WO2022195648A1 - Probe card - Google Patents

Probe card Download PDF

Info

Publication number
WO2022195648A1
WO2022195648A1 PCT/JP2021/010294 JP2021010294W WO2022195648A1 WO 2022195648 A1 WO2022195648 A1 WO 2022195648A1 JP 2021010294 W JP2021010294 W JP 2021010294W WO 2022195648 A1 WO2022195648 A1 WO 2022195648A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
probe card
substrate
wiring board
coating
Prior art date
Application number
PCT/JP2021/010294
Other languages
French (fr)
Japanese (ja)
Inventor
祐樹 中村
雅敏 羽坂
寛士 山中
Original Assignee
日本電子材料株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電子材料株式会社 filed Critical 日本電子材料株式会社
Priority to US18/265,264 priority Critical patent/US20240044942A1/en
Priority to CN202180077519.8A priority patent/CN116547543A/en
Priority to JP2023506376A priority patent/JPWO2022195648A1/ja
Priority to KR1020237015422A priority patent/KR20230082670A/en
Priority to PCT/JP2021/010294 priority patent/WO2022195648A1/en
Priority to TW111148732A priority patent/TW202314258A/en
Priority to TW110146541A priority patent/TWI795122B/en
Publication of WO2022195648A1 publication Critical patent/WO2022195648A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/06Measuring leads; Measuring probes
    • G01R1/067Measuring probes
    • G01R1/073Multiple probes
    • G01R1/07307Multiple probes with individual probe elements, e.g. needles, cantilever beams or bump contacts, fixed in relation to each other, e.g. bed of nails fixture or probe card
    • G01R1/07342Multiple probes with individual probe elements, e.g. needles, cantilever beams or bump contacts, fixed in relation to each other, e.g. bed of nails fixture or probe card the body of the probe being at an angle other than perpendicular to test object, e.g. probe card
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/06Measuring leads; Measuring probes
    • G01R1/067Measuring probes
    • G01R1/073Multiple probes
    • G01R1/07307Multiple probes with individual probe elements, e.g. needles, cantilever beams or bump contacts, fixed in relation to each other, e.g. bed of nails fixture or probe card
    • G01R1/07314Multiple probes with individual probe elements, e.g. needles, cantilever beams or bump contacts, fixed in relation to each other, e.g. bed of nails fixture or probe card the body of the probe being perpendicular to test object, e.g. bed of nails or probe with bump contacts on a rigid support
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/2851Testing of integrated circuits [IC]
    • G01R31/2855Environmental, reliability or burn-in testing
    • G01R31/2872Environmental, reliability or burn-in testing related to electrical or environmental aspects, e.g. temperature, humidity, vibration, nuclear radiation
    • G01R31/2874Environmental, reliability or burn-in testing related to electrical or environmental aspects, e.g. temperature, humidity, vibration, nuclear radiation related to temperature
    • G01R31/2875Environmental, reliability or burn-in testing related to electrical or environmental aspects, e.g. temperature, humidity, vibration, nuclear radiation related to temperature related to heating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/02Details
    • H05B3/03Electrodes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/20Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/06Measuring leads; Measuring probes
    • G01R1/067Measuring probes
    • G01R1/073Multiple probes
    • G01R1/07307Multiple probes with individual probe elements, e.g. needles, cantilever beams or bump contacts, fixed in relation to each other, e.g. bed of nails fixture or probe card
    • G01R1/07364Multiple probes with individual probe elements, e.g. needles, cantilever beams or bump contacts, fixed in relation to each other, e.g. bed of nails fixture or probe card with provisions for altering position, number or connection of probe tips; Adapting to differences in pitch
    • G01R1/07378Multiple probes with individual probe elements, e.g. needles, cantilever beams or bump contacts, fixed in relation to each other, e.g. bed of nails fixture or probe card with provisions for altering position, number or connection of probe tips; Adapting to differences in pitch using an intermediate adapter, e.g. space transformers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/2851Testing of integrated circuits [IC]
    • G01R31/2855Environmental, reliability or burn-in testing
    • G01R31/286External aspects, e.g. related to chambers, contacting devices or handlers
    • G01R31/2863Contacting devices, e.g. sockets, burn-in boards or mounting fixtures

