer-refrigerator 1 opens the damper 1514 when the set temperature is reached, so that cold air can be reliably sent to the freezer compartment 134 in the subsequent operation.
  • the freezer-refrigerator 1 may perform the above-described control using dampers in each chamber other than the freezer compartment 134 . In such a case, the preset first temperature ⁇ Ta may be changed for each chamber.
  • the freezer-refrigerator 1 may be provided with separate dampers for the outlet 134a and the outlet 134b.
  • the control device 100 may control each damper individually.
  • 1 refrigerator/freezer 1a insulation box, 2 compressor, 3 condenser, 4 condenser pipe, 5 cabinet pipe, 6 three-way valve, 7 capillary tube, 8 cooler, 10 refrigerant circuit, 15A, 15B air duct, 16 cooling Machine room, 17 Drain pipe, 18 Machine room, 19 Door open/close detector 21 Upper case, 21a, 22a Return port, 22 Lower case, 30 Cooler thermistor, 31 Air outlet thermistor, 32 Suction port thermistor, 35 Heater, 100 Control Device, 131 refrigerator compartment, 134a, 134b outlet, 134c intake, 132 ice making compartment, 133 switching compartment, 134 freezer compartment, 135 vegetable compartment, 161 fan, 1514 damper.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Cold Air Circulating Systems And Constructional Details In Refrigerators (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

冷凍冷蔵庫(1)は、冷凍室(134)と、冷却器(8)と、冷却器室(16)と、ヒータ(35)と、風路ダクト(15A)と、風路ダクト(15B)と、冷凍室(134)に設けられた吹き出し口(134a、134b)へ風路ダクト(15A)から吹き出す空気の温度を検出する吹き出し口サーミスタ(31)と、冷凍室(134)に設けられた吸い込み口(134c)から風路ダクト(15B)へ戻される空気の温度を検出する吸い込み口サーミスタ(32)と、冷凍室(134)と風路ダクト(15A)との接続部に設けられ、風路ダクト(15A)を開閉するダンパ(1514)と、ダンパ(1514)を制御する制御装置(100)と、を備える。制御装置(100)は、ヒータ(35)の駆動により除霜運転を実行するときに、吹き出し口サーミスタ(31)および吸い込み口サーミスタ(32)の検出温度に基づいて、ダンパ(1514)の開閉を制御する。

