WO2020175825A1 - 냉장고의 제어 방법 - Google Patents

냉장고의 제어 방법 Download PDF

Info

Publication number
WO2020175825A1
WO2020175825A1 PCT/KR2020/002071 KR2020002071W WO2020175825A1 WO 2020175825 A1 WO2020175825 A1 WO 2020175825A1 KR 2020002071 W KR2020002071 W KR 2020002071W WO 2020175825 A1 WO2020175825 A1 WO 2020175825A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
greenhouse
core greenhouse
core
refrigerator
Prior art date
Application number
PCT/KR2020/002071
Other languages
English (en)
French (fr)
Inventor
윤석준
임형근
이정훈
이호연
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to US17/433,721 priority Critical patent/US20220042739A1/en
Priority to CN202080017026.0A priority patent/CN113490826B/zh
Priority to EP20762375.2A priority patent/EP3933325A4/en
Publication of WO2020175825A1 publication Critical patent/WO2020175825A1/ko

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D29/00Arrangement or mounting of control or safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B21/00Machines, plants or systems, using electric or magnetic effects
    • F25B21/02Machines, plants or systems, using electric or magnetic effects using Peltier effect; using Nernst-Ettinghausen effect
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B25/00Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B7/00Compression machines, plants or systems, with cascade operation, i.e. with two or more circuits, the heat from the condenser of one circuit being absorbed by the evaporator of the next circuit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D11/00Self-contained movable devices, e.g. domestic refrigerators
    • F25D11/02Self-contained movable devices, e.g. domestic refrigerators with cooling compartments at different temperatures
    • F25D11/022Self-contained movable devices, e.g. domestic refrigerators with cooling compartments at different temperatures with two or more evaporators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D11/00Self-contained movable devices, e.g. domestic refrigerators
    • F25D11/02Self-contained movable devices, e.g. domestic refrigerators with cooling compartments at different temperatures
    • F25D11/025Self-contained movable devices, e.g. domestic refrigerators with cooling compartments at different temperatures using primary and secondary refrigeration systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D11/00Self-contained movable devices, e.g. domestic refrigerators
    • F25D11/04Self-contained movable devices, e.g. domestic refrigerators specially adapted for storing deep-frozen articles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D21/00Defrosting; Preventing frosting; Removing condensed or defrost water
    • F25D21/06Removing frost
    • F25D21/08Removing frost by electric heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2321/00Details of machines, plants or systems, using electric or magnetic effects
    • F25B2321/02Details of machines, plants or systems, using electric or magnetic effects using Peltier effects; using Nernst-Ettinghausen effects
    • F25B2321/021Control thereof
    • F25B2321/0212Control thereof of electric power, current or voltage
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2321/00Details of machines, plants or systems, using electric or magnetic effects
    • F25B2321/02Details of machines, plants or systems, using electric or magnetic effects using Peltier effects; using Nernst-Ettinghausen effects
    • F25B2321/025Removal of heat
    • F25B2321/0251Removal of heat by a gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2321/00Details of machines, plants or systems, using electric or magnetic effects
    • F25B2321/02Details of machines, plants or systems, using electric or magnetic effects using Peltier effects; using Nernst-Ettinghausen effects
    • F25B2321/025Removal of heat
    • F25B2321/0252Removal of heat by liquids or two-phase fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2507Flow-diverting valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B5/00Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2600/00Control issues
    • F25D2600/02Timing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2600/00Control issues
    • F25D2600/06Controlling according to a predetermined profile
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2700/00Means for sensing or measuring; Sensors therefor
    • F25D2700/02Sensors detecting door opening
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2700/00Means for sensing or measuring; Sensors therefor
    • F25D2700/12Sensors measuring the inside temperature
    • F25D2700/121Sensors measuring the inside temperature of particular compartments
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2700/00Means for sensing or measuring; Sensors therefor
    • F25D2700/12Sensors measuring the inside temperature
    • F25D2700/122Sensors measuring the inside temperature of freezer compartments
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B40/00Technologies aiming at improving the efficiency of home appliances, e.g. induction cooking or efficient technologies for refrigerators, freezers or dish washers