Definitions

  • the present invention relates to a probe card, and more particularly to improvement of a probe card provided with a wiring board that supports a large number of probes.
  • a probe card is an inspection device used for inspecting the electrical characteristics of a semiconductor device formed on a semiconductor wafer. A large number of probes are provided on a wiring board to contact electrode pads on the semiconductor wafer. ing.
  • a semiconductor device is tested by bringing the semiconductor wafer closer to the probe card, bringing the tip of the probe into contact with the electrode pad on the semiconductor wafer, and conducting the tester device with the semiconductor device through the probe and wiring board. For this reason, alignment between the probe card and the semiconductor wafer is performed before inspection so that the tips of the probes come into contact with the electrode pads.
  • a high-temperature test is a test in which thermal stress is applied to a semiconductor wafer to measure its electrical characteristics.
  • a heater embedded in the stage on which the semiconductor wafer is placed is used to maintain the semiconductor wafer at a high temperature.
  • the heat of the semiconductor wafer will be transferred to the probe card, causing the probe card to thermally expand during testing, causing the relative positions of the probes and electrode pads to fluctuate. I had a problem.
  • a heater is built in the wiring board of the probe card, and the wiring board is heated before and during the inspection. method (preheating) is carried out.
  • the probe card has a problem that the temperature of the outer peripheral portion tends to be lower than that of the central portion, and a temperature gradient tends to occur on the main surface.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide a low-cost probe card for high temperature inspection. Another object of the present invention is to improve the reliability of a probe card for high temperature inspection. Another object of the present invention is to suppress the occurrence of a temperature gradient on the main surface of a probe card for high temperature inspection.
  • a probe card comprises a wiring board supporting a large number of probes, a heat generating film formed on the wiring board, and a pair of electrode terminals for supplying current to the heat generating film.
  • the heat-generating coating is formed on the surface of the wiring board by applying a heat-generating coating material containing fine carbon particles and a binder.
  • the probe card can be effectively heated as compared with the conventional method of heating the wiring board by forming a heating wire.
  • the probe card according to the second embodiment of the present invention is configured such that the heat-generating coating is at least partially formed on the side surface of the wiring substrate.
  • the wiring board can be heated from the side surface. Therefore, since the wiring board can be heated without occupying space on the main surface, the wiring board can be heated without restricting the arrangement of circuit patterns, probes, etc. on the main surface. In addition, since the heating can be performed from the outside on the horizontal surface, which is difficult to heat by the conventional heating method, the occurrence of temperature gradient on the main surface of the wiring board can be suppressed.
  • one of the pair of electrode terminals is formed on one main surface of the wiring substrate, and the other of the pair of electrode terminals is formed on the It is formed on the other main surface of the wiring board.
  • the pair of electrode terminals are formed in the vicinity of a pair of edges of the heat-generating coating facing each other in the circumferential direction.
  • the heat-generating coating is formed on a region on the main surface adjacent to the side surface of the wiring board.
  • the heat-generating coating can be formed in the region on the main surface adjacent to the side surface, and the empty space in the vicinity of the outer peripheral edge on the main surface can be efficiently used to produce the wiring board. can be heated.
  • the wiring board since it is possible to heat the wiring board from the outside in the horizontal plane, which is difficult to heat with the conventional heating method, it is possible to suppress the generation of temperature gradient in the horizontal plane of the wiring board.
  • the probe card according to the sixth embodiment of the present invention in addition to the above configuration, has a heater circuit in a region on the main surface separated from the side surface of the wiring board.
  • the inner side can be heated by the heater circuit, and the outer side can be heated by the heat-generating coating. Therefore, it is possible to suppress the occurrence of a temperature gradient in the horizontal plane of the wiring board.
  • the wiring board has a circuit area in which a circuit pattern is formed and a non-circuit area surrounding the circuit area in a plane parallel to the main surface. At least a part of the heat-generating coating is formed in the non-circuit area.
  • the probe card according to the eighth embodiment of the present invention comprises a heater circuit in the circuit area of the wiring board in addition to the above configuration.
  • the inner side can be heated by the heater circuit, and the outer side can be heated by the heat-generating coating. Therefore, it is possible to suppress the occurrence of a temperature gradient in the horizontal plane of the wiring board.
  • the pair of electrode terminals are formed in the circuit area.
  • a probe card for high temperature inspection can be provided at low cost by forming a heat-generating coating on the wiring board. Also, the reliability of the probe card for high temperature inspection can be improved. Furthermore, it is possible to suppress the occurrence of a temperature gradient on the main surface of the probe card for high temperature inspection.
  • FIG. 10 is a diagram showing a main part of the probe card 10 according to Embodiment 2 of the present invention, and is a front view and a bottom view of the ST substrate 130.
  • FIG. 3A and 3B are a plan view and a cross-sectional view of the ST substrate 130 shown in FIG. 2;
  • FIG. 10 is a diagram showing a main part of the probe card 10 according to Embodiment 3 of the present invention, and is a front view and a bottom view of the ST substrate 130.
  • FIG. 10 is a diagram showing a main part of the probe card 10 according to Embodiment 3 of the present invention, and is a front view and a bottom view of the ST substrate 130.
  • FIG. 5A and 5B are a plan view and a BB cross-sectional view of the ST substrate 130 shown in FIG.
  • FIG. 10 is a diagram showing a main part of the probe card 10 according to Embodiment 4 of the present invention, and is a front view and a bottom view of the ST substrate 130.
  • FIG. FIG. 7 is a plan view and a CC cross-sectional view of the ST substrate 130 shown in FIG. 6;
  • FIG. 10 is a diagram showing a main part of the probe card 10 according to Embodiment 5 of the present invention, and is a front view and a bottom view of the ST substrate 130.
  • FIG. FIG. 9 is a plan view and a DD sectional view of the ST substrate 130 shown in FIG. 8;
  • FIG. 1 is a diagram showing an example of a schematic configuration of a probe card 10 according to Embodiment 1 of the present invention.
  • the probe card 10 is attached to the wafer prober with the probe installation surface facing downward, and faces the semiconductor wafer 20 placed on the stage 200. By moving the stage 200 up and down, the probes 15 are moved to the semiconductor wafer. It can be contacted with electrode pads 21 on 20 .
  • the probe card 10 is composed of a main substrate 100, a reinforcing plate 110, an interposer 120, an ST (Space Transformer) substrate 130, and two or more probes 15.
  • the main board 100 is a wiring board detachably attached to the wafer prober, and for example, a disk-shaped glass epoxy board is used.
  • the main substrate 100 is supported by a card holder 210 of a wafer prober at the peripheral portion of the lower surface thereof, and is arranged substantially horizontally.
  • a reinforcing plate 110 for suppressing distortion of the main substrate 100 is attached to the central portion of the upper surface of the main substrate 100 .
  • Two or more external terminals 11 to which signal terminals of a tester device (not shown) are connected are provided on the upper surface of the main board 100 .
  • the interposer 120 is arranged between the main board 100 and the ST board 130, and is a connection means between the boards that conducts the wiring of the main board 100 and the wiring of the ST board 130, and has a large number of pogo pins 12, for example.
  • the ST board 130 is an insulating multilayer wiring board, for example, a laminated board in which two or more ceramic plates are stuck together, and is used to convert the electrode pitch.
  • the ST board 130 is attached to the main board 100 by the board holder 16 and arranged substantially horizontally.
  • the substrate holder 16 has one end fixed to the lower surface of the main substrate 100 and the other end supporting the peripheral portion of the lower surface of the ST substrate 130 .
  • Two or more probe electrodes 13 for attaching probes 15 are formed on the lower surface of the ST substrate 130 .
  • Two or more pogo-pin electrodes 14 are formed on the upper surface of the ST substrate 130 to contact the pogo-pins 12 of the interposer 120 .
  • the probe electrodes 13 are electrically connected to the pogo pin electrodes 14 via the wiring patterns and through holes in the ST substrate 130 , and the probes 15 are electrically connected to the main substrate 100 .
  • the probe electrode 13 and the pogo pin electrode 14 are metal films formed by photolithography using an electroplating method or an etching method.
  • a heat-generating film 3 is formed on the surface of the ST substrate 130 .
  • the probe 15 is made of an elastically deformable conductive metal such as NiCo (nickel-cobalt alloy) and has a tip for contacting the electrode pad 21 .
  • NiCo nickel-cobalt alloy
  • the stage 200 is a mounting table for the semiconductor wafer 20, and is capable of moving and rotating in the horizontal plane and moving in the vertical direction.
  • a heater 201 is a heater for high temperature inspection built in the stage 200 and can heat the semiconductor wafer 20 .
  • the heat-generating coating 3 has a composition in which fine carbon particles are mixed with a binder, and is a coating that generates heat when energized.
  • the heat-generating coating 3 is formed on the surface of the ST substrate 130 by applying a heat-generating coating material. By energizing the heat generating film 3 before or during the inspection, the temperature of the ST substrate 130 can be maintained at a predetermined inspection temperature during the high temperature inspection.
  • the heat-generating coating 3 can be formed on the bottom surface, top surface, or side surface of the ST substrate 130 . Moreover, the heat-generating coating 3 is formed in a region where the probe electrodes 13 and the pogo-pin electrodes 14 are not formed. For example, in the case of forming the heat-generating coating 3 on the lower surface of the ST substrate 130 , it is formed on the periphery of the ST substrate 130 where the probe electrodes 13 are not formed or between adjacent probe electrodes 13 . If the heat-generating coating 3 is formed on the top surface of the ST substrate, it is formed at the periphery of the ST substrate 130 where the pogo-pin electrodes 14 are not formed or between adjacent pogo-pin electrodes 14 .
  • the heat-generating coating 3 is connected to a pair of coating electrodes (not shown) and supplied with current flowing through the heat-generating coating 3 .
  • the heat-generating coating 3 can be efficiently heated. For example, if the area where the heat-generating coating 3 is formed is rectangular, it is desirable to provide connection electrodes at or near a pair of opposing vertexes, or to provide connection electrodes at or near a pair of opposing sides.
  • the heat-generating coating material is a suspension containing a binder-containing solvent or water as a dispersion medium and fine carbon particles as a dispersoid, and is applied to the surface of the ST substrate 130 .
  • Polyurethane-based resins, polyolefin-based resins, fluorine-based rubbers, silicone rubbers, and other synthetic resins can be used as binders.
  • the dispersion medium is a liquid obtained by dissolving or dispersing such a resin in a solvent or emulsifying it in water.
  • the fine carbon particles are powders containing carbon as a main component, and for example, a mixture of graphite and carbon nanotubes can be used.
  • Graphite preferably has a particle size of 30 ⁇ m or less, and carbon nanotube preferably has an outer diameter of 1 ⁇ m or less and a length of 50 ⁇ m or less.
  • a heat-generating coating material can be obtained by dispersing a mixture of graphite and carbon nanotubes in a solvent in which fluorine-based rubber is dissolved. After the heat-generating coating agent is applied to a predetermined area of the ST substrate 130, the heat-generating coating 3 is formed by evaporating the solvent or water and removing the heat-generating coating agent.
  • the heat-generating coating material can be applied to the surface of the ST substrate 130 by spray coating, brush coating, flow dipping, or any other method.
  • the heat-generating coating 3 can be formed in any desired region by forming a photoresist in advance on the region where the heat-generating coating 3 is not to be formed and removing the photoresist after the heat-generating coating 3 is formed.
  • the heat-generating coating 3 is formed on the conductive member, it is formed with an insulating coating interposed therebetween.
  • the heat-generating coating 3 is formed by applying a heat-generating coating material, it can be easily formed in an area where the heating wire that constitutes a conventional heater cannot be formed.
  • the heating wire pattern cannot be formed on uneven surfaces, curved or curved surfaces, narrow areas, etc., and conventional heaters cannot be provided.
  • the heat-generating coating 3 is formed by coating, the heat-generating coating 3 can be formed even in such a region.
  • a heating wire cannot be formed on the peripheral portion or side surface of the ST substrate 130 .
  • the periphery is supported by the substrate holder 16 and cannot be circuitized due to manufacturing process reasons.
  • the side surface of the ST substrate 130 cannot be formed with a circuit.
  • the heat-generating coating 3 can be formed even in such a region.
  • the heat-generating coating 3 can be formed in either a wide area or a narrow area. When formed over a wide area, the area can be heated more uniformly than a conventional heater (resistance wire). Moreover, even if a through-hole is provided in a part of a wide area, it can be used as a heating element. Therefore, compared with conventional heaters in which a resistance wire is meandered to cover a wide area, the possibility of failure due to disconnection is low, and reliability can be improved.
  • the center of the probe card 10 is easily warmed in the horizontal plane, and the periphery is hard to be warmed. Therefore, by forming the heat-generating coating 3 on the upper and lower surfaces of the ST substrate 130 or on the side surfaces thereof, it is possible to suppress the occurrence of a temperature gradient in the horizontal plane of the ST substrate 130 .
  • the present invention is not limited to such a case.
  • the heat-generating coating 3 can be formed on the main substrate 100 supporting the probes 15 via the ST substrate 130 and the substrate holder 16 .
  • the heat-generating coating 3 can be formed on the reinforcing plate 110 .
  • Embodiment 2 In this embodiment, an example of a specific configuration of the heat-generating coating 3 will be described.
  • FIGS. 2 and 3(a) to 3(d) are diagrams showing main parts of the probe card 10 according to the second embodiment of the present invention, and show an example of the detailed configuration of the ST board 130 of FIG. ing.
  • (a) to (c) in the drawing show a front view, a bottom view, and a plan view of the ST substrate 130, respectively.
  • (d) in the drawing shows a cross section (AA cross section) taken along a vertical plane passing through the AA cutting line in (c).
  • the ST substrate 130 is divided in a horizontal plane into a circuit area 131 where circuit patterns are formed and a non-circuit area 132 where no circuit patterns are formed.
  • the circuit region 131 is a region including the central portion of the ST substrate 130 and is formed apart from the outer peripheral edge 134 of the ST substrate 130 .
  • the non-circuit area 132 is an area adjacent to the outer peripheral edge 134 and is an annular area formed outside the circuit area 131 so as to surround the circuit area 131 .
  • a boundary line 133 between the circuit area 131 and the non-circuit area 132 extends along the outer peripheral edge 134 of the ST substrate 130.
  • the circuit area 131 is inside the boundary line 133, and the non-circuit area 132 is outside the boundary line 133. is.
  • the probe electrodes 13 , pogo pin electrodes 14 , and circuit patterns such as through holes and wiring patterns are all formed within the circuit region 131 and not formed within the non-circuit region 132 .
  • a probe region 15A in the drawing is a region in which one or more probe electrodes 13 are formed, and a large number of probe regions 15A are formed in a circuit region 131 on the lower surface.
  • a pogo pin region 12A in the figure is a region in which one or more pogo pin electrodes 14 are formed, and a large number of pogo pin regions 12A are formed in the circuit region 131 on the upper surface.
  • Each heat-generating coating 3 is formed in a region obtained by dividing the non-circuit region 132 in the circumferential direction. That is, two or more heat generating coatings 3 are arranged adjacent to each other in the circumferential direction, and each heat generating coating 3 has an elongated shape extending along the outer peripheral edge 134 .
  • the heat-generating coating 3 comprises a body coating 30 for generating heat and a pair of lead coatings 31 for supplying current.
  • the body coating 30 has a large area occupying most of the heat-generating coating 3 and is formed within the non-circuit region 132 .
  • a pair of lead films 31 are connected to a pair of sides facing each other in the circumferential direction of the body film 30 or in the vicinity thereof, extend across the boundary line 133 to the circuit region 131 , and connect to the film electrode 4 .
  • the coating electrode 4 is an electrode terminal for supplying current to the heat generating coating 3 and is formed within the circuit region 131 .
  • the coating electrode 4 is electrically connected to the external terminal 11 on the main substrate 100 via the interposer 120 .
  • the heater 5 is a well-known heating means, and is composed of a heating wire formed in the circuit area 131 on the lower surface, upper surface, or inner layer of the ST substrate 130 . Heating the circuit area 131 with the heater 5 and heating the non-circuit area 132 with the heat-generating film 3 can suppress the occurrence of a temperature gradient in the horizontal plane of the ST substrate 130 .
  • the present invention is not limited to such a case.
  • it can be formed only on the lower surface or only on the upper surface.
  • the present invention is not limited to such a case, and the heater 5 can be omitted.
  • the ST substrate 130 tends to have a lower temperature in the peripheral portion than in the central portion. Therefore, by forming the heat-generating coating 3 in the non-circuit region 132 adjacent to the outer peripheral edge 134, it is possible to suppress the occurrence of a temperature gradient in the horizontal plane of the ST substrate 130.
  • FIG. 1 A block diagram illustrating an exemplary computing device.
  • heat-generating coatings 3 are formed along the outer peripheral edge 134 , but the present invention is not limited to such a case.
  • one or more exothermic coatings 3 can be formed along the outer peripheral edge 134 .
  • it is formed in a C-shape in which a portion in the circumferential direction is separated.
  • the heat-generating coating 3 is formed in the region adjacent to the outer peripheral edge 134 , but the present invention is not limited to such a case.
  • the heat-generating coating 3 can be formed in a region within the non-circuit region 132 and away from the outer peripheral edge 134 .
  • Embodiment 3 In the second embodiment, an example of forming the heat-generating coating 3 on the non-circuit region 132 of the ST substrate 130 has been described. In contrast, in the present embodiment, a case where the heat-generating coating 3 is formed not only on the non-circuit area 132 but also on the circuit area 131 will be described.
  • FIGS. 4 and 5(a) to 5(d) are diagrams showing main parts of the probe card 10 according to Embodiment 3 of the present invention, and show an example of the detailed configuration of the ST board 130 of FIG. ing.
  • (a) to (c) in the drawing show a front view, a bottom view, and a plan view of the ST substrate 130, respectively.
  • (d) in the figure shows a cross section (BB cut plane) taken along a vertical plane passing through the BB cut line in (c).
  • Components corresponding to those shown in FIGS. 2 and 3 are denoted by the same reference numerals, and overlapping descriptions are omitted.
  • the heat-generating coating 3 By forming the heat-generating coating 3 extending along the circumferential direction not only on the non-circuit area 132 of the ST substrate 130 but also on the circuit area 131, the area on the main surface of the ST substrate 130 can be efficiently utilized. can. Therefore, the heat-generating coating 3 can be formed over a wider area and heated effectively.
  • Embodiment 4 In the second and third embodiments, examples of forming the heat-generating coating 3 on the lower surface or the upper surface of the ST substrate 130 have been described. In contrast, in the present embodiment, the case where the heat-generating coating 3 is formed on the side surface of the ST substrate 130 will be described.
  • FIGS. 6 and 7(a) to 7(d) are diagrams showing essential parts of the probe card 10 according to the fourth embodiment of the present invention, and show an example of the detailed configuration of the ST board 130 of FIG. ing.
  • (a) to (c) in the drawing show a front view, a bottom view, and a plan view of the ST substrate 130, respectively.
  • (d) in the figure shows a cross section (CC cutting plane) taken along a vertical plane passing through the CC cutting line in (c).
  • Components corresponding to those shown in FIGS. 2 to 5 are denoted by the same reference numerals, and overlapping descriptions are omitted.
  • the heat-generating coating 3 comprises a body coating 30 for generating heat and a pair of lead coatings 31 for supplying current.
  • the body coating 30 has a large area occupying most of the heat-generating coating 3 and is formed on the side surface of the ST substrate 130 .
  • a pair of lead films 31 are formed on the main surface of the ST substrate 130 , one end of which is connected to a pair of sides facing each other in the circumferential direction of the body film 30 or their vicinity, and the other end of which is connected to the boundary line 133 . It extends across to the circuit area 131 and is connected to the coating electrode 4 .
  • one of the pair of coating electrodes 4 is formed on the lower surface and the other is formed on the upper surface. Therefore, one of the pair of lead films 31 is formed on the lower surface and the other is formed on the upper surface.
  • the pair of lead coatings 31 can be connected to or near a pair of vertices facing each other in the diagonal direction of the body coating 30 having a substantially rectangular shape, and the body coating 30 can be connected to substantially the entire body coating 30 . can be used to effectively generate heat.
  • Embodiment 5 In the fourth embodiment, an example in which the heat-generating coating 3 is formed on the side surface of the ST substrate 130 has been described. On the other hand, in the present embodiment, a case where the heat generating film 3 is formed not only on the side surface of the ST substrate 130 but also on the non-circuit area 132 on the main surface of the ST substrate 130 will be described.
  • FIGS. 8 and 9(a) to 9(d) are diagrams showing main parts of the probe card 10 according to Embodiment 5 of the present invention, and show an example of the detailed configuration of the ST board 130 of FIG. ing.
  • (a) to (c) in the drawing show a front view, a bottom view, and a plan view of the ST substrate 130, respectively.
  • (d) in the figure shows a cross section (DD cut plane) taken along a vertical plane passing through the DD cut line of (c).
  • Components corresponding to those shown in FIGS. 2 to 7 are denoted by the same reference numerals, and overlapping descriptions are omitted.
  • the heat-generating coating 3 is formed across the outer peripheral edge 134 of the lower surface and the outer peripheral edge 134 of the upper surface, , the lower surface and the upper surface are also formed to extend along the circumferential direction. Furthermore, the heat-generating coatings 3 formed on the upper and lower surfaces are formed across the boundary line 133 and are formed to extend in the circumferential direction not only in the non-circuit area 132 but also in the circuit area 131 . Therefore, the heat generating coating 3 is also different in that it is connected to the coating electrode 4 without having the lead coating 31 .
  • the heat-generating film 3 is formed not only on the side surface of the ST substrate 130 but also on the non-circuit area 132 on the main surface, and by heating both the side surface and the non-circuit area 132, the empty space on the ST substrate 130 is effectively utilized. can be heated by In addition, by forming the heating element not only in the non-circuit area 132 but also in the circuit area 131 and heating the circuit area 131, the empty space on the ST substrate 130 can be further effectively utilized for heating. Therefore, the heat-generating coating 3 can be formed over a wider area and the ST substrate 130 can be effectively heated.
  • a pair of coating electrodes 4 are arranged at or near vertexes of the exothermic coating 3 facing diagonally. That is, one film electrode 4 is formed in the circuit region 131 on the lower surface of the ST substrate 130 , and the other film electrode 4 is formed in the circuit region 131 on the upper surface of the ST substrate 130 .
  • these coating electrodes 4 are connected in the vicinity of a pair of opposite sides of the heat generating coating 3 in the circumferential direction. Therefore, heat can be effectively generated by using substantially the entire heat-generating coating 3 .
  • Heat-generating coating 4 Coating electrode (electrode terminal) 5 heater 10 probe card 11 external terminal 12 pogo pin 12A pogo pin area 13 probe electrode 14 pogo pin electrode 15 probe 15A probe area 16 substrate holder 20 semiconductor wafer 21 electrode pad 30 body coating 31 lead coating 100 main substrate 110 reinforcing plate 120 interposer 130 ST substrate 131 Circuit area 132 Non-circuit area 133 Boundary line 134 Outer peripheral edge 200 Stage 201 Heater 210 Card holder