Description

冷凍冷蔵庫
 本開示は、冷凍冷蔵庫に関する。
 従来、冷凍冷蔵庫においては、冷却器に着霜することによる性能の低下を防ぐため、定期的に除霜運転を実行している。冷凍冷蔵庫の除霜方法としては、冷却器の霜を完全に融解するためにヒータ加熱により熱量を与える機構が一般的である。ヒータ除霜時は、冷却器室から他の庫内部屋への暖気の漏洩が生じてしまい、温度上昇の要因となり、食品品質において好ましくない。
 特許第3633997号公報(特許文献1)には、各部屋にダンパを設置し、ヒータ加熱時にダンパを閉とすることで各部屋への暖気漏洩を防ぐ冷凍冷蔵庫が開示されている。特許文献1の冷凍冷蔵庫の各部屋のダンパは、一般的に各部屋の入り口(吹出し口)に設置され、暖気を吹き出すことを防いでいる。一方で、特許文献1の冷凍冷蔵庫の各部屋には、各部屋から冷却器室への空気の吸い込み口が設置されており、冷気が循環する構造となっているが、吸い込み口にはダンパが設置されていないことが多い。よって、特許文献1の冷凍冷蔵庫では、ヒータ除霜時に吸い込み口が開口していることで吸い込み口から各部屋への暖気漏洩が生じてしまう。
 特に、特許文献1の冷凍冷蔵庫では、冷却器室と近接している冷凍室において長い風路構造を持たないことで冷却器室から漏洩した暖気の影響は大きい。特許文献1のような冷凍室の吹き出し口からの暖気漏洩を防ぐ機構を持つ冷蔵庫では、冷凍室の吹き出しからの暖気漏洩は抑えられるが、冷凍室の吸い込み口から暖気が漏洩してしまい、冷凍室の吸い込み口近辺において食品温度が上昇してしまう。このように、冷凍室の吹き出し口のダンパのみでは、冷凍室の吸い込み口からの暖気漏洩を防げず、特に冷凍室の吸い込み口近辺での食品温度上昇は抑制できない。
 特開2013-127345号公報(特許文献2)には、吸い込み口からの暖気漏洩を防ぐために、吸い込み口にダンパを取り付けた冷凍冷蔵庫が開示されている。特許文献2の冷凍冷蔵庫においては、吸い込み口にダンパを設けることでコストがかかることに加え、戻り風路でのダンパは湿潤な空気が通過するためダンパが氷結し、動作時の問題も生じる。
特許第3633997号公報 特開2013-127345号公報
 従来の冷凍冷蔵庫においては、除霜運転時のダンパの開閉制御について改善の余地があった。
 本開示の目的は、吸い込み口にダンパを設けない構成において、除霜運転時における冷却器室からの暖気漏洩による吸い込み口近傍での温度上昇を抑制しつつ、冷凍室内の温度分布に偏りが生じない冷凍冷蔵庫を提供することである。
 本開示の冷凍冷蔵庫は、冷凍室と、冷凍室へ送風する空気を冷却する冷却器と、冷却器が配置される冷却器室と、冷却器に付着した霜を除去するヒータと、冷却器室と冷凍室とを連通させる第1風路と、冷凍室と冷却器室とを連通させる第2風路と、冷凍室に設けられた吹き出し口へ第1風路から吹き出す空気の温度を検出する第1温度センサと、冷凍室に設けられた吸い込み口から第2風路へ戻される空気の温度を検出する第2温度センサと、冷凍室と第1風路との接続部に設けられ、第1風路を開閉するダンパと、ダンパを制御する制御装置と、を備える。制御装置は、ヒータの駆動により除霜運転を実行するときに、第1温度センサおよび第2温度センサの検出温度に基づいて、ダンパの開閉を制御する。
 本開示によれば、吸い込み口にダンパを設けない構成において、除霜運転時における冷却器室からの暖気漏洩による吸い込み口近傍での温度上昇を抑制しつつ、冷凍室内の温度分布に偏りが生じないようにすることができる。
実施の形態1における冷凍冷蔵庫の冷媒回路の構成を示す図である。 実施の形態1における冷凍冷蔵庫の構成を説明するための図である。 実施の形態1における冷凍冷蔵庫の吹き出し口および吸い込み口について説明するための図である。 常時ダンパ閉の場合における吹き出し口温度と吸い込み口温度との関係を示す図である。 ダンパの開閉制御を実行した場合における吹き出し口温度と吸い込み口温度との関係を示す図である。 実施の形態1における除霜運転時のフローチャートである。 実施の形態2における除霜運転時のフローチャートである。
 以下、本開示の実施の形態について、図面を参照しながら詳細に説明する。以下に説明する実施の形態において、個数、量などに言及する場合、特に記載がある場合を除き、本開示の範囲は必ずしもその個数、量などに限定されない。同一の部品、相当部品に対しては、同一の参照番号を付し、重複する説明は繰り返さない場合がある。実施の形態における構成を適宜組み合わせて用いることは当初から予定されている。
 実施の形態1.
 <冷凍冷蔵庫における冷媒回路の構成>
 図1は、実施の形態1における冷凍冷蔵庫1の冷媒回路10の構成を示す図である。冷凍冷蔵庫1は、冷媒回路10により、冷凍冷蔵庫1の庫内を目標温度まで冷却する。
 図1に示すように、冷凍冷蔵庫1の冷媒回路10は、圧縮機2と、凝縮器3と、コンデンサパイプ4と、キャビネットパイプ5と、三方弁6と、キャピラリチューブ7と、冷却器8とが接続されて構成されている。冷媒回路10では、圧縮機2、凝縮器3、コンデンサパイプ4、キャビネットパイプ5、三方弁6、キャピラリチューブ7、冷却器8の順に冷媒が流れる。
 圧縮機2は、冷媒回路10内を循環する冷媒を圧縮して高温高圧状態の冷媒にする。圧縮機2は、高温高圧状態の冷媒を凝縮器3へと吐出する。圧縮機2は、庫内状況に応じて運転が制御される。
 凝縮器3は、空気との熱交換により冷媒を凝縮する。凝縮器3を通過する冷媒は、冷凍冷蔵庫1内に設けられたファンが生じさせる強制対流により空気と熱交換がされて、凝縮される。コンデンサパイプ4は、冷凍冷蔵庫1内の背面および側面に配置され、空気と熱交換することで冷媒を凝縮する。キャビネットパイプ5は、冷凍冷蔵庫1の前面に配置され、空気と熱交換することで冷媒を凝縮する。高温高圧状態の冷媒は、凝縮器3、コンデンサパイプ4、キャビネットパイプ5の順に流れることにより徐々に冷却される。
 三方弁6は、キャビネットパイプ5を通過した後の冷媒の流路を切り替える。キャピラリチューブ7は、キャビネットパイプ5冷却器8との間に並列に接続されている。キャピラリチューブ7は、管径が細い管から構成され、冷媒を減圧することにより、凝縮器3、コンデンサパイプ4、キャビネットパイプ5によって凝縮された冷媒を、低温低圧状態に変化させる。並列に接続されたキャピラリチューブ7の各々を通過した冷媒は、合流後に冷却器8に流入する。
 冷却器8は、キャピラリチューブ7と圧縮機2との間に接続されている。冷却器8は、冷凍冷蔵庫1の庫内に形成された冷却器室に設けられる。冷却器8は、低温低圧状態の冷媒と冷却器8の周囲の空気との間で熱交換をさせ、冷媒を蒸発させる。これにより、冷却器8は、冷却器8の周囲の空気を冷却する。
 冷却器8の近傍にはファンが設けられており、冷却器8が冷却した空気は、このファンにより、冷凍冷蔵庫1内を循環する。これにより、冷凍冷蔵庫1内の空気が冷却される。