Definitions

  • This invention relates to the control method of the refrigerator.
  • a refrigerator is a household appliance that stores food at low temperatures, a refrigerator for storing food in a refrigerated state in the range of 3°0 Celsius, and a freezer for storing food in a frozen state in the range of -20°C. Includes.
  • the cryogenic temperature can be understood as referring to a temperature in the range of -45°0 to -50°0.
  • thermoelectric element TEM: 13 ⁇ 4 1110£1 furnace module
  • Korean Patent Laid-Open Patent No. 10-2018-0105572 (September 28, 2018) discloses a refrigerator in the form of a cooperative that stores the storage room at a temperature lower than the indoor temperature using a thermoelectric module. .
  • thermoelectric module disclosed in the preceding technology 1
  • thermoelectric module is configured to cool by exchanging heat with indoor air.
  • thermoelectric modules As the supply current increases, the temperature difference between the heat absorbing surface and the heating surface tends to increase to a certain level.
  • the semiconductor resistance becomes As a result, the amount of heat generated by itself increases. Then, there is a problem that the heat absorbed from the heat absorbing surface cannot be quickly transferred to the heating surface.
  • thermoelectric element if the heating surface of the thermoelectric element is not sufficiently cooled, a phenomenon in which the heat transferred to the heating surface flows backward toward the heat absorption surface occurs, and the temperature of the heat absorption surface increases as well.
  • thermoelectric module In the case of the thermoelectric module disclosed in the preceding technology 1, since the heating surface is cooled by indoor air, there is a limit that the temperature of the heating surface cannot be lower than the indoor temperature.
  • thermoelectric module In order to do so, it is necessary to increase the supply current, which causes a problem of lowering the efficiency of the thermoelectric module.
  • thermoelectric module when the supply current is increased, the temperature difference between the heat absorbing surface and the heating surface increases, resulting in a decrease in the cooling power of the thermoelectric module.
  • thermoelectric module since the storage chamber cooled by the thermoelectric module exists independently, the power supply to the thermoelectric module is cut off when the temperature of the storage chamber reaches a satisfactory temperature. do.
  • the storage compartment has a different temperature range such as a refrigerator compartment or a freezer compartment.
  • thermoelectric module In order to control the core greenhouse temperature in a structure accommodated in the refrigerating chamber, the output of the thermoelectric module and the output of the core greenhouse cooling fan cannot be controlled.
  • thermoelectric module Many experiments and studies have been conducted to overcome the limitations of these thermoelectric modules and to lower the temperature of the storage chamber to a temperature lower than that of the freezer by using the thermoelectric module. As a result, there has been an attempt to attach an evaporator through which the refrigerant flows to the heating surface in order to cool the heating surface of the thermoelectric module to a low temperature.
  • prior art 2 discloses only the structural content of employing an evaporator through which the refrigerant flows through the freezer expansion valve as a heat dissipation means or heat sink for cooling the heating surface of the thermoelectric element. There is no disclosure of how to control the output of the thermoelectric module according to the operating conditions.
  • thermoelectric module according to the operating conditions of the freezer or refrigerator compartment is not disclosed. There is no way to know how to control it.
  • a load infiltrates the refrigerating room or freezer, or the 2020/175825 1»(:1 ⁇ 1 ⁇ 2020/002071
  • the purpose is to quickly remove the core greenhouse load without compromising the performance of other storage rooms, i.e. freezers or refrigerators.
  • the control method of a refrigerator according to an embodiment of the present invention to achieve the above object is, when the core greenhouse mode is in an on state and the operation input condition corresponding to the core greenhouse load is satisfied, both the refrigerator chamber valve and the internal chamber valve are It is characterized in that the operation corresponding to the load of the first core greenhouse that is opened is performed.
  • the above conditions for operation in response to the heart greenhouse load are: the first condition in which the heart greenhouse temperature increases by more than the set temperature,) during the set time after the freezer door is opened, and the second condition in the upper limit temperature range. Including the third condition that starts the first cycle after the freezing phase or the deep greenhouse phase, the fourth condition that the ventricle greenhouse mode is switched from the off state to the on state, and the fifth condition that the refrigerator power is turned off to the on state. And, if at least one of the first to fifth conditions is satisfied, the operation corresponding to the load of the core greenhouse can be performed.
  • the second core greenhouse load response operation can be performed so that the refrigerant flows only toward the freezing chamber.
  • the refrigerating chamber temperature is set to the set temperature.
  • FIG. 1 is a view showing a refrigerant circulation system of a refrigerator to which a control method according to an embodiment of the present invention is applied.
  • FIG. 2 is a perspective view showing the structure of a freezer and a core greenhouse of a refrigerator according to an embodiment of the present invention.
  • FIG. 3 is a longitudinal sectional view taken along 3-3 of FIG. 2;
  • 5 is a graph showing an efficiency relationship for an input voltage and a Fourier effect.
  • 6 is a graph showing a correlation between cooling power and efficiency according to voltage.
  • FIG. 7 is a diagram showing a reference temperature line for controlling a refrigerator according to a fluctuation in an internal load of a warehouse.
  • FIG. 8 is a flowchart showing a control method for a core greenhouse load response operation according to an embodiment of the present invention.
  • FIG. 9 is a graph showing a temperature change of a refrigerating chamber and a core greenhouse and a refrigerant valve opening and closing state during a core greenhouse load response operation according to an embodiment of the present invention.
  • a storage room that can be controlled can be defined as the first storage room.
  • a storage room that is cooled by the second cooler and can be controlled to a lower temperature than the first storage room may be defined as the second storage room.
  • a storage room that is cooled by a third cooler and can be controlled to a lower temperature than the second storage room may be defined as a third storage room.
  • the first cooler for cooling the first storage chamber may include at least one of a first evaporator and a first thermoelectric module including a thermoelectric element.
  • the first evaporator includes a refrigerating chamber evaporator to be described later. can do.
  • the second cooler for cooling the second storage chamber, a second evaporator,
  • At least one of the second thermoelectric modules including a thermoelectric element may be included.
  • the second evaporator may include a freezing chamber evaporator to be described later.
  • thermoelectric modules may include at least one of the third thermoelectric modules including thermoelectric elements.
  • thermoelectric module is used as a cooling means in the present specification
  • thermoelectric module can be applied by replacing the thermoelectric module with an evaporator, for example, as follows.
  • thermoelectric module or "heat absorbing surface of thermoelectric element”
  • Endothermic side can be interpreted as “one side of the evaporator or evaporator”.
  • thermoelectric module means "cold sink of the thermoelectric module
  • thermoelectric module "Applying or cutting a constant voltage to a thermoelectric module" in the control unit
  • thermoelectric module means "controls to increase or decrease the amount or flow rate of refrigerant flowing to the evaporator", and “opening of the switching valve It can be interpreted in the same meaning as “controlling to increase or decrease” or “controlling to increase or decrease the compressor output”.
  • thermoelectric module controls the reverse voltage applied to the thermoelectric module to increase or decrease.
  • thermoelectric module the storage room cooled by the thermoelectric module
  • thermoelectric module located adjacent to the thermoelectric module to allow air in the storage compartment to exchange heat with the heat absorbing surface of the thermoelectric module
  • a fan located adjacent to the thermoelectric module to allow air in the storage compartment to exchange heat with the heat absorbing surface of the thermoelectric module may be defined as a “storage compartment showpan”.
  • the storage compartment cooled by the cooler while configuring the refrigerator together with the storage compartment show may be defined as a “storage compartment”.
  • the "cooler chamber” is defined as the space where the cooler is located, and in the cooler
  • the space in which the fan is accommodated is 2020/175825 1»(:1 ⁇ 1 ⁇ 2020/002071 It is defined as including, and in the structure mainly the flow channel that guides the cold air blown by the fan to the storage room or the flow channel that distributes the defrost constant, the above flow channels are included. Can be defined.
  • a defrost heater located on one side of the cold sink can be defined as a cold sink defrost heater in order to remove frost and ice that has accumulated in the cold sink or its surroundings.
  • a defrost heater located on one side of the heat sink can be defined as a heat sink defrost heater in order to remove frost or ice that has accumulated on the heat sink or its surroundings.
  • a defrost heater located on one side of the cooler can be defined as a cooler defrost heater in order to remove frost or ice that has accumulated in the cooler or its surroundings.
  • a defrost heater located on one side of a wall surface forming the cooler chamber may be defined as a defrost heater in the cooler chamber.
  • a heater disposed on one side of the cold sink can be defined as a cold sink drain heater in order to minimize re-icing or re-frosting during the process of discharging the melted defrost water or water vapor in or around the cold sink.
  • a heater disposed on one side of the heat sink may be defined as a heat sink drain heater in order to minimize re-icing or re-freezing in the process of discharging the melted defrost water or water vapor in or around the heat sink.
  • a heater disposed on one side of the cooler may be defined as a cooler drain heater in order to minimize re-icing or re-freezing in the process of discharging the melted defrost water or steam from the cooler or its surroundings.
  • a heater disposed on one side of the wall forming the cooler chamber is drained from the cooler chamber. It can be defined as a heater.
  • the “cold sink heater” to be described below can be defined as a heater that performs at least one of the functions of the cold sink defrost heater and the cold sink drain heater.
  • heat sink heater can be defined as a heater that performs at least one of the functions of the heat sink defrost heater and the heat sink drain heater.
  • cooler heater can be defined as a heater that performs at least one of the functions of the cooler defrost heater and the cooler drain heater.
  • back heater furnace 116 can be defined as a heater that performs at least one of the functions of the heat sink heater and the cooler chamber defrost heater. That is, the back heater.
  • the back heater can be defined as a heater that performs at least one of the functions of a heat sink defrost heater, a heater sink drain heater, and a cooler chamber defrost heater.
  • the first storage chamber is It may include a refrigerator compartment that can be temperature controlled.
  • the second storage chamber may include a freezing chamber that can be controlled to a subzero temperature by the second cooler.
  • the third storage room is cryogenic by the third cooler.
  • the present invention is a case where the first to third storage chambers are all controlled at subzero temperatures, the first to third storage chambers are all controlled at the temperature of the image, and the first and second storage In fact, it is controlled by the temperature of the image, and the case where the third storage chamber is controlled at a temperature below zero is not excluded.
  • the "operation" of the refrigerator is the operation start condition or operation input condition.
  • Step (I) of judging whether or not it is satisfied step (II) in which a predetermined operation is performed when the driving input condition is satisfied, step (III) of determining whether the operation completion condition is satisfied, and operation completion If the conditions are satisfied, it can be defined as including the four operating stages, stage (IV), where the operation ends.
  • the “operation” for cooling the storage compartment of the refrigerator is a general operation and a special
  • control unit allows the cooling air to be supplied from the cooler of the storage compartment to cool the storage compartment. It is defined as controlling.
  • the general operation may include a refrigerator compartment cooling operation, a freezer cooling operation, a deep greenhouse cooling operation, and the like.
  • the special operation may mean an operation other than an operation defined as the general operation.
  • the special operation may include a defrost operation controlled to supply heat to the cooler to melt frost or ice accumulated in the cooler due to the elapsed defrost cycle of the storage compartment.
  • the above special operation corresponds to at least one of the cases where the set time elapses from the point when the door of the storage compartment is closed after being opened, or the temperature of the storage compartment rises to the set temperature before the set time elapses. If this is satisfied, it may further include a load response operation in which cool air is supplied from the cooler to the storage compartment in order to remove the heat load penetrating the storage compartment.
  • It may include an initial cold start operation performed to remove the load inside the storage room when power is applied for the first time after 8.
  • the defrost operation may include at least one of a refrigeration actual defrost operation, a freezing actual defrost operation, and a deep greenhouse defrost operation.
  • the upper door load response operation may include at least one of a refrigerator compartment door load response operation, a freezing compartment door load response operation, and a core greenhouse load response operation.
  • the above-mentioned core greenhouse load response operation is performed when the load increases with the opening of the core greenhouse door.
  • the heart greenhouse load removal which is performed when at least one of the conditions for inputting the initial cold start operation to remove the load, and the input conditions for the first post-defrost operation after the completion of the core greenhouse defrost operation, is satisfied. It can be interpreted as meaning driving for.
  • the judgment is to judge whether at least one of the conditions in which at least one of the freezer door and the core greenhouse door is opened and closed after a certain period of time elapses, or the condition in which the heart greenhouse temperature rises to the set temperature within a certain period of time is satisfied.
  • the determination of whether the conditions for inputting the initial cold start operation of the core greenhouse are satisfied is when the refrigerator power is turned on and the core greenhouse mode is turned on from the off state.
  • This may include determining whether or not it has been converted.
  • the judgment of whether the conditions for inputting the operation after the core greenhouse defrost are satisfied is to stop the cold sink heater off, the back heater off, the reverse voltage applied to the thermoelectric module for cold sink defrost, and the reverse voltage for cold sink defrost.
  • This may include stopping the constant voltage applied to the thermoelectric module for defrosting the heat sink after it is applied, raising the temperature of the housing containing the heat sink to the set temperature, and determining at least one during the actual shutdown of the freezing operation.
  • the storage compartment including at least one of the refrigerator compartment, the freezer compartment and the core greenhouse
  • the operation can be categorized into a storage room general operation and a storage room special operation.
  • the control unit can control one operation (the driver is executed with priority and the other operation (operation is interrupted & 1 ⁇ )).
  • the driving conflict is when the driving show input condition and the driving condition 6 are satisfied at the same time, and the driving show input condition is satisfied and the driving show is being performed.
  • This may include a case of a collision due to the satisfaction of the conditions,) a case of a collision due to satisfying the input conditions of the driving show while the input conditions of operation 8 are satisfied and operation 8 is being performed.
  • control unit sets the priority to perform the conflicting operation.
  • collision control algorithm To determine and control the performance of the operation, the so-called “collision control algorithm" is performed.
  • the stopped operation B can be controlled to follow at least one of the three cases in the example below after completion of operation A.
  • operation B is an operation that drives the fan for 10 minutes, and the operation is stopped at the point 3 minutes has elapsed after the start of operation due to a collision with operation A, whether the operation simulation input conditions are satisfied at the time operation A is completed. Judge again whether or not,
  • operation B is an operation that drives the fan for W minutes, and the operation is interrupted at the point 3 minutes has elapsed after the start of operation due to a collision with operation A, the compressor for a remaining time of 7 minutes immediately from the time operation A is completed. Let it drive more.
  • the priority of driving can be determined as follows.
  • the cooling operation of the refrigerating chamber (or freezing chamber) can be prioritized.
  • the cooling power lower than the maximum cooling power of the heart greenhouse cooler can be supplied from the heart greenhouse cooler to the heart greenhouse. have.
  • the above cooling power is the cooling capacity of the cooling device itself, and the cooling power located adjacent to the cooler. 2020/175825 1»(:1 ⁇ 1 ⁇ 2020/002071
  • the control unit will, if the refrigerating chamber (or freezer) cooling operation and the core greenhouse cooling operation collide, the refrigerating chamber (or freezer) The cooling operation is prioritized, but a voltage lower than the maximum voltage that can be applied to the thermoelectric module can be controlled to be input to the thermoelectric module.
  • the control unit can control the refrigerating chamber door load response operation to be performed with priority.
  • the control unit can control the core greenhouse door load response operation to be performed with priority.
  • the control unit operates the refrigerating chamber again and responds to the core greenhouse door load. The operation can be controlled to be performed at the same time. After that, depending on the temperature of the refrigerating chamber, the operation switching process between the simultaneous trial operation of the core greenhouse and the refrigeration chamber and the single operation of the core greenhouse can be controlled to be repeatedly performed.
  • control unit can control the operation to be performed in the same way as when the refrigerating chamber operation and the core greenhouse door load response operation collide when the operation input condition of the core greenhouse load response operation is satisfied.
  • the description is limited to the case where the first storage chamber is a refrigerating chamber, the second storage chamber is a freezing chamber, and the third storage chamber is a deep greenhouse.
  • FIG. 1 is a diagram showing a refrigerant circulation system in a refrigerator according to an embodiment of the present invention
  • a refrigerant circulation system 10 includes a compressor 11 for compressing a refrigerant into a high temperature and high pressure gas refrigerant, and a refrigerant discharged from the compressor 11
  • a condenser 12 that condenses into a high temperature and high pressure liquid refrigerant
  • an expansion valve that expands the refrigerant discharged from the condenser 12 into a two-phase refrigerant of low temperature and low pressure
  • the refrigerant that has passed through the expansion valve is evaporated into a gas refrigerant of low temperature and low pressure.
  • the refrigerant discharged from the evaporator flows into the compressor 11.
  • the above components are connected to each other by a refrigerant pipe to form a closed circuit.
  • the expansion valve may include a refrigerator compartment expansion valve 14 and a freezer compartment expansion valve 15.
  • the refrigerant pipe is divided into two branches, and the refrigerant pipe divided into two branches.
  • the refrigerating compartment expansion valve 14 and the freezing compartment expansion valve 15 are respectively connected. That is, the refrigerating compartment expansion valve 14 and the freezer expansion valve 15 are 2020/175825 1»(:1 ⁇ 1 ⁇ 2020/002071
  • a switching valve 13 is mounted at the point where the refrigerant pipe is divided into two at the outlet side of the condenser 12.
  • the condenser 12 passes through the condenser 12 by the opening degree control operation of the switching valve 13.
  • One refrigerant may flow to only one of the refrigerating compartment expansion valve (14) and the freezer compartment expansion valve (15) or divided into both sides.
  • the switching valve 13 may be a three-way valve, and the flow direction of the refrigerant is determined according to the operation mode.
  • one switching valve such as the three-way valve is mounted at the outlet of the condenser 12 to It is also possible to control the flow direction of, and alternatively, a structure in which an opening/closing valve is mounted on the inlet side of the refrigerating compartment expansion valve 14 and the freezer compartment expansion valve 15 may be possible.
  • It may include a heat sink 24 and a freezer evaporator 17 connected in series connected to the outlet side of the expansion valve 15.
  • the heat sink 24 and the freezer evaporator 17 are connected in series, and the freezer expansion valve The passed refrigerant passes through the heat sink 24 and then flows into the freezing chamber evaporator 17.
  • the heat sink 24 is an evaporator, it is provided for the purpose of cooling the heating surface of the thermoelectric module to be described later, not for exchanging heat with the cooler in the core greenhouse.
  • a second refrigerant circulation system consisting of an expansion valve for cooling the refrigerator compartment, a condenser for cooling the refrigerator compartment, and a compressor for cooling the refrigerator compartment.
  • the condenser and the second refrigerant circulation system constituting the first refrigerant circulation system are possible.
  • the condensers constituting the condensers may be provided independently, or a condensers consisting of a single unit, but a complex condenser may be provided in which the refrigerant is not mixed.
  • the refrigerant circulation system of a refrigerator having two storage chambers including a core greenhouse may be configured only with the first refrigerant circulation system.
  • the description is limited to a structure in which the heat sink and the freezing chamber evaporator 17 are connected in series.
  • a condensing fan 121 is mounted in a location adjacent to the condenser 12
  • a refrigerating compartment fan 161 is mounted in a location adjacent to the refrigerating compartment evaporator 16, and adjacent to the freezing compartment evaporator 17
  • a freezer fan (1 unit) is installed at the location.
  • a refrigerator compartment maintained at a refrigeration temperature by cold air generated in the refrigerator compartment evaporator 16, and in the freezing compartment evaporator 16
  • a freezing chamber maintained at a freezing temperature by the generated cold air, and a deep greenhouse maintained at a cryogenic or ultra-low temperature (ultrafrezing) temperature by a thermoelectric module to be described later.
  • the refrigerating chamber and the freezing chamber can be arranged adjacent to each other in the vertical direction or left and right directions, and are partitioned from each other by a partition wall.
  • the heart greenhouse may be provided on one side of the freezing chamber, but the present invention is the above.
  • the core greenhouse 202 includes the core greenhouse with a high thermal insulation performance. Can be partitioned from the freezer.
  • thermoelectric module has a thermoelectric element 21 showing a characteristic of absorbing heat on one side and dissipating heat on the other side when power is supplied, and mounted on the heat absorbing surface of the thermoelectric element 21 Includes a cold sink (22), a heat sink mounted on the heating surface of the thermoelectric element (21), and an insulating material (23) that blocks heat exchange between the cold sink (22) and the heat sink. can do.
  • thermoelectric element 21 exchanges heat with the refrigerant flowing inside the heat sink 24.
  • the heating surface of the thermoelectric element 21 flows along the inside of the heat sink 24 and flows along the heating surface of the thermoelectric element 21.