Abstract

[Problem] The purpose of the present invention is to provide, at a low cost, a probe card for high-temperature examination. [Solution] The present invention comprises: a wiring substrate 130 that supports multiple probes 15; a heat-emitting coating 3 that is formed on the wiring substrate 130; and a pair of electrode terminals 4 that supply current to the heat-emitting coating 3. The heat-emitting coating 3 is formed on an outer surface of the wiring substrate 130 by applying a heat-emitting coating material in which fine carbon particles are dispersed in a binder.

Description

プローブカードprobe card
 本発明は、プローブカードに係り、更に詳しくは、多数のプローブを支持する配線基板を備えたプローブカードの改良に関する。 The present invention relates to a probe card, and more particularly to improvement of a probe card provided with a wiring board that supports a large number of probes.
 プローブカードは、半導体ウエハ上に形成された半導体デバイスの電気的特性を検査する際に使用される検査装置であり、半導体ウエハ上の電極パッドにそれぞれ接触させる多数のプローブが配線基板上に設けられている。 A probe card is an inspection device used for inspecting the electrical characteristics of a semiconductor device formed on a semiconductor wafer. A large number of probes are provided on a wiring board to contact electrode pads on the semiconductor wafer. ing.
 半導体デバイスの検査は、プローブカードに半導体ウエハを近づけてプローブの先端を半導体ウエハ上の電極パッドに接触させ、プローブ及び配線基板を介して、テスター装置を半導体デバイスと導通させることにより行われる。このため、プローブの先端が電極パッドに接触するように、検査前に、プローブカードと半導体ウエハとの位置合わせ(アライメント)が行われる。 A semiconductor device is tested by bringing the semiconductor wafer closer to the probe card, bringing the tip of the probe into contact with the electrode pad on the semiconductor wafer, and conducting the tester device with the semiconductor device through the probe and wiring board. For this reason, alignment between the probe card and the semiconductor wafer is performed before inspection so that the tips of the probes come into contact with the electrode pads.
 高温試験は、半導体ウエハに熱ストレスを印加して電気的特性を測定する試験であり、半導体ウエハが載置されるステージに埋め込まれたヒーターを用いて、半導体ウエハが高温に維持されている。このような高温試験において、プローブカードと半導体ウエハの温度差が大きければ、半導体ウエハの熱がプローブカードに伝わり、検査中にプローブカードが熱膨張し、プローブと電極パッドの相対位置が変動するという問題があった。 A high-temperature test is a test in which thermal stress is applied to a semiconductor wafer to measure its electrical characteristics. A heater embedded in the stage on which the semiconductor wafer is placed is used to maintain the semiconductor wafer at a high temperature. In such a high-temperature test, if the temperature difference between the probe card and the semiconductor wafer is large, the heat of the semiconductor wafer will be transferred to the probe card, causing the probe card to thermally expand during testing, causing the relative positions of the probes and electrode pads to fluctuate. I had a problem.
 このような問題を解決するために、プローブカードの配線基板にヒーターを内蔵し、検査前及び検査中に配線基板を加熱する方法や、検査前にプローブカードを外部ヒーターと対向させて予め加熱する方法(プレヒーティング)が行われている。 In order to solve such problems, a heater is built in the wiring board of the probe card, and the wiring board is heated before and during the inspection. method (preheating) is carried out.
特許第5199859号公報Japanese Patent No. 5199859
 内蔵ヒーターにより加熱する場合、配線基板にヒーター用の配線層を追加する必要があり、製造コストを増大させるという問題があった。また、線幅が狭い配線パターンに電流を流して発熱させることから、ヒーター用電熱線の配線パターンは断線しやすいという問題があった。特に、ヒーターを用いて広い領域を加熱しようとすれば、当該領域内を蛇行する長い配線パターンを形成する必要があり、さらに断線しやすくなり、プローブカードの信頼性を低下させるという問題があった。 When heating with the built-in heater, it was necessary to add a wiring layer for the heater to the wiring board, which posed the problem of increasing manufacturing costs. In addition, there is a problem that the wiring pattern of the heating wire for the heater is easily broken because the wiring pattern with a narrow line width is supplied with a current to generate heat. In particular, if a heater is to be used to heat a wide area, it is necessary to form a long wiring pattern that meanders within the area. .
 また、外部ヒーターによりプレヒーティングを行う場合、プレヒーティング後に行われる半導体ウエハのアライメント中にプローブの温度が低下するという問題があった。また、プローブカードは、中央部に比べて外周縁部の温度が低くなりやすく、主面上に温度勾配が生じやすいという問題があった。 Also, when preheating is performed by an external heater, there is a problem that the temperature of the probe drops during alignment of the semiconductor wafer after preheating. Further, the probe card has a problem that the temperature of the outer peripheral portion tends to be lower than that of the central portion, and a temperature gradient tends to occur on the main surface.
 本発明は、上記の事情に鑑みてなされたものであり、高温検査用のプローブカードを安価に提供することを目的とする。また、高温検査用のプローブカードの信頼性を向上させることを目的とする。さらに、高温検査用のプローブカードの主面上において温度勾配が生じるのを抑制することを目的とする。 The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a low-cost probe card for high temperature inspection. Another object of the present invention is to improve the reliability of a probe card for high temperature inspection. Another object of the present invention is to suppress the occurrence of a temperature gradient on the main surface of a probe card for high temperature inspection.
 第1の本発明の実施態様によるプローブカードは、多数のプローブを支持する配線基板と、前記配線基板に形成された発熱被膜と、前記発熱被膜に電流を供給する一対の電極端子と、を備え、前記発熱被膜が、微細炭素粒子及びバインダーを含む発熱コーティング材を塗布することにより前記配線基板の表面上に形成される。 A probe card according to a first aspect of the present invention comprises a wiring board supporting a large number of probes, a heat generating film formed on the wiring board, and a pair of electrode terminals for supplying current to the heat generating film. The heat-generating coating is formed on the surface of the wiring board by applying a heat-generating coating material containing fine carbon particles and a binder.
 このような構成を採用することにより、配線基板の表面の任意の領域に発熱被膜を形成し、配線基板を加熱することができる。このため、電熱線を形成して配線基板を加熱する従来の方法に比べて、プローブカードを効果的に加熱することができる。 By adopting such a configuration, it is possible to form a heat-generating coating on an arbitrary region on the surface of the wiring board and heat the wiring board. Therefore, the probe card can be effectively heated as compared with the conventional method of heating the wiring board by forming a heating wire.
 第2の本発明の実施態様によるプローブカードは、上記構成に加えて、前記発熱被膜が、前記配線基板の側面に少なくとも一部が形成されるように構成される。 In addition to the configuration described above, the probe card according to the second embodiment of the present invention is configured such that the heat-generating coating is at least partially formed on the side surface of the wiring substrate.
 このような構成を採用することにより、配線基板を側面から加熱することができる。このため、主面上のスペースを占有することなく配線基板を加熱することができるため、主面上における回路パターン、プローブなどの配置を制約することなく、加熱することができる。また、従来の加熱方法では温まりにくい水平面上の外側から加熱することができるため、配線基板の主面上における温度勾配の発生を抑制することができる。 By adopting such a configuration, the wiring board can be heated from the side surface. Therefore, since the wiring board can be heated without occupying space on the main surface, the wiring board can be heated without restricting the arrangement of circuit patterns, probes, etc. on the main surface. In addition, since the heating can be performed from the outside on the horizontal surface, which is difficult to heat by the conventional heating method, the occurrence of temperature gradient on the main surface of the wiring board can be suppressed.
 第3の本発明の実施態様によるプローブカードは、上記構成に加えて、前記一対の電極端子の一方が、前記配線基板の一方の主面に形成され、前記一対の電極端子の他方が、前記配線基板の他方の主面に形成される。 In the probe card according to the third aspect of the present invention, in addition to the above configuration, one of the pair of electrode terminals is formed on one main surface of the wiring substrate, and the other of the pair of electrode terminals is formed on the It is formed on the other main surface of the wiring board.
 このような構成を採用することにより、発熱被膜のうち、より広い面積部分において発熱させることができ、効果的に発熱させることができる。 By adopting such a configuration, heat can be generated in a wider area of the heat-generating coating, and heat can be generated effectively.
 第4の本発明の実施態様によるプローブカードは、上記構成に加えて、前記一対の電極端子が、周方向において対向する前記発熱被膜の一対の端辺の近傍にそれぞれ形成される。 In the probe card according to the fourth aspect of the present invention, in addition to the above configuration, the pair of electrode terminals are formed in the vicinity of a pair of edges of the heat-generating coating facing each other in the circumferential direction.
 このような構成を採用することにより、発熱被膜のうち、より広い面積部分において発熱させることができ、効果的に発熱させることができる。 By adopting such a configuration, heat can be generated in a wider area of the heat-generating coating, and heat can be generated effectively.
 第5の本発明の実施態様によるプローブカードは、上記構成に加えて、前記発熱被膜が、前記配線基板の側面と隣接する主面上の領域に形成される。 In the probe card according to the fifth aspect of the present invention, in addition to the above configuration, the heat-generating coating is formed on a region on the main surface adjacent to the side surface of the wiring board.
 このような構成を採用することにより、側面と隣接する主面上の領域に発熱被膜を形成することができ、主面上の外周縁部近傍の空きスペースを効率的に利用して、配線基板を加熱することができる。また、従来の加熱方法では温まりにくい水平面内における外側から加熱することができるため、配線基板の水平面内における温度勾配の発生を抑制することができる。 By adopting such a configuration, the heat-generating coating can be formed in the region on the main surface adjacent to the side surface, and the empty space in the vicinity of the outer peripheral edge on the main surface can be efficiently used to produce the wiring board. can be heated. In addition, since it is possible to heat the wiring board from the outside in the horizontal plane, which is difficult to heat with the conventional heating method, it is possible to suppress the generation of temperature gradient in the horizontal plane of the wiring board.
 第6の本発明の実施態様によるプローブカードは、上記構成に加えて、前記配線基板の側面から離間した主面上の領域にヒーター回路を備える。 The probe card according to the sixth embodiment of the present invention, in addition to the above configuration, has a heater circuit in a region on the main surface separated from the side surface of the wiring board.
 このような構成を採用することにより、配線基板の主面上において、より内側をヒーター回路により加熱し、より外側を発熱被膜により加熱することができる。このため、配線基板の水平面内における温度勾配の発生を抑制することができる。 By adopting such a configuration, on the main surface of the wiring board, the inner side can be heated by the heater circuit, and the outer side can be heated by the heat-generating coating. Therefore, it is possible to suppress the occurrence of a temperature gradient in the horizontal plane of the wiring board.
 第7の本発明の実施態様によるプローブカードは、上記構成に加えて、前記配線基板が、主面と平行な面内において、回路パターンが形成される回路領域と、前記回路領域を取り囲む非回路領域とに区分され、前記発熱被膜が、前記非回路領域に少なくとも一部が形成される。 In the probe card according to the seventh aspect of the present invention, in addition to the above configuration, the wiring board has a circuit area in which a circuit pattern is formed and a non-circuit area surrounding the circuit area in a plane parallel to the main surface. At least a part of the heat-generating coating is formed in the non-circuit area.
 このような構成を採用することにより、非回路領域を効率的に利用して、配線基板を加熱することができる。また、従来の加熱方法では温まりにくい水平面内における外側から加熱することができるため、配線基板の水平面内における温度勾配の発生を抑制することができる。 By adopting such a configuration, it is possible to efficiently use the non-circuit area and heat the wiring board. In addition, since it is possible to heat the wiring board from the outside in the horizontal plane, which is difficult to heat with the conventional heating method, it is possible to suppress the generation of temperature gradient in the horizontal plane of the wiring board.