 冷却器8によって蒸発した冷媒は、圧縮機2に戻り、再度、圧縮機2によって圧縮され、凝縮器3へと吐出され、冷媒回路10を循環する。
 <冷凍冷蔵庫1の全体構成>
 図2は、実施の形態1における冷凍冷蔵庫1の構成を説明するための図である。図3は、実施の形態1における冷凍冷蔵庫1の吹き出し口134a,134bおよび吸い込み口134cについて説明するための図である。図2において、冷凍冷蔵庫1を正面側から見て前後方向をY軸方向、左右方向をX軸方向、上下方向をZ軸方向としている。
 冷凍冷蔵庫1は、外形が直方体状の断熱箱体1aと、断熱箱体1aの前方に設けられた5つの開口部それぞれに取付けられた扉121,122,123,124,125とを備える。断熱箱体1aは、金属、樹脂等から形成された矩形状の外箱と、金属、樹脂等から形成された外形寸法よりも小さい内箱と、外箱と内箱との間に封入された断熱部材とを有する。断熱箱体1aの内部には、例えば、食品を冷蔵する冷蔵室131と、製氷器を収容する製氷室132と、室内を製氷可能な温度とそれ以外の温度とに切り換え可能な切換室133と、冷凍食品を収納し冷凍する冷凍室134と、野菜を収納する野菜室135とが設けられている。なお、図2においては、X軸方向の左右にある製氷室132と扉122、切換室133と扉123のうち、切換室133と扉123とが図示されている。
 冷凍冷蔵庫1は、冷却器室16と、冷却器室16に排水管17を介して接続された機械室18と、制御装置100とを備える。冷却器室16は、冷蔵室131、製氷室132、切換室133、冷凍室134および野菜室135それぞれに風路ダクト15A、15Bを介して接続されている。冷却器室16には、冷却器8と、ファン161と、ヒータ35と、冷却器サーミスタ30とが収容されている。機械室18には、冷却器8から流入する冷媒を圧縮する圧縮機2が収容されている。
 制御装置100は、CPU(Central Processing Unit)51と、メモリ52(ROM(Read Only Memory)およびRAM(Random Access Memory))と、各種信号を入力するための図示しない入出力装置等を含んで構成される。CPU51は、ROMに格納されているプログラムをRAM等に展開して実行する。ROMに格納されるプログラムは、制御装置100の処理手順が記されたプログラムである。制御装置100は、これらのプログラムに従って、各機器の制御を実行する。この制御については、ソフトウェアによる処理に限られず、専用のハードウェア(電子回路)で処理することも可能である。制御装置100は、例えば、後述するダンパの開閉状態を制御する。
 凝縮器3、コンデンサパイプ4、キャビネットパイプ5から構成される凝縮部は、圧縮機2から流入する冷媒を凝縮し、キャピラリチューブ7から構成される減圧部は、凝縮部から流入する冷媒を減圧膨張させて冷媒の一部を蒸発させることにより冷媒を気体と液体の二相状態とする。冷却器8は、減圧部から流入する二相状態の冷媒のうちの液体状態の冷媒が蒸発するときの吸熱作用を利用して冷却器室16内における冷却器8の周囲の空気を冷却する。図示しないサクションパイプは、キャピラリチューブ7と熱交換することにより、冷却器8から流入する冷媒を、その凝縮温度まで昇温させる。
 ヒータ35は、冷却器8の温度を上昇させることにより、冷却器8に付着した霜を融解して除去する。冷却器サーミスタ30は、冷却器8の温度を検出する。
 ファン161が動作すると、冷却器室16内で冷却された空気(以下、冷気とも称する)が風路ダクト15Aを通じて、冷蔵室131、製氷室132、切換室133、冷凍室134および野菜室135それぞれへ供給される(矢印AR10参照)。冷蔵室131、切換室133、冷凍室134および野菜室135それぞれへ向けて供給される冷気は、各室に設けられた吹き出し口131a、133a、134a、134b、135aから内側へ吹き出される。製氷室132へ向けて供給される冷気も同様に製氷室132に設けられた吹き出し口(図示せず)から内側へ吹き出される。これにより、冷蔵室131、製氷室132、切換室133、冷凍室134および野菜室135それぞれの内側に配置された食品が冷却される。
 冷蔵室131、切換室133、冷凍室134および野菜室135それぞれに存在する貯蔵対象物により温められた空気は、各室に設けられた吸い込み口131b、133b、134bc、135bへ戻されて、各室に設けられた風路ダクト15Bを通じて冷却器室16へ流入する。製氷室132に存在する空気も同様に製氷室132に設けられた吸い込み口(図示せず)から風路ダクト15Bを通じて冷却器室16へ流入する。このようにして、冷気が、冷却器室16と冷蔵室131、製氷室132、切換室133、冷凍室134および野菜室135との間で風路ダクト15A、15Bを通じて循環する。
 風路ダクト15Aにおける冷蔵室131、製氷室132、切換室133、冷凍室134および野菜室135との接続部分それぞれには、ダンパ(例えばダンパ1511、1513、1514、1515)が設けられている。各ダンパは、各別に開閉動作する。ダンパが開状態の場合、そのダンパに対応する冷蔵室131、製氷室132、切換室133、冷凍室134または野菜室135へ冷気が流入する。例えば、ダンパ1514が開状態の場合、ダンパ1514に対応する冷凍室134へ冷気が流入する。一方、ダンパが閉状態の場合、そのダンパに対応する冷蔵室131、製氷室132、切換室133、冷凍室134または野菜室135への冷気の流入が遮断される。例えば、ダンパ1514が閉状態の場合、ダンパ1514に対応する冷凍室134への冷気の流入が遮断される。
 冷凍室134には、内側の上下の2つの領域それぞれへ冷気を吹き出す2つの吹き出し口134a、134bと、内側に温められた空気が吸い込まれる吸い込み口134cとが設けられている。冷凍室134内の内側には、上ケース21が配置され、冷凍室134内の下側には、下ケース22が配置されている。
 吹き出し口134aから吹き出された冷気は、上ケース21内へ流入する。上ケース21内へ流入した冷気は、上ケース21内に配置された貯蔵対象物に蓄えられた熱と、冷凍冷蔵庫1外に存在する空気から断熱箱体1aの壁を通じて冷凍室134内へ侵入した熱とにより温められる。上ケース21内の空気は、上ケース21に設けられた戻り口21aから排出され上ケース21外へ流出する。ここで、冷凍冷蔵庫1外に存在する空気から冷凍室134内へ侵入する熱の量は、冷凍室134内の温度が大きく変化しない限り一定とみなすことができる。したがって、貯蔵対象物に蓄えられた熱が大きいほど、その分、戻り口21aから排出される空気の温度が上昇する。冷凍室134には、扉124の開閉状態を検知する扉開閉検知部19が設けられている。