  • the refrigerant absorbed from the heat flows into the freezing chamber evaporator 17.
  • a cooling fan may be provided in front of the cold sink 22, and since the cooling fan is disposed inside the core greenhouse, it can be defined as the core greenhouse fan 25.
  • the cold sink 22 is disposed inside the heart greenhouse 202 and behind the
  • the cold sink 22 exchanges heat with the core greenhouse cooler. It absorbs heat through the heat absorbing surface and then functions to transfer it to the heat absorbing surface of the thermoelectric element 21. The heat transferred to the heat absorbing surface is transferred to the heating surface of the thermoelectric element 21.
  • the heat sink 24 has a function of re-absorbing heat that is absorbed from the heat absorption surface of the thermoelectric element 21 and transferred to the heating surface of the thermoelectric element 21 to release it to the outside of the thermoelectric module 20 do.
  • FIG. 2 is a perspective view showing a structure of a freezing chamber and a core greenhouse of a refrigerator according to an embodiment of the present invention
  • FIG. 3 is a longitudinal sectional view taken along 3-3 of FIG. 2.
  • a refrigerator according to an embodiment of the present invention includes an inner case 101 defining a freezing chamber 102, and a core-temperature refrigeration unit mounted on an inner side of the freezing chamber 102 ( 200).
  • the inside of the refrigerating chamber is maintained at about 3°C (: is maintained inside and outside the freezing chamber 102, the inside of the freezing chamber 102 is maintained at about -18° (: while the temperature inside the deep-temperature freezing unit 200), that is,
  • the internal temperature of the core greenhouse 202 should be maintained at about -50°0. Therefore, to maintain the internal temperature of the core greenhouse 202 at a cryogenic temperature of -50°, the same as the thermoelectric module 20 in addition to the freezer evaporator. Additional refrigeration means are required.
  • the core temperature and refrigeration unit 200 includes a core temperature case 201 forming an inner core greenhouse 202, and a core greenhouse drawer 203, which is slidingly inserted into the core temperature case 201, And a thermoelectric module 20 mounted on the rear surface of the shim-on case 201.
  • a shim-on case 201 is connected to one side of the front side of the shim-on case 201, and the entire interior of the shim-on case 201 is configured as a food storage space.
  • a freezing evaporation chamber 104 is formed in which the evaporator 17 is accommodated.
  • the inner space of the inner case 101 is divided into the freezing evaporation chamber 104 and the freezing chamber 102 by the partition wall 103.
  • the thermoelectric module 20 is fixedly mounted on the front surface of the upper plan wall 103, and a part is accommodated in the core greenhouse 202 through the core temperature case 201.
  • the heat sink 24 constituting the thermoelectric module 20 may be an evaporator connected to the freezer expansion valve 15, as described above.
  • a space in which the heat sink 24 is accommodated may be formed in the partition wall 103.
  • thermoelectric element 21 When the rear surface of the thermoelectric element 21 is in contact with the front surface of the heat sink 24 and power is applied to the thermoelectric element 21, the rear surface of the thermoelectric element 21 becomes a heating surface.
  • the cold sink 22 is in contact with the front surface of the thermoelectric element, and the thermoelectric element
  • thermoelectric element 21 When power is applied to the element 21, the front surface of the thermoelectric element 21 becomes a heat absorbing surface.
  • the cold sink 22 is a heat conduction plate made of an aluminum material, and the
  • a plurality of heat exchange fins (&1) extending from the front surface of the heat conduction plate may be included, and the plurality of heat exchange fins may be vertically extended and spaced apart in a horizontal direction.
  • the cold sink 22 is interpreted as a heat transfer member including not only the heat conductor but also the housing. This applies equally to the heat sink 22, so that the heat sink 22 should be interpreted as a heat transfer member including a housing when a housing is provided, as well as a heat conductor consisting of a heat conduction plate and heat exchange fins. do.
  • the core greenhouse fan 25 is disposed in front of the cold sink 22 to forcibly circulate the air inside the core greenhouse 202.
  • thermoelectric device [155] Hereinafter, the efficiency and cooling power of the thermoelectric device will be described.
  • thermoelectric module 20 can be defined as a coefficient of performance (COP), and the efficiency equation is as follows.
  • thermoelectric module 20 can be defined as follows.
  • L thickness of thermoelectric element: distance between heat absorbing surface and heating surface
  • thermoelectric element The area of the thermoelectric element
  • Tc temperature of the heat absorbing surface of the thermoelectric element
  • the first term on the right can be defined as the Peltier Effect, and it can be defined as the amount of heat transferred between both ends of the heat absorbing surface and the heating surface due to the voltage difference.
  • the Peltier effect is a current function and increases in proportion to the supply current.
  • thermoelectric element acts as a resistance
  • the resistance can be regarded as a constant, it can be said that voltage and current are in a proportional relationship, that is, if the voltage applied to the thermoelectric element 21 increases, the current also increases. Therefore, the Peltier effect can be seen as a current function. It can also be seen as a function of voltage.
  • the cooling power can also be seen as a function of current or voltage.
  • the effect acts as a plus effect that increases the cooling power; that is, when the supply voltage increases, the Peltier effect increases and the cooling power increases.
  • the second term in the above cooling equation is defined as the Joule Effect.
  • the Joule effect means the effect of generating heat when a current is applied to the resistor. In other words, since heat is generated when power is supplied to the thermoelectric element, this acts as a negative effect of reducing the cooling power. Therefore, as the voltage supplied to the thermoelectric element increases, the Joule effect increases, resulting in lowering the cooling power of the thermoelectric element. Bring it.
  • the Fourier effect means an effect of transferring heat due to heat conduction when a temperature difference occurs on both sides of a thermoelectric element.
  • the thermoelectric element includes a heat absorbing surface and a heating surface made of a ceramic substrate, and a semiconductor disposed between the heat absorbing surface and the heating surface.
  • a voltage is applied to the thermoelectric element, a temperature difference occurs between the heat absorbing surface and the heating surface.
  • the heat absorbed through the heat absorbing surface passes through the semiconductor and is transferred to the heating surface.
  • heat flows back from the heating surface to the heat absorbing surface due to heat conduction. Occurs, and this is called the Fourier effect.
  • the Fourier effect acts as a negative effect that lowers the cooling power.
  • the temperature difference (Th-Tc) between the heating surface and the heat absorption surface of the thermoelectric element, that is, the AT value is large. The result is that the cooling power is reduced.
  • the Fourier effect can be defined as a function of AT, that is, the temperature difference between the heat absorbing surface and the heating surface.
  • thermoelectric element when the specification of the thermoelectric element is determined, the values of k, A and L in the Fourier effect term of the above cooling power equation become constant values, so the Fourier effect can be seen as a function with AT as a variable.
  • the cooling power increases, which can be explained by the above cooling power equation.
  • the AT value is fixed, it becomes a constant. Since the AT value is determined for each standard of the thermoelectric element, it is possible to set an appropriate standard for the thermoelectric element according to the required AT value.
  • the increase is greater than the increase in the Joule effect, which is the second function of voltage, and consequently, the cooling power increases.
  • the function of the Joule effect is close to a constant, so that the cooling power approaches the linear function of the voltage. It shows the form of doing.
  • the supply voltage is in the range of about 30 to 40 ⁇ , more
  • the cooling power is maximum when it is about 35 ⁇ . Therefore, if only the cooling power is considered, it can be said that it is good to have a voltage difference within the range of 30 to 40 ⁇ in the thermoelectric element.
  • 5 is a graph showing an efficiency relationship between an input voltage and a Fourier effect.
  • the above efficiency ⁇ is a function of not only cooling power but also input power
  • input ⁇ is a function of V 2 if the resistance of the thermoelectric element (21) is considered as a constant.
  • thermoelectric element [201] In the graph of Fig. 5, it can be seen that the point where the efficiency is the maximum appears in a region where the voltage difference (or supply voltage) applied to the thermoelectric element is less than approximately 20 ⁇ . Therefore, when the required pressure is determined, it can be confirmed accordingly. It is advisable to apply an appropriate voltage to maximize the efficiency. That is, when the temperature of the heat sink and the set temperature of the core greenhouse (202) are determined, the pressure is determined, and accordingly, the optimum voltage difference applied to the thermoelectric element is determined. can do.
  • 6 is a graph showing a correlation between cooling power and efficiency according to voltage.
  • thermoelectric element with an AT of 30 O C
  • the efficiency of the thermoelectric element is the highest within the range of approximately 12V to 17V in the voltage difference applied to the thermoelectric element.
  • the cooling power continues to increase within the range of. Therefore, considering the cooling power together, a voltage difference of at least 12V or more is required, and when the voltage difference is 14V, it can be seen that the efficiency is maximum.
  • FIG. 7 is a diagram showing a reference temperature line for controlling a refrigerator according to a fluctuation in an internal load of a warehouse.
  • the set temperature of each storage room is defined as a notch temperature.
  • the reference temperature line may be expressed as a critical temperature line.
  • the lower reference temperature line is a reference temperature line that separates the satisfaction and dissatisfaction temperature range. Therefore, the area below the lower reference temperature line (which is defined as a satisfaction or satisfaction region, and the reference temperature at the lower Line-up area (can be defined as an unsatisfied or unsatisfied area)
  • the upper reference temperature line is a reference temperature line that divides the dissatisfied temperature region and the upper limit temperature region. Therefore, the upper reference temperature line region (C) can be defined as an upper limit region or an upper limit section, and special operation It can be seen as an area.
  • the lower reference temperature line when defining a satisfaction/dissatisfaction/upper temperature range for refrigerator control, may be defined as either a case to be included in a satisfaction temperature range or a case to be included in a dissatisfaction temperature range.
  • the upper reference temperature line can be defined as one of a case to be included in the unsatisfactory temperature range and a case to be included in the upper limit temperature range.
  • Figure 7 (a) shows the reference temperature line for the refrigerator control according to the temperature change of the refrigerator compartment
  • the notch temperature (N1) of the refrigerator compartment is set to the temperature of the image.
  • the refrigerator compartment temperature is the notch temperature.
  • the first temperature difference (dl) is increased or decreased from the notch temperature (N1) of the refrigerator
  • a temperature value it can be defined as a control differential or a control diffetial temperature that defines a temperature section in which the refrigerating chamber temperature is considered to be maintained at a set temperature, the notch temperature (N1), and can be defined as approximately 1.5 days. have.
  • d2 may be 4.5 O C.
  • the first dissatisfaction critical temperature may be defined as the upper input temperature.
  • the temperature inside the chamber is the first dissatisfaction threshold
  • the second dissatisfaction temperature (N14) is lower than the first dissatisfaction temperature (N13),
  • the third temperature difference d3 may be 3.0 O C.
  • the second unsatisfactory threshold temperature N14 may be defined as an upper limit release temperature.
  • the compressor is stopped to operate after adjusting the cooling power of the compressor so that the inside temperature reaches the second satisfactory critical temperature (N12).
  • Fig. 7 shows the reference temperature line for controlling the refrigerator according to the change in the freezer temperature.
  • the shape of the reference temperature line for this freezing room temperature control is the same as the shape of the reference temperature line for temperature control of the refrigerator room, but the amount of temperature change increasing or decreasing from the notch temperature (N2) and the notch temperature (N2) (kl, k2, k3) )Notch temperature (N1) and temperature in this refrigerator
  • the amount of change (dl,d2,d3) is only excessive.
  • the freezing chamber notch temperature (N2) may be -18 O C as described above, but
  • control differential temperature (kl) which defines the temperature range in which the freezer temperature is considered to be maintained at the set temperature
  • notch temperature (N2) may be 2.
  • the special operation algorithm is terminated when the freezer temperature falls to the second dissatisfaction threshold temperature (upper limit release temperature) (N24) lower than the first dissatisfaction temperature (N23) by the third temperature difference (k3).
  • the freezer temperature is lowered to the second satisfactory critical temperature (N22) through the compressor cooling power control.
  • the temperature control of the heart greenhouse in a state in which the heart greenhouse mode is turned off follows the temperature reference line for temperature control of the freezing compartment disclosed in FIG.
  • the reason why the temperature line is applied is because the heart temperature chamber is inside the freezing chamber.
  • the first and second satisfaction critical temperatures and the first and second unsatisfactory critical temperatures are also critical for freezer temperature control.
  • the temperature is set equal to 21 22 23 24).
  • FIG. 7 is a diagram showing a reference temperature line for controlling a refrigerator according to a change in the heart greenhouse temperature in a state where the heart greenhouse mode is turned on.
  • the temperature word 3) is set to a temperature significantly lower than the freezing chamber notch temperature word 2), and can be about -45°0--55° (:, preferably -55° (:.
  • the core greenhouse notch temperature word 2). 3) corresponds to the heat absorbing surface temperature of the thermoelectric element (21), and the freezing chamber notch temperature word 2) corresponds to the heating surface temperature of the thermoelectric element (21).
  • the temperature of the heating surface of the thermoelectric element (21) in contact with the sink (24) is maintained at least at a temperature corresponding to the temperature of the refrigerant that has passed through the freezer expansion valve. Therefore, the temperature difference between the heat absorbing surface and the heating surface of the thermoelectric element, i.e.! Becomes 32 ⁇ (:.
  • control differential temperature (B) which defines the temperature range in which the core greenhouse is considered to be maintained at the set temperature, which is the notch temperature 3), is higher than the freezer freezer control differential temperature: 1). It can be set, for example, it can be 3 ⁇ (:.
  • the second temperature difference ⁇ 12) can be 5 (:).
  • the second temperature difference of the core greenhouse is higher than 12) the second temperature difference of the freezing chamber.
  • the distance between the first dissatisfaction critical temperature word 33) for the deep greenhouse temperature control and the deep greenhouse notch temperature word 3) is the first dissatisfaction threshold for the freezer temperature control.
  • the execution frequency of special operation algorithms such as load response operation may be excessively high.
  • a specific step In addition to the meaning of performing a specific step if any one of the plurality of conditions is satisfied at the time the control unit judges, a specific step must be satisfied only one of the plurality of conditions, only some or all of the conditions. It should be interpreted as including the meaning of performing.
  • FIG. 8 is a flowchart showing a control method for a core greenhouse load response operation according to an embodiment of the present invention.
  • the off control operation is to maintain the temperature inside the heart greenhouse at the freezer temperature when the heart greenhouse mode is off. It can be defined as a control operation for
  • the heart greenhouse temperature is set to the original temperature, i.e. -50°0.
  • the core greenhouse mode when the core greenhouse mode is turned off, power consumption is minimized and the core greenhouse temperature is controlled to be maintained at the same temperature as the freezing chamber in order to prevent an increase in the freezer load.
  • the core greenhouse temperature is sensed, and when it is determined that the core greenhouse temperature is higher than the freezing chamber temperature, the core greenhouse fan is controlled to run at the set speed for a set time.
  • the set time may be 5 minutes, and the set temperature (I ,) is 5) May be, but is not limited to this.
  • a sensor that detects the opening of the core temperature shield may be conditional that the temperature of the core greenhouse increases more than the set temperature,) during the set time after opening the core temperature shield door.
  • Sim-on-shield drawer can be understood with the same concept.
  • the heart greenhouse temperature is in the upper limit temperature range (above the first dissatisfaction threshold temperature)
  • it may be set so that the deep green house load response operation is applied only when both the first and second conditions are satisfied.
  • the freezer real bed and the deep greenhouse real bed can start at the same time, or start with a time difference so that the simultaneous defrost operation section exists.
  • the defrost operation start condition can be controlled to be performed when the freezing room defrost operation start condition is satisfied.
  • the defrost heater does not operate, and the refrigerating compartment fan is rotated at a low speed so that the frost formed in the refrigerating compartment evaporator melts by the heat load applied to the refrigerating compartment from the outside.
  • the refrigerant is not supplied to the refrigerating chamber evaporator during the defrost operation.
  • the refrigerator actual phase operation is also performed.
  • the refrigerating chamber, the freezing chamber, and the deep greenhouse phase are all formed together.
  • the refrigerator compartment alone defrost operation cannot be performed, but it is not necessarily limited to this.
  • the refrigerator compartment alone defrost operation may be possible by setting different conditions for starting the refrigerator compartment operation.
  • the heart greenhouse temperature is maintained at the freezing chamber temperature.
  • the heart greenhouse temperature state in this state it must be quickly cooled from the freezing chamber temperature to the cryogenic temperature, which is the set temperature for the heart greenhouse. It is recommended to ensure that the operation that responds to the load of the core greenhouse is essential.
  • the interior temperature should be maintained at the same level as the room temperature.
  • the core greenhouse load response operation may include a first core greenhouse load response operation mode and a second core greenhouse load response operation mode.
  • step 110 is repeated to determine whether the cardiac greenhouse mode is on.
  • the first core greenhouse load response operation refers to an operation mode in which the refrigerant valve is switched to simultaneous operation when the core greenhouse load response operation starts.
  • the term "simultaneous trial operation” means a state in which the opening degree of the switching valve is adjusted so that all refrigerant is supplied to the refrigerating chamber evaporator and the freezing chamber evaporator.
  • the simultaneous operation can be interpreted to mean the state in which both the refrigerating compartment valve and the freezer compartment valve are open.
  • Refrigerating chamber single operation means a state in which only the refrigerating chamber valve is opened to cool the refrigerating chamber, and freezer single operation (or deep greenhouse single operation) means that only the freezer valve is opened to cool the freezer and/or deep greenhouse. It can be interpreted as meaning that it is possible and the refrigerator compartment cooling is not possible.
  • the core greenhouse fan operates at low or medium speed
  • the device is subjected to high or medium voltage, and the refrigerator compartment fan can be controlled to run at medium speed, but it is not necessarily limited to this.
  • the voltage applied to the thermoelectric device depends on which of the (non-visible temperature ranges) in Figure 7 is the freezer temperature.
  • the drive speed of the over-core greenhouse fan may be set differently.
  • thermoelectric element when the freezing chamber temperature is in a satisfactory temperature range, a high voltage is applied to the thermoelectric element, and the core greenhouse fan can be controlled to run at medium speed.
  • thermoelectric element is subjected to medium voltage and the core greenhouse fan can be controlled to run at low speed.
  • the control unit periodically judges whether the conditions for completing the first core greenhouse load response operation completion condition are satisfied while the first chamber response operation is performed ( ⁇ 40).
  • the second core greenhouse load response operation means a state in which the refrigerating chamber valve is closed and the freezing chamber valve is opened, so that the freezing chamber and the core greenhouse operation are possible.
  • the control unit continuously judges whether or not the refrigerating chamber temperature has risen to the upper limit input temperature, that is, the first dissatisfaction critical temperature3) ( ⁇ 60).
  • the second core greenhouse load response operation is terminated and the operation returns to the first core greenhouse load response operation step ( ⁇ 30). In other words, the refrigerator compartment load is reduced. If it increases, the refrigerating chamber is cooled again, and the refrigeration chamber is switched to the simultaneous operation state.
  • the control unit judges whether the conditions for completion of the second core greenhouse load response operation are satisfied 170). If it is judged that the completion conditions are satisfied, the core greenhouse load response operation mode is performed. End all 180). If the refrigerator is not powered off ( ⁇ 90), it returns to the initial step 110), which judges whether the deep greenhouse mode is on.
  • the setting time () can be 150 minutes, but it is not limited thereto.
  • FIG. 9 is a graph showing a temperature change of a refrigerating chamber and a core greenhouse and a refrigerant valve opening and closing state during a core greenhouse load response operation according to an embodiment of the present invention.
  • the temperature change curve of FIG. 9 is a graph showing the temperature change of the refrigerator compartment
  • the temperature change curve And 1 2 are graphs showing changes in the heart greenhouse temperature.
  • thermoelectric element If the freezer temperature is above the unsatisfactory temperature, the thermoelectric element is subjected to medium voltage and the core greenhouse fan is controlled to run at low speed. However, if the freezer temperature is satisfactory, the thermoelectric element is subjected to high voltage and the core greenhouse fan is medium-speed. Is controlled to drive.
  • the heart greenhouse temperature decreased to the second dissatisfaction threshold temperature (upper limit release temperature) (N34) during the second heart greenhouse load response operation, so the heart greenhouse load response operation is terminated.
  • the general operation for lowering the temperature of the refrigerator compartment that is, the refrigerator compartment cooling operation, should be performed.
  • the second core greenhouse load response operation is switched from the second core greenhouse load response operation (2) to the first core greenhouse load response operation (1), and the core greenhouse load. Make sure that the corresponding operation mode continues.
  • the actual freezing operation can be programmed to be ignored. That is, by setting the defrost operation and the load response operation to the same operation mode as the same operation mode. If one of the two conditions is satisfied while one of them is being performed, the other operation mode can be executed after the operation mode being executed is terminated.
  • the compressor must be driven with maximum cooling power during operation in response to the load of the core greenhouse.