 第8の本発明の実施態様によるプローブカードは、上記構成に加えて、前記配線基板の前記回路領域内にヒーター回路を備える。 The probe card according to the eighth embodiment of the present invention comprises a heater circuit in the circuit area of the wiring board in addition to the above configuration.
 このような構成を採用することにより、配線基板の主面上において、より内側をヒーター回路により加熱し、より外側を発熱被膜により加熱することができる。このため、配線基板の水平面内における温度勾配の発生を抑制することができる。 By adopting such a configuration, on the main surface of the wiring board, the inner side can be heated by the heater circuit, and the outer side can be heated by the heat-generating coating. Therefore, it is possible to suppress the occurrence of a temperature gradient in the horizontal plane of the wiring board.
 第9の本発明の実施態様によるプローブカードは、上記構成に加えて、前記一対の電極端子が、前記回路領域に形成される。 In the probe card according to the ninth aspect of the present invention, in addition to the above configuration, the pair of electrode terminals are formed in the circuit area.
 このような構成を採用することにより、回路領域の回路パターンを用いて、発熱被膜に電流を供給することができる。 By adopting such a configuration, current can be supplied to the heat-generating coating using the circuit pattern in the circuit area.
 本発明によれば、配線基板に発熱被膜を形成することにより、高温検査用のプローブカードを安価に提供することができる。また、高温検査用のプローブカードの信頼性を向上させることができる。さらに、高温検査用のプローブカードの主面上において温度勾配が生じるのを抑制することができる。 According to the present invention, a probe card for high temperature inspection can be provided at low cost by forming a heat-generating coating on the wiring board. Also, the reliability of the probe card for high temperature inspection can be improved. Furthermore, it is possible to suppress the occurrence of a temperature gradient on the main surface of the probe card for high temperature inspection.
本発明の実施の形態1によるプローブカード10の概略構成の一例を示した図である。BRIEF DESCRIPTION OF THE DRAWINGS It is the figure which showed an example of the schematic structure of the probe card 10 by Embodiment 1 of this invention. 本発明の実施の形態2によるプローブカード10の要部を示した図であり、ST基板130の正面図及び底面図である。FIG. 10 is a diagram showing a main part of the probe card 10 according to Embodiment 2 of the present invention, and is a front view and a bottom view of the ST substrate 130. FIG. 図2に示したST基板130の平面図及びA-A断面図である。3A and 3B are a plan view and a cross-sectional view of the ST substrate 130 shown in FIG. 2; FIG. 本発明の実施の形態3によるプローブカード10の要部を示した図であり、ST基板130の正面図及び底面図である。FIG. 10 is a diagram showing a main part of the probe card 10 according to Embodiment 3 of the present invention, and is a front view and a bottom view of the ST substrate 130. FIG. 図4に示したST基板130の平面図及びB-B断面図である。5A and 5B are a plan view and a BB cross-sectional view of the ST substrate 130 shown in FIG. 本発明の実施の形態4によるプローブカード10の要部を示した図であり、ST基板130の正面図及び底面図である。FIG. 10 is a diagram showing a main part of the probe card 10 according to Embodiment 4 of the present invention, and is a front view and a bottom view of the ST substrate 130. FIG. 図6に示したST基板130の平面図及びC-C断面図である。FIG. 7 is a plan view and a CC cross-sectional view of the ST substrate 130 shown in FIG. 6; 本発明の実施の形態5によるプローブカード10の要部を示した図であり、ST基板130の正面図及び底面図である。FIG. 10 is a diagram showing a main part of the probe card 10 according to Embodiment 5 of the present invention, and is a front view and a bottom view of the ST substrate 130. FIG. 図8に示したST基板130の平面図及びD-D断面図である。FIG. 9 is a plan view and a DD sectional view of the ST substrate 130 shown in FIG. 8;
実施の形態1.
(1)プローブカード10
 図1は、本発明の実施の形態1によるプローブカード10の概略構成の一例を示した図である。プローブカード10は、プローブ設置面を下に向けた状態でウエハプローバーに取り付けられ、ステージ200上に載置された半導体ウエハ20と対向し、ステージ200を上下動することにより、プローブ15を半導体ウエハ20上の電極パッド21に接触させることができる。
Embodiment 1.
(1) Probe card 10
FIG. 1 is a diagram showing an example of a schematic configuration of a probe card 10 according to Embodiment 1 of the present invention. The probe card 10 is attached to the wafer prober with the probe installation surface facing downward, and faces the semiconductor wafer 20 placed on the stage 200. By moving the stage 200 up and down, the probes 15 are moved to the semiconductor wafer. It can be contacted with electrode pads 21 on 20 .
 プローブカード10は、メイン基板100、補強板110、インターポーザー120、ST(Space Transformer)基板130及び2以上のプローブ15により構成される。 The probe card 10 is composed of a main substrate 100, a reinforcing plate 110, an interposer 120, an ST (Space Transformer) substrate 130, and two or more probes 15.
 メイン基板100は、ウエハプローバーに着脱可能に取り付けられる配線基板であり、例えば、円板状のガラスエポキシ基板が用いられる。メイン基板100は、下面の周縁部がウエハプローバーのカードホルダ210により支持され、略水平に配置される。メイン基板100の上面の中央部には、メイン基板100の歪みを抑制するための補強板110が取り付けられている。また、メイン基板100の上面には、テスター装置(不図示)の信号端子が接続される2以上の外部端子11が設けられている。 The main board 100 is a wiring board detachably attached to the wafer prober, and for example, a disk-shaped glass epoxy board is used. The main substrate 100 is supported by a card holder 210 of a wafer prober at the peripheral portion of the lower surface thereof, and is arranged substantially horizontally. A reinforcing plate 110 for suppressing distortion of the main substrate 100 is attached to the central portion of the upper surface of the main substrate 100 . Two or more external terminals 11 to which signal terminals of a tester device (not shown) are connected are provided on the upper surface of the main board 100 .
 インターポーザー120は、メイン基板100及びST基板130間に配置され、メイン基板100の配線及びST基板130の配線を導通させる基板間の接続手段であり、例えば、多数のポゴピン12を備えている。 The interposer 120 is arranged between the main board 100 and the ST board 130, and is a connection means between the boards that conducts the wiring of the main board 100 and the wiring of the ST board 130, and has a large number of pogo pins 12, for example.
 ST基板130は、絶縁性の多層配線基板、例えば、2以上のセラミック板を貼り合わせた積層板であり、電極ピッチを変換するために使用される。ST基板130は、基板ホルダ16によりメイン基板100に取り付けられ、略水平に配置される。基板ホルダ16は、一端がメイン基板100の下面に固定され、他端がST基板130の下面の周縁部を支持する。 The ST board 130 is an insulating multilayer wiring board, for example, a laminated board in which two or more ceramic plates are stuck together, and is used to convert the electrode pitch. The ST board 130 is attached to the main board 100 by the board holder 16 and arranged substantially horizontally. The substrate holder 16 has one end fixed to the lower surface of the main substrate 100 and the other end supporting the peripheral portion of the lower surface of the ST substrate 130 .
 ST基板130の下面には、プローブ15を取り付けるための2以上のプローブ用電極13が形成されている。また、ST基板130の上面には、インターポーザー120のポゴピン12を当接させるための2以上のポゴピン用電極14が形成されている。プローブ用電極13は、ST基板130内の配線パターン及びスルーホールを介して、ポゴピン用電極14と導通し、プローブ15をメイン基板100と導通させている。プローブ用電極13及びポゴピン用電極14は、電気めっき法又はエッチング法を用いたフォトリソグラフィ処理により形成される金属膜である。また、ST基板130の表面には、発熱被膜3が形成されている。 Two or more probe electrodes 13 for attaching probes 15 are formed on the lower surface of the ST substrate 130 . Two or more pogo-pin electrodes 14 are formed on the upper surface of the ST substrate 130 to contact the pogo-pins 12 of the interposer 120 . The probe electrodes 13 are electrically connected to the pogo pin electrodes 14 via the wiring patterns and through holes in the ST substrate 130 , and the probes 15 are electrically connected to the main substrate 100 . The probe electrode 13 and the pogo pin electrode 14 are metal films formed by photolithography using an electroplating method or an etching method. A heat-generating film 3 is formed on the surface of the ST substrate 130 .
 プローブ15は、弾性変形可能な導電性金属、例えば、NiCo(ニッケルコバルト合金)からなり、電極パッド21に接触させるための先端を有する。 The probe 15 is made of an elastically deformable conductive metal such as NiCo (nickel-cobalt alloy) and has a tip for contacting the electrode pad 21 .
 ステージ200は、半導体ウエハ20の載置台であり、水平面内における移動及び回転、並びに、上下方向の移動が可能である。ヒーター201は、ステージ200に内蔵された高温検査用のヒーターであり、半導体ウエハ20を加熱することができる。 The stage 200 is a mounting table for the semiconductor wafer 20, and is capable of moving and rotating in the horizontal plane and moving in the vertical direction. A heater 201 is a heater for high temperature inspection built in the stage 200 and can heat the semiconductor wafer 20 .
(2)発熱被膜3
 発熱被膜3は、微細炭素粒子をバインダーと混合させた組成を有し、通電することにより発熱する被膜である。発熱被膜3は、発熱コーティング材を塗布することにより、ST基板130の表面上に形成される。検査前又は検査中に発熱被膜3に通電することにより、高温検査時におけるST基板130の温度を所定の検査温度に維持することができる。
(2) Exothermic coating 3
The heat-generating coating 3 has a composition in which fine carbon particles are mixed with a binder, and is a coating that generates heat when energized. The heat-generating coating 3 is formed on the surface of the ST substrate 130 by applying a heat-generating coating material. By energizing the heat generating film 3 before or during the inspection, the temperature of the ST substrate 130 can be maintained at a predetermined inspection temperature during the high temperature inspection.
 発熱被膜3は、ST基板130の下面、上面又は側面に形成することができる。また、発熱被膜3は、プローブ用電極13及びポゴピン用電極14が形成されていない領域に形成される。例えば、ST基板130の下面に発熱被膜3を形成する場合であれば、プローブ用電極13が形成されないST基板130の周縁部や、互いに隣接するプローブ用電極13間に形成される。ST基板の上面に発熱被膜3を形成する場合であれば、ポゴピン用電極14が形成されないST基板130の周縁部や、互いに隣接するポゴピン用電極14間に形成される。 The heat-generating coating 3 can be formed on the bottom surface, top surface, or side surface of the ST substrate 130 . Moreover, the heat-generating coating 3 is formed in a region where the probe electrodes 13 and the pogo-pin electrodes 14 are not formed. For example, in the case of forming the heat-generating coating 3 on the lower surface of the ST substrate 130 , it is formed on the periphery of the ST substrate 130 where the probe electrodes 13 are not formed or between adjacent probe electrodes 13 . If the heat-generating coating 3 is formed on the top surface of the ST substrate, it is formed at the periphery of the ST substrate 130 where the pogo-pin electrodes 14 are not formed or between adjacent pogo-pin electrodes 14 .
 発熱被膜3は、一対の被膜用電極(不図示)が接続され、発熱被膜3に流れる電流が供給される。発熱被膜3の全体に電流が流れるように一対の被膜用電極を配置することにより、発熱被膜3を効率的に発熱させることができる。例えば、発熱被膜3の形成領域が矩形であれば、対向する一対の頂点又はその近傍に接続電極をそれぞれ設け、あるいは、対向する一対の辺又はその近傍に接続電極をそれぞれ設けることが望ましい。 The heat-generating coating 3 is connected to a pair of coating electrodes (not shown) and supplied with current flowing through the heat-generating coating 3 . By arranging the pair of coating electrodes so that a current flows through the entire heat-generating coating 3, the heat-generating coating 3 can be efficiently heated. For example, if the area where the heat-generating coating 3 is formed is rectangular, it is desirable to provide connection electrodes at or near a pair of opposing vertexes, or to provide connection electrodes at or near a pair of opposing sides.
 発熱コーティング材は、バインダーを含む溶剤又は水を分散媒とし、微細炭素粒子を分散質とする懸濁液であり、ST基板130の表面に塗布される。バインダーには、ポリウレタン系樹脂、ポリオレフィン系樹脂、フッ素系ゴム、シリコンゴム、その他の合成樹脂を用いることができる。分散媒は、このような樹脂を溶剤に溶解又は分散させ、あるいは、水に乳化させた液体である。微細炭素粒子は、炭素を主成分とする粉末であり、例えば、グラファイト及びカーボンナノチューブの混合物を用いることができる。グラファイトは、粒径30μm以下、カーボンナノチューブは、外径1μm以下、長さ50μm以下であることが望ましい。 The heat-generating coating material is a suspension containing a binder-containing solvent or water as a dispersion medium and fine carbon particles as a dispersoid, and is applied to the surface of the ST substrate 130 . Polyurethane-based resins, polyolefin-based resins, fluorine-based rubbers, silicone rubbers, and other synthetic resins can be used as binders. The dispersion medium is a liquid obtained by dissolving or dispersing such a resin in a solvent or emulsifying it in water. The fine carbon particles are powders containing carbon as a main component, and for example, a mixture of graphite and carbon nanotubes can be used. Graphite preferably has a particle size of 30 μm or less, and carbon nanotube preferably has an outer diameter of 1 μm or less and a length of 50 μm or less.