 吹き出し口134bから吹き出された冷気は、下ケース212内へ流入し、下ケース22内に配置された貯蔵対象物と熱交換することにより温められる。下ケース22内の空気は、下ケース22に設けられた戻り口22aから排出され下ケース22外へ流出する。上ケース21の戻り口21aおよび下ケース22の戻り口22aから排出された空気は、冷凍室134の吸い込み口134cへ戻されて、風路ダクト15Bを通じて冷却器室16へ流入する。
 図3に示すように、製氷室132、切換室133の下部に冷凍室134が設けられている。冷凍室134には、吹き出し口134aおよび吹き出し口134bから吹き出される空気の温度を検出する第1温度センサとしての吹き出し口サーミスタ31と、上ケース21の戻り口21aおよび下ケース22の戻り口22aから排出され吸い込み口134cへ戻される空気の温度を検出する第2温度センサとしての吸い込み口サーミスタ32とが設けられている。吹き出し口サーミスタ31は、吸い込み口サーミスタ32よりも吹き出し口134aおよび吹き出し口134bの近くに設けられている。吸い込み口サーミスタ32は、吹き出し口サーミスタ31よりも吸い込み口134cの近くに設けられている。以下では、吹き出し口サーミスタ31により検出される温度を吹き出し口温度Te、吸い込み口サーミスタ32により検出される温度を吸い込み口温度Trとも称する。
 <ダンパについて>
 冷凍冷蔵庫1は、庫外からの熱侵入により温度上昇し、冷凍サイクルによる冷却機構とのバランスにより庫内温度を一定に保つように運転する。冷凍冷蔵庫1は、設定ダイヤルによって上限下限温度が設定されている。制御装置100は、各部屋と風路ダクト15Aとの接続部分に設けられたダンパを開閉することで各庫内部屋の温度を制御する。制御装置100は、各部屋に設置されたサーミスタの検出温度に基づいてファン161によって送風される冷気の流量をダンパにて調整する。庫内温度が上昇し、上限温度に達するとダンパが開となり冷却され、庫内温度が低下し、下限温度に達するとダンパが閉となり、庫外からの熱侵入により温度が上昇する。庫内温度は温度上昇、低下を繰り返し、平均温度一定に保たれる。
 <除霜運転について>
 冷却器8の除霜運転について説明する。冷凍冷蔵庫1内では、冷却器8を通る空気をファン161により循環させる。冷凍冷蔵庫1内の空気は、食品からの水蒸気や、扉開閉による外気の侵入により湿潤になっている。冷却器8では、氷点下温度帯になっているため、空水分を多く含んだ空気が冷却器8を通過すると、気中の水分が冷却器8表面で凍結し霜を形成する。冷却器8に付着する霜は、長時間運転を続けていくことにより多くなる。冷却器8に付着した霜は、伝熱を阻害するため、冷凍冷蔵庫1の冷却能力が低下してしまうことになる。そのため、冷凍冷蔵庫1においては、定期的に除霜運転を実施する。
 除霜方法としては、冷却器8の霜を完全に融解するためにヒータ加熱で熱量を与える機構が一般的である。実施の形態1では、冷却器8下部に設置したヒータ35により霜に対して熱量を与えることで霜を融かす。除霜運転は、冷凍冷蔵庫1の運転の積算時間が予め定められた時間となったときに開始される。除霜運転は、冷却器8に取り付けられた冷却器サーミスタ30が設定温度に達したときにヒータ35の出力がOFFとなることで終了する。この一連の除霜運転は、冷凍冷蔵庫1の運転中に定期的に行われ、性能低下を抑制している。
 一方で、ヒータ35による除霜運転では、冷却器8および冷却器8周辺の温度が上昇するため、冷却器8および冷却器8周辺において暖気が生じる。制御装置100は、各部屋への暖気漏洩を抑制するために、ダンパを閉とする。
 ここで、ダンパは、コストがかかること、ダンパ凍結を生じること等の理由により、一般的に設置されるのは各部屋の吹き出し口のみであり、吸い込み口には設置されない。空気の温度上昇は、圧力上昇を招くが、吹き出し口が閉じられており、吸い込み口が開放されている状況の下では、吸い込み口からの空気流れが生じてしまう。除霜運転時は、ダンパを閉鎖することによって吹き出し口からの暖気漏洩は抑制できるが、吸い込み口を通して暖気が漏洩する。これにより庫内吹き出し口近傍での食品の温度上昇は抑制できるが、吸い込み口近傍での食品の温度は上昇してしまい、庫内位置による温度分布の偏りが生じてしまうため、食品保存性は悪化する。
 実施の形態1の冷凍冷蔵庫1では、除霜運転時に吹き出し口134a、134bに設けられたダンパ1514を開閉制御することによって吹き出し口134a、134b、吸い込み口134cでの暖気流量を制御する。これにより、実施の形態1の冷凍冷蔵庫1では、除霜運転時における庫内温度上昇の均一化をはかり、食品保存性を向上させる。
 <除霜運転時のダンパ制御について>
 以下に、除霜運転時に冷凍冷蔵庫1の制御装置100が実行するダンパ制御について説明する。図4は、常時ダンパ閉の場合における吹き出し口温度Teと吸い込み口温度Trとの関係を示す図である。図5は、ダンパ1514の開閉制御を実行した場合における吹き出し口温度Teと吸い込み口温度Trとの関係を示す図である。図6は、実施の形態1における除霜運転時のフローチャートである。
 図4に示すように、除霜運転時においてヒータ35を過熱する期間中吹き出し口134a、134bの手前に設けられたダンパ1514を常に閉鎖する場合、吹き出し口温度Teの温度上昇は抑えられるが、吸い込み口温度Trは、吸い込み口134cからの暖気漏洩のため上昇する。このように、制御装置100が、除霜運転時において単純にダンパ1514を閉鎖し続けている場合は、吸い込み口134c付近の温度上昇を抑制できない。
 制御装置100は、除霜運転時においてヒータ35を過熱する期間中、ダンパ1514の状態を切り換える。制御装置100は、図5に示すように、ヒータ35の過熱開始から途中まではダンパ1514を閉状態とし、途中からダンパ1514を開状態に切り換える。これにより、実施の形態1の冷凍冷蔵庫1では、除霜運転時においてダンパ1514を閉鎖している期間は、吹き出し口温度Teの温度上昇を抑えつつ、ダンパ1514を開放している期間は、吸い込み口温度Trの温度上昇を抑えることができる。
 図5に示すように、除霜終了時点では、吹き出し口温度Te>吸い込み口温度Trになっているが、それでも吹き出し口温度Teは、常時ダンパ閉の場合の吸い込み口温度Trよりも低くなる。したがって、除霜終了時点での庫内の最高温度も下げることができる。
 図6に示すように、制御装置100は、冷凍冷蔵庫1の運転の積算時間が予め定められた時間となったときに冷却器8の除霜運転を開始する(ステップS1)。制御装置100は、除霜運転開始のタイミングで冷凍室134と風路ダクト15Aとの間に設けられ、風路ダクト15Aを開閉するダンパ1514を閉状態とする(ステップS2)。次いで、制御装置100は、冷却器サーミスタ30が冷却器8の霜を除去できている予め設定していた設定温度に到達したか否かを判定する(ステップS3)。