Abstract

본 발명의 실시예에 따른 냉장고의 제어 방법은, 심온실 모드가 온 상태이고, 심온실 부하 대응 운전 투입 조건이 만족되면, 냉장실 밸브 및 내동실 밸브가 모두 개방되는 제 1 심온실 부하 대응 운전이 수행되는 것을 특징으로 한다.

Description

2020/175825 1»(:1^1{2020/002071 명세서
발명의 명칭:냉장고의제어방법
기술분야
[1] 본발명은냉장고의제어방법에관한것이다.
배경기술
[2] 일반적으로냉장고는음식물을저온으로저장하는가전기기로서 ,섭씨 3°0 범위의냉장상태로음식물을저장하기위한냉장실과,섭씨 -20°0범위의냉동 상태로음식물을저장하기위한냉동실을포함한다.
[3] 그러나,육류나해산물같은음식물을현재의냉동실내에서냉동상태로
보관는경우,음식물이 -20ᄋ(:로결빙되는과정에서육류나해산물의세포내에 있는수분이세포밖으로빠져나가면서세포가파괴되고해동과정에서식감이 변해버리는현상이발생한다.
[4] 그러나,저장실의온도조건을현재의냉동실온도보다현저히낮은극저온 상태로만들어서,음식물이냉동상태로변화될때빙결점온도대역을빠르게 지나가도록하면세포파괴를최소화할수있으며,그결과해동후에도육질과 식감이냉동전의상태에가까운상태로되돌아올수있는장점이있다.상기 극저온이라함은 -45°0 ~ -50°0범위의온도를말하는것으로이해될수있다.
[5] 이러한이유때문에,최근에는냉동실온도보다더낮은온도로유지되는
심온실이구비된냉장고에대한수요가증가하고있는추세에있다.
[6] 심온실에대한수요를만족시키기위해서는기존의냉매를이용한냉각에는 한계가있기때문에,열전소자(TEM : 1¾ 1110£1 仕노 Module)를이용하여심온실 온도를극저온으로낮추는시도를하고있다.
[7] 한국공개특허제 10-2018-0105572호(2018년 09월 28일)호(선행기술 1)에는열전 모듈을이용하여저장실을실내온도보다낮은온도로저장하는협탁형태의 냉장고가개시된다.
[8] 그러나,상기선행기술 1에개시되는열전모듈을이용한냉장고의경우,열전 모듈의발열면이실내공기와열교환하여냉각되는구조로이루어져있어서, 흡열면의온도를낮추는데한계가있다.
[9] 상세히,열전모듈은,공급전류가증가하면흡열면과발열면의온도차가어느 수준까지는증가하는경향을보인다.그러나,반도체소자로이루어진열전 소자의특성상,공급전류가증가하면반도체가저항으로작용하여자체 발열량이증가한다.그러면,흡열면에서흡수된열이발열면으로신속하게 전달되지못하는문제가발생한다.
[1이 뿐만아니라,열전소자의발열면이충분히냉각되지아니하면발열면으로 전달된열이흡열면쪽으로역류하는현상이발생하여흡열면의온도도함께 증가하게된다. 2020/175825 1»(:1^1{2020/002071
[11] 상기선행기술 1에 개시되는열전모듈의 경우,발열면이실내공기에의하여 냉각되므로,발열면의온도가실내온도보다더낮아질수없는한계가있다.
[12] 발열면의온도가실질적으로고정된상태에서,흡열면의온도를낮추기
위해서는공급전류를증가시켜야하고,그러면열전모듈의 효율이 저하되는 문제가발생한다.
[13] 또한,공급전류를증가시키면,흡열면과발열면의온도차가커지면서 열전 모듈의 냉력이감소하는결과를초래한다.
[14] 따라서,선행기술 1에 개시되는냉장고의 경우,저장실의온도를냉동실
온도보다현저히낮은극저온으로낮추는것이불가능하고,냉장실온도 수준으로유지할수있는정도에불과하다고할수있다.
[15] 뿐만아니라,선행기술 1에 개시된내용을보면,열전모듈에 의하여 냉각되는 저장실이독립적으로존재하기 때문에,상기 저장실의온도가만족온도에 도달하면열전모듈로의 전원공급을차단하는것으로개시된다.
[16] 그러나,상기 저장실이 냉장실이나냉동실과같은만족온도영역이다른
저장실내부에수용되는경우,두개의 저장실온도를조절하기위해서
고려되어야하는요소들이 많아지게된다.
[17] 따라서,선행기술 1에 개시되는제어내용만으로는,심온실이 냉동실또는
냉장실에수용되는구조에서심온실온도를제어하기위해서 열전모듈의 출력과심온실냉각팬의출력제어가불가능하다.
[18] 이러한열전모듈의 한계를극복하고,열전모듈을이용하여 저장실의온도를 냉동실온도보다낮은온도로낮추기 위하여 많은실험과연구가이루어져 왔다. 그결과,열전모듈의 발열면을낮은온도로냉각시키기 위하여 냉매가흐르는 증발기를발열면에부착하는시도가있었다.
[19] 한국공개특허제 10-2016-097648호(2016년 08월 18일)(선행기술 2)에는열전 모듈의 발열면을냉각시키기 위하여,열전모듈의발열면을증발기에직접 부착시키는내용이 개시된다.
[2이 그러나선행기술 2도여전히문제점을안고있다.
[21] 상세히 ,선행기술 2에는,열전소자의 발열면을냉각시키기 위한방열수단 또는히트싱크로서 냉동실팽창변을통과한냉매가흐르는증발기를채용하는 구조적 내용만개시되어 있을뿐,냉동실을비롯한냉장실의운전상태에 따라서 열전모듈의출력을어떻게제어할것인지에 대한내용이 전혀 개시되지 않고 있다.
[22] 예컨대,심온실도어가개방되어음식물을포함하는열부하가침투하는경우, 침투한부하를신속히 제거하는방법에 대해서 전혀 개시되지 않고있다.뿐만 아니라,냉동실또는냉장실의운전상태에 따라서 열전모듈의제어를어떻게 할것인지에 대한방법이 전혀 개시되지 않고있다.
[23] 또한,심온실부하를낮추기위한심온실부하대응운전이수행되고있는
도중에 냉장실또는냉동실에부하가침투하거나,냉장실또는냉동실증발기의 2020/175825 1»(:1^1{2020/002071
3 제상주기에도달한경우등과같이,운전모드가충돌하는경우에는심온실 부하대응운전을어떻게할것인지에대한내용이전혀개시되지않고있다. 발명의상세한설명
기술적과제
[24] 본발명은상기와같이 예상되는문제점을개선하기위하여제안된다.
[25] 특히,심온실부하가급격히증가하는상황이발생하였을때,다른저장실의 온도증가를최소화하면서,심온실부하를신속히제거할수있는냉장고의제어 방법을제공하는것을목적으로한다.
[26] 다시말하면,다른저장실,즉냉동실또는냉장실의성능을저해하지않으면서 심온실부하를신속히제거하는것을목적으로한다.
[27] 또한,심온실부하제거운전도중에다른저장실의부하가증가하는상황이 발생하였을경우에,다른저장실의부하도함께제거할수있는냉장고의제어 방법을제공하는것을목적으로한다.
과제해결수단
[28] 상기와같은목적을달성하기위한본발명의실시예에따른냉장고의제어 방법은,심온실모드가온상태이고,심온실부하대응운전투입조건이 만족되면,냉장실밸브및내동실밸브가모두개방되는제 1심온실부하대응 운전이수행되는것을특징으로한다.
[29] 상기심온실부하대응운전투입조건은,냉동실도어개방후설정시간 ,) 동안심온실온도가설정온도 ,)이상증가한제 1조건과,심온실온도가상한 온도영역에있는제 2조건과,냉동실제상또는심온실제상후첫사이클 시작되는제 3조건과,심온실모드가오프상태에서온상태로전환되는제 4 조건,및냉장고전원이오프된상태에서온상태로변경되는제 5조건을 포함하고,상기제 1내지제 5조건중적어도하나를만족하면상기심온실부하 대응운전이수행되도록할수있다.
[3이 제 1심온실부하대응운전이완료되면,냉동실쪽으로만냉매가흐르도록 하는제 2심온실부하대응운전이수행되도록할수있다.
[31] 제 2심온실부하대응운전이수행되는동안,냉장실온도가설정온도
이상으로상승하면,상기제 1심온실부하대응운전으로전환되도록할수 있다.
[32] 냉장실또는냉동실부하대응운전중에,상기심온실부하대응운전투입 조건이만족되면,상기냉장실또는냉동실부하대응운전은종료하고상기제 1 심온실부하대응운전이수행되도록할수있다.
[33] 냉동실제상운전투입조건과상기심온실부하대응운전투입조건중어느 하나가먼저만족되면,투입조건이먼저만족된운전이우선하여수행되도록할 수있다.
[34] 상기제 1심온실부하대응운전이시작되면,압축기는최대냉력으로 구동하도록제어될수있다.
발명의효과
[35] 상기와같은구성을이루는본발명의실시예에따른냉장고의제어방법에 의하면다음과같은효과가있다.
[36] 첫째,심온실내부로열부하가침투한상황이발생하였다고판단되면,심온실 부하대응운전또는심온실부하제거운전이수행되도록함으로써,심온실에 침투한부하를신속하게제거하여,심온실온도가만족온도로유지되도록하는 효과가있다.
[37] 둘째,심온실부하제거운전이시작되면,냉장실밸브와냉동실밸브가모두 온되어동시운전이수행되도록함으로써,심온실부하제거와함께다른저장실 부하제거도함께수행하도록할수있다.그러면,심온실부하제거운전중다른 저장실의부하가급격히증가하는현상을최소화할수있는장점이 있다.
[38] 셋째,동시운전중에다른저장실의온도가만족온도영역에진입하면,냉동실 밸브만온시켜심온실부하제거에냉력이집중되도록함으로써 ,심온실부하 시간이단축되는효과가있다.
[39] 넷째,냉동실배브만온된상태로심온실부하제거에냉력이집중되는동안, 다른저장실의부하가다시증가하는경우,다시동시운전모드로
전환함으로써,다른저장실의부하증가에신속히대응할수있는효과가있다. 도면의간단한설명
[4이 도 1은본발명의실시예에따른제어방법이적용되는냉장고의냉매순환 시스템을보여주는도면.
[41] 도 2는본발명의실시예에따른냉장고의냉동실과심온실구조를보여주는 사시도.
[42] 도 3은도 2의 3-3을따라절개되는종단면도.
[43] 도 4는입력전압및푸리에효과에대한냉력의관계를보여주는그래프.
[44] 도 5는입력전압및푸리에효과에대한효율관계를보여주는그래프.
[45] 도 6은전압에따른냉력과효율의상관관계를보여주는그래프.
[46] 도 7은고내부하변동에따른냉장고제어를위한기준온도선을보여주는 도면.
[47] 도 8은본발명의실시예에따른심온실부하대응운전을위한제어방법을 보여주는플로차트.
[48] 도 9는본발명의실시예에따른심온실부하대응운전시냉장실과심온실의 온도변화및냉매밸브개폐상태를보여주는그래프.
발명의실시를위한형태
[49] 이하에서는본발명의실시예에따른냉장고의제어방법에대하여도면을 참조하여상세히설명한다.
[5이 본발명에서제 1냉각기 (first cooling device)에의해냉각되어소정의온도로 2020/175825 1»(:1^1{2020/002071
5 제어될수있는저장실을제 1저장실로정의할수있다.
[51] 또한,제 2냉각기에의해 냉각되어상기 제 1저장실보다낮은온도로제어될 수있는저장실을제 2저장실로정의할수있다.
[52] 또한,제 3냉각기에의해 냉각되어상기 제 2저장실보다낮은온도로제어될 수있는저장실을제 3저장실로정의할수있다.
[53] 상기제 1저장실을냉각하기위한상기제 1냉각기는,제 1증발기와,열전 소자를포함하는제 1열전모듈중적어도하나를포함할수있다.상기제 1 증발기는후술할냉장실증발기를포함할수있다.
[54] 상기제 2저장실을냉각하기위한상기제 2냉각기는,제 2증발기와,
열전소자를포함하는제 2열전모듈중적어도하나를포함할수있다.상기제 2 증발기는후술할냉동실증발기를포함할수있다.
[55] 상기제 3저장실을냉각하기위한상기제 3냉각기는,제 3증발기와
열전소자를포함하는제 3열전모듈중적어도하나를포함할수있다.
[56] 본명세서에서 열전모듈을냉각수단으로하는실시예들에서,열전모듈대신 증발기로대체하여 적용가능하며 ,예를들면다음과같다.
[57] (1) "열전모듈의콜드싱크’’또는 "열전소자의흡열면’’또는 "열전모듈의
흡열측”은, "증발기또는증발기의 일측”으로해석될수있다.
[58] (2)’’열전모듈의흡열측’’은, "열전모듈의콜드싱크’’또는 "열전모듈의
흡열면”과동일한의미로해석될수있다.
[59] (3)제어부가 "열전모듈에정전압을인가또는차단하는것’’은, "증발기로
냉매를공급또는차단하는것 ",”절환밸브가개방또는폐쇄되도록제어되는 것 ",또는 "압축기가온또는오프되도록제어되는것과동일한의미로해석될수 있다.
[6이 (4)제어부가”열전모듈에 인가되는정전압이증가또는감소되도록제어하는 것”은, "증발기에흐르는냉매의 양또는유속이증가또는감소되도록제어하는 것”,”절환밸브의 개도가증가또는감소되도록제어하는것”,압축기출력이 증가또는감소되도록제어하는것”과동일한의미로해석될수있다.
[61] (5)제어부가”열전모듈에 인가되는역전압이증가또는감소되도록제어하는 것”은, "증발기에 인접하는제상히터에 인가되는전압이증가또는감소되도록 제어하는것”과동일한의미로해석될수있다.
[62] 한편,본명세서에서 ”열전모듈에의하여 냉각되는저장실”을저장실쇼로
정의하고, "상기 열전모듈에 인접하는곳에위치하여상기 저장실쇼내부의 공기가상기 열전모듈의흡열면과열교환하도록하는팬”을 "저장실쇼팬”으로 정의할수있다.
[63] 또한,상기 저장실쇼와함께 냉장고를구성하면서 냉각기에의해 냉각되는 저장실을 "저장실 ’로정의할수있다.
[64] 또한, "냉각기 챔버 "는냉각기가위치하는공간으로정의하고,냉각기에서
생성된냉기를송풍하는팬이추가된구조에서는상기 팬이수용되는공간을 2020/175825 1»(:1^1{2020/002071 포함하는것으로정의하고,상기 팬에의해송풍되는냉기를저장실로안내하는 유로나제상수가배줄되는유로가주가된구조에서는상기유로들을포함하는 것으로정의할수있다.
[65] 또한,콜드싱크나그주변에착상된성에나얼음을제거하기 위해상기콜드 싱크의 일측에위치하는제상히터를콜드싱크제상히터로정의할수있다.
[66] 또한,히트싱크나그주변에착상된성에나얼음을제거하기 위해상기 히트 싱크의 일측에위치하는제상히터를히트싱크제상히터로정의할수있다.
[67] 또한,냉각기나그주변에착상된성에나얼음을제거하기위해상기 냉각기의 일측에 위치하는제상히터를냉각기 제상히터로정의할수있다.
[68] 또한,냉각기 챔버를형성하는벽면이나그주변에착상된성에나얼음을
제거하기 위해상기 냉각기 챔버를형성하는벽면의 일측에위치하는제상 히터를냉각기 챔버 제상히터로정의할수있다.
[69] 또한,콜드싱크나그주변에서녹은제상수나수증기가배출되는과정에서 , 재결빙또는재착상을최소화하기위하여상기콜드싱크의 일측에 배치되는 히터를콜드싱크드레인히터로정의할수있다.
이 또한,히트싱크나그주변에서녹은제상수나수증기가배출되는과정에서 , 재결빙또는재착상을최소화하기위하여상기히트싱크의 일측에 배치되는 히터를히트싱크드레인히터로정의할수있다.
1] 또한,냉각기나그주변에서녹은제상수나수증기가배출되는과정에서, 재결빙또는재착상을최소화하기위하여상기 냉각기의 일측에 배치되는 히터를냉각기드레인히터로정의할수있다.
2] 또한,냉각기 챔버를형성하는벽면이나그주변에서녹은제상수나수증기가 배출되는과정에서,재결빙또는재착상을최소화하기 위하여상기 냉각기 챔버를형성하는벽면의 일측에 배치되는히터를냉각기 챔버드레인히터로 정의할수있다.
3] 또한,아래에서설명될 "콜드싱크히터”는상기콜드싱크제상히터의 기능과 상기콜드싱크드레인히터의 기능중적어도하나의 기능을수행하는히터로 정의할수있다.
4] 또한, "히트싱크히터 "는상기 히트싱크제상히터의 기능과상기 히트싱크 드레인히터의기능중적어도하나의기능을수행하는히터로정의할수있다. 5] 또한,”냉각기 히터”는,상기 냉각기제상히터의기능과상기 냉각기드레인 히터의 기능중적어도하나의 기능을수행하는히터로정의할수있다.
[76] 또한,아래에서설명될 "백히터 노 116 )”는상기히트싱크히터의 기능과 상기 냉각기 챔버 제상히터의 기능중적어도하나의 기능을수행하는히터로 정의할수있다.즉,상기 백히터는,히트싱크제상히터,히터싱크드레인히터, 및냉각기 챔버 제상히터의 기능들중적어도하나의 기능을수행하는히터로 정의할수있다.
7] 본발명에서는일례로,상기제 1저장실은상기제 1냉각기에 의해 영상의 온도로제어될수있는냉장실을포함할수있다.
8] 또한,상기제 2저장실은,상기제 2냉각기에의해영하의온도로제어될수 있는냉동실을포함할수있다.
9] 또한,상기제 3저장실은,상기제 3냉각기에의해극저온 (cryogenic
temperature)또는초저온 (ultrafrezing temperature)의온도로유지될수있는 심온실 (deep freezing compartment)을포함할수있다.
[8이 또한,본발명은,상기제내지제 3저장실이모두영하의온도로제어되는 경우와,상기제 1내지제 3저장실이모두영상의온도로제어되는경우,및 상기제 1및제 2저장실은영상의온도로제어되고,상기제 3저장실은영하의 온도로제어되는경우를배제하지않는다.
[81] 본발명에서냉장고의 "운전”은운전시작조건또는운전투입조건이
만족되는지여부를판단하는단계 (I)와,운전투입조건이만족된경우에미리 정해진운전이수행되는단계 (II)와,운전완료조건이만족되는지여부를 판단하는단계 (III),및운전완료조건이만족된경우에는운전이종료되는 단계 (IV)의 4가지운전단계를포함하는것으로정의될수있다.
[82] 본발명에서냉장고의저장실냉각을위한”운전”은,일반운전과특수
운전으로구분하여정의될수있다.
[83] 상기일반운전은,저장실도어의개방이나음식물저장에따른부하투입
상황이발생하지않은상태에서자연적으로고내온도가상승하였을때 수행되는냉각운전을의미할수있다.