 例えば、フッ素系ゴムを溶解した溶剤にグラファイト及びカーボンナノチューブの混合物を分散させることにより、発熱コーティング材が得られる。このような発熱コーティング剤をST基板130の所定領域に塗布した後、溶剤又は水を蒸発させて除去すれば、発熱被膜3が形成される。 For example, a heat-generating coating material can be obtained by dispersing a mixture of graphite and carbon nanotubes in a solvent in which fluorine-based rubber is dissolved. After the heat-generating coating agent is applied to a predetermined area of the ST substrate 130, the heat-generating coating 3 is formed by evaporating the solvent or water and removing the heat-generating coating agent.
 発熱コーティング材は、スプレーコーティング、刷毛塗り、流動浸漬法、その他の任意の方法により、ST基板130の表面に塗布することができる。発熱コーティング材の塗布時には、発熱被膜3を形成しない領域をマスクしておくことが望ましい。例えば、発熱被膜3を形成しない領域にフォトレジストを予め形成し、発熱被膜3の形成後に除去することにより、任意の領域に発熱被膜3を形成することができる。また、導電性部材上に発熱被膜3を形成する場合には、絶縁性被膜を介在させて形成される。 The heat-generating coating material can be applied to the surface of the ST substrate 130 by spray coating, brush coating, flow dipping, or any other method. When applying the heat-generating coating material, it is desirable to mask the area where the heat-generating coating 3 is not to be formed. For example, the heat-generating coating 3 can be formed in any desired region by forming a photoresist in advance on the region where the heat-generating coating 3 is not to be formed and removing the photoresist after the heat-generating coating 3 is formed. Moreover, when the heat-generating coating 3 is formed on the conductive member, it is formed with an insulating coating interposed therebetween.
 発熱被膜3は、発熱コーティング材を塗布することにより形成されるため、従来のヒーターを構成する電熱線を形成することができない領域にも容易に形成することができる。例えば、凹凸を有する表面、湾曲又は屈曲する表面、狭い領域などには電熱線のパターンを形成することができず、従来のヒーターを設けることができない。しかし、発熱被膜3は、塗布により形成されるため、このよう領域であっても発熱皮膜3を形成することができる。 Since the heat-generating coating 3 is formed by applying a heat-generating coating material, it can be easily formed in an area where the heating wire that constitutes a conventional heater cannot be formed. For example, the heating wire pattern cannot be formed on uneven surfaces, curved or curved surfaces, narrow areas, etc., and conventional heaters cannot be provided. However, since the heat-generating coating 3 is formed by coating, the heat-generating coating 3 can be formed even in such a region.
 例えば、ST基板130の周縁部や側面には、電熱線を形成することができない。周縁部は、基板ホルダ16により支持され、また、製造プロセス上の理由により、回路を形成することができない。また、ST基板130の側面も回路を形成することができない。しかし、発熱被膜3であれば、このような領域にも形成することができる。 For example, a heating wire cannot be formed on the peripheral portion or side surface of the ST substrate 130 . The periphery is supported by the substrate holder 16 and cannot be circuitized due to manufacturing process reasons. Also, the side surface of the ST substrate 130 cannot be formed with a circuit. However, the heat-generating coating 3 can be formed even in such a region.
 また、発熱被膜3は、広い領域及び狭い領域のいずれにも形成することができる。広い領域に形成した場合、従来のヒータ(抵抗線)と比べて、当該領域内を均一に加熱することができる。また、広い領域の一部に貫通孔を設けたとしても発熱体として使用することができる。このため、抵抗線を蛇行させて広い領域をカバーする従来のヒーターに比べて断線により故障する可能性が低く、信頼性を向上させることができる。 Also, the heat-generating coating 3 can be formed in either a wide area or a narrow area. When formed over a wide area, the area can be heated more uniformly than a conventional heater (resistance wire). Moreover, even if a through-hole is provided in a part of a wide area, it can be used as a heating element. Therefore, compared with conventional heaters in which a resistance wire is meandered to cover a wide area, the possibility of failure due to disconnection is low, and reliability can be improved.
 また、プローブカード10は、水平面内において中心部は温まりやすく、周縁部は温まりにくい。このため、ST基板130の上下面の周縁部又は側面に発熱被膜3を形成することにより、ST基板130の水平面内において温度勾配が生じるのを抑制することができる。 In addition, the center of the probe card 10 is easily warmed in the horizontal plane, and the periphery is hard to be warmed. Therefore, by forming the heat-generating coating 3 on the upper and lower surfaces of the ST substrate 130 or on the side surfaces thereof, it is possible to suppress the occurrence of a temperature gradient in the horizontal plane of the ST substrate 130 .
 本実施の形態では、ST基板130に発熱被膜3を形成する場合の例について説明したが、本発明は、このような場合のみに限定されない。例えば、ST基板130及び基板ホルダ16を介してプローブ15を支持するメイン基板100に発熱被膜3を形成することもできる。また、補強板110に発熱被膜3を形成することもできる。 In the present embodiment, an example of forming the heat-generating coating 3 on the ST substrate 130 has been described, but the present invention is not limited to such a case. For example, the heat-generating coating 3 can be formed on the main substrate 100 supporting the probes 15 via the ST substrate 130 and the substrate holder 16 . Also, the heat-generating coating 3 can be formed on the reinforcing plate 110 .
実施の形態2.
 本実施の形態では、発熱被膜3の具体的構成の一例について説明する。
Embodiment 2.
In this embodiment, an example of a specific configuration of the heat-generating coating 3 will be described.
 図2及び図3の(a)~(d)は、本発明の実施の形態2によるプローブカード10の要部を示した図であり、図1のST基板130の詳細構成の一例が示されている。図中の(a)~(c)には、ST基板130の正面図、底面図及び平面図がそれぞれ示されている。また、図中の(d)には、(c)のA-A切断線を通る鉛直面で切断したときの断面(A-A切断面)が示されている。 FIGS. 2 and 3(a) to 3(d) are diagrams showing main parts of the probe card 10 according to the second embodiment of the present invention, and show an example of the detailed configuration of the ST board 130 of FIG. ing. (a) to (c) in the drawing show a front view, a bottom view, and a plan view of the ST substrate 130, respectively. In addition, (d) in the drawing shows a cross section (AA cross section) taken along a vertical plane passing through the AA cutting line in (c).
 ST基板130は、水平面内において、回路パターンが形成される回路領域131と、回路パターンが形成されない非回路領域132とに区分される。回路領域131は、ST基板130の中央部を含む領域であり、ST基板130の外周縁134から離間して形成される。非回路領域132は、外周縁134に隣接する領域であり、回路領域131を取り囲むように回路領域131よりも外側に形成された環状領域である。回路領域131及び非回路領域132の境界線133は、ST基板130の外周縁134に沿って延び、境界線133よりも内側が回路領域131であり、境界線133よりも外側が非回路領域132である。 The ST substrate 130 is divided in a horizontal plane into a circuit area 131 where circuit patterns are formed and a non-circuit area 132 where no circuit patterns are formed. The circuit region 131 is a region including the central portion of the ST substrate 130 and is formed apart from the outer peripheral edge 134 of the ST substrate 130 . The non-circuit area 132 is an area adjacent to the outer peripheral edge 134 and is an annular area formed outside the circuit area 131 so as to surround the circuit area 131 . A boundary line 133 between the circuit area 131 and the non-circuit area 132 extends along the outer peripheral edge 134 of the ST substrate 130. The circuit area 131 is inside the boundary line 133, and the non-circuit area 132 is outside the boundary line 133. is.
 プローブ用電極13、ポゴピン用電極14、図示しないスルーホールや配線パターンなどの回路パターンは、いずれも回路領域131内に形成され、非回路領域132内には形成されない。図中のプローブ領域15Aは、1又は2以上のプローブ用電極13が形成される領域であり、下面の回路領域131内には、多数のプローブ領域15Aが形成されている。また、図中のポゴピン領域12Aは、1又は2以上のポゴピン用電極14が形成される領域であり、上面の回路領域131内には、多数のポゴピン領域12Aが形成されている。 The probe electrodes 13 , pogo pin electrodes 14 , and circuit patterns such as through holes and wiring patterns (not shown) are all formed within the circuit region 131 and not formed within the non-circuit region 132 . A probe region 15A in the drawing is a region in which one or more probe electrodes 13 are formed, and a large number of probe regions 15A are formed in a circuit region 131 on the lower surface. A pogo pin region 12A in the figure is a region in which one or more pogo pin electrodes 14 are formed, and a large number of pogo pin regions 12A are formed in the circuit region 131 on the upper surface.
 非回路領域132内には、4つの発熱被膜3が形成されている。各発熱被膜3は、非回路領域132を周方向に分割した領域にそれぞれ形成されている。つまり、2以上の発熱被膜3が周方向に隣接して配置され、各発熱被膜3は、外周縁134に沿って延びる細長い形状を有する。 Four heat-generating coatings 3 are formed in the non-circuit area 132 . Each heat-generating coating 3 is formed in a region obtained by dividing the non-circuit region 132 in the circumferential direction. That is, two or more heat generating coatings 3 are arranged adjacent to each other in the circumferential direction, and each heat generating coating 3 has an elongated shape extending along the outer peripheral edge 134 .
 発熱被膜3は、発熱させるための本体被膜30と、電流を供給するための一対のリード被膜31とを備える。本体被膜30は、発熱被膜3の大部分を占める広い面積を有し、非回路領域132内に形成される。一対のリード被膜31は、本体被膜30の周方向において対向する一対の辺又はその近傍にそれぞれ接続され、境界線133を横切って回路領域131へ延び、被膜用電極4に接続される。 The heat-generating coating 3 comprises a body coating 30 for generating heat and a pair of lead coatings 31 for supplying current. The body coating 30 has a large area occupying most of the heat-generating coating 3 and is formed within the non-circuit region 132 . A pair of lead films 31 are connected to a pair of sides facing each other in the circumferential direction of the body film 30 or in the vicinity thereof, extend across the boundary line 133 to the circuit region 131 , and connect to the film electrode 4 .
 被膜用電極4は、発熱被膜3に電流を供給するための電極端子であり、回路領域131内に形成される。被膜用電極4は、インターポーザー120を介してメイン基板100上の外部端子11と導通している。 The coating electrode 4 is an electrode terminal for supplying current to the heat generating coating 3 and is formed within the circuit region 131 . The coating electrode 4 is electrically connected to the external terminal 11 on the main substrate 100 via the interposer 120 .
 ヒーター5は、周知の加熱手段であり、ST基板130の下面、上面又は内層の回路領域131内に形成された電熱線により構成される。ヒーター5を用いて回路領域131を加熱し、発熱被膜3を用いて非回路領域132を加熱することにより、ST基板130の水平面内において温度勾配が生じるのを抑制することができる。 The heater 5 is a well-known heating means, and is composed of a heating wire formed in the circuit area 131 on the lower surface, upper surface, or inner layer of the ST substrate 130 . Heating the circuit area 131 with the heater 5 and heating the non-circuit area 132 with the heat-generating film 3 can suppress the occurrence of a temperature gradient in the horizontal plane of the ST substrate 130 .
 本実施の形態では、発熱被膜3が、ST基板130の上下の両面にそれぞれ形成される場合について説明したが、本発明は、このような場合のみに限定されない。例えば、下面のみ又は上面のみに形成することもできる。 Although the case where the heat-generating films 3 are formed on both the upper and lower surfaces of the ST substrate 130 has been described in the present embodiment, the present invention is not limited to such a case. For example, it can be formed only on the lower surface or only on the upper surface.
 また、本実施の形態では、ST基板130がヒーター5を有する場合について説明したが、本発明は、このような場合のみに限定されず、ヒーター5を省略することもできる。ST基板130は、中央部に比べて周縁部の温度が低くなり易い。このため、外周縁134に隣接する非回路領域132に発熱被膜3を形成することにより、ST基板130の水平面内において温度勾配が生じるのを抑制することができる。 Also, in this embodiment, the case where the ST substrate 130 has the heater 5 has been described, but the present invention is not limited to such a case, and the heater 5 can be omitted. The ST substrate 130 tends to have a lower temperature in the peripheral portion than in the central portion. Therefore, by forming the heat-generating coating 3 in the non-circuit region 132 adjacent to the outer peripheral edge 134, it is possible to suppress the occurrence of a temperature gradient in the horizontal plane of the ST substrate 130. FIG.