 制御装置100は、ステップS3において冷却器サーミスタ30が設定温度に到達したと判定した場合(ステップS3のYES)、ダンパ1514を開状態として除霜運転を終了し(ステップS4)、処理を図6に示すサブルーチンからメインルーチンに戻す。制御装置100は、ステップS3において冷却器サーミスタ30が設定温度に到達していないと判定した場合(ステップS3のNO)、ステップS5の処理へ移行する。
 ここで、吹き出し口温度Teと吸い込み口温度Trとの温度差をΔTとし、実験等により予め設定していたΔTに対する判定温度をΔTaとする。制御装置100は、ステップS5において、吹き出し口温度Teと吸い込み口温度Trとの関係がΔT=Tr-Te>ΔTaを満たすか否かを判定する。制御装置100は、ステップS5において、ΔT=Tr-Te>ΔTaを満たさないと判定した場合(ステップS5のNO)、ステップS2へ移行し、ダンパ1514の閉状態を維持する。
 制御装置100は、ステップS5において、ΔT=Tr-Te>ΔTaを満たすと判定した場合(ステップS5のYES)、ダンパ1514を閉状態から開状態に制御する(ステップS6)。冷凍冷蔵庫1では、ダンパ1514を開状態とすることにより、吸い込み口134cからの暖気漏洩を防止する。冷凍冷蔵庫1では、吹き出し口134a、134bを開放することで吹き出し口134a、134bと吸い込み口134cとの暖気漏洩を分散することにより、吹き出し口134a、134bに対して相対的に吸い込み口134cからの暖気漏洩を小さくしている。これにより、冷凍冷蔵庫1では、ダンパ1514開時において吸い込み口134c付近での温度上昇を小さくすることができる。
 次いで、制御装置100は、ステップS7において、吹き出し口温度Teと吸い込み口温度Trとの関係がΔT=Tr-Te≦-ΔTaを満たすか否かを判定する。制御装置100は、ステップS7において、ΔT=Tr-Te≦-ΔTaを満たさないと判定した場合(ステップS7のNO)、ステップS6へ移行し、ダンパ1514の開状態を維持する。制御装置100は、ステップS7において、ΔT=Tr-Te≦-ΔTaを満たすと判定した場合(ステップS7のYES)、ステップS2へ移行し、ダンパ1514を開状態から閉状態に制御する。
 冷凍冷蔵庫1では、ダンパ1514を閉状態とすることにより、吹き出し口134a、134bからの暖気漏洩を防止する。冷凍冷蔵庫1では、吹き出し口134a、134bを閉鎖することで吹き出し口134a、134bからの暖気漏洩を小さくしている。これにより、冷凍冷蔵庫1では、ダンパ閉時において吹き出し口134a、134b付近での温度上昇を小さくすることができる。
 冷凍冷蔵庫1における制御装置100は、除霜運転時にダンパ1514の開閉制御を繰返し実行する。制御装置100は、冷却器サーミスタ30が予め設定していた設定温度に到達したことを条件にダンパ1514を開状態として除霜運転を終了する。これにより、冷凍冷蔵庫1は、除霜運転時にダンパ1514を閉状態に維持する場合と比べ吸い込み口134c付近の温度上昇を抑制することができる。冷凍冷蔵庫1は、除霜運転時のダンパ1514の開閉制御により、常時ダンパ閉状態あるいは常時ダンパ開状態よりも吹き出し口温度Teと吸い込み口温度Trとの温度差を小さくすることができる。これにより、冷凍冷蔵庫1は、冷凍室134の室内の温度分布を均一化することができ、食品の保存品質を向上することができる。
 実施の形態2.
 図7は、実施の形態2における除霜運転時のフローチャートである。実施の形態2の制御装置100は、除霜運転時にダンパの開口度を変更可能である。制御装置100は、ダンパ1514の開口度をXc<X1<X2<…<Xn<…<Xo(X=c開口度0%、Xo=開口度100%)のように変更可能である。
 図7に示すように、制御装置100は、冷凍冷蔵庫1の運転の積算時間が予め定められた時間となったときに冷却器8の除霜運転を開始する(ステップS11)。制御装置100は、除霜運転開始のタイミングで冷凍室134と風路ダクト15Aとの間に設けられ、風路ダクト15Aを開閉するダンパ1514の開口度をある開口度Xiとする(ステップS12)。次いで、制御装置100は、冷却器サーミスタ30が冷却器8の霜を除去できている予め設定していた設定温度に到達したか否かを判定する(ステップS13)。
 制御装置100は、ステップS13において冷却器サーミスタ30が設定温度に到達したと判定した場合(ステップS13のYES)、ダンパ1514の開口度がXo=開口度100%として除霜運転を終了し(ステップS14)、処理を図7に示すサブルーチンからメインルーチンに戻す。制御装置100は、ステップS13において冷却器サーミスタ30が設定温度に到達していないと判定した場合(ステップS13のNO)、ステップS15の処理へ移行する。
 ここで、吹き出し口温度Teと吸い込み口温度Trとの温度差をΔTとし、実験等により予め設定していたΔTに対する判定温度をΔTaとする。制御装置100は、ステップS15において、吹き出し口温度Teと吸い込み口温度Trとの関係が-ΔTa<ΔT=Tr-Te<ΔTaを満たすか否かを判定する。制御装置100は、ステップS15において、-ΔTa<ΔT=Tr-Te<ΔTaを満たすと判定した場合(ステップS15のYES)、ダンパ1514の開口度Xiを維持し(ステップS16)、ステップS17の処理へ移行する。
 制御装置100は、ステップS15において、-ΔTa<ΔT=Tr-Te<ΔTaを満たさないと判定した場合(ステップS15のNO)、吹き出し口温度Teと吸い込み口温度Trとの関係がΔT=Tr-Te≧ΔTaを満たすか否かを判定する(ステップS18)。制御装置100は、ステップS18において、ΔT=Tr-Te≧ΔTaを満たすと判定した場合(ステップS18のYES)、ダンパ1514の開口度をXi+ΔXと設定し(ステップS19)、ステップS17の処理へ移行する。ΔXは、開口度Xiの単位増加量である。
 冷凍冷蔵庫1では、ダンパ1514の開口度がXiのままでは開口度が小さく吸い込み口134cからの暖気漏洩が大きい。このため、冷凍冷蔵庫1では、ダンパ1514の開口度をXiからXi+ΔXと大きくすることで、吹き出し口134a、134bと吸い込み口134cとの暖気漏洩を分散することにより、吹き出し口134a、134bに対して相対的に吸い込み口134cからの暖気漏洩を小さくしている。ここで、冷凍冷蔵庫1では、ΔT=Tr-Te≧ΔTaかつダンパ開口度がXo=開口度100%となった場合は、除霜完了まで開口度をXoとする。
 制御装置100は、ステップS18において、ΔT=Tr-Te≧ΔTaを満たさないと判定した場合(ステップS18のNO)、吹き出し口温度Teと吸い込み口温度Trとの関係がΔT=Tr-Te≦-ΔTaであると判定し、ステップS20の処理へ移行する。制御装置100は、ステップS20において、ダンパ1514の開口度をXi-ΔXと設定し(ステップS19)、ステップS17の処理へ移行する。