[84] 상세히,저장실의온도가불만족온도영역 (아래에서도면을참조하여상세히 설명함)에진입하여운전투입조건이만족되면,상기저장실의냉각을위해 제어부가상기저장실의냉각기로부터냉기가공급되도록제어하는것으로 정의된다.
[85] 구체적으로,일반운전은냉장실냉각운전,냉동실냉각운전,심온실냉각운전 등을포함할수있다.
[86] 반면,상기특수운전은,상기일반운전으로정의되는운전을제외한운전을 의미할수있다.
[87] 상세히 ,상기특수운전은,저장실의제상주기가경과하여냉각기에착상된 성에나얼음을녹이기위해상기냉각기에열을공급하도록제어되는제상 운전을포함할수있다.
[88] 또한,상기특수운전은,저장실의도어가개방된후닫힌시점으로부터설정 시간이경과한경우,또는설정시간이경과하기전에저장실의온도가설정 온도로상승한경우중적어도하나에해당되어운전투입조건이만족되면, 상기저장실에침투한열부하를제거하기위해상기냉각기로부터상기 저장실로냉기가공급되도록제어되는부하대응운전을더포함할수있다.
[89] 상세히 ,상기부하대응운전은,저장실도어의개폐동작이후에저장실내부로 침투한부하를제거하기위하여수행되는도어부하대응운전과,냉장고설치 2020/175825 1»(:1^1{2020/002071
8 후처음으로전원이인가되었을때저장실내부의부하를제거하기위하여 수행되는초기냉기동운전을포함할수있다.
[9이 예를들면,상기제상운전은,냉장실제상운전,냉동실제상운전,및심온실 제상운전중적어도하나를포함할수있다.
[91] 또한,상기도어부하대응운전은,냉장실도어부하대응운전,냉동실도어 부하대응운전,심온실부하대응운전중적어도하나를포함할수있다.
[92] 여기서 ,상기심온실부하대응운전은,심온실도어가개방에따라부하가 증가되었을때수행되는심온실도어부하대응운전투입조건,심온실오프 상태에서온상태로전환되었을때심온실내의부하를제거하기위해수행되는 심온실초기냉기동운전투입조건,및심온실제상운전이완료된이후에 처음으로시작되는제상후운전투입조건중적어도하나의조건이만족되면 수행되는,심온실부하제거를위한운전을의미하는것으로해석될수있다.
[93] 상세히,심온실도어부하대응운전투입조건이만족되었는지여부를
판단하는것은,냉동실도어와심온실도어중적어도하나가개방후닫힌 시점으로부터일정시간이경과하는조건,또는일정시간이내에심온실온도가 설정온도로상승하는조건중적어도하나가만족되는지를판단하는것을 포함할수있다.
[94] 또한,심온실초기냉기동운전투입조건이만족되었는지여부를판단하는 것은,냉장고전원이켜지고,심온실모드가오프상태에서온상태로
전환되었는지여부를판단하는것을포함할수있다.
[95] 또한,심온실제상후운전투입조건이만족되었는지여부를판단하는것은, 콜드싱크히터오프,백히터오프,콜드싱크제상을위해열전모듈에인가되는 역전압중단,콜드싱크제상을위해역전압이인가된후히트싱크제상을위해 열전모듈에인가되는정전압중단,히트싱크를수용하는하우징의온도가설정 온도로상승,및냉동실제상운전종료중적어도하나를판단하는것을포함할 수있다.
[96] 따라서,냉장실과냉동실및심온실중적어도하나를포함하는저장실의
운전은,저장실일반운전과,저장실특수운전을포함하는것으로정리될수 있다.
[97] 한편,상기에서설명된저장실의운전중 2가지운전이중돌하는경우,
제어부는어느하나의운전(운전서이우선하여수행되고다른하나의 운전(운전피은중단여&1^)되도록제어할수있다.
[98] 본발명에서운전의충돌은, 운전쇼의투입조건과운전 6의투입조건이 동시에만족하여동시에충돌하는경우, ¾운전쇼의투입조건이만족되어운전 쇼가수행되는중에운전 6의투입조건이만족되어충돌하는경우, )운전 8의 투입조건이만족되어운전 8가수행되는중에운전쇼의투입조건이만족되어 충돌하는경우를포함할수있다.
[99] 2가지운전이충돌하는경우,제어부는,충돌하는운전의수행우선순위를 결정하고,해당운전의수행을제어하기위해,소위 "충돌제어알고리즘”이 수행되도록한다.
[100] 운전 A가우선수행되고,운전 B가중단된경우를일례로들어설명한다.
[101] 상세히,본발명에서는중단된운전 B는운전 A의완료후,아래예시의 3가지 경우중적어도어느하나의과정을따르도록제어될수있다.
[102] a.운전 B의해제 (termination)
[103] 운전 A가완료되면,운전 B의수행은해제되어상기충돌제어알고리즘을
종료하고,그이전의운전단계로되돌아가는가도록할수있다.
[104] 여기서 "해제”는,중단된상기운전 B는더이상수행되지않을뿐아니라,운전 B의투입조건이만족되었는지여부도판단하지않는다.즉,운전 B의투입 조건에대한판단정보가초기화되는것으로볼수있다.
[105] b.운전 B의투입조건재판단 (redetermination)
[106] 우선수행된운전 A가완료되면,제어부는상기중단된운전 B의투입조건이 만족되었는지여부를다시판단하는단계로되돌아가서,운전 B의
재시작 (restart)여부를결정할수있다.
[107] 예컨대,운전 B는 10분동안팬을구동하는운전이고,운전 A와충돌하여운전 시작후 3분이경과된시점에서운전이중단되었다면,운전 A가완료된 시점에서운전모의투입조건이만족되었는지여부를다시판단하고,
만족되었다고판단되면다시 W분동안팬을구동하도록한다.
[108] c.운전 B의속행 (continuation)
[109] 우선수행된운전 A가완료되면,제어부는중단되었던상기운전 B가
속행되도록할수있다.여기서 "속행”은,처음부터다시시작하는것이아니라, 중단된운전을이어서수행하는것을의미한다.
[110] 예컨대,운전 B가 W분동안팬을구동하는운전이고,운전 A와충돌하여운전 시작후 3분이경과된시점에서운전이중단되었다면,운전 A가완료된 시점부터곧바로잔여시간 7분동안압축기가더구동하도록한다.
[111] 한편,본발명에서운전의우선순위는아래와같이정해질수있다.
[112] 첫째,일반운전과특수운전이충돌하면,상기특수운전이우선하여
수행되도록제어할수있다.
[113] 둘째,일반운전간의충돌이발생하는경우운전의우선순위는아래와같이 정해질수있다.
[114] I.냉장실냉각운전과냉동실냉각운전이충돌하면,냉장실냉각운전이
우선하여수행되도록할수있다.
[115] II.냉장실 (또는냉동실)냉각운전과심온실냉각운전이충돌하면,
냉장실 (또는냉동실)냉각운전이우선하여수행되도록할수있다.이때,심온실 온도가지나치게상승하는것을막기위해,상기심온실냉각기의최대냉력보다 낮은수준의냉력이심온실냉각기로부터상기심온실로공급되도록할수있다.
[116] 상기냉력은,냉각기자체의냉각능력과,냉각기에인접한곳에위치하는냉각 2020/175825 1»(:1^1{2020/002071
10 팬의송풍량중적어도하나를의미할수있다.예를들어,심온실의 냉각기가 열전모듈인경우,제어부는,냉장실 (또는냉동실)냉각운전과심온실냉각운전이 충돌하면,냉장실 (또는냉동실)냉각운전을우선하여수행하되,열전모듈에 인가될수있는최대전압보다낮은전압이 열전모듈에 입력되도록제어할수 있다.
[117] 셋째,특수운전간의충돌이 발생하는경우운전의우선순위는아래와같이 정해질수있다.
[118] 1.냉장실도어부하대응운전과냉동실도어부하대응운전이충돌하면,
제어부는냉장실도어부하대응운전이우선하여수행되도록제어할수있다.
[119] 11.냉동실도어부하대응운전과심온실도어부하대응운전이충돌하면,
제어부는심온실도어부하대응운전이우선하여수행되도록제어할수있다.
[120] III.냉장실운전과심온실도어부하대응운전이충돌하면,제어부는냉장실 운전과심온실도어부하대응운전이동시에수행하도록제어한후,냉장실 온도가특정온도 &에도달하면,심온실도어부하대응운전이단독으로 수행되도록제어할수있다.심온실도어부하대응운전이단독적으로수행되는 도중에 냉장실온도가다시상승하여특정온도 15知<15)에도달하면,제어부는 다시 냉장실운전과심온실도어부하대응운전이동시에수행하도록제어할수 있다.이후에도,냉장실온도에따라,상기심온실과냉장실동시운전과심온실 단독운전간의운전전환과정이반복하여수행되도록제어할수있다.
[121] 한편,확장된변형예로,제어부는심온실부하대응운전의운전투입조건이 만족되면,상기 냉장실운전과심온실도어부하대응운전이충돌한경우와 동일하게운전이수행되도록제어할수있다.
[122] 이하에서는,일례로서상기 제 1저장실이 냉장실,상기 제 2저장실이 냉동실, 상기 제 3저장실이심온실인경우로한정하여 설명한다.
[123] 도 1은본발명의실시예에따른냉장고의 냉매순환시스템을보여주는
도면이다.
[124] 도 1을참조하면,본발명의실시예에따른냉매순환시스템 (10)은,냉매를 고온고압의기체 냉매로압축하는압축기 (11)와,상기 압축기 (11)로부터 토출되는냉매를고온고압의 액상냉매로응축하는응축기 (12)와,상기 응축기 (12)로부터토출되는냉매를저온저압의 2상냉매로팽창시키는 팽창변과,상기 팽창변을통과한냉매를저온저압의기체 냉매로증발시키는 증발기를포함한다.상기증발기로부터토출되는냉매는상기 압축기 (11)로 유입된다.상기의구성들은냉매 배관에의하여서로연결되어 폐회로를 구성한다.
[125] 상세히,상기 팽창변은,냉장실팽창변 (14)과냉동실팽창변 (15)을포함할수 있다.상기응축기 (12)의출구측에서 냉매배관은두갈래로나뉘어지고,두 갈래로나뉘어지는냉매 배관에상기 냉장실팽창변 (14)과상기 냉동실 팽창변 (15)이각각연결된다.즉,상기 냉장실팽창변 (14)과냉동실팽창변 (15)은 2020/175825 1»(:1^1{2020/002071
11 상기응축기 (12)의출구에서 병렬연결된다.
[126] 상기응축기 (12)의출구측에서 냉매배관이두갈래로나뉘어지는지점에 절환 밸브 (13)가장착된다.상기 절환밸브 (13)의 개도조절동작에의하여상기 응축기 (12)를통과한냉매가상기 냉장실팽창변 (14)과상기 냉동실팽창변 (15) 중어느한쪽으로만흐르거나,양쪽으로나뉘어흐를수있다.
[127] 상기절환밸브 (13)는삼방밸브일수있고,운전모드에따라서 냉매의흐름 방향이 결정된다.여기서,상기삼방밸브와같은하나의절환밸브가상기 응축기 (12)의출구에장착되어 냉매의흐름방향을제어할수도있고,다른 방법으로상기 냉장실팽창변 (14)과냉동실팽창변 (15)의 입구측에 개폐밸브가 각각장착되는구조도가능할것이다.
[128] 한편,증발기 배치 방식에 대한첫번째 예로서,상기증발기는,상기 냉장실 팽창변 (14)의출구측에 연결되는냉장실증발기 (16)와,상기 냉동실
팽창변 (15)의출구측에 연결되는직렬연결되는히트싱크 (24)및냉동실 증발기 (17)를포함할수있다.상기 히트싱크 (24)및냉동실증발기 (17)는직렬 연결되고,상기 냉동실팽창변을통과한냉매는상기히트싱크 (24)를통과한후 상기 냉동실증발기 (17)로유입된다.
[129] 두번째 예로서 ,상기히트싱크 (24)는상기 냉동실증발기 (17)의출구측에 배치되어,냉동실증발기 ( 17)를통과한냉매가히트싱크 (24)로유입되는구조도 가능함을밝혀둔다.
[130] 세번째 예로서 ,상기히트싱크 (24)와냉동실증발기 (17)가상기 냉동실
팽창변 (15)의출구단에서 병렬연결되는구조를배제하지 않는다.
[131] 상기히트싱크 (24)는증발기이지만,심온실냉기와열교환하는목적이 아니라 후술할열전모듈의 발열면을냉각시키는목적으로제공된다.
[132] 증발기의 배치 방법에 대하여상기에서설명된세가지 예들각각에서,상기 절환밸브 (13)와냉장실팽창변 (14)및냉장실증발기 (16)가제거된제 1냉매 순환시스템과,냉장실냉각용증발기,냉장실냉각용팽창변,냉장실냉각용 응축기,냉장실냉각용압축기로이루어지는제 2냉매순환시스템이조합된 복합시스템도가능하다.여기서,상기 제 1냉매순환시스템을구성하는 응축기와상기제 2냉매순환시스템을구성하는응축기가독립적으로제공될 수도있고,단일체로이루어지는응축기이되 냉매는혼합되지 않는복합 응죽기가제공될수도있다.
[133] 한편,심온실을포함하여 저장실이 2개인냉장고의 냉매순환시스템은,상기 제 1냉매순환시스템만으로구성하면된다.
[134] 이하에서는일례로서상기히트싱크와냉동실증발기 (17)가직렬연결되는 구조로한정하여설명하도록한다.
[135] 상기응축기 (12)에 인접하는곳에는응축팬 (121)이장착되고,상기 냉장실 증발기 (16)에 인접하는곳에는냉장실팬 (161)이장착되며,상기 냉동실 증발기 (17)에 인접하는곳에는냉동실팬 (1기)이장착된다. [136] 한편,본발명의실시예에따른냉매순환시스템이구비되는냉장고의 내부에는,상기냉장실증발기 (16)에서생성되는냉기에의하여냉장온도로 유지되는냉장실과,상기냉동실증발기 (16)에서생성되는냉기에의하여냉동 온도로유지되는냉동실,및후술하게될열전모듈에의하여극저온 (cryogenic) 또는초저온 (ultrafrezing)의온도로유지되는심온실 (dee freezing
compartment)(202)이형성된다.상기냉장실과냉동실은상하방향또는좌우 방향으로인접하여배치될수있고,구획벽에의하여서로구획된다.상기 심온실은상기냉동실내부의일측에구비될수있으나,본발명은상기 심온실이냉동실의외부일측에구비되는것을포함한다.상기심온실의냉기와 상기냉동실의냉기가서로열교환하는것을차단하기위하여단열성능이높은 심온케이스 (201)에의하여상기심온실 (202)은상기냉동실로부터구획될수 있다.
[137] 또한,상기열전모듈은,전원이공급되면한쪽면은열을흡수하고반대면은 열을방출하는특징을보이는열전소자 (21)와,상기열전소자 (21)의흡열면에 장착되는콜드싱크 (cold sink)(22)와,상기열전소자 (21)의발열면에장착되는 히트싱크 (heat sink)와,상기콜드싱크 (22)와히트싱크간의열교환을차단하는 단열재 (23)를포함할수있다.
[138] 여기서,상기히트싱크 (24)는상기열전소자 (21)의발열면에접촉되는
증발기이다.즉,상기열전소자 (21)의발열면으로전달되는열은상기히트 싱크 (24)내부를흐르는냉매와열교환한다.상기히트싱크 (24)내부를따라 흐르면서상기열전소자 (21)의발열면으로부터열을흡수한냉매는상기냉동실 증발기 (17)로유입된다.
[139] 또한,상기콜드싱크 (22)의전방에는냉각팬이구비될수있고,상기냉각팬은 상기심온실내부후측에배치되므로심온실팬 (25)으로정의할수있다.
[14이 상기콜드싱크 (22)는상기심온실 (202)내부후방에배치되어상기
심온실 (202)의냉기에노출되도록구성된다.따라서,상기심온실팬 (25)이 구동하여상기심온실 (202)냉기를강제순환시키면,상기콜드싱크 (22)는상기 심온실냉기와열교환을통하여열을흡수한다음상기열전소자 (21)의 흡열면으로전달하는기능을한다.상기흡열면으로전달된열은상기열전 소자 (21)의발열면으로전달된다.
[141] 상기히트싱크 (24)는상기열전소자 (21)의흡열면에서흡수되어상기열전 소자 (21)의발열면으로전달된열을다시흡수하여상기열전모듈 (20)외부로 방출시키는기능을한다.
[142] 도 2는본발명의실시예에따른냉장고의냉동실과심온실구조를보여주는 사시도이고,도 3은도 2의 3-3을따라절개되는종단면도이다.
[143] 도 2및도 3을참조하면,본발명의실시예에따른냉장고는냉동실 (102)을 정의하는인너케이스 (101)와,상기냉동실 (102)의내부일측에장착되는심온 냉동유닛 (200)을포함한다. 2020/175825 1»(:1^1{2020/002071
13
[144] 상세히 ,냉장실내부는약섭씨 3ᄋ (:내외로유지되고,상기 냉동실 ( 102)내부는 약 - 18ᄋ (:내외로유지되는반면,상기심온냉동유닛 (200)내부의온도,즉 심온실 (202)내부온도는약 -50°0내외로유지되어야한다.따라서 ,심온실 (202) 내부온도를 - 50ᄋ (:의극저온으로유지하기위해서는냉동실증발기 외에 열전 모듈 (20)과같은부가적인냉동수단이필요하다.
[145] 더욱상세히,상기심온냉동유닛 (200)은,내부에심온실 (202)을형성하는심온 케이스 (201)와,상기심온케이스 (201)내부에슬라이딩삽입되는심온실 드로어 (203),및상기심온케이스 (201)의후면에장착되는열전모듈 (20)을 포함한다.
[146] 상기심온실드로어 (203)가적용되는대신,상기심온케이스 (201)전면일측에 심온실도어가연결되고,상기심온케이스 (201)내부전체가음식물저장 공간으로구성되는구조도가능하다.
[147] 또한,상기 인너 케이스 (101)의후면은후방으로단차져서,상기 냉동실
증발기 (17)가수용되는냉동증발실 (104)을형성한다.또한,구획벽 (103)에 의하여상기 인너 케이스 (101)의 내부공간이상기 냉동증발실 (104)과 냉동실 (102)로구획된다.상기 열전모듈 (20)은상기구획벽 (103)의 전면에고정 장착되고,일부가상기심온케이스 (201)를관통하여상기심온실 (202)내부에 수용된다.
[148] 상세히 ,상기 열전모듈 (20)을구성하는상기 히트싱크 (24)는,상술한바와 같이,상기 냉동실팽창변 (15)에 연결되는증발기일수있다.상기