 また、本実施の形態では、外周縁134に沿って4つの発熱被膜3が形成される場合について説明したが、本発明は、このような場合のみに限定されない。例えば、外周縁134に沿って1又は2以上の発熱被膜3を形成することもできる。外周縁134に沿って1つの発熱被膜3のみが形成される場合、周方向の一部が分離されたC字形に形成される。 Also, in this embodiment, the case where four heat-generating coatings 3 are formed along the outer peripheral edge 134 has been described, but the present invention is not limited to such a case. For example, one or more exothermic coatings 3 can be formed along the outer peripheral edge 134 . When only one heat-generating coating 3 is formed along the outer peripheral edge 134, it is formed in a C-shape in which a portion in the circumferential direction is separated.
 また、本実施の形態では、発熱被膜3が、外周縁134に隣接する領域に形成される場合について説明したが、本発明は、このような場合のみに限定されない。例えば、非回路領域132内であって外周縁134から離間した領域に発熱被膜3を形成することもできる。 Also, in this embodiment, the case where the heat-generating coating 3 is formed in the region adjacent to the outer peripheral edge 134 has been described, but the present invention is not limited to such a case. For example, the heat-generating coating 3 can be formed in a region within the non-circuit region 132 and away from the outer peripheral edge 134 .
実施の形態3.
 実施の形態2では、ST基板130の非回路領域132に発熱被膜3を形成する場合の例について説明した。これに対し、本実施の形態では、非回路領域132に加えて、回路領域131にも発熱被膜3を形成する場合について説明する。
Embodiment 3.
In the second embodiment, an example of forming the heat-generating coating 3 on the non-circuit region 132 of the ST substrate 130 has been described. In contrast, in the present embodiment, a case where the heat-generating coating 3 is formed not only on the non-circuit area 132 but also on the circuit area 131 will be described.
 図4及び図5の(a)~(d)は、本発明の実施の形態3によるプローブカード10の要部を示した図であり、図1のST基板130の詳細構成の一例が示されている。図中の(a)~(c)には、ST基板130の正面図、底面図及び平面図がそれぞれ示されている。また、図中の(d)には、(c)のB-B切断線を通る鉛直面で切断したときの断面(B-B切断面)が示されている。なお、図2及び図3に示された構成要素に対応する構成要素には、同一の符号を付して、重複する説明を省略する。 FIGS. 4 and 5(a) to 5(d) are diagrams showing main parts of the probe card 10 according to Embodiment 3 of the present invention, and show an example of the detailed configuration of the ST board 130 of FIG. ing. (a) to (c) in the drawing show a front view, a bottom view, and a plan view of the ST substrate 130, respectively. In addition, (d) in the figure shows a cross section (BB cut plane) taken along a vertical plane passing through the BB cut line in (c). Components corresponding to those shown in FIGS. 2 and 3 are denoted by the same reference numerals, and overlapping descriptions are omitted.
 図2及び図3のST基板130(実施の形態2)と比較すれば、本体被膜30が、境界線133を跨いで形成され、非回路領域132だけでなく、回路領域131にも形成されている点で異なる。これに伴って、リード被膜31を備えていない点でも異なる。また、外周縁134に沿って2つ発熱被膜3が形成されている点でも異なる。 Compared with the ST substrate 130 (Embodiment 2) of FIGS. different in that Along with this, it also differs in that the lead film 31 is not provided. Another difference is that two heat-generating coatings 3 are formed along the outer peripheral edge 134 .
 周方向に沿って延びる発熱被膜3が、ST基板130の非回路領域132だけでなく回路領域131にも形成されることにより、ST基板130の主面上の領域を効率的に利用することができる。このため、発熱被膜3をより広い領域に形成し、効果的に加熱することができる。 By forming the heat-generating coating 3 extending along the circumferential direction not only on the non-circuit area 132 of the ST substrate 130 but also on the circuit area 131, the area on the main surface of the ST substrate 130 can be efficiently utilized. can. Therefore, the heat-generating coating 3 can be formed over a wider area and heated effectively.
実施の形態4.
 実施の形態2及び3では、ST基板130の下面又は上面に発熱被膜3を形成する場合の例について説明した。これに対し、本実施の形態では、ST基板130の側面に発熱被膜3を形成する場合について説明する。
Embodiment 4.
In the second and third embodiments, examples of forming the heat-generating coating 3 on the lower surface or the upper surface of the ST substrate 130 have been described. In contrast, in the present embodiment, the case where the heat-generating coating 3 is formed on the side surface of the ST substrate 130 will be described.
 図6及び図7の(a)~(d)は、本発明の実施の形態4によるプローブカード10の要部を示した図であり、図1のST基板130の詳細構成の一例が示されている。図中の(a)~(c)には、ST基板130の正面図、底面図及び平面図がそれぞれ示されている。また、図中の(d)には、(c)のC-C切断線を通る鉛直面で切断したときの断面(C-C切断面)が示されている。なお、図2~図5に示された構成要素に対応する構成要素には、同一の符号を付して、重複する説明を省略する。 FIGS. 6 and 7(a) to 7(d) are diagrams showing essential parts of the probe card 10 according to the fourth embodiment of the present invention, and show an example of the detailed configuration of the ST board 130 of FIG. ing. (a) to (c) in the drawing show a front view, a bottom view, and a plan view of the ST substrate 130, respectively. In addition, (d) in the figure shows a cross section (CC cutting plane) taken along a vertical plane passing through the CC cutting line in (c). Components corresponding to those shown in FIGS. 2 to 5 are denoted by the same reference numerals, and overlapping descriptions are omitted.
 発熱被膜3は、発熱させるための本体被膜30と、電流を供給するための一対のリード被膜31とを備える。本体被膜30は、発熱被膜3の大部分を占める広い面積を有し、ST基板130の側面に形成される。一対のリード被膜31は、ST基板130の主面上に形成され、その一端は、本体被膜30の周方向において対向する一対の辺又はその近傍にそれぞれ接続され、他端は、境界線133を横切って回路領域131へ延び、被膜用電極4に接続される。 The heat-generating coating 3 comprises a body coating 30 for generating heat and a pair of lead coatings 31 for supplying current. The body coating 30 has a large area occupying most of the heat-generating coating 3 and is formed on the side surface of the ST substrate 130 . A pair of lead films 31 are formed on the main surface of the ST substrate 130 , one end of which is connected to a pair of sides facing each other in the circumferential direction of the body film 30 or their vicinity, and the other end of which is connected to the boundary line 133 . It extends across to the circuit area 131 and is connected to the coating electrode 4 .
 また、一対の被膜用電極4は、一方が下面に形成され、他方が上面に形成される。このため、一対のリード被膜31も、一方が下面に形成され、他方が上面に形成される。このような構成を採用することにより、略矩形の形状からなる本体被膜30の対角線方向において対向する一対の頂点又は近傍に一対のリード被膜31をそれぞれ接続することができ、本体被膜30のおおむね全体を利用して効果的に発熱させることができる。 Also, one of the pair of coating electrodes 4 is formed on the lower surface and the other is formed on the upper surface. Therefore, one of the pair of lead films 31 is formed on the lower surface and the other is formed on the upper surface. By adopting such a configuration, the pair of lead coatings 31 can be connected to or near a pair of vertices facing each other in the diagonal direction of the body coating 30 having a substantially rectangular shape, and the body coating 30 can be connected to substantially the entire body coating 30 . can be used to effectively generate heat.
実施の形態5.
 実施の形態4では、ST基板130の側面に発熱被膜3を形成する場合の例について説明した。これに対し、本実施の形態では、ST基板130の側面に加えて、ST基板130の主面上の非回路領域132にも発熱被膜3を形成する場合について説明する。
Embodiment 5.
In the fourth embodiment, an example in which the heat-generating coating 3 is formed on the side surface of the ST substrate 130 has been described. On the other hand, in the present embodiment, a case where the heat generating film 3 is formed not only on the side surface of the ST substrate 130 but also on the non-circuit area 132 on the main surface of the ST substrate 130 will be described.
 図8及び図9の(a)~(d)は、本発明の実施の形態5によるプローブカード10の要部を示した図であり、図1のST基板130の詳細構成の一例が示されている。図中の(a)~(c)には、ST基板130の正面図、底面図及び平面図がそれぞれ示されている。また、図中の(d)には、(c)のD-D切断線を通る鉛直面で切断したときの断面(D-D切断面)が示されている。なお、図2~図7に示された構成要素に対応する構成要素には、同一の符号を付して、重複する説明を省略する。 FIGS. 8 and 9(a) to 9(d) are diagrams showing main parts of the probe card 10 according to Embodiment 5 of the present invention, and show an example of the detailed configuration of the ST board 130 of FIG. ing. (a) to (c) in the drawing show a front view, a bottom view, and a plan view of the ST substrate 130, respectively. In addition, (d) in the figure shows a cross section (DD cut plane) taken along a vertical plane passing through the DD cut line of (c). Components corresponding to those shown in FIGS. 2 to 7 are denoted by the same reference numerals, and overlapping descriptions are omitted.
 図6及び図7のST基板130(実施の形態4)と比較すれば、発熱被膜3が、下面の外周縁134及び上面の外周縁134を跨いで形成され、ST基板130の側面だけでなく、下面及び上面においても周方向に沿って延びるように形成されている点で異なる。さらに、上面及び下面に形成された発熱被膜3は、境界線133を跨いで形成され、非回路領域132だけでなく回路領域131においても周方向に延びるように形成されている。このため、発熱被膜3は、リード被膜31を備えることなく、被膜用電極4に接続される点でも異なる。 6 and 7 (Embodiment 4), the heat-generating coating 3 is formed across the outer peripheral edge 134 of the lower surface and the outer peripheral edge 134 of the upper surface, , the lower surface and the upper surface are also formed to extend along the circumferential direction. Furthermore, the heat-generating coatings 3 formed on the upper and lower surfaces are formed across the boundary line 133 and are formed to extend in the circumferential direction not only in the non-circuit area 132 but also in the circuit area 131 . Therefore, the heat generating coating 3 is also different in that it is connected to the coating electrode 4 without having the lead coating 31 .
 発熱被膜3をST基板130の側面だけでなく、主面上の非回路領域132にも形成し、側面及び非回路領域132をともに加熱することにより、ST基板130上の空きスペースを有効に活用して加熱することができる。また、非回路領域132だけでなく、回路領域131にも形成し、回路領域131も加熱することにより、ST基板130上の空きスペースをさらに有効に活用して加熱することができる。このため、発熱被膜3をより広い領域に形成し、ST基板130を効果的に加熱することができる。 The heat-generating film 3 is formed not only on the side surface of the ST substrate 130 but also on the non-circuit area 132 on the main surface, and by heating both the side surface and the non-circuit area 132, the empty space on the ST substrate 130 is effectively utilized. can be heated by In addition, by forming the heating element not only in the non-circuit area 132 but also in the circuit area 131 and heating the circuit area 131, the empty space on the ST substrate 130 can be further effectively utilized for heating. Therefore, the heat-generating coating 3 can be formed over a wider area and the ST substrate 130 can be effectively heated.
 一対の被膜用電極4は、発熱被膜3の対角線方向に対向する頂点又はその近傍に配置されている。つまり、一方の被膜用電極4は、ST基板130の下面の回路領域131に形成され、他方の被膜用電極4は、ST基板130の上面の回路領域131に形成されている。また、これらの被膜用電極4は、発熱被膜3の周方向において対向する一対の辺の近傍に接続される。このため、発熱被膜3のおおむね全体を利用して効果的に発熱させることができる。 A pair of coating electrodes 4 are arranged at or near vertexes of the exothermic coating 3 facing diagonally. That is, one film electrode 4 is formed in the circuit region 131 on the lower surface of the ST substrate 130 , and the other film electrode 4 is formed in the circuit region 131 on the upper surface of the ST substrate 130 . In addition, these coating electrodes 4 are connected in the vicinity of a pair of opposite sides of the heat generating coating 3 in the circumferential direction. Therefore, heat can be effectively generated by using substantially the entire heat-generating coating 3 .
3    発熱被膜
4    被膜用電極(電極端子)
5    ヒーター
10   プローブカード
11   外部端子
12   ポゴピン
12A  ポゴピン領域
13   プローブ用電極
14   ポゴピン用電極
15   プローブ
15A  プローブ領域
16   基板ホルダ
20   半導体ウエハ
21   電極パッド
30   本体被膜
31   リード被膜
100  メイン基板
110  補強板
120  インターポーザー
130  ST基板
131  回路領域
132  非回路領域
133  境界線
134  外周縁部
200  ステージ
201  ヒーター
210  カードホルダ
3 Heat-generating coating 4 Coating electrode (electrode terminal)
5 heater 10 probe card 11 external terminal 12 pogo pin 12A pogo pin area 13 probe electrode 14 pogo pin electrode 15 probe 15A probe area 16 substrate holder 20 semiconductor wafer 21 electrode pad 30 body coating 31 lead coating 100 main substrate 110 reinforcing plate 120 interposer 130 ST substrate 131 Circuit area 132 Non-circuit area 133 Boundary line 134 Outer peripheral edge 200 Stage 201 Heater 210 Card holder