 冷凍冷蔵庫1では、ダンパ1514の開口度がXのままでは開口度が大きく吹き出し口134a、134bからの暖気漏洩が大きい。このため、冷凍冷蔵庫1では、ダンパ1514の開口度をXiからXi-ΔXと小さくすることで、吸い込み口134cに対して相対的に吹き出し口134a、134bからの暖気漏洩を小さくしている。ここで、冷凍冷蔵庫1では、ΔT=Tr-Te≦-ΔTaかつダンパ開口度がXc=開口度0%となった場合は、除霜完了まで開口度をXcとする。
 制御装置100は、ステップS17においてダンパ開口度XiをステップS16、ステップS19、ステップS20において設定された開口度とする。次いで、制御装置100は、設定された開口度によってステップS12以降の処理を実行する。冷凍冷蔵庫1における制御装置100は、除霜運転時にダンパ1514の開口度を変更する図7に示す処理を実行する。これにより、冷凍冷蔵庫1は、除霜運転時のダンパ1514の開口度を調整する制御により、常時ダンパ閉状態あるいは常時ダンパ開状態よりも吹き出し口温度Teと吸い込み口温度Trとの温度差を小さくすることができる。これにより、冷凍冷蔵庫1は、冷凍室134の室内の温度分布を均一化することができ、食品の保存品質を向上することができる。
 <まとめ>
 本開示は、冷凍冷蔵庫1に関する。冷凍冷蔵庫1は、冷凍室134と、冷凍室134へ送風する空気を冷却する冷却器8と、冷却器8が配置される冷却器室16と、冷却器8に付着した霜を除去するヒータ35と、冷却器室16と冷凍室134とを連通させる風路ダクト15Aと、冷凍室134と冷却器室16とを連通させる風路ダクト15Bと、冷凍室134に設けられた吹き出し口134a、134bへ風路ダクト15Aから吹き出す空気の温度を検出する吹き出し口サーミスタ31と、冷凍室134に設けられた吸い込み口134cから風路ダクト15Bへ戻される空気の温度を検出する吸い込み口サーミスタ32と、冷凍室134と風路ダクト15Aとの接続部に設けられ、風路ダクト15Aを開閉するダンパ1514と、ダンパ1514を制御する制御装置100と、を備える。制御装置100は、ヒータ35の駆動により除霜運転を実行するときに、吹き出し口サーミスタ31および吸い込み口サーミスタ32の検出温度に基づいて、ダンパ1514の開閉を制御する。
 このような構成を備えることによって、冷凍冷蔵庫1は、吸い込み口にダンパを設けない構成において、除霜運転時における冷却器室16からの暖気漏洩による吸い込み口134c近傍での温度上昇を抑制しつつ、冷凍室134内の温度分布に偏りが生じないようにすることができる。
 好ましくは、制御装置100は、ダンパ1514を開状態または閉状態のいずれか一方に制御する。冷凍冷蔵庫1では、吹き出し口サーミスタ31が検出する吹き出し口134a、134b付近の温度をTeとし、吸い込み口サーミスタ32が検出する吸い込み口134c付近の温度をTrし、吹き出し口134a、134b付近の温度Teと吸い込み口134c付近の温度Trとの温度差をΔTとし、予め設定していた第1温度をΔTaとする。制御装置100は、除霜運転時において、ΔT=Tr-Te>ΔTaを満たす場合にダンパ1514を開状態とし、ΔT=Tr-Te≦-ΔTaを満たす場合にダンパ1514を閉状態とする。
 このような構成を備えることによって、冷凍冷蔵庫1は、除霜運転時のダンパ1514の開閉制御により、常時ダンパ閉状態あるいは常時ダンパ開状態よりも吹き出し口温度Teと吸い込み口温度Trとの温度差を小さくすることができる。これにより、冷凍冷蔵庫1は、冷凍室134の室内の温度分布を均一化することができ、食品の保存品質を向上することができる。
 好ましくは、制御装置100は、ダンパ1514の開口度を変更可能に制御する。冷凍冷蔵庫1では、吹き出し口サーミスタ31が検出する吹き出し口134a、134b付近の温度をTeとし、吸い込み口サーミスタ32が検出する吸い込み口134c付近の温度をTrとし、吹き出し口134a、134b付近の温度Teと吸い込み口134c付近の温度Trとの温度差をΔTとし、予め設定していた第1温度をΔTaとする。制御装置100は、除霜運転時において、-ΔTa<ΔT=Tr-Te<ΔTaを満たす場合にダンパ1514の開口度をXとし、単位増加量をΔXとしたときに、ΔT=Tr-Te≧ΔTaを満たす場合にダンパ1514の開口度をXi+ΔXとし、ΔT=Tr-Te≦-ΔTaを満たす場合にダンパ1514の開口度をXi-ΔXとする。
 このような構成を備えることによって、冷凍冷蔵庫1は、除霜運転時のダンパ1514の開口度を調整する制御により、常時ダンパ閉状態あるいは常時ダンパ開状態よりも吹き出し口温度Teと吸い込み口温度Trとの温度差を小さくすることができる。これにより、冷凍冷蔵庫1は、冷凍室134の室内の温度分布を均一化することができ、食品の保存品質を向上することができる。
 好ましくは、冷却器室16の空気の温度を検出する冷却器サーミスタ30をさらに備える。制御装置100は、冷却器サーミスタ30で検出される温度が予め定めた設定温度に到達した場合に除霜運転を停止させ、ダンパ1514を開状態とする。
 このような構成を備えることによって、冷凍冷蔵庫1では、設定温度に到達した場合にダンパ1514を開状態とすることで、その後の運転において冷気を確実に冷凍室134へ送ることができる。
 <変形例>
 冷凍冷蔵庫1は、冷凍室134以外の庫内の各室におけるダンパを用いて上記説明した制御を実行してもよい。このような場合、予め設定する第1温度ΔTaは、各室によって変更すればよい。
 冷凍冷蔵庫1は、吹き出し口134aと吹き出し口134bとで別々のダンパを設けるようにしてもよい。制御装置100は、各ダンパを個別に制御するようにしてもよい。
 今回開示された実施の形態は、すべての点で例示であって制限的なものではないと考えられるべきである。本開示の範囲は、上記した実施の形態の説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
 1 冷凍冷蔵庫、1a 断熱箱体、2 圧縮機、3 凝縮器、4 コンデンサパイプ、5 キャビネットパイプ、6 三方弁、7 キャピラリチューブ、8 冷却器、10 冷媒回路、15A,15B 風路ダクト、16 冷却器室、17 排水管、18 機械室、19 扉開閉検知部21 上ケース、21a,22a 戻り口、22 下ケース、30 冷却器サーミスタ、31 吹き出し口サーミスタ、32 吸い込み口サーミスタ、35 ヒータ、100 制御装置、131 冷蔵室、134a,134b 吹き出し口、134c 吸い込み口、132 製氷室、133 切換室、134 冷凍室、135 野菜室、161 ファン、1514 ダンパ。