구획벽 (103)에는상기 히트싱크 (24)가수용되는공간이 형성될수있다.
[149] 상기히트싱크 (24)내부에는냉동실팽창변 (15)을통과하면서 -18°0 ~ -20 ? 정도로냉각된 2상냉매가흐르므로,상기 히트싱크 (24)의표면온도는
Figure imgf000015_0001
-20ᄋ 0?로유지된다.여기서,냉동실팽창변 (15)을통과한냉매의온도와압력은 냉동실온도조건에 따라달라질수있음을밝혀둔다.
[150] 상기히트싱크 (24)의 전면에상기 열전소자 (21)의후면이접촉되고,상기 열전 소자 (21)에 전원이 인가되면상기 열전소자 (21)의후면은발열면이 된다.
[151] 상기 열전소자의 전면에는상기콜드싱크 (22)가접촉되고,상기 열전
소자 (21)에 전원이 인가되면상기 열전소자 (21)의 전면은흡열면이 된다.
[152] 상기콜드싱크 (22)는알루미늄소재로이루어지는열전도판과,상기
열전도판의 전면에서 연장되는다수의 열교환핀 (&1)을포함할수있고,상기 다수의 열교환핀은수직하게 연장되고가로방향으로이격 배치될수있다.
[153] 여기서,열전도판과열교환핀으로이루어지는열전도체의 적어도일부분을 감싸거나수용하는하우징이 제공될경우,상기콜드싱크 (22)는,상기 열전도체 뿐만아니라상기하우징도포함하는열전달부재로해석되어야한다.이는, 상기 히트싱크 (22)에도동일하게 적용되어,상기히트싱크 (22)는열전도판과 열교환핀으로이루어지는열전도체뿐만아니라,하우징이제공될경우 하우징을포함하는열전달부재로해석되어야한다. [154] 상기콜드싱크 (22)의전방에는상기심온실팬 (25)이배치되어,상기 심온실 (202)내부공기를강제순환시킨다.
[155] 이하에서는열전소자의효율및냉력에대하여설명한다.
[156] 열전모듈 (20)의효율은성능계수 (COP : Coefficient Of Performance)로정의될 수있고,효율식은아래와같다.
[157]
Figure imgf000016_0001
[158] Q c :냉력 (Cooling Capacity,열을톱수하는능력)
[159] P e :입력 (Input Power,열전소자에공급된전력)
[160] P e=V公 i
[161] 또한,열전모듈 (20)의냉력은아래와같이정의될수있다.
[162]
Figure imgf000016_0002
[163] <반도체소재특성계수>
[164] a:제벡 (Seebeck)계수 [V/K]
[165] p:비저항 [Qm-1]
[166] k:열전도도 [W/mk]
[167] <반도체구조특성>
[168] L :열전소자두께 :흡열면과발열면의거리
[169] A :열전소자의면적
[17이 <시스템사용조건>
[171] i :전류
[172] V :전압
[173] Th :열전소자의발열면온도
[174] Tc :열전소자이흡열면온도
[175]
[176] 위의냉력식에서 ,우측첫번째항은펠티어효과 (Peltier Effect)로정의될수 있고,전압차에의한흡열면과발열면양단간의이동열량으로정의될수있다. 상기펠티어효과는전류함수로서공급전류에비례하여증가한다.
[177] V = iR식에서 ,열전소자를구성하는반도체는저항으로작용하고,상기
저항을상수로간주할수있으므로,전압과전류는비례관계에있다고할수 있다.즉,상기열전소자 (21)에걸리는전압이증가하면전류도증가함을 의미한다.따라서,상기펠티어효과는전류함수로볼수도있고전압의함수로 볼수도있다·
[178] 상기냉력또한전류의함수또는전압의함수로볼수있다.상기펠티어
효과는상기냉력을증가시키는플러스효과로작용한다.즉,공급전압이 커지면펠티어효과가증가하여냉력이증가한다. [179] 상기냉력식에서두번째항은줄효과 (Joule Effect)로정의된다.
[180] 상기줄효과는,저항체에전류가인가되면열이발생하는효과를의미한다. 다시말하면,열전소자에전원을공급하면열이발생하므로,이는냉력을 감소시키는마이너스효과로작용한다.따라서,열전소자에공급되는전압이 증가하면줄효과가증가하여열전소자의냉력을저하시키는결과를가져온다.
[181] 상기냉력식에서세번째항은푸리에효과 (Fourier Effect)로정의된다.
[182] 상기푸리에효과는,열전소자의양면에온도차가발생하면열전도에의하여 열이이동하는효과를의미한다.
[183] 상세히,상기열전소자는세라믹기판으로이루어지는흡열면과발열면,상기 흡열면과발열면사이에배치되는반도체를포함한다.상기열전소자에전압을 걸어주면흡열면과발열면사이에온도차가발생하게된다.상기흡열면을 통하여흡수되는열은반도체를통과하여발열면으로전달된다.그런데,상기 흡열면과발열면의온도차가발생하면,열전도에의하여발열면으로부터 흡열면으로열이역류하는현상이발생하며,이를푸리에효과라고한다.
[184] 상기푸리에효과는줄효과와마찬가지로냉력을저하시키는마이너스효과로 작용한다.다시말하면,공급전류가증가하면,열전소자의발열면과흡열면의 온도차 (Th-Tc),즉 AT값이커지게되어냉력을저하시키는결과를가져온다.
[185] 도 4는입력전압및푸리에효과에대한냉력의관계를보여주는그래프이다.
[186] 도 4를참조하면,푸리에효과는흡열면과발열면의온도차,즉 AT의함수로 정의할수있다.
[187] 상세히,열전소자의규격이결정되면,위냉력식의푸리에효과항에서 k,A및 L값은상수값이되므로,푸리에효과는 AT를변수로하는함수로볼수있다.
[188] 따라서, AT가커질수록푸리에효과값은증가하나푸리에효과는냉력에
마이너스효과로작용하므로결국냉력은감소하게된다.
[189] 도 4의그래프에서보이는바와같이,전압이일정한조건하에서 AT가클수록 냉력은적음을알수있다.
[19이 또한 AT를고정한상태,예컨대 AT가 30OC인경우로한정하여전압변화에 따른냉력변화를살펴보면,전압값이증가할수록냉력이증가하다가어느 지점에서최고치를보인후다시감소하는포물선형태를그리게된다.
[191] 여기서전압과전류는비례관계에있기때문에위냉력식에기재된전류를 전압으로보고동일하게해석하여도무방함을밝혀둔다.
[192] 상세히 ,공급전압 (또는전류)이증가함에따라냉력이증가하게되는데이는 위냉력식으로설명될수있다.먼저상기 AT값을고정하였으므로상수가된다. 열전소자의규격별상기 AT값은정해지기때문에,요구되는 AT값에따라 적정한열전소자의규격을설정할수있다.
[193] AT가고정되므로상기푸리에효과는상수로볼수있고,결국냉력은
전압 (또는전류)의 1차함수로볼수있는펠티어효과와전압 (또는전류)의 2차 함수로볼수있는줄효과의함수로단순화될수있다. 2020/175825 1»(:1^1{2020/002071
16
[194] 전압값이점진적으로증가함에따라,전압의 1차함수인펠티어효과의
증가량이전압의 2차함수인줄효과의증가량보다커서,결과적으로냉력이 증가하는양태를보인다.다시말하면,냉력이최대가될때까지는줄효과의 함수는상수에가까워서냉력이전압의 1차함수에근접하는형태를보이게 된다.
[195] 전압이더증가할수록펠티어효과에따른이동열량보다줄효과에의한자체 발열량이더커지는역전현상이발생하게되고,그결과냉력은다시감소하는 양태를보이는것을확인할수있다.이는전압(또는전류)의 1차함수인펠티어 효과와전압(또는전류)의 2차함수인줄효과의함수관계식으로부터더욱 명확하게이해될수있다.즉,냉력이감소할때는냉력은전압의 2차함수에 근접하는형태를보이게된다.
[196] 도 4의그래프상에서는공급전압이약 30내지 40¥범위구간,더욱
구체적으로는약 35¥일때냉력이최대임을확인할수있다.따라서,냉력만 고려한다면열전소자에 30내지 40¥범위내의전압차가발생하도록하는것이 좋다고말할수있다.
[197] 도 5는입력전압및푸리에효과에대한효율관계를보여주는그래프이다.
[198] 도 5를참조하면,동일전압대비스!가클수록효율이적음을확인할수있다. 이는,효율이냉력에비례하기때문에당연한결과라할것이다.
[199] 또한 를고정한상태,예컨대 가 30ᄋ(:인경우로한정하여전압변화에 따른효율변화를살펴보면,공급전압이증가할수록효율도함께증가하다가 어느시점을경과하면효율이오히려감소하는양태를보인다.이는전압변화에 따른냉력그래프와유사하다고할수있다.
[200] 여기서 ,상기효율 ◦ 은냉력뿐만아니라입력전력의함수이기도하며 , 입력 句은,열전소자(21)의저항을상수로보면, V 2의함수가된다.냉력을 V 2 으로나누면효율은결국, 펠티어효과-푸리에효과 로나타낼수있다.
I,2
따라서,상기효율의그래프는도 5에보이는바와같은형태를이룬다고볼수 있다.
[201] 도 5의그래프상에서효율이최대인지점은열전소자에걸리는전압차(또는 공급전압)가대략 20¥미만인영역에서나타남을확인할수있다.따라서, 요구되는스!가결정되면,그에따라적절한전압을걸어주어효율이최대가 되도록하는것이좋다.즉,히트싱크의온도와심온실(202)의설정온도가 결정되면스!가결정되고,그에따라서열전소자에걸리는최적의전압차를 결정할수있다.
[202] 도 6은전압에따른냉력과효율의상관관계를보여주는그래프이다.
[203] 도 6을참조하면,상술한바와같이 ,전압차가커질수록냉력과효율모두
증가후감소하는모습을보여준다. [204] 상세히 ,냉력이최대가되는전압값과효율이최대가되는전압값이다르게 나타나는것을볼수있는데,이는냉력이최대가될때까지는전압의 1차 함수이고,효율은전압의 2차함수이기때문으로볼수있다.
[205] 도 6에보이는바와같이 ,일례로서 AT가 30OC인열전소자의경우열전소자에 걸리는전압차가대략 12V ~ 17V범위내에서열전소자의효율이가장높게 나오는것을확인할수있다.상기전압의범위내에서냉력은계속해서 증가하는모습을보인다.따라서,냉력을함께고려하여적어도 12V이상의 전압차가요구되고,전압차가 14V일때효율이최대임을알수있다.
[206] 도 7은고내부하변동에따른냉장고제어를위한기준온도선을보여주는 도면이다.
[207] 이하에서는각저장실의설정온도를노치온도 (notch temperature)로정의하여 설명한다.상기기준온도선은임계온도선으로표현될수도있다.
[208] 그래프상에서하측의기준온도선은만족온도영역과불만족온도영역을 구분하는기준온도선이다.따라서,하측의기준온도선아래영역 (서은만족 구간또는만족영역으로정의되고,하측의기준온도선위영역 (피은불만족 구간또는불만족영역으로정의될수있다.
[209] 또한,상측의기준온도선은불만족온도영역과상한온도영역을구분하는 기준온도선이다.따라서 ,상측의기준온도선위영역 (C)은상한영역또는상한 구간으로정의될수있고,특수운전영역으로볼수있다.
[210] 한편,냉장고제어를위한만족/불만족/상한온도영역을정의할때,하측의 기준온도선은만족온도영역에포함되도록하는경우와불만온도영역에 포함되도록하는경우중어느하나로정의될수있다.또한,상측의기준 온도선은불만족온도영역에포함되도록하는경우와상한온도영역에 포함되도록하는경우중하나로정의될수있다.
[211] 고내온도가만족영역 (A)내에 있는경우에는압축기를구동하지않으며, 불만족영역 (피에 있는경우에압축기를구동하여고내온도가만족영역내로 들어오도록한다.
[212] 또한,고내온도가상한영역 (C)에있는경우는,고내로온도가높은음식물이 투입되었거나,해당저장실의도어가개방되어고내부하가급격히증가한 것으로보아부하대응운전을포함하는특수운전알고리즘이수행될수있다.
[213] 도 7의 (a)는냉장실온도변화에따른냉장고제어를위한기준온도선을
보여주는도면이다.
[214] 냉장실의노치온도 (N1)는영상의온도로설정된다.냉장실온도가노치
온도 (N1)로유지되록하기위하여 ,노치온도 (N1)보다제 1온도차 (dl)만큼높은 제 1만족임계온도 (Ni l)로상승하면,압축기를구동하도록제어되고,압축기 구동후상기노치온도 (N1)보다상기제 1온도차 (dl)만큼더낮은제 2만족 임계온도 (N12)로하강하면압축기를정지하도록제어된다.
[215] 상기제 1온도차 (dl)는상기냉장실의노치온도 (N1)로부터증가또는감소된 온도값으로써,상기냉장실온도가설정온도인노치온도 (N1)로유지되는 것으로간주되는온도구간을정의하는제어디퍼런셜 (control differential)또는 제어디퍼런셜온도 (control diffetial temperature)로정의될수있으며,대략 1.5 일수있다.
[216] 또한,냉장실온도가노치온도 (N1)로부터제 2온도차 (d2)만큼더높은제 1 불만족임계온도 (N13)로상승하였다고판단되면특수운전알고리즘이 수행되도록제어된다.상기제 2온도차 (d2)는 4.5OC일수있다.상기제 1불만족 임계온도는상한투입온도로정의될수도있다.
[217] 특수운전알고리즘이수행된이후에고내온도가상기제 1불만족임계
온도보다제 3온도차 (d3)만큼더낮은제 2불만족온도 (N14)로하강하면,상기 특수운전알고리즘의운전을종료한다.상기제 2불만족온도 (N14)는제 1 불만족온도 (N13)보다낮으며,상기제 3온도차 (d3)는 3.0OC일수있다.상기제 2 불만족임계온도 (N14)는상한해제온도로정의될수있다.
[218] 상기특수운전알고리즘이종료한다음에는압축기의냉력을조절하여고내 온도가상기제 2만족임계온도 (N12)에도달하도록한후압축기의구동을 정지한다.
[219] 도 7의 (비는냉동실온도변화에따른냉장고제어를위한기준온도선을
보여주는도면이다.
[22이 냉동실온도제어를위한기준온도선의형태는냉장실온도제어를위한기준 온도선의형태와동일하되,노치온도 (N2)및노치온도 (N2)로부터증가또는 감소하는온도변화량 (kl,k2,k3)이냉장실의노치온도 (N1)와온도
변화량 (dl,d2,d3)과다를뿐이다.
[221] 상기냉동실노치온도 (N2)는상술한바와같이 -18OC일수있으나이에
제한되는것은아니다.상기냉동실온도가설정온도인노치온도 (N2)로 유지되는것으로간주되는온도구간을정의하는제어디퍼런셜온도 (kl)는 2 일수있다.
[222] 따라서 ,냉동실온도가노치온도 (N2)보다제 1온도차 (kl)만큼증가한제 1 만족임계온도 (N21)로증가하면압축기를구동하고,노치온도 (N2)보다제 2 온도차 (k2)만큰증가한제 1불만족임계온도 (상한투입온도) (N23)이면특수 운전알고리즘이수행된다.
[223] 또한,압축기구동후냉동실온도가노치온도 (N2)보다제 1온도차 (kl)만큼 낮은제 2만족임계온도온도 (N22)로하강하면압축기구동을정지한다.
[224] 특수운전알고리즘이수행된이후냉동실온도가제 1불만족온도 (N23)보다 제 3온도차 (k3)만큼낮은제 2불만족임계온도 (상한해제온도) (N24)로 하강하면특수운전알고리즘을종료한다.압축기냉력조절을통하여냉동실 온도가제 2만족임계온도 (N22)로하강하도록한다.
[225] 한편,심온실모드가꺼진상태에서도상기심온실의온도를일정주기를
가지고간헐적으로제어하여심온실온도가과도하게상승하는것을방지할 2020/175825 1»(:1^1{2020/002071
19 필요가있다.따라서,심온실모드가꺼진상태에서상기심온실의온도제어는, 도 7의(비에 개시되는냉동실온도제어를위한온도기준선을따른다.
[226] 이와같이 ,심온실모드가꺼진상태에서 냉동실온도제어를위한기준
온도선이 적용되는이유는,심온실이 냉동실내부에 있기 때문이라고할수 있다.
[227] 즉,심온실모드가오프되어심온실을사용하지 않는경우라하더라도,심온실 내부온도는적어도냉동실온도와동일한수준을유지하도록하여야,냉동실 부하가증가되는현상을방지할수있기 때문이다.
[228] 따라서 ,심온실모드가꺼진상태에서 ,심온실노치온도는냉동실노치
온도어2)와동일하게설정되어,제 1및제 2만족임계온도와제 1및제 2 불만족임계온도또한냉동실온도제어를위한임계
온도들어21 22 23 24)과동일하게설정된다.
[229] 도 7의切는심온실모드가켜진상태에서심온실온도변화에따른냉장고 제어를위한기준온도선을보여주는도면이다.
[23이 심온실모드가켜진상태,즉심온실이온된상태에서는심온실노치
온도어3)는냉동실노치온도어2)보다현저히낮은온도로설정되며,약 -45°0 - -55ᄋ(:,바람직하게는 -55ᄋ(:일수있다.이 경우,심온실노치온도어3)는열전 소자(21)의흡열면온도에 대응되고,냉동실노치온도어2)는열전소자(21)의 발열면온도에 대응된다고할수있다.
[231] 냉동실팽창변(15)을통과한냉매가히트싱크(24)를통과하므로,히트
싱크(24)와접촉하는열전소자(21)의 발열면의온도는적어도냉동실팽창변을 통과한냉매의온도에 대응하는온도로유지된다.따라서,열전소자의흡열면과 발열면의온도차,즉스!는 32ᄋ(:가된다.
[232] 한편,심온실이설정온도인노치온도어3)로유지되는것으로간주되는온도 구간을정의하는제어 디퍼런셜온도(나),즉심온실제어 디퍼런셜온도는 냉동실냉동실제어 디퍼런셜온도少1)보다높게설정될수있으며,일례로 3ᄋ(:일 수있다.
[233] 따라서 ,심온실의제 1만족임계온도어31)와제 2만족임계온도어32)사이 구간으로정의되는설정온도유지 간주구간은냉동실의설정온도유지 간주 구간보다넓다고할수있다.