Claims (9)

  1.  多数のプローブを支持する配線基板と、
     前記配線基板に形成された発熱被膜と、
     前記発熱被膜に電流を供給する一対の電極端子と、を備え、
     前記発熱被膜は、微細炭素粒子及びバインダーを含む発熱コーティング材を塗布することにより前記配線基板の表面上に形成されることを特徴とするプローブカード。
    a wiring board supporting a large number of probes;
    a heat-generating coating formed on the wiring substrate;
    a pair of electrode terminals for supplying current to the heat-generating coating,
    The probe card, wherein the heat-generating coating is formed on the surface of the wiring board by applying a heat-generating coating material containing fine carbon particles and a binder.
  2.  前記発熱被膜は、前記配線基板の側面に少なくとも一部が形成されることを特徴とする請求項1に記載のプローブカード。 The probe card according to claim 1, wherein the heat-generating coating is at least partially formed on the side surface of the wiring board.
  3.  前記一対の電極端子の一方が、前記配線基板の一方の主面に形成され、前記一対の電極端子の他方が、前記配線基板の他方の主面に形成されることを特徴とする請求項2に記載のプローブカード。 2. One of the pair of electrode terminals is formed on one main surface of the wiring board, and the other of the pair of electrode terminals is formed on the other main surface of the wiring board. Probe card described in .
  4.  前記一対の電極端子は、周方向において対向する前記発熱被膜の一対の端辺の近傍にそれぞれ形成されることを特徴とする請求項2又は3に記載のプローブカード。 The probe card according to claim 2 or 3, wherein the pair of electrode terminals are formed near a pair of edges of the heat-generating coating facing each other in the circumferential direction.
  5.  前記発熱被膜は、前記配線基板の外周縁と隣接する主面上の領域に形成されることを特徴とする請求項1に記載のプローブカード。 The probe card according to claim 1, wherein the heat-generating coating is formed in a region on the main surface adjacent to the outer periphery of the wiring board.
  6.  前記配線基板の外周縁から離間した領域にヒーター回路を備えること特徴とする請求項5に記載のプローブカード。 The probe card according to claim 5, wherein a heater circuit is provided in a region separated from the outer peripheral edge of the wiring board.
  7.  前記配線基板は、主面と平行な面内において、回路パターンが形成される回路領域と、前記回路領域を取り囲む非回路領域とに区分され、
     前記発熱被膜は、前記非回路領域に少なくとも一部が形成されることを特徴とする請求項1に記載のプローブカード。
    The wiring board is divided into a circuit area in which a circuit pattern is formed and a non-circuit area surrounding the circuit area in a plane parallel to the main surface,
    2. The probe card according to claim 1, wherein the heat-generating coating is at least partially formed in the non-circuit area.
  8.  前記配線基板の前記回路領域内にヒーター回路を備えること特徴とする請求項7に記載のプローブカード。 The probe card according to claim 7, wherein a heater circuit is provided in the circuit area of the wiring board.
  9.  前記一対の電極端子は、前記回路領域に形成されることを特徴とする請求項7又は8に記載のプローブカード。 The probe card according to claim 7 or 8, wherein the pair of electrode terminals are formed in the circuit area.
PCT/JP2021/010294 2021-03-15 2021-03-15 Probe card WO2022195648A1 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
US18/265,264 US20240044942A1 (en) 2021-03-15 2021-03-15 Probe card
CN202180077519.8A CN116547543A (en) 2021-03-15 2021-03-15 Probe card
JP2023506376A JPWO2022195648A1 (en) 2021-03-15 2021-03-15
KR1020237015422A KR20230082670A (en) 2021-03-15 2021-03-15 probe card
PCT/JP2021/010294 WO2022195648A1 (en) 2021-03-15 2021-03-15 Probe card
TW111148732A TW202314258A (en) 2021-03-15 2021-12-13 probe card
TW110146541A TWI795122B (en) 2021-03-15 2021-12-13 probe card