Claims (4)

  1.  冷凍冷蔵庫であって、
     冷凍室と、
     前記冷凍室へ送風する空気を冷却する冷却器と、
     前記冷却器が配置される冷却器室と、
     前記冷却器に付着した霜を除去するヒータと、
     前記冷却器室と前記冷凍室とを連通させる第1風路と、
     前記冷凍室と前記冷却器室とを連通させる第2風路と、
     前記冷凍室に設けられた吹き出し口へ前記第1風路から吹き出す空気の温度を検出する第1温度センサと、
     前記冷凍室に設けられた吸い込み口から前記第2風路へ戻される空気の温度を検出する第2温度センサと、
     前記冷凍室と前記第1風路との接続部に設けられ、前記第1風路を開閉するダンパと、
     前記ダンパを制御する制御装置と、を備え、
     前記制御装置は、前記ヒータの駆動により除霜運転を実行するときに、前記第1温度センサおよび前記第2温度センサの検出温度に基づいて、前記ダンパの開閉を制御する、冷凍冷蔵庫。
  2.  前記制御装置は、前記ダンパを開状態または閉状態のいずれか一方に制御し、
     前記第1温度センサが検出する前記吹き出し口付近の温度をTeとし、前記第2温度センサが検出する前記吸い込み口付近の温度をTrし、前記吹き出し口付近の温度と前記吸い込み口付近の温度との温度差をΔTとし、ΔTに対する判定温度をΔTaとしたとき、
     前記制御装置は、除霜運転時において、
      ΔT=Tr-Te>ΔTaを満たす場合に前記ダンパを開状態とし、
      ΔT=Tr-Te≦-ΔTaを満たす場合に前記ダンパを閉状態とする、請求項1に記載の冷凍冷蔵庫。
  3.  前記制御装置は、前記ダンパの開口度を変更可能に制御し、
     前記第1温度センサが検出する前記吹き出し口付近の温度をTeとし、前記第2温度センサが検出する前記吸い込み口付近の温度をTrとし、前記吹き出し口付近の温度と前記吸い込み口付近の温度との温度差をΔTとし、ΔTに対する判定温度をΔTaとしたとき、
     前記制御装置は、除霜運転時において、
      -ΔTa<ΔT=Tr-Te<ΔTaを満たす場合に前記ダンパの開口度をXiとし、単位増加量をΔXとしたときに、
      ΔT=Tr-Te≧ΔTaを満たす場合に前記ダンパの開口度をXi+ΔXとし、
      ΔT=Tr-Te≦-ΔTaを満たす場合に前記ダンパの開口度をXi-ΔXとする、請求項1に記載の冷凍冷蔵庫。
  4.  前記冷却器室の空気の温度を検出する第3温度センサをさらに備え、
     前記制御装置は、前記第3温度センサで検出される温度が予め定めた設定温度に到達した場合に除霜運転を停止させ、前記ダンパを開状態とする、請求項1から請求項3のいずれか1項に記載の冷凍冷蔵庫。
PCT/JP2021/010338 2021-03-15 2021-03-15 冷凍冷蔵庫 WO2022195660A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2023506387A JP7438451B2 (ja) 2021-03-15 2021-03-15 冷凍冷蔵庫
PCT/JP2021/010338 WO2022195660A1 (ja) 2021-03-15 2021-03-15 冷凍冷蔵庫