[234] 또한,심온실온도가노치온도어3)보다제 2온도차知 12)만큼높은제 1불만족 임계온도어33)로상승하면특수운전알고리즘이수행되고,특수운전알고리즘 수행 이후심온실온도가상기 제 1불만족임계온도어33)보다제 3
온도차知 13)만큼낮은제 2불만족임계온도어34)로하강하면특수운전 알고리즘을종료한다.상기제 2온도차知 12)는 5ᄋ(:일수있다.
[235] 여기서 ,심온실의제 2온도차知 12)가냉동실의제 2온도차少2)보다높게
설정된다.다시 말하면,심온실온도제어를위한제 1불만족임계온도어33)와 심온실노치온도어3)간의 간격이 ,냉동실온도제어를위한제 1불만족임계 2020/175825 1»(:1^1{2020/002071
20 온도어23)와냉동실노치온도어2)간의간격보다크게설정된다.
[236] 이는,심온실의내부공간이 냉동실에 비하여좁고,심온케이스 (201)의 단열 성능이 뛰어나기 때문에심온실내부로투입된부하가외부로방출되는양이 적다.뿐만아니라,심온실온도가냉동실온도에 비하여 현저히낮기 때문에, 심온실내부로음식물과같은열부하가침투하였을때,열부하에 대한반응 민감도가매우높다.
[237] 이 때문에,심온실의 제 2온도차 (1112)가냉동실의 제 2온도차少2)와동일하게 설정될경우,부하대응운전과같은특수운전알고리즘의수행빈도가 과도하게높아질수있다.따라서,특수운전알고리즘의수행빈도를낮추어 소비 전력을절감하기 위하여,심온실의제 2온도차 (1112)는냉동실의제 2 온도차少2)보다크게설정하는것이좋다.
[238] 한편,이하에서는본발명의실시예에 따른냉장고의 제어방법에 대해서
설명하도록한다.
[239] 이하에서다수의조건들중적어도어느하나를만족하면특정단계를
수행한다고하는내용은,제어부가판단하는시점에서상기다수의조건들중 어느하나만만족하면특정단계를수행한다는의미에 더하여,다수의조건들중 어느하나만,또는일부만,또는전부가반드시 만족되어야특정 단계를 수행한다는의미를포함하는것으로해석되어야한다.
[24이 도 8은본발명의실시예에따른심온실부하대응운전을위한제어 방법을 보여주는플로차트이다.
[241] 이하에서심온실부하대응운전과심온실부하제거운전은동일한의미로 해석되어야할것이다.
[242] 도 8을참조하면,심온실부하대응운전이시작되면,제어부에서는현재
심온실모드가온상태인지 여부를판단한다 110).
[243] 만일,현재심온실모드가오프상태라고판단되면,소위 "오프제어운전”이 수행되도록한다 (別11).
[244] 상세히 ,심온실모드가오프상태라고함은,현재심온실기능을사용하고있지 않다는것을의미한다.상기오프제어운전은,심온실모드가오프일때심온실 내부온도를냉동실온도로유지하도록하기위한제어운전으로정의될수 있다.
[245] 심온실모드가온상태에서는심온실온도를원래설정온도,즉 -50°0
수준으로유지되도록제어되는반면,심온실모드가오프상태에서는소비 전력을최소화하고,냉동실부하증가를방지하기 위하여심온실온도를냉동실 온도와동일한온도로유지되도록제어된다.
[246] 이를위해서 ,상기오프제어운전이수행되면,일정주기마다심온실온도
센서를온시켜서 ,심온실온도를감지하고,심온실온도가냉동실온도보다 높다고판단되면심온실팬이설정속도로설정시간동안구동하도록제어된다.
[247] 반대로,심온실모드가온상태라고판단되면,현재심온실부하대응운전투입 2020/175825 1»(:1^1{2020/002071
21 조건이만족되었는지여부가판단된다 (別20).
[248] 상세히 ,심온실부하대응운전을시작하기위한조건은다음과같다.
[249] 첫째 ,냉동실도어개방후설정시간 ,)동안심온실온도가설정온도 (I ,) 이상증가한경우를들수있다.상기설정시간 (니은 5분일수있고,설정온도 (I ,)는 5 일수있으나,이에제한되는것은아니다.
[25이 여기서 , "도어개방후설정시간 ,)동안”이라함은, "도어를개방한
시점으로부터설정시간 (니동안’’으로해석될수도있고, "도어를개방후닫은 시점으로부터설정시간 (ᄂ)동안”으로해석될수도있음을밝혀둔다.
[251] 만일,심온실드로어개방을감지하는센서가구비되어 있다면,심온실드로어 개방후설정시간 ,)동안심온실온도가설정온도 ,)이상증가하는것을 조건으로할수도있다.심온실도어와심온실드로어는동일한개념으로이해될 수있다.
[252] 둘째 ,심온실온도가상한온도영역 (제 1불만족임계온도이상)에있는
경우를들수있다.여기서,상기첫째조건과둘째조건이모두만족되어야 심온실부하대응운전이투입되도록설정될수도있다.
[253] 셋째,냉동실제상또는심온실제상후첫사이클시작된경우를들수있다.
[254] 심온실이냉동실내부에수용되는구조이고,냉동실증발기와,열전모듈의 히트싱크가직렬로연결된구조에서는,냉동실제상과심온실제상은함께 수행되도록하는것이유리하다.
[255] 다시말하면,냉동실제상조건과심온실제상조건중어느하나만만족하면 냉동실제상과심온실제상이동시에시작되도록하거나,시간차를두고 시작되어동시제상운전구간이존재하도록할수있다.
[256] 이는,심온실단독제상의경우,심온실제상과정에서발생하는물또는
습증기가냉동증발실로유입되어냉동실증발기표면또는냉동증발실내벽에 다시부착되어결빙될수있기때문이다.냉동실단독제상의경우,냉동실제상 과정에서발생하는물또는습증기가심온실로유입되어,심온실내벽이나열전 모듈의콜드싱크에부착되어결빙될수있기때문이다.
[257] 또한,냉동실증발기와병렬연결된냉장실증발기에의하여냉각되는
냉장실의경우,제상운전시작조건이냉동실제상운전시작조건을만족하면 수행되도록제어될수있다.
[258] 일반적으로,냉장실제상을위해서는,제상히터가구동하지않고,냉장실팬을 저속으로회전시켜서,외부에서냉장실로투입되는열부하에의하여냉장실 증발기에형성된성에나얼음이녹도록하는자연제상운전이적용된다.물론, 제상운전중에는냉장실증발기로냉매공급이이루어지지않는다.
[259] 상술한바와같이 ,냉동실제상운전조건이만족하면냉장실제상운전도함께 수행되므로,결국,냉동실제상과심온실제상조건중어느하나만만족되면, 냉장실,냉동실,및심온실제상이모두함께이루어지는것으로요약된다.
[26이 또한,냉장실제상운전이수행되기위해서는냉동실제상운전조건이 2020/175825 1»(:1^1{2020/002071
22 만족되어야하므로,냉장실단독제상운전은수행될수없다고할수있으나, 반드시이에제한되는것은아니다.즉,냉장실제상운전시작조건을달리 설정하면냉장실단독제상운전도가능할수있음을밝혀둔다.
[261] 한편,냉동실제상운전이수행되면,심온실제상운전도수행될것이고,이들 제상운전이모두종료하면,냉동실과심온실내부온도는상한온도영역에 있을가능성이높다.즉,심온실부하가매우증가한상태에 있을가능성이높다. 이러한이유로,냉동실제상운전종료후첫사이클이시작되면,심온실부하 대응운전이수행되도록한다.
[262] 넷째,심온실모드가오프상태에서온상태로전환되는경우를들수있다.
[263] 심온실모드가오프인상태에서는,상술한바와같이,심온실온도는냉동실 온도로유지된다.이상태에서심온실온상태로전환되면,냉동실온도에서 심온실설정온도인극저온으로신속히냉각시켜야하므로,심온실부하대응 운전이필수적으로수행되도록하는것이좋다.
[264] 다섯째,냉장고전원이오프된상태에서온상태로변경된경우를들수있다.
[265] 상세히,냉장고를설치하고처음으로전원을인가한경우,또는정전또는다른 이유로냉장고전원이꺼진상태로유지되다가냉장고에전원이다시공급되는 경우를예로들수있다.
[266] 이경우,고내온도는거의실내온도와동일한수준으로유지되고있을
가능성이높기때문에,설정온도가가장낮은심온실의부하를신속히제거하기 위하여심온실부하대응운전이수행되도록할수있다.
[267] 여기서,심온실부하대응운전은,제 1심온실부하대응운전모드와제 2 심온실부하대응운전모드를포함할수있다.
[268] 위에서제시된다섯가지조건들중적어도어느하나를만족하면,제 1심온실 부하대응운전이수행되도록한다 130).만일,상기다섯가지조건들중어느 것도만족하지않는경우는,일반제어운전이수행되면서심온실모드온 여부를판단하는단계 110)를반복수행하게된다.
[269] 상기제 1심온실부하대응운전은,심온실부하대응운전이시작되면냉매 밸브를동시운전으로전환하는운전모드를의미한다.
[27이 여기서,동시운전이라함은,냉장실증발기와냉동실증발기쪽으로냉매가 모두공급되도록절환밸브의개도가조절된상태를의미한다.
[271] 절환밸브가아닌냉장실냉매밸브(또는냉장실밸브)와냉동실냉매
밸브(또는냉동실밸브)가냉장실팽창변과냉동실팽창변입구에각각연결된 경우,동시운전이라함은냉장실밸브와냉동실밸브가모두개방된상태를 의미하는것으로해석될수있다.
[272] 냉장실단독운전이라함은,냉장실밸브만개방되어냉장실냉각만가능한 상태를의미하고,냉동실단독운전(또는심온실단독운전)이라함은,냉동실 밸브만개방되어냉동실및/또는심온실냉각만가능하고냉장실냉각은 불가능한상태를의미하는것으로해석될수있다. 2020/175825 1»(:1^1{2020/002071
23
[273] 동시운전모드에서는,심온실팬은저속또는중속으로구동하고,열전
소자에는고전압또는중전압이걸리며,냉장실팬은중속으로구동하도록 제어될수있으나,반드시이에제한되는것은아니다.냉동실온도가도 7의 (비에보이는온도영역중어느영역에있는지에따라서열전소자에걸리는 전압과심온실팬의구동속도가다르게설정될수있다.
[274] 예컨대,냉동실온도가만족온도영역에있는경우는,열전소자에고전압이 걸리고,심온실팬은중속으로구동하도록제어될수있다.
[275] 또는,냉동실온도가불만족온도영역에있는경우는,열전소자에중전압이 걸리고,심온실팬은저속으로구동하도록제어될수있다.
[276] 제어부에서는,상기제 1심온실대응운전이수행되는동안,주기적으로상기 제 1심온실부하대응운전완료조건이만족되었는지를판단한다(別40).
[277] 상기제 1심온실부하대응운전완료조건은,냉장실온도가도 7의如에
보이는제 2만족임계온도에2)에도달하여만족온도영역(서에진입하거나, 제 1심온실대응운전시간이설정시간( )을경과하는것이다.
[278] 즉,상기제어부는,위두가지조건중어느하나를만족하면제 1심온실부하 대응운전완료조건이만족된것으로판단하게된다.상기설정시간(&)은
30분일수있으나,이에제한되는것은아니다.
[279] 상기제 1심온실부하대응운전완료조건이만족되면,상기제 2심온실부하 대응운전으로전환된다 160).
[28이 상기제 2심온실부하대응운전은,냉장실밸브는닫히고,냉동실밸브가 개방되어,냉동실및심온실운전이가능한상태를의미한다.
[281] 상세히,상기제 1심온실부하대응운전조건이만족되어동시운전으로
전환되었으나,냉장실온도가만족온도영역내에있으면즉시제 2심온실부하 대응운전으로전환된다.
[282] 이때 ,제 1심온실부하대응운전시작시점에냉장실온도가만족온도영역에 있으면,동시운전으로전환하지않고바로냉동실밸브만개방하여제 2심온실 부하대응운전이수행되도록하는것도가능하다.
[283] 냉동실밸브가개방되면,열전모듈의히트싱크로저온저압의 2상냉매가 흘러열전소자의발열면으로전달되는열을흡수할수있는상태가된다.즉, 상기히트싱크의방열기능이수행가능한상태가된다.
[284] 제 2심온실부하대응운전이수행되는동안,제어부에서는냉장실온도가 상한투입온도,즉제 1불만족임계온도에3)로상승하였는지여부를 지속적으로판단한다(別60).
[285] 냉장실온도가상한온도여역에진입하였다고판단되면,상기제 2심온실 부하대응운전은종료하고다시제 1심온실부하대응운전단계(別30)로 되돌아가도록한다.다시말하면,냉장실부하가증가하면,다시냉장실을 냉각시키도로동시운전상태로전환되도록한다.
[286] 이와같이,제 2심온실부하대응운전이수행되는도중에냉장실의부하가 2020/175825 1»(:1^1{2020/002071
24 설정수준이상으로상승하면,제 1심온실부하대응운전으로전환하여냉장실 온도를만족온도영역으로낮추는과정을반복하여수행하도록함으로써 , 심온실이외의저장실의냉각성능을손상시키지않으면서심온실부하대응 운전이수행되도록할수있다.
[287] 한편,제 2심온실부하대응운전이수행되는동안,제어부에서제 2심온실 부하대응운전완료조건이만족되었는지를판단한다 170).완료조건이 만족되었다고판단되면심온실부하대응운전모드를모두종료한다 180). 냉장고전원오프가아니면(別90),심온실모드가온인지여부를판단하는초기 단계 110)로되돌아간다.
[288] 제 2심온실부하대응운전완료조건은,심온실온도가하강하여도 7의切에 보이는불만족온도영역(피에진입하거나,제 1심온실부하대응운전시작 시점으로부터설정시간 ,)이경과하는것이다.
[289] 상세히,제 2심온실부하대응운전중심온실온도가하강하여제 2불만족 임계온도(또는상한해제온도)(N34)에도달하면상기심온실부하대응운전 모드자체가종료하도록한다.
[29이 또는,심온실부하대응운전투입조건이발생한시점으로부터설정시간( )이 경과하면,제 2불만족임계온도어34)에도달하지않았음에도불구하고심온실 부하대응운전모드가종료되도록한다.상기설정시간여。)은 150분일수 있으나,이에제한되는것은아니다.
[291] 도 9는본발명의실시예에따른심온실부하대응운전시냉장실과심온실의 온도변화및냉매밸브개폐상태를보여주는그래프이다.
[292] 도 9를참조하면,심온실부하대응운전투입조건이만족되는시점 1)을
기준으로,이전까지는일반제어운전이수행된다.
[293] 상세히,도 9의온도변화곡선 은냉장실온도변화를보여주는그래프이고, 온도변화곡선
Figure imgf000026_0001
및 1 2는심온실온도변화를보여주는그래프이다.
[294] 심온실부하대응운전조건이만족하지않는상태에서는냉장실온도가
불만족온도영역(피에있으면냉장실밸브를개방하여냉장실온도가제 1만족 임계온도에1)에도달하도록한다.
[295] 냉장실온도가제 1만족임계온도에 1)으로하강하면,냉장실밸브를닫고 냉동실밸브를개방하여,냉동실온도가제 1만족임계온도어21)에도달하도록 한다.냉동실밸브가개방되어냉동실단독운전이수행되는동안냉장실온도는 점차상승하게될것이다.
[296] 만일,냉장실단독운전또는냉동실단독운전이수행되는중에,심온실부하 대응운전조건이만족되는상황이발생하면,그시점 1)에서제 1심온실부하 대응운전田1)으로전환된다.즉,냉장실밸브와냉동실밸브가모두개방되도록 한다.
[297] 그러면,냉매일부는히트싱크와냉동실증발기를순차적으로통과하고,
나머지일부는냉장실증발기를통과하면서냉장실과냉동실을냉각할수있는 2020/175825 1»(:1^1{2020/002071
25 상태가된다.
[298] 냉동실온도가불만족온도이상이면열전소자에는중전압이걸리고,심온실 팬은저속으로구동하도록제어된다.그러나,냉동실온도가만족온도이면, 열전소자에는고전압이걸리고,심온실팬은중속으로구동하도록제어된다.
[299] 냉장실온도가다시하강하여만족온도영역에진입하면,제 2심온실부하 대응운전田2)으로전환된다.도중에냉장실온도가다시상한온도로증가하면 제 1심온실부하대응운전田1)으로전환한다.
[30이 심온실온도변화그래프 I 에따르면보면,제 2심온실부하대응운전중에 심온실온도가제 2불만족임계온도(상한해제온도)(N34)로하강하였으므로, 심온실부하대응운전을종료하고,냉장실온도하강을위한일반운전,즉 냉장실냉각운전이수행되도록한다.
[301] 심온실온도변화그래프 1\2에따르면,냉장실온도가상한투입
온도에3)까지상승하여도심온실온도가상한해제온도어34)에도달하지 아니하였기때문에,제 2심온실부하대응운전田2)에서제 1심온실부하대응 운전田1)으로전환되어,심온실부하대응운전모드가계속진행되도록한다.
[302] 이와같이 ,심온실온도가상한해제온도어34)에도달할때까지 ,또는제 1 심온실부하대응운전시작후설정시간( ),예컨대 150분이경과할때까지,제 1심온실부하대응운전田1)과제 2심온실부하대응운전田2)이전환되는 과정이반복수행될수있다.
[303] 한편,상기심온실부하대응운전모드가수행되고있는동안냉동실제상운전 조건이만족하더라도,냉동실제상운전은무시되도록프로그램될수있다.즉, 제상운전과부하대응운전을동급의운전모드로설정하여,둘중어느하나가 수행되는도중에다른하나의수행조건이만족되는경우,수행중인운전 모드가종료한뒤에다른하나의운전모드가수행되도록할수있다.
[304] 또한,심온실부하대응운전이수행되고있는도중에냉장실또는냉동실부하 대응운전조건이만족된경우는,심온실부하대응운전이우선하여수행되도록 할수있다.
[305] 또한,냉장실또는냉동실부하대응운전이수행중에심온실부하대응운전 조건이만족되면,냉장실또는냉동실부하대응운전은종료되고심온실부하 대응운전이수행되도록할수있다.
[306] 또한,냉장실단독운전또는냉동실단독운전이수행되고있는도중에심온실 부하대응운전조건이만족되면,제 1심온실부하대응운전을위해동시 운전으로전환된후,냉장실팬과냉동실팬은중속으로구동하도록할수있다.
[307] 반면,냉장실및냉동실동시운전이이미수행되고있는도중에심온실부하 대응운전조건이만족되면,제 1심온실부하대응운전을위해동시운전으로 유지하되 ,냉장실팬과냉동실팬이고속으로구동하도록할수있다.
[308] 또한,심온실부하대응운전중에압축기는최대냉력으로구동하도록
제어된다. [309]