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/010294 WO2022195648A1 (en) 2021-03-15 2021-03-15 Probe card

Publications (1)

Publication Number Publication Date
WO2022195648A1 true WO2022195648A1 (en) 2022-09-22

Family

ID=83320040

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/010294 WO2022195648A1 (en) 2021-03-15 2021-03-15 Probe card

Country Status (6)

Country Link
US (1) US20240044942A1 (en)
JP (1) JPWO2022195648A1 (en)
KR (1) KR20230082670A (en)
CN (1) CN116547543A (en)
TW (2) TW202314258A (en)
WO (1) WO2022195648A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000346875A (en) * 1999-06-07 2000-12-15 Advantest Corp Probe card and ic testing device using it
JP2002532822A (en) * 1998-12-04 2002-10-02 ピージェイオー(インディサーム)リミテッド Conductive material

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWM587275U (en) * 2018-12-04 2019-12-01 蔚華科技股份有限公司 Structure for testing a semiconductor device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002532822A (en) * 1998-12-04 2002-10-02 ピージェイオー(インディサーム)リミテッド Conductive material
JP2000346875A (en) * 1999-06-07 2000-12-15 Advantest Corp Probe card and ic testing device using it

Also Published As

Publication number Publication date
KR20230082670A (en) 2023-06-08
TWI795122B (en) 2023-03-01
US20240044942A1 (en) 2024-02-08
JPWO2022195648A1 (en) 2022-09-22
TW202314258A (en) 2023-04-01
TW202238152A (en) 2022-10-01
CN116547543A (en) 2023-08-04

Similar Documents

Publication Publication Date Title
JP3685192B2 (en) Anisotropic conductive connector, conductive paste composition, probe member, wafer inspection apparatus and wafer inspection method
TWI239404B (en) Anisotropic conductive connector and electrically conductive paste constitution, probe member, wafer inspection apparatus and wafer inspection method
TWI430525B (en) An aisotropic conductive connector, a probe member, and a wafer inspection device
KR20050027252A (en) Anisotropic conductivity connector, probe member, wafer inspecting device, and wafer inspecting method
JP2007085833A (en) Anisotropically conductive connector for wafer inspection, its manufacturing method, probe card for wafer inspection, and wafer inspection device
JP2004342597A (en) Anisotropic conductive sheet and its manufacturing method, adapter device and its manufacturing method as well as electrical testing device of circuit device
CN103841759B (en) Multiwiring board and its manufacture method
JP3573120B2 (en) Anisotropic conductive connector, method of manufacturing the same, and application product thereof
CN100359659C (en) Anisotropic conductive connector and probe member and wafer inspecting device and wafer inspecting method
WO2022195648A1 (en) Probe card
JP5079806B2 (en) Inspection structure
TW200848746A (en) Sheet-like probe and method for manufacturing the same
JP5104265B2 (en) Probe member, manufacturing method thereof and application thereof
JP3649245B2 (en) Manufacturing method of sheet-like probe
JP7393873B2 (en) Electrical contacts and probe cards
JP2009098065A (en) Probe member and manufacturing method thereof, and application of probe member
JP3938117B2 (en) Anisotropic conductive connector, probe member, wafer inspection apparatus and wafer inspection method
JP2002246428A (en) Anisotropic conductive sheet and wafer tester
JP3685190B2 (en) Anisotropic conductive connector, conductive paste composition, probe member, wafer inspection apparatus and wafer inspection method
JP3781048B2 (en) Sheet probe and its application
JP2009222495A (en) Wafer tester
JP2006216502A (en) Anisotropic conductive connector, probe card, wafer inspection device and wafer inspection method
JP2005037229A (en) Electrical connection device
JP2009047565A (en) Sheetlike probe and method of manufacturing the same
KR20220127584A (en) Contactor array and manufacturing method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21931404

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023506376

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20237015422

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202180077519.8

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 18265264

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 11202304274P

Country of ref document: SG

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21931404

Country of ref document: EP

Kind code of ref document: A1