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/010338 WO2022195660A1 (ja) 2021-03-15 2021-03-15 冷凍冷蔵庫

Publications (1)

Publication Number Publication Date
WO2022195660A1 true WO2022195660A1 (ja) 2022-09-22

Family

ID=83320084

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/010338 WO2022195660A1 (ja) 2021-03-15 2021-03-15 冷凍冷蔵庫

Country Status (2)

Country Link
JP (1) JP7438451B2 (ja)
WO (1) WO2022195660A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0140264B2 (ja) * 1983-04-27 1989-08-28 Sharp Kk
JP2011052935A (ja) * 2009-09-04 2011-03-17 Hitachi Appliances Inc 冷蔵庫
JP2013127345A (ja) * 2011-12-19 2013-06-27 Toshiba Corp 冷蔵庫
WO2019142311A1 (ja) * 2018-01-19 2019-07-25 三菱電機株式会社 冷蔵庫、冷蔵庫制御方法およびプログラム

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3633997B2 (ja) 1995-04-24 2005-03-30 株式会社日立製作所 冷凍冷蔵庫およびその制御方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0140264B2 (ja) * 1983-04-27 1989-08-28 Sharp Kk
JP2011052935A (ja) * 2009-09-04 2011-03-17 Hitachi Appliances Inc 冷蔵庫
JP2013127345A (ja) * 2011-12-19 2013-06-27 Toshiba Corp 冷蔵庫
WO2019142311A1 (ja) * 2018-01-19 2019-07-25 三菱電機株式会社 冷蔵庫、冷蔵庫制御方法およびプログラム

Also Published As

Publication number Publication date
JP7438451B2 (ja) 2024-02-26
JPWO2022195660A1 (ja) 2022-09-22

Similar Documents

Publication Publication Date Title
US6931870B2 (en) Time division multi-cycle type cooling apparatus and method for controlling the same
US6935127B2 (en) Refrigerator
KR100826180B1 (ko) 냉장고 및 그 제어방법
JP4159172B2 (ja) 冷蔵庫用のダンパーの結氷防止方法
KR100687934B1 (ko) 냉장고 및 그 제어방법
US20120023975A1 (en) Refrigerator and control method thereof
CN111854281B (zh) 冰箱
US20130192280A1 (en) Refrigerator and defrosting method thereof
RU2459159C2 (ru) Холодильная машина и способ эксплуатации для нее
KR101140711B1 (ko) 냉장고 및 그 운전제어방법
WO2020175825A1 (ko) 냉장고의 제어 방법
JP7445287B2 (ja) 冷蔵庫
KR101668302B1 (ko) 냉장고
KR100597305B1 (ko) 냉장고의 제상장치
KR101344559B1 (ko) 독립 냉각 냉장고
KR101473894B1 (ko) 냉장고의 정온 유지를 위한 제상장치 및 제상방법
WO2022195660A1 (ja) 冷凍冷蔵庫
JP6143458B2 (ja) 冷蔵庫
KR20080068233A (ko) 냉장고의 과냉각 방지 장치 및 방법
KR101723284B1 (ko) 냉장고 및 그 제어방법
JP2014005953A (ja) 冷蔵庫
JP5931606B2 (ja) 冷蔵庫
KR101354425B1 (ko) 독립 냉각 냉장고
WO2020175824A1 (ko) 냉장고의 제어 방법
KR100569895B1 (ko) 냉장고의 온도제어방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21931416

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023506387

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 11202306497T

Country of ref document: SG

122 Ep: pct application non-entry in european phase

Ref document number: 21931416

Country of ref document: EP

Kind code of ref document: A1