Claims

2020/175825 1»(:1^1{2020/002071
27 청구범위
[청구항 1] 냉장실;
상기 냉장실과구획되는냉동실;
상기 냉동실내부에수용되고,상기 냉동실과구획되는심온실;
상기심온실의온도를냉동실온도보다낮은온도로냉각하도록 제공되는열전모듈;
상기심온실내부의온도를감지하는온도센서;
상기심온실내부공기를강제유동시키는심온실팬;및 상기 열전모듈및상기심온실팬의구동을제어하는제어부를포함하는 냉장고의 제어방법에 있어서,
심온실모드가온상태이고,
심온실부하대응운전투입조건이만족되면,
냉장실밸브및내동실밸브가모두개방되는제 1심온실부하대응 운전이수행되는것을특징으로하는냉장고의제어 방법.
[청구항 2] 제 1항에 있어서,
상기심온실부하대응운전투입조건은,
냉동실도어 개방후설정시간 幻동안심온실온도가설정온도 0此)이상 증가한제 1조건과,
심온실온도가상한온도영역에 있는제 2조건과,
냉동실제상또는심온실제상후첫사이클시작되는제 3조건과, 심온실모드가오프상태에서온상태로전환되는제 4조건,및
다섯째,냉장고전원이오프된상태에서온상태로변경되는제 5조건을 포함하고,
상기 제 1내지제 5조건중적어도하나를만족하면상기심온실부하 대응운전이수행되도록하는것을특징으로하는냉장고의제어 방법. [청구항 3] 제 2항에 있어서,
상기 제 1심온실부하대응운전이시작되면,
냉장실증발기와냉동실증발기 양쪽으로냉매가흐르는동시운전 모드로전환되고,
제 1완료조건이만족되면,상기 제 1심온실부하대응운전이 완료되는 것을특징으로하는냉장고의제어 방법 .
[청구항 4] 제 3항에 있어서,
상기 제 1완료조건은,
냉장실온도가만족온도영역에 진입하는조건및상기 제 1심온실부하 대응운전시작후설정시간仲)이경과하는조건중적어도하나를 포함하는냉장고의제어 방법.
[청구항 5] 제 3항에 있어서, 2020/175825 1»(:1^1{2020/002071
28 상기제 1완료조건이만족되면,제 2심온실부하대응운전이수행되고, 상기제 2심온실부하대응운전이시작되면,
냉동실증발기쪽으로냉매가흐르는단독운전모드로전환되는것을 특징으로하는냉장고의제어방법 .
[청구항 6] 제 5항에있어서,
상기제 2심온실부하대응운전이수행되는동안,냉장실온도가상한 온도이상으로증가하면,상기제 1심온실부하대응운전으로전환되는 것을특징으로하는냉장고의제어방법 .
[청구항 7] 제 5항에있어서,
제 2완료조건이만족되면,심온실부하대응운전이종료되고,심온실 모드가온상태인지여부를판단하는단계로되돌아가는것을특징으로 하는냉장고의제어방법.
[청구항 8] 제 7항에있어서,
상기제 2완료조건은,
심온실이상한해제온도로낮아지는조건,및제 1심온실부하대응운전 시작후설정시간(四이경과하는조건중적어도하나를포함하는 냉장고의제어방법.
[청구항 9] 제 1항에있어서,
냉장실또는냉동실부하대응운전중에,상기심온실부하대응운전 투입조건이만족되면,상기냉장실또는냉동실부하대응운전은 종료하고상기제 1심온실부하대응운전이수행되는것을특징으로 하는냉장고의제어방법.
[청구항 1이 제 1항에있어서,
냉동실제상운전투입조건과상기심온실부하대응운전투입조건중 어느하나가먼저만족되면,투입조건이먼저만족된운전이우선하여 수행되는것을특징으로하는냉장고의제어방법.
[청구항 11] 제 1항에있어서,
상기제 1심온실부하대응운전이시작되면,압축기는최대냉력으로 구동하는것을특징으로하는냉장고의제어방법 .
[청구항 12] 냉장실;
상기냉장실과구획되는냉동실;
상기냉동실내부에수용되고,상기냉동실과구획되는심온실;
상기심온실내부의온도를감지하는온도센서;
상기심온실내부공기를강제유동시키는심온실팬;
상기심온실을향하는흡열면과,상기흡열면의반대면으로정의되는 발열면을포함하는열전소자와,상기흡열면에접촉하며,상기심온실 일측에놓이는콜드싱크와,상기발열면에접촉하는히트싱크를 포함하며심온실의온도를냉동실온도보다낮은온도로냉각하도록 2020/175825 1»(:1^1{2020/002071
29 제공되는열전모듈;및
상기심온실냉각운전과심온실부하대응운전이충돌하면,상기심온실 부하대응운전이우선하여수행되고,상기심온실냉각운전은
중단되도록제어하는제어부를포함하는냉장고의 제어방법에 있어서, 심온실초기 냉기동운전투입조건,심온실도어부하대응운전의투입 조건,및심온실제상완료후의심온실운전투입조건중적어도하나가 만족되는지 여부가판단되고,
상기운전투입조건들중적어도하나가만족되면,상기심온실부하 대응운전과냉장실냉각운전이동시에수행되도록제어되고, 상기심온실부하대응운전및냉장실냉각운전이동시에시작된이후 설정시간이경과하거나,상기 냉장실의온도가제 1설정온도 로 하강하였다고판단되면,상기심온실부하대응운전이단독으로 수행되도록제어되는것을특징으로하는냉장고의제어 방법 .
[청구항 13] 제 12항에 있어서 ,
상기심온실부하대응운전이 단독으로수행되는동안,상기 냉장실의 온도가제 2설정온도(1¾ : >1 로상승하면,상기 냉장실냉각운전과 심온실부하대응운전이동시에수행되도록제어되는것을특징으로 하는냉장고의제어 방법.
[청구항 14] 제 13항에 있어서 ,
상기 냉장실냉각운전과심온실부하대응운전의동시수행과,상기 심온실부하대응운전의단독수행은,상기 냉장실의온도변화에 따라서 상기심온실온도가설정온도 0比 : < 로하강할때까지반복수행되는 것을특징으로하는냉장고의제어 방법 .
[청구항 15] 제 12항에 있어서 ,
상기심온실초기 냉기동운전의투입조건이 만족되었는지 여부를 판단하는단계는,상기 냉장고전원이오프상태에서온상태로변경되고, 심온실모드가오프상태에서온상태로변경되었는지 여부를판단하는 단계를포함하는냉장고의 제어방법 .
[청구항 16] 제 12항에 있어서 ,
상기심온실도어부하대응운전의투입조건이 만족되었는지 여부를 판단하는단계는,
상기 냉동실도어와심온실도어중적어도하나가개방된후설정 시간 동안심온실온도가설정온도 이상증가한경우와, 상기 냉동실도어와심온실도어중적어도하나의 개폐동작이후,상기 심온실온도가설정된온도로상승한경우,중적어도하나가만족되는지 여부를판단하는단계를포함하는냉장고의 제어방법 .
[청구항 17] 제 12항에 있어서,
상기심온실제상운전이 완료된후심온실운전의투입조건이 만족되는 2020/175825 1»(:1^1{2020/002071
30 여부를판단하는단계는,상기열전모듈에착상된얼음을녹이기위해 상기열전모듈에적어도역전압이투입된이후에수행되는것으로 특징으로하는냉장고의제어방법 .
[청구항 18] 제 17항에있어서 ,,
상기심온실제상운전이완료된후심온실운전의투입시점은, 상기콜드싱크에생성된얼음을녹이기위해구동하는콜드싱크히터가 오프되는시점,
심온실제상운전과정에서발생하여냉동증발실로유입되는수증기의 결빙을방지하기위하여구동하는백히터가오프되는시점 ,
상기콜드싱크의제상을위해상기열전모듈에인가되는역전압이 오프되는시점,
상기콜드싱크의제상을위해상기열전모듈에역전압이인가된이후, 상기히트싱크의제상을위해상기열전모듈에인가되는정전압이 오프되는시점,
상기히트싱크또는히트싱크하우징의온도가설정온도이상으로 상승하는시점,및
상기냉동실제상운전이종료되는시점중적어도하나인것을특징으로 하는냉장고의제어방법.
PCT/KR2020/002071 2019-02-28 2020-02-13 냉장고의 제어 방법 WO2020175825A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US17/433,721 US20220042739A1 (en) 2019-02-28 2020-02-13 Refrigerator control method
CN202080017026.0A CN113490826B (zh) 2019-02-28 2020-02-13 冰箱的控制方法
EP20762375.2A EP3933325A4 (en) 2019-02-28 2020-02-13 REFRIGERATOR CONTROL METHOD

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020190023990A KR20200105183A (ko) 2019-02-28 2019-02-28 냉장고의 제어 방법
KR10-2019-0023990 2019-02-28

Publications (1)

Publication Number Publication Date
WO2020175825A1 true WO2020175825A1 (ko) 2020-09-03

Family

ID=72238512

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/002071 WO2020175825A1 (ko) 2019-02-28 2020-02-13 냉장고의 제어 방법

Country Status (5)

Country Link
US (1) US20220042739A1 (ko)
EP (1) EP3933325A4 (ko)
KR (1) KR20200105183A (ko)
CN (1) CN113490826B (ko)
WO (1) WO2020175825A1 (ko)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220084717A (ko) 2020-12-14 2022-06-21 엘지전자 주식회사 냉장고 및 그 제어방법
KR20220084713A (ko) 2020-12-14 2022-06-21 엘지전자 주식회사 냉장고 및 그 제어방법
KR20220084715A (ko) 2020-12-14 2022-06-21 엘지전자 주식회사 냉장고 및 그 제어방법
KR20220084716A (ko) 2020-12-14 2022-06-21 엘지전자 주식회사 냉장고 및 그 제어방법
KR20220084712A (ko) 2020-12-14 2022-06-21 엘지전자 주식회사 냉장고 및 그 제어방법
KR20220084711A (ko) 2020-12-14 2022-06-21 엘지전자 주식회사 냉장고 및 그 제어방법
KR20220084714A (ko) 2020-12-14 2022-06-21 엘지전자 주식회사 냉장고 및 그 제어방법

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000199672A (ja) * 1999-01-05 2000-07-18 Sharp Corp 冷蔵庫
KR20060077396A (ko) * 2004-12-30 2006-07-05 엘지전자 주식회사 냉장고 및 냉장고의 하이브리드 냉각구조
KR20160097648A (ko) 2015-02-09 2016-08-18 엘지전자 주식회사 냉장고
KR101821290B1 (ko) * 2016-09-02 2018-01-23 엘지전자 주식회사 냉장고
KR20180105572A (ko) 2018-03-09 2018-09-28 엘지전자 주식회사 냉장고
KR20190005042A (ko) * 2017-07-05 2019-01-15 엘지전자 주식회사 냉장고

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4459812A (en) * 1983-03-10 1984-07-17 Engineered Air Systems, Inc. Method and apparatus for liquid freezing
JP2760571B2 (ja) * 1989-06-07 1998-06-04 株式会社東芝 冷凍サイクルの制御装置
US5465591A (en) * 1992-08-14 1995-11-14 Whirlpool Corporation Dual evaporator refrigerator with non-simultaneous evaporator
WO1996031937A1 (en) * 1995-04-03 1996-10-10 Zhang Wei Min Linear motor compressor and its application in cooling system
SG50772A1 (en) * 1996-10-16 2000-06-20 Whirlpool Co Multi-compartment refrigeration system
US5818131A (en) * 1997-05-13 1998-10-06 Zhang; Wei-Min Linear motor compressor and its application in cooling system
JP3462156B2 (ja) * 1999-11-30 2003-11-05 株式会社東芝 冷蔵庫
KR100800591B1 (ko) * 2007-03-29 2008-02-04 엘지전자 주식회사 냉장고의 제어 방법
KR100806314B1 (ko) * 2007-03-30 2008-02-27 엘지전자 주식회사 냉장고의 제어방법
KR101314621B1 (ko) * 2007-11-05 2013-10-07 엘지전자 주식회사 냉장고 제어방법
US20090165475A1 (en) * 2007-12-28 2009-07-02 Sam Wasserman Icebox with external controls and temperature display
KR101517248B1 (ko) * 2009-12-14 2015-05-04 엘지전자 주식회사 냉장고의 제어 방법
KR20120092849A (ko) * 2011-02-14 2012-08-22 엘지전자 주식회사 냉장고의 제어 방법
KR101829222B1 (ko) * 2011-02-15 2018-02-19 엘지전자 주식회사 냉장고
US9109819B2 (en) * 2011-05-31 2015-08-18 Lg Electronics Inc. Refrigerator
KR20110081931A (ko) * 2011-06-27 2011-07-15 엘지전자 주식회사 변온실 및 무동결실 기능을 수행할 수 있는 보관고 및 이를 포함하는 냉장고
US9982927B2 (en) * 2013-11-04 2018-05-29 Lg Electronics Inc. Refrigerator and method of controlling the same
KR20160011001A (ko) * 2014-07-21 2016-01-29 엘지전자 주식회사 냉장고 및 그 제어방법
KR101761996B1 (ko) * 2015-04-21 2017-07-26 엘지전자 주식회사 냉장고 및 그 제어방법
KR101821289B1 (ko) * 2016-09-02 2018-01-23 엘지전자 주식회사 냉장고
KR102274676B1 (ko) * 2017-03-14 2021-07-08 엘지전자 주식회사 냉장고
US10712074B2 (en) * 2017-06-30 2020-07-14 Midea Group Co., Ltd. Refrigerator with tandem evaporators
KR102409514B1 (ko) * 2017-11-01 2022-06-16 엘지전자 주식회사 냉장고 및 그의 제어방법
KR20190095804A (ko) * 2018-02-07 2019-08-16 엘지전자 주식회사 냉장고 및 그 운전방법
KR20200105288A (ko) * 2019-02-28 2020-09-07 엘지전자 주식회사 냉장고의 제어 방법
KR20200105169A (ko) * 2019-02-28 2020-09-07 엘지전자 주식회사 냉장고의 제어 방법

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000199672A (ja) * 1999-01-05 2000-07-18 Sharp Corp 冷蔵庫
KR20060077396A (ko) * 2004-12-30 2006-07-05 엘지전자 주식회사 냉장고 및 냉장고의 하이브리드 냉각구조
KR20160097648A (ko) 2015-02-09 2016-08-18 엘지전자 주식회사 냉장고
KR101821290B1 (ko) * 2016-09-02 2018-01-23 엘지전자 주식회사 냉장고
KR20190005042A (ko) * 2017-07-05 2019-01-15 엘지전자 주식회사 냉장고
KR20180105572A (ko) 2018-03-09 2018-09-28 엘지전자 주식회사 냉장고

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3933325A4

Also Published As

Publication number Publication date
US20220042739A1 (en) 2022-02-10
CN113490826B (zh) 2023-06-20
EP3933325A4 (en) 2022-11-16
EP3933325A1 (en) 2022-01-05
CN113490826A (zh) 2021-10-08
KR20200105183A (ko) 2020-09-07

Similar Documents

Publication Publication Date Title
WO2020175825A1 (ko) 냉장고의 제어 방법
CN113508274B (zh) 冰箱的控制方法
WO2020175823A1 (ko) 냉장고의 제어 방법
CN113474608B (zh) 冰箱的控制方法
JP2001082850A (ja) 冷蔵庫
CN113544451B (zh) 冰箱的控制方法
CN113490824B (zh) 冰箱
WO2020175824A1 (ko) 냉장고의 제어 방법
WO2020175828A1 (ko) 냉장고의 제어 방법
US20220170685A1 (en) Method for controlling refrigerator
US20220146154A1 (en) Refrigerator control method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20762375

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020762375

Country of ref document: EP

Effective date: 20